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Abstract
This work presents a framework for interfacing a reinforcement learning algorithm with a finite element model in order to
develop an artificial neural network controller. The goal of the controller is accelerating the hot compression process of the
titanium aluminide TNM-B1. The reinforcement learning algorithm interacts with the finite element model by exploring
different die velocities and receiving input measurements (the velocity, displacement and force of the die) while collecting
rewards if a constant stress state in the workpiece is achieved. Synthetic stochastic material behavior was used to simulate
the observed variations in deformation behavior of TNM-B1. The same reinforcement learning setup and reward function
was able to adapt to two example finite element environments; the compression of a simple cylinder workpiece between
flat dies and the compression of a more complex bone workpiece between flat dies. The performance of the controller for
the bone compression environment was comparatively reduced and less consistent. In addition, training times and training
instability were significantly increased. Furthermore, the results suggest that the framework can be used as a tool to find
process optimizations or alternative process routes. This work demonstrates the concept and provides the groundwork and
fundamentals for transferring the method to a physical setup.

Keywords Reinforcement learning · Finite element method · Process control · Deformation acceleration · Synthetic material
behavior

Introduction

Reinforcement learning (RL) algorithms can learn to per-
form a task by interacting with a simulated environment.
For instance, an RL algorithm can learn to master chess
through self-play on a simulated board (Silver et al., 2018).
In science and engineering, the finite element method (FEM)
is commonly used as a tool to simulate and solve prob-
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lems. By interacting with FE environments, RL algorithms
can be used to identify optimizations, discover alternative
process routes and to develop process controllers directly
from the simulation. Industrial process control involves
monitoring and adjusting key process variables in order to
achieve a specific goal. In the metal forming industry, varia-
tions in the initial workpiece geometry, material behavior,
temperature and lubrication conditions can result in var-
ied mechanical properties and geometry, which in turn can
affect the quality of the final product. Thus, controlling
the parameters of metal deformation processes is central
to obtaining desirable mechanical properties and consistent
product quality at minimized costs (Kumar et al., 1992;
Allam et al., 2014). Traditional control methods range from
simple proportional-integral-derivative (PID) control that
minimizes the difference between a measured variable and
a target value, to complex model predictive control (MPC)
that uses physics-based modeling to predict future process
states andmanipulates the variables accordingly (Camacho&
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Alba, 2013). Developing an MPC controller requires knowl-
edge of the underlying physics and dynamics governing the
process, formulating a mathematical model of the process
and finally deriving a control law that connects the measured
input process variables to the output adjustments. Alterna-
tively, RL can be used to develop the controller directly from
a model or a simulation. An RL algorithm learns to map
input variables to output adjustments by interacting with an
environment through a process of trial and error, learning to
perform the optimal actions according to a given measure of
reward. This learning process can require many training iter-
ations before a desirable solution is found. Consequently, RL
algorithms are often trained in simulated environments rather
than physical environments, as the learning process involves
many costly and time consuming mistakes in a physical pro-
cess. After achieving desirable performance in the simulated
environment, the RL controller can be transferred to the real
environment. Using FE simulations as the simulated envi-
ronment, an RL algorithm can learn to control a deformation
process according to a given reward system. Utilizing FE
simulations to develop analytical controllers has previously
been discussed in the literature (Zhang et al., 2016; Mikail
et al., 2013). Furthermore, the relationship between RL and
MPC have previously been investigated (Görges, 2017; Ernst
et al., 2009). However, specific case studies on developing
controllers for deformation processes using RL that learns
directly by interacting with an FE environment are missing
from the literature.

Machine learning (ML) can be divided into threemain cat-
egories; supervised learning, unsupervised learning and RL.
In short, unsupervised learning is used to find hidden patterns
in data and supervised learning is used to learn to map inputs
to outputs from labeled data examples. In contrast, RL algo-
rithms do not need input/output example data and rather learn
by interacting with an environment. An RL algorithm learns
to map input environment observations to output actions that
affect the environment by improving its actions according to
a given reward system. Thus, RL algorithms are not limited
by the quality of training data and have the possibility to
discover solutions that are difficult for humans to conceive.
However, the effectiveness of RL strongly depends on the
quality of the reward system, which is designed by a human.
Notable RL applications include self-driving cars, robotic
control and algorithms that learn to play board games such
as chess, shogi and Go on a superhuman level through self-
play (Sallab et al., 2017; Kormushev et al., 2013; Silver et
al., 2018). The literature includes studies on utilizing ML in
a wide range of fields, including finance, medicine and engi-
neering (Hutter et al., 2019; Shawi et al., 2019). However,
there is a growing concern that studies on ML methods can
be difficult to replicate, challenging their scientific credibil-
ity (Olorisade et al., 2017). This is due to both the inherent
pseudorandom nature of training ML algorithms and the dif-

ficulty in interpreting their inner structures and architectures.
Approaches to improving the reproducibility and inter-
pretability of ML methods are currently being discussed in
the
literature (Islam et al., 2017; Doshi-Velez & Kim, 2017;
Ghanta et al., 2018). In the field of material science and engi-
neering, investigating ML and its potential applications is
especially promising due to the amount of available data and
the need for increasingly complex models. Significant areas
of study include accelerating the discovery of new materials,
mapping material behavior to process variables and the pre-
diction of phase diagrams and material properties (Mueller
et al., 2016; Brunton & Kutz, 2019).

This work is focused on accelerating the hot deformation
of the titanium aluminide alloy TNM-B1 (Ti-43.5Al-4Nb-
1Mo-0.1B). This is an attractive material due to its high
strength to weight ratio and high resistances to corrosion,
temperature and creep (Clemens&Kestler, 2000;Clemens&
Smarsly, 2011; Brotzu et al., 2018). TNM-B1 is particularly
useful for the aerospace industry and has seen implemen-
tation in the form of forged turbine blades for commercial
aircraft engines (Bewlay et al., 2016). However, the low
workability of the alloy hinders wider implementation, as the
material needs to be formed at low strain rates and high tem-
peratures, resulting in highmanufacturing costs for TNM-B1
forgings. Thus, accelerating the hot deformation of TNM-B1
can be a way to reduce costs, leading to an increased utiliza-
tion of the alloy. This can be accomplished by exploiting
the distinct hot deformation behavior of the material, which
is characterized by a high initial peak stress followed by a
strong softening behavior (i.e. flow stress reduction). Stud-
ies have indicated that the softening behavior of TiAl alloys
during hot deformation is caused by dynamic recrystalliza-
tion (DRX) (Beddoes et al., 1994; Millett et al., 1993; Kim
& Boyer, 1991). By increasing the strain rate in accordance
with the rate of softening, the deformation of the alloy can
be accelerated. This was previously investigated experimen-
tally by the authors (Stendal et al., 2021). This work was
based on theGurson-Tveergaard-Needleman damagemodel,
whichwas first developed for steels in Tvergaard andNeedle-
man (1984) and later extended to include DRX modeling in
Bambach and Imran (2019). The model suggests that maxi-
mum strain rate while maintaining constant void nucleation
rate can be achieved for titanium aluminides by achieving
a constant stress state throughout deformation. The TNM-
B1 alloy was deformed according to fixed accelerated strain
rate profiles. However, the observed hot deformation behav-
ior of the material was highly stochastic. The highest range
in peak stresses for tests performed at the same conditions
was around 40MPa. Therefore, accelerating the deformation
using the fixed strain rate profiles resulted in highly var-
ied flow stress. Relatively hard samples underwent excessive
acceleration, which led to increased flow stresses and poten-
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tially increased likelihood of workpiece damage. Relatively
soft samples underwent moderate acceleration, which led
to reduced flow stresses and unoptimized processing times.
Thus, a process controller that adapts the deformation speed
to the given workpiece behavior can optimize the processing
time while avoiding excessive damage.

In this work, the development of a framework for interfac-
ing an RL algorithm with an FEmodel in order to develop an
artificial neural network (ANN) process controller is inves-
tigated. The aim is to accelerate the hot deformation of the
titanium aluminide TNM-B1. Hot compression experiments
were performed in order to determine the degree of varia-
tion in the deformation behavior of TNM-B1. The testing
conditions used were the constant strain rates 0.0013, 0.005,
0.01 and 0.05 s−1 at a constant temperature of 1150 ◦C. A
material model was fitted to the experimental data and used
to predict flow stress surfaces. Synthetic variation was added
to the surfaces using Gaussian rough surfaces in order to
simulate variations in deformation behavior for the FE envi-
ronment. The effect of geometry is important to consider, as
local stresses, strains and strain rates can significantly vary
from the nominal values depending on the shape of both
the workpiece and the dies used. Ideally, the same RL setup
can learn to adapt to different FE environments using differ-
ent workpiece and die combinations. In order to investigate
this, two separate FE environments were set up using the
same RL setup; the hot compression of a cylinder work-
piece between flat dies and the hot compression of a bone
workpiece between flat dies. The bone geometry is typically
used as the initial workpiece when forging turbine blades.
For both environments, the RL algorithm adjusted the veloc-
ity of the die with the goal of achieving a constant stress
state. This was carried out by rewarding the algorithm if the
von Mises stress in chosen elements in the meshes of the
two workpieces were within a set range of the initial peak
stress throughout plastic deformation. The elements were
chosen based on where the highest damage or the highest
flow stress is likely to occur. The actions (i.e. outputs) of the
RL algorithm were defined as die velocity adjustments and
the observations (i.e. inputs) were defined as the displace-
ment, force and velocity of the die. The observations were
chosen as these are measurable in a physical compression
process, theoretically making the ANN controller transfer-
able to a real environment. The performances of the ANN
controllers for the cylinder compression and bone compres-
sion environments and the behaviors of the process variables
were tested and evaluated using 5 synthetic flow stress sur-
faces with global scale factors set to 0.9500, 1.0325, 1.1150,
1.1975 and 1.2800. In addition, the environments were tested
using fixed acceleration profiles for comparison. Finally, the
abilities of the ANN controllers to make decisions for stress
surfaces with global scale factors outside the range used for
training were evaluated.

Table 1 Chemical composition of the TNM-B1 ingot

Al Nb Mo B O Fe Ni C

at. % 43.7 4 1 0.1 0.161 0.027 0.008 0.038

wt % 28.65 9.15 2.36 0.026 0.063 0.037 0.012 0.011

Following this introduction, the “Methods and fundamen-
tals” section provides an overview of the material and heat
treatment used, the method used for performing the com-
pression tests and a short introduction to the fundamentals
of reinforcement learning. The “Model development” sec-
tion is structured into two main parts. The first part presents
the material model used, an alternative analytical method to
constructing the accelerated strain rate profiles predicted by
the reinforcement learning algorithm, as well as the devel-
opment process for generating synthetic flow stress data for
training. The second part provides a detailed description of
the co-simulation setup used for adaptively interfacing rein-
forcement learning with a finite element model, the setup
of the finite element models used, as well as a presentation
of the reinforcement learning algorithm and reward function
used. The results section provides and discusses the results of
employing the developed reinforcement learning and finite
elementmodel co-simulation for the given cylinder compres-
sion and bone compression environments.

Methods and fundamentals

Material and heat treatment

The material used in this work was the titanium aluminide
alloy TNM-B1. The composition is given in Table 1.

The TNM-B1 ingot was produced by GfE Metalle und
Materialien GmbH (Nürnberg, Germany) using vacuum
arc remelting (VAR) (Achtermann et al., 2009; Clemens
& Mayer, 2013). The ingot was hot isostatically pressed
(HIPed) in order to close casting microporosities, using the
process parameters 1200 ◦C, 200MPa, 4h and a cooling rate
of around−8 K/min. The cylinder ingot had an initial height
of around 150mm and a diameter of around 49mm and was
cut to a height of around 95mm. The ingot was subsequently
eroded by Erocontur GmbH (Müncheberg, Germany) using
electrical discharge machining (EDM) into smaller cylinders
with heights of around 95mm and diameters of around 7mm.

The cylinders were subjected to a heat treatment which
was developed and analyzed in an earlier collaborative study
Eisentraut et al. (2019). The heat treatment was developed
with the aim of improving the damage tolerance and hot
workability of the material for accelerated deformation. This
two-step heat treatment was performed using a batch furnace
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from Nabertherm GmbH (Lilienthal, Germany) at atmo-
spheric conditions. The first step was conducted at 1300 ◦C
for 1h, the second step was 1100 ◦C for 5h. Each step was
followed by air cooling at atmospheric conditions down to
room temperature. The heat treated TNM-B1 cylinders were
machined to the final cylindrical test samples with a height
of around 8mm and a diameter of around 5mm.

Compression tests

The hot compression tests were performed using a
DIL805A/D/T deformation and quenching dilatometer from
TA Instruments (Hüllhorst, Germany). All tests were per-
formed at a constant temperature of 1150 ◦C. The samples
were deformed at the constant strain rates 0.0013, 0.005, 0.01
and 0.05 s−1. In order to investigate the variation in flow
behavior, each strain rate condition was repeated 4 times.
To protect the samples from oxidation, the compression tests
were performed in an argon atmosphere. The dilatometer uti-
lized Si3N4 punches with around 1mm thick molybdenum
plates between the punches and the sample. The samples
were heated at around 10K/s by induction. The samples were
held at 1150 ◦C for 3min in order to obtain a homogeneous
microstructure and quasi-isothermal conditions, before being
deformed to a true strain of around 0.8. Finally, the samples
were cooled at around −150 K/s using argon gas.

Reinforcement learning fundamentals

This section covers the basic fundamentals and terminology
of the reinforcement learning (RL) framework and the RL
algorithm used in this work. RL involves an algorithm that
performs actions that affect an environment. The algorithm
receives observations from the environment and learns to
improve its actions according to a given notion of reward.
Basically, the actions are the outputs and the observations
are the inputs of the controller. The algorithm attempts to
maximize the reward through an iterative process of trial and
error, where the action space is searched for decisions that
lead to increased rewards. Each training iteration is called an
episode. For further reading on RL fundamentals, see Sutton
and Barto (2018).

Figure 1 illustrates the architecture of the RL and FE
co-simulation used in this work. The agent consists of the
learning algorithm and the policy, which is the decision-
making function that performs the actions. The environment
is the FE simulation, which the agent communicates with
through observations, actions and rewards. The actions are
sent to the environment from the agent. The observations
are sent to the agent from the environment. The rewards are
calculated by a reward function and are sent to the agent.
Typically, the reward is a scalar value and provides the learn-
ing algorithm with the degree to which the environment is in

Fig. 1 Schematic of the reinforcement learning (RL) and finite ele-
ment (FE) co-simulation using the deep deterministic policy gradients
(DDPG) RL algorithm

a desirable state. During training, the RL algorithm updates
the policy based on the performed actions, the environment
observations and the amount of collected reward.

The RL algorithm used in this work was the policy-
gradient actor-critic algorithm deep deterministic policy
gradients (DDPG). This algorithm is based on the work done
on deterministic policy gradients (Silver et al., 2014). It was
developed by Google DeepMind with the aim of handling
continuous action spaces (Lillicrap et al., 2016). Other rein-
forcement learning algorithms that can handle continuous
observation and action spaces could also have been consid-
ered, such as asynchronous advantage actor critic (A3C) or
proximal policy optimization (PPO). Traditionally, RL has
been limited to discrete action spaces. The challenge of tack-
ling continuous ones has been an important problem to solve
in the field. The use of continuous actions spaces is essential
for a range of real-world applications such as robotic control
(Mnih et al., 2015).

The actor-critic architecture used in the DDPG algorithm
is illustrated in Fig. 2. The actor is the policy function, which
maps the given environment state (s) to actions (a). The critic
predicts a Q-value (Q) based on the state (s) and action (a).
The Q stands for the quality of a performed action and rep-
resents the long-term potential reward starting from a given
state and executing a specific policy. The Q-value is used
to update the actor and the critic itself. Policy-gradient algo-
rithms works by estimating a gradient of the expected reward
of a given policy. The policy is then updated in the direction
of the gradient in order to increase the probability of per-
forming desirable actions over time.

The artificial neural network (ANN) machine learning
framework was used for both the actor and the critic, as
illustrated in Fig. 2. In short, anANN is a network of intercon-
nected linear equations with nonlinearity introduced using
activation functions (Anderson, 1995). One linear equation
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Fig. 2 Actor-critic artificial neural network (ANN) architecture; s: envi-
ronment state, a: actions, Q: value function. Both the actor and critic
are represented as ANNs

and activation function pair is called a neuron. The neurons
are arranged in layers; an input and an output layer with
so-called hidden layers in between. If the number of hid-
den layers exceed 1, the ANN is referred to as deep. The
universal approximation theorem in mathematics states that
a feed-forward ANN with a single hidden layer contain-
ing a finite number of neurons can approximate continuous
functions on compact subsets of the real coordinate space,
undermild assumptions on the activation function (Cybenko,
1989). Thus, anANNcan be described as a universal function
approximator (Hornik et al., 1989).

Model development

In this section, the development of the material model, defin-
ing fixed acceleration profiles, generating synthetic flow
stress data and the development of the RL and FE co-
simulation are discussed.

Material model

Thematerial model was used to predict the flow stress behav-
ior of the TNM-B1 alloy. The model is a hybrid model
consisting of an artificial neural network (ANN) and a
physics-based phenomenological model (PM). It was devel-
oped and presented in a previouswork by the authors (Stendal
et al., 2019). The PMwas developed for steel by Cingara and
McQueen (1992) and later adapted to titanium aluminides
by Bambach et al. (2016). In Table 2, the model equations
of the PM are displayed. In short, characteristic points along
the experimental flow curves are extracted. These points are
the critical stress (σc), which marks the onset of dynamic
recrystallization (DRX), the peak stress (σp) and the steady
state stress (σss). The points are expressed as functions of
the Zener Hollomon parameter Z (Eq. 1) and used to fit the
parameters of the model equations to the experimental data
“Experimental compression tests” section using regression
analysis.

The hybridmodel is illustrated in Fig. 3. TheANNcompo-
nent of the hybridmodel improved thefit of the original PM to
the experimental flow curves. Basically, theANNwas trained
on the flow curve data with the aim of predicting the posi-
tions of the characteristic points as functions of temperature
and strain rate. These predictions subsequently provided the
PM with a wider range of input characteristic points, which
resulted in a closer fit to the experimental flow curves.

Table 2 Phenomenological
model (MP) equations for used
for TNM-B1

ZHP Z = ε̇ · exp( Qw

RT ) (1)

Strain hardening σ(ε) = σp

[
ε
εp
exp

(
1 − ε

εp

)]C
(2)

Critical strain εcr = αεp (3)

Peak strain εp = a1 · da20 · Za3 (4)

Steady state strain εss = e1 · εm + e2 · de30 · Ze4 (5)

Peak stress sinh( f3 · σp) = f1 · Z f2 (6)

Steady state stress sinh(h3 · σp) = h1 · Zh2 (7)

DRX grain size dDRX (γ, β) = b1(γ, β) · Zb2(γ,β) (8)

DRX kinetics XDRX (γ, β) = 1 − exp(k(γ, β)

(
ε−εcr

εss−εcr

)q(γ,β)

(9)

Flow stress σy =
{

σ0 i f ε < εcr(
1 − (Xγ + Xβ)

)
σ0 + (Xγ + Xβ)σ1 i f ε > εcr

(10)
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Fig. 3 Schematic of the hybrid model, consisting of the ANN and the
phenomenological model (PM)

Fig. 4 Flow stress surface predicted by the hybrid material model for
0 to 0.8 strain and 0.0013 to 0.05 s−1 at 1150 ◦C. The fixed accelerated
strain rate profile is shown in the dotted black line plot

Fixed acceleration profiles

The hybrid material model was used to predict a flow stress
surface, as shown in Fig. 4, based on the experimental data
“Experimental compression tests” section. The surface was
generated using 237 logarithmically spaced flow curves from
0.0013 to 0.05 s−1 at 1150 ◦C. Each flow curve has 1000
evenly spaced data points from 0 to 0.8 strain. The solid
black line plots in Fig. 4 represents the flow curves at the
constant strain rates from where the experimental data were
obtained (0.0013, 0.005, 0.01 and 0.05 s−1).

The softening behavior of TNM-B1 allows increasing the
strain rate during deformation without exceeding the initial
peak stress. This work is focused on the strain rate profile
that maintains the initial peak stress constant during plastic
deformation, with a starting strain rate of 0.0013 s−1. This
accelerated strain rate profile is represented by the dotted
black line plot in Fig. 4 and was obtained using a numerical
search function to find the strain and strain rate coordinates
that maintain the initial peak stress at 0.0013 s−1 within±0.2
MPa. The profile follows an S-shaped curve and thus can be
fitted to the logistic function (Eq.11):

ε̇(ε) = L

1 + e−k(ε−ε0)
(11)

where ε is the strain, ε̇ is the strain rate, L is the curves max-
imum value, k is the logistic growth rate or curve steepness
and ε0 is the strain value at the curves midpoint. The param-

eters were determined using nonlinear regression. Figure5a
displays the accelerated strain rate profile extracted from the
material model and the fitted logistic function. Implement-
ing the accelerated profile in forging applications and FE
simulations requires the strain rate profile to be expressed as
velocity as a function of time. Using ε̇ = ε̇(ε), dε/dt = ε̇(ε)

and dt = dε/ε̇(ε), the time as a function of strain with the
fitted logistic function substituted for the strain rate as a func-
tion of strain can be expressed in Eq. (12):

t(ε) =
∫

1

ε̇(ε)
dε = ε − ek(ε0−ε)

k

L
+ constant (12)

where t is the time. The constant can be found by setting
t(0) = 0. The accelerated strain rate profile can then be
converted to an accelerated velocity profile first by con-
verting the true strain values from the material model to
engineering strain values and finally by converting engineer-
ing strain rate to velocity according to the following steps:
εengineering = 1 − 1/εtrue, ε̇engineering = dεengineering/dt
and v = ε̇engineering · h0, where εtrue is the true strain,
εengineering is the engineering strain, v is the velocity and
h0 is the initial workpiece height.

Figure 5b displays the accelerated velocity profile for an
initial strain rate of 0.0013 s−1 as well as the velocity profile
for a constant 0.0013 s−1 as functions of time for a cylin-
der geometry with a height of 8mm. Using the 0.0013 s−1

constant strain rate profile, the theoretical processing time
is around 615s. Using the accelerated profile with a starting
strain rate of 0.0013 s−1, the theoretical processing time can
be reduced to around 235s. Thus, a reduction of around 62
% can be achieved.

The bone geometry investigated in this work is illustrated
in Fig. 6. The heights of both bases were chosen to be 44mm.
As the bone geometry is compressed between flat dies, the
height of the shaft was chosen to be 20mm in order to reach
around 0.8 global true strain once the dies make contact with
the shaft. A final stroke height of 9mm was chosen in order
to reach around 1.6 global true strain at the end of com-
pression. The acceleration profile calculated for the cylinder
geometry (Fig. 5) does not consider the switch from deform-
ing the bases to deforming the shaft at around 0.8 global
strain. Therefore, accelerating the compression of the bone
geometry using the same profile will lead to the shaft under-
going increased flow stresses compared to the bases. This
can result in increased likelihood of workpiece damage or
die fracture. In order to avoid this, both the bases and the
shaft can be deformed according to the acceleration profile
by constructing an adapted profile with a reset at around 0.8
global true strain. A sigmoid transition (Eq.13) was utilized
in order to construct a smooth transition between two discon-
tinuous acceleration profiles at the switch between deforming
only the bases to deforming the whole bone geometry:
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Fig. 5 a accelerated strain rate
profile extracted from the hybrid
material model and the fitted
logistic function, b accelerated
velocity profile starting at
0.0013 s−1 and the velocity
profile corresponding to a
constant 0.0013 s−1 for a
cylinder geometry with a height
of 8mm

Fig. 6 Illustration of the bone geometry used in this work

ε̇(ε) = (
1 − σ(ε)

)
ε̇1(ε) + σ(ε)ε̇2(ε − εs) (13)

where ε̇(ε) is the constructed acceleration profile for the bone
geometry, σ(ε) is the sigmoid function, ε̇1(ε) is the logistic
function before the switch, ε̇2(ε − εs) is the logistic function
after the switch and εs is the strain value at the switch (set
to 0.8). Following the logic of this construction, the sigmoid
function and logistic functions can be substituted, resulting
in an expanded form of the acceleration profile for the bone
geometry (Eq.14):

ε̇(ε) =
(
1 − 1

1 + e−kσ (ε−εσ )

) L

1 + e−k(ε−ε0)

+ 1

1 + e−kσ (ε−εσ )

L

1 + e−k(ε−ε0−εs )
(14)

where L, k and ε0 are the parameters of the logistic function.
kσ is the steepness of the sigmoid transition between the pro-
files (set to 50). This value can be set depending on the ability
of the physical equipment to make velocity adjustments. εσ

is the strain value of the midpoint of the sigmoid transition.
This was set to 0.7 in order for the strain rate to decrease to
the initial strain rate of around 0.0013 s−1 before the strain
value of 0.8 is reached. Using this method, the logistic func-
tion can be nested to include an arbitrary number of resets
with smooth sigmoid transitions. Using the same procedure
as in Eq. (12), strain rate as a function of strain can be con-
verted to time as a function of strain as stated in Eq. (15):

t(ε) =
∫

1(
1 − 1

1+e−kσ (ε−εσ )

)
L

1+e−k(ε−ε0) + 1
1+e−kσ (ε−εσ )

L
1+e−k(ε−ε0−εs )

dε

(15)

This integral has no analytical solution. However, it can be
calculated using a numerical method for the strain interval
of 0 to 1.6. The accelerated velocity profile for the bone
geometry with a smooth sigmoid transition at around 0.8
global true strainwas subsequently calculatedusing the steps:
εengineering = 1 − 1/εtrue, ε̇engineering = dεengineering/dt
and v = ε̇engineering · h0.

Figure 7 displays the accelerated strain rate and veloc-
ity profiles for the bone geometry. The accelerated profiles
without a reset at 0.8 true strain are shown in the dotted black
line plots for comparison.Without the sigmoid transition, the
theoretical processing time is around 360s. Using the reset,
the theoretical processing time is increased to around 520s,
giving an increase of around 44%. However, the likelihood
of workpiece damage or die fracture can be reduced.

Generating synthetic flow stress data

The quality and applicability of the ANN controller devel-
oped by the RL agent strongly depends how closely the
FE environment represents the real-world process. There-
fore, providing the FEmodel with realistic material behavior
is important. The experimental flow curves cannot be used
directly, as they are not correlated to each other. In addi-
tion, the collected dataset is too small for the many training
episodes required to converge on a desirable solution. The
materialmodel cannot be used directly, as providing the envi-
ronment with identical material behavior in every episode
can lead to a phenomenon called overfitting. In statistics,
overfitting occurs when model predictions correspond too
closely to a dataset, making the model less able to make
generalized predictions on additional data. In RL, overfit-
ting involves an agent in a sense “memorizing” sequences
of actions by exploiting the determinism of the environment.
Adding stochastic behavior to the environment can be an
effective method of reducing memorization, leading to the
development of a controller that performs better for environ-
ment states outside the ranges used for training. However,
using stochastic environments cannot fully prevent overfit-
ting in RL, as was shown by Zhang et al. (2018).
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Fig. 7 a Accelerated strain rate
profile adapted to the bone
geometry, b accelerated velocity
profile adapted to the bone
geometry. The dotted black line
plots in both a and b show the
acceleration profiles without a
sigmoid transition

In order to provide the FE environment with realistic
stochastic material behavior as well as to reduce overfit-
ting, synthetic flow stress surfaces were generated based on
the assumptions made on the range of possible deformation
behaviors from the experimental flow curves “Experimen-
tal compression tests” section. A unique stress surface was
generated for every training episode, simulating the possi-
ble variations in deformation behavior for each workpiece.
In order to extrapolate the observations made from the 2D
experimental curves to a 3D surface, it was assumed that
a given workpiece exhibits the same relative deformability
independent of strain rate. For instance, a workpiece that
displays relatively low deformability at low strain rates will
display the same relatively low deformability at high strain
rates. In order to simulate this, the entire stress surface pre-
dicted by thematerialmodelwas scaled in the stress direction
using a variable global scale factor.

Figure 8 displays two flow stress surfaces predicted by the
material model. The experimental flow curves are shown in
the solid black line plots. In Fig. 8a, a global scale factor of
0.9500 was applied in order to approximately intersect with
the lowest peak stress in the experimental data. In Fig. 8b, a
global scale factor of 1.2800 was applied to approximately
intersect with the highest experimental peak stress. Thus, the
range of possible experimental peak stresses can be simulated
byvarying the global scale factor between0.9500 and1.2800.

The experimental flow curves of TNM-B1 display rough-
nesses and oscillations of varying scales “Experimental
compression tests” section. This can be simulated by convo-
luting thematerial model stress surfacewith a pseudorandom
rough surface.However, the roughness observed in the exper-
imental flow curves demonstrates correlation rather than
random noise. For this reason, the roughness and oscillations
in the deformation behavior was simulated using pseudoran-
dom Gaussian rough surfaces with correlation. The method
used was presented by Garcia and Stoll (1984) and involves
convoluting a distribution of uncorrelated pseudorandom
numbers with a Gaussian filter to achieve correlation over the
distribution. The convolution was performed using the fast-
Fourier-transform (FFT) algorithm. Equation (16) describes

the Gaussian filter:

G = exp

[
− x2 + y2

cl2
2

]
(16)

where cl is the correlation length, which determines the filter
frequency width. A larger cl corresponds to smaller spatial
variations over the surface and vice versa. The cl parame-
ter and the scale factor of the Gaussian rough surface itself
can be adjusted to generate surfaces with varying heights
and frequency widths. To simulate the different scales of
the roughnesses and oscillations observed in the experimen-
tal data, 3 layers of pseudorandom Gaussian rough surfaces
were convoluted with the material model stress surface.

Figure 9 displays generated examples of the 3 different
layers of Gaussian rough surfaces. As discussed in “Exper-
imental compression tests” section, the softening behavior
can be independent of the peak stress. Therefore, layer 1 was
designed to decouple the peak stress from the softening rate.
This was achieved by convoluting layer 1 with an S-shaped
sigmoid surface, where the scaling is around 1 until the peak
stress is reached and variable beyond the peak stress. Layer
2 was designed to simulate the large-scale roughnesses and
oscillations observed in the experimental data and layer 3
was designed to simulate the small-scale roughnesses. The
cl parameters, sigmoid parameters and Gaussian rough sur-
face scale factors were found through a process of trial and
error, in order to produce synthetic flow curves that were
observed to correlate with the experimental data. The cl val-
ues were set to 1, 6 and 30 for layers 1, 2 and 3, respectively.
The scale factor ranges for each layer were set to 0.90 to
1.10 for layer 1, 0.96 to 1.04 for layer 2 and 0.99 to 1.01
for layer 3. Equation (17) describes how the final synthetic
stress surfaces were generated by convoluting the 3 layers
of Gaussian rough surfaces with the material model stress
surface and applying a global scale factor between 0.9500
and 1.2800:

Ssynthetic = Smm · λglobal · SG1 · λG1 · SG2 · λG2

·SG3 · λG3 (17)
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Fig. 8 Material model stress
surfaces using: a a global scale
factor of 0.9500, b a global scale
factor of 1.2800. The
experimental flow curves are
displayed in the solid black line
plots

Fig. 9 a Layer 1, designed to decouple peak stress and softening rate, b layer 2, designed to simulate large-scale roughnesses and oscillations,
c layer 3, designed to simulate small-scale roughnesses

where Ssynthetic is the synthetic stress surface, Smm is the
material model stress surface, λglobal is the global scale fac-
tor, SG1, SG2 and SG3 are the Gaussian rough surface layers
and λG1, λG2 and λG3 are their respective scale factors. In
the final synthetic stress surface generator, the global scale
factor, the Gaussian rough surface scale factors, the Gaus-
sian rough surface parameters and the sigmoid parameters of
layer 1 were set to pseudorandom numbers varying between
the stated limits in order to produce a unique stress surface
for each training episode.

Figure 10 displays the experimental flow curves and syn-
thetic flow curves at 0.0013, 0.005, 0.01 and 0.05 s−1. The
synthetic flowcurves are from4 synthetic stress surfaces gen-
erated using pseudorandom parameters and the set global
scale factors of 0.9500, 1.0600, 1.1700 and 1.2800. The
variations in peak stresses, softening rates, roughnesses and
oscillations correlate with the experimental data. However,
the range of possible synthetic curves is slightly wider than
the experimental ones, which can lead to the development
of a more conservative ANN controller. A closer correlation
between the experimental and synthetic data can be achieved
by improving the fit of the original material model stress
surface.

Figure 11 displays the histograms for the experimental and
synthetic data distributions. The synthetic datawere obtained
from 1000 synthetic stress surfaces generated using pseu-

dorandom parameters. The material model stress surface is
shown in the vertical black line plots. The synthetic data
approach a normal distribution with a wider range compared
to the experimental data. Furthermore, the synthetic distribu-
tion is slightly biased in the positive direction as the global
scale factors range from 0.9500 to 1.2800. The experimental
and synthetic data distributions are similar. However, a his-
togram does not provide a quantitative measure of the quality
of the synthetic data. Generating synthetic data for use in
ML is a recent field of study (Choi et al., 2017; Esteban et
al., 2017; Xie et al., 2018). Therefore, reliable methods of
measuring the quality of synthetic data are still being dis-
cussed in the literature (Jordon et al., 2018). Kaloskampis et
al. (2019) and Beaulieu-Jones et al. (2019) suggested com-
paring pairwise Pearson correlations (Pearson, 1901) in the
synthetic dataset to the ones in the real dataset, as displayed
to Eq. (18):

�Pcorrelation

= Pcorrelationreal − Pcorrelationsynthetic

(18)

where Pcorrelationreal is the pairwise Pearson correlation
in the real data and Pcorrelationsynthetic is the pairwise
Pearson correlation in the synthetic data. The difference
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Fig. 10 Experimental and
synthetic flow curves for a
0.0013 s−1, b 0.005 s−1, c 0.01
s−1 and d 0.05 s−1

Fig. 11 a Histogram of the
experimental data and b
histogram of the synthetic data
from 1000 generated surfaces.
Both histograms are compared
to the original material model
stress surface displayed in the
vertical black solid line plots

between these values (�Pcorrelation) is used to determine
if the relationship between the variables in the real data is
preserved in the synthetic data. A value of �Pcorrelation
closer to zero indicates higher quality synthetic data. In this
work, the �Pcorrelation was calculated to an average of
around 0.02 by comparing the experimental flow curves to
1000 sets of 4 generated synthetic flow curves for each strain
rate condition.

Co-simulation setup

The RL and FE co-simulation interface was set up in MAT-
LAB. Approaches to linking MATLAB with FE programs
have previously been discussed in the literature (Orszulik
& Gabbert, 2016; Almandoz et al., 2012). Alternatively, the

framework can be set up licence free using Python, as the
libraries stable-baselines3 and gymnasium are streamlined
for developing and interfacing RL algorithms with custom
built environments. In this work, the FE program used was
LS Dyna, as MATLAB can communicate with it directly
by manipulating and executing keyword files (.k) and com-
mand files (.cfile). The FE program Abaqus is also a good
candidate, as it can be controlled directly through the manip-
ulation of text files. The co-simulation was performed using
an average Intel i5 without GPU acceleration and the training
times were measured using the same hardware for all con-
ditions. The method used for setting up the FE part of the
co-simulation was inspired by a method proposed by Strano
et al., which involved dividing tube hydroforming simula-
tions into intervals with the goal of adjusting the loading
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Fig. 12 Schematic illustrating the reinforcement learning (RL) and
finite element (FE) co-simulation interface and the calculation of time
steps. σ : stress, F: force, v: velocity, d: displacement, �v/�t : velocity
adjustments

path within the same simulation run in order to avoid the
onset and growth of defects (Strano et al., 2001).

As illustrated in Fig. 12, the communication between the
RL agent and the FE simulation was conducted through 6
channels; σ : von Mises stress from a chosen element in the
workpiecemesh, F: die force in the z direction, v: die velocity
in the z direction, d: die displacement in the z direction and
finally �v/�t : change in die velocity over time in the z
direction. In the RL framework, F, v and d represents the
observations, �v/�t represents the actions and σ is used to
calculate the reward for the RL agent. Data transmission was
conducted by reading and writing text files. This method was
computationally expensive. Therefore, alternative methods
of interfacing are suggested for future research in order to
reduce training times.

The FE simulation and RL agent was set to communi-
cate at 1 s intervals. This communication interval can be set
based on how often the physical press is able to update its
ram velocity. For a servo-driven forging press, assuming 1
update per second is a reasonable starting point. Between
each communication interval, the values of F, v and d are
sent from the FE simulation to the RL agent. σ is sent
to the reward function, which computes a reward that is
sent to the agent. The agent subsequently predicts a �v/�t
which is added to the constant die velocity for the next
communication interval. In order to match the communica-
tion intervals of the FE simulation and the RL agent, the
time step of the agent was set to 1 s and an adaptive time
step was utilized for the FE simulation. The adaptive time
step was used as using a fixed time step can lead to error
terminations if the amount of deformation exceeds the ele-
ment size in a single time step. The adaptive length of each
time step in the FE simulation interval was calculated using
Eq. (19):

tsFE =
{

vini tial
v

, if v ≥ vini tial

1, if v < vini tial
(19)

Fig. 13 FEmodel of a 1/4 axisymmetric cylinder compression between
flat dies; a initial mesh and b fully deformed mesh. The chosen element
is displayed in green (Color figure online)

where tsFE is the FE time step, vini tial is the initial die veloc-
ity and v is the die velocity. Thus, the time step length is set
to 1 s at the initial velocity and decreases with increasing
die velocity. If v falls below vini tial , tsFE is set to 1 s. In
LS Dyna, the termination time of each interval was set to
1 s. Between each communication interval, the simulation
results were opened and the variable values were extracted.
Subsequently, the current state of the simulation is saved
and updated with a predicted �v/�t value added to the die
velocity and a time step length for the next communication
interval. σ and F were the average values calculated from all
the time steps of the interval. v and d were the values from
the last time step of the interval.

Finite elementmodel setup

Two FE environments were investigated in this work; the
compression of a cylinder geometry between flat dies and the
compression of a bone geometry between flat dies. Implicit
analysis was used for both environments. A constant tem-
perature of 1150 ◦C was used. Thermal analysis was not
included. The dies were modeled as rigid bodies. The Tab-
ulated Johnson Cook card was used to input the generated
synthetic stress surfaces. In both the cylinder and the bone
workpiece geometries, elements were chosen from where
σ was extracted. The behavior of the final ANN controller
strongly depends on the choice of elements. For the cylinder
geometry, the elementwas selected basedon the regionwhere
most of the damage was observed in the tested samples. For
the bone geometry, the elements were chosen to represent the
deformation behavior of the base and the shaft separately. For
forging simulations, adaptive remeshing is often used as the
elements can become significantly deformed. However, LS
Dyna does not currently support point tracking. Therefore, it
was not possible to utilize remeshing in this work.

Figure 13 displays the FE model of the cylinder compres-
sion between flat dies. The die mesh is marked in blue, the
workpiece mesh is marked in red and the chosen element
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from where σ was extracted is marked in green. The cylin-
der compression was simplified to a 1/4 2D axisymmetric
model in order to reduce the simulation time and thereby the
training time. The workpiece mesh dimensions were a height
of 4mm and a width of 2.5 mm. The workpiece mesh con-
sisted of 640 square 2D shell elements with 4 through shell
thickness integration points and Belytschko-Bindeman hour-
glass element control (Belytschko & Bindeman, 1993). The
contact modeling between the workpiece and the die was 2D
automatic surface to surface with the coefficient of friction
set to 0.1. The initial die velocity in the z direction was set to
0.0052 mm/s as this corresponds to 0.0013 s−1 for an initial
height of 4mm.

Figure 14 displays the FE model of the bone compres-
sion between flat dies. The die mesh is marked in blue, the
workpiece mesh is marked in red and the chosen groups of
elements fromwhere σ was extracted ismarked in green. The
stress used for σ was calculated from the average von Mises
stress in the group. Only the highest value of the two groups
was used for σ . The bone compressionwas simplified to a 1/8
3D model in order to reduce simulation time. The workpiece
mesh dimensions were a base height of 22mm, a shaft height
of 10mm and a total length of 75.5 mm. The workpiece mesh
consisted of 60,564 constant stress tetrahedral solid elements.
The contact modeling between theworkpiece and the die was
automatic surface to surface with the coefficient of friction
set to 0.1. The initial die velocity in the z direction was set to
0.0286 mm/s, as this corresponds to 0.0013 s−1 for an initial
height of 22mm. As can be observed, the deformations in the
base part are unrealistically high. Using a more complex die
can result in a more realistic deformation of the workpiece.
However, this can result in significantly increased simulation
times and is beyond the scope of this study.

Reinforcement learning setup

The basic fundamentals and terminology of reinforcement
learning (RL) and the RL algorithm used in this work
(DDPG) are discussed in “Reinforcement learning fun-
damentals section”. Identical RL parameters and ANN
architectures were used for both the investigated cylinder
compression and bone compression FE environments. The
DDPG agent parameters are given in Table 3. These were
determined iteratively through a process of trial and error
where the RL agents resulting from training were evalu-
ated based on performance and training time. Basically, the
parameters that lead to agentswhich showed an ability to gen-
eralize on the problems and to achieve high average rewards
without excessively increasing the training times were cho-
sen. During each training episode, the agent updates the actor
and critic networks using experiences randomly sampled
from an experience buffer. The mini batch size determines
the number of experience samples. Larger batch sizes can

Table 3 DDPG agent parameters

Policy MlpPolicy

Action noise model Ornstein-Uhlenbeck

Action variance 0.1

Action variance decay rate 10−6

Experience buffer length 106

Soft update coefficient 0.003

Mini batch size 256

Learning rate 0.001

Discount factor 0.99

Smoothing factor 0.001

reduce the training variance at the cost of computing time.
The learning rate or step size parameter determines the rate
at which the agent overwrites old behavior with new behav-
ior. A lower learning rate can lead to longer training times,
while a higher learning rate can lead to sub-optimal results or
divergence. In general, lower learning rates are typically used
for stochastic environments. A discount factor is applied to
future rewards during training and determines their impor-
tance. A discount factor closer to 1 can increase the ability
of the agent to pursue more long-term rewards. A smoothing
method of updating the target actor and critic parameters was
used. The Ornstein-Uhlenbeck process (Lemons & Gythiel,
1997; Uhlenbeck & Ornstein, 1930) was used as the noise
model for the DDPG algorithm.

In the RL agent, both the actor (i.e. policy function) and
the critic (i.e. value function) are approximated by artificial
neural networks (ANNs). The actor ANN consisted of an
input layerwith 3 neurons, 3 hidden layers and anoutput layer
with 1 neuron. The critic ANN consisted of an observation
path, an action path and a common path. The observation
path consisted of an input layer with 3 neurons and 2 hidden
layers and the action path consisted of an input layer with 1
neuron and 1 hidden layer. The observation and action paths
were connected to the commonpath via an addition layer. The
commonpath consisted of 2 hidden layers and an output layer
with 1 neuron. All layers were fully connected. All hidden
layers of both networks consisted of 50 neurons. The rectified
linear activation function was used for both the actor and the
critic. The observations (F, v and d) from the FE simulation
were normalized by linearly scaling them to values roughly
between 0 and 1 before being connected to the input layers of
the actor and the observation path of the critic. Normalizing
the scale of the input values can stabilize and accelerate the
learning process. In addition, normalization can prevent a
single observation from dominating the ANN predictions.
After the actor output layer, the hyperbolic tangent (tanh)
functionwas used to scale the action output to values between
−1 and1. The output actions of the agentwere linearly scaled
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Fig. 14 FE model of a 1/8 bone
compression between flat dies; a
3D view of initial mesh, b 3D
view of fully deformed mesh, c
2D view of initial mesh and d
2D view of fully deformed
mesh. The chosen element
groups are displayed in green
(Color figure online)

to between − 3 × 10−3 and 3 × 10−3 mm/s for the cylinder
compression and between − 5 × 10−3 and 5 × 10−3 mm/s
for the bone compression. It is important to make the action
range wide enough to allow the RL algorithm to explore the
action space and to allow it find actions that lead to rewards
even after a series of undesirable decisions, shortening the
training time.However,making the action range toowide can
lead to long training times and issues with converging on a
desirable solution. The stopping condition for each training
episode was set to when the value of d exceeded 2.2027
mm (equivalent to 0.8 global true strain) for the cylinder
compression and 35.0134 mm (equivalent to 1.6 global true
strain) for the bone compression. In addition, the training
episode was set to stop if the value of v fell below 0.

Reward function

The reward function is used to direct the behavior of the agent
by definingwhich environment states are desirable andwhich
ones are undesirable. Designing a reward function is a com-
plex task with no universal methodology. In general, a good
reward function balances between being concrete enough to
lead the agent to a desirable solution and yet abstract enough
to allow the agent the opportunity to find optimizations and
alternative process routes. This involves precisely defining
the desirable environment state.However, this can be difficult

as the desirable environment state depends on many factors
that can be hard to predict before testing the final RL agent.
An example is training a robot arm to carefully move a box.
If the reward is measured only in terms of how far the box is
moved in distance, the agent can learn tomaximize the reward
by throwing the box, potentially damaging the contents. The
frequency of rewards can also significantly affect the learn-
ing process. Sparse rewards or rewards given at the end of
an episode can lead to the agent needing to perform many
actions before it can determine if a desirable environment
state is achieved. This can increase the training time or result
in divergencies. Conversely, continuous rewards can lead the
agent to desirable solutions faster. In this work, the reward
was calculated using σ and was updated in every communi-
cation interval. The same reward function was used for both
the cylinder and bone compression FE environments. The
final reward function used in this work was found through a
process of trial and error and is given in Eq. (20):

R =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+ 3, if |�σ | ≤ 2 MPa

+ 1, if |�σ | > 2 MPa and |�σ | ≤ 5 MPa

0, if �σ < 5 MPa

−30, if �σ > 5 MPa

(20)

where R is the scalar reward, �σ is the difference between
the measured stress and the desirable goal stress. The goal
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Fig. 15 Plot illustrating the reward function; black line plot: material
model flow curve, yellow area: 0 reward, green areas: + 1 reward, blue
area: + 3 reward and red area and beyond: −30 reward (Color figure
online)

stress was set to 61MPa, as this was the peak stress predicted
by the material model at 0.0013 s−1 using the median global
scale factor of 1.1150.

Figure 15 illustrates the reward function used in this work.
The black line plot represents the flow curve predicted by the
material model at 0.0013 s−1 using a global scale factor of
1.1150. The yellow area represents the stress states where
the agent receives 0 reward, the green areas represents +
1 reward, the blue area represents + 3 reward and the red
area and beyond represents −30 reward. In each interval,
the reward function was designed such that while σ is below
56 MPa the agent receives 0 reward and while σ is above 66
MPa the agent receives −30 reward. The yellow area with
reward weighting was defined in order to teach the agent that
elastic behavior is neutral in terms of desirability. The red
area with reward weighting was defined to demonstrate that
higher stresses are more undesirable. Furthermore, the neg-
ative rewards for higher stresses prevented the agent from
taking high velocity shortcuts which led to the flow stress
climbing through the red area before settling in the desir-
able green and blue areas later due to the softening behavior.
The widths of the green and blue areas were set as smaller
widths led to long training times and divergences. In order
to allow the agent to explore different velocity paths with-
out direct restrictions, v was not included in the final reward
function. The RL agent was saved if the average cumulative
reward over 50 consecutive training episodes exceeded 400
for the cylinder compression and 800 for the bone compres-
sion. Finally, a negative reward of −1000 was given if v fell
below 0 and the training episode was stopped. This deterred
the agent from exploring velocity paths that led to negative
die velocities early during training.

Fig. 16 Experimental flow curves obtained for heat treated TNM-B1
using the constant strain rates 0.0013, 0.005, 0.01 and 0.05 s−1 at 1150
◦C

Results and discussion

In this section, the results from the hot compression tests
as well as the RL and FE co-simulation for both the cylin-
der and bone compression environments are presented. The
results from the 1/4 2D axisymmetric cylinder FE model and
the 1/8 bone FEmodelwere scaled in order to fit the full-sized
geometries. Both the cylinder and bone environments were
tested by connecting the respective trained ANN controller
to the respective FE simulations. In order to evaluate and
compare the performances of the ANN controllers and the
behaviors of the FE environments, synthetic flow stress sur-
faces were generated using pseudorandom parameters with
the set global scale factors 0.9500, 1.0325, 1.1150, 1.1975
and 1.2800. The same 5 stress surfaces were used as input
for both the cylinder and bone compression environments.

Experimental compression tests

Figure 16 displays the flow stress curves resulting from the
hot compression tests performed on the heat treated TNM-B1
alloy. The testing conditions used were a constant tempera-
ture of 1150 ◦C and the constant strain rates 0.0013, 0.005,
0.01 and 0.05 s−1. Each strain rate condition was repeated 4
times. The flow curves are characterized by a sharp increase
in stress up to a pronounced peak stress, followed by flow
softening or stress reduction until steady state. The ranges in
measured flow stress were the widest around the peak stress
for all tested conditions. They were measured to be around
6.9, 12.3, 20.5 and 39.2MPa for 0.0013, 0.005, 0.01 and 0.05
s−1, respectively.

Based on the experimental flow curves, assumptions can
be made on the range of possible deformation behaviors for
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Fig. 17 Training evolution for the cylinder compression environment

TNM-B1. In general, samples displaying a relatively high
peak stress also display a relatively high softening path.How-
ever, it is possible for the softening rate to be independent
of the peak stress. This can be seen especially in the flow
curve with the lowest peak stress at 0.01 s−1 (orange), as the
flow stress ends up as the highest of the group at the end of
the stroke. Furthermore, the flow curves display roughnesses
and oscillations that increase in scale with increasing strain
rate. In particular, the flow curves obtained for 0.05 s−1 (red)
display a higher scale roughness and higher scale oscillations
compared to the flow curves obtained for 0.0013 s−1 (blue).

Cylinder compression environment

The RL algorithm “Reinforcement learning fundamentals”
section was trained by interacting with an FE model of a
1/4 2D axisymmetric cylinder compression “Finite element
model setup” section. The observations were the die force,
velocity and displacement and the actions were die velocity
adjustments. The action range was set to between−3×10−3

and 3 × 10−3 mm/s. The reward function used is presented
in “Reward function” section and was calculated based on
the difference between the goal stress and the stresses in a
chosen element in the workpiece mesh. The goal stress was
set to 61 MPa.

Figure 17 displays the evolution from training the RL
agent in the cylinder compression environment. The blue
line plot represents the reward achieved in each episode, the
red line plot represents the average reward achieved over 50
episodes and the green line plot represents the episode Q0,
which is the discounted long-term reward at the beginning
of each episode predicted by the critic network. Initially,
the average rewards were in the range of 0 to −1000 as
the agent explored the minimum and maximum actions in
the set action range. Several episodes ended with the die
velocity reaching 0, resulting in episode rewards of around
−1000. From around episode 200, the agent began learning
that rewards could be collected by adjusting the die velocity
such that the element stress was kept in range of the goal

Fig. 18 Observations for the cylinder compression environment; a die
velocity, b die displacement and c die force. The input synthetic stress
surfaces were generated using the global scale factors 0.9500, 1.0325,
1.1150, 1.1975 and 1.2800

stress. From around episode 700 to around episode 1300,
the agent explored actions that led to reduced rewards com-
pared to the highest average reward achieved before episode
700. A few episodes around episode 1548 obtained negative
episode rewards due to over-accelerating the deformation.
From around episode 1550, the training evolution approx-
imately reached steady state, as the agent was not able to
collect significantly increased rewards and did not make sig-
nificantmistakes according to the reward function, compared
to previous episodes. Therefore, the training was stopped
after 3000 episodes. The final ANN controller used for pro-
ducing the results was obtained from episode 2395, as this
episode achieved a relatively high average reward of around
442.2 over 50 episodes and as the performance of the agent
was consistent over a window of around 500 episodes. Each
episode took on average around 3min to complete, giving a
total training time of around 9000min or around 6.3 days to
complete 3000 training episodes.

Figure 18 displays the observations (die velocity, displace-
ment and force) over time obtained from testing the trained
ANN controller for the cylinder compression environment.
The controller predicts velocity profiles that are comparable
in shape to the fixed velocity profile displayed in Fig. 5b. The
RL agent found an optimization in accelerating the process
during elastic deformation. This can be seen in Fig. 18a, as
the controller initially applied nearly maximum acceleration
until the peak stress was reached for all the tested global
scale factors. This was because rewards could be collected
faster if the stress reached the range of the goal stress earlier.
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Fig. 19 a Action, b reward and c element stresses for the cylinder
compression environment. The input synthetic stress surfaces were gen-
erated using the global scale factors 0.9500, 1.0325, 1.1150, 1.1975 and
1.2800

Similar velocity adjustments were made by the controller for
all the tested global scale factors during elastic deformation.
This was due to the generated synthetic stress surfaces hav-
ing similar elastic behaviors, producing similar force values
before the peak stresswas reached. Beyond the peak, the con-
troller adapted the die velocity to the different deformation
behaviors of the tested synthetic stress surfaces. The veloc-
ity profiles range from the slowest profile corresponding to
the global scale factor 1.2800 (red) with a processing time of
around 215s, to the fastest profile corresponding to the global
scale factor 0.9500 (blue) with a processing time of around
130s. This gives a difference of around 85s in processing
time between the highest and the lowest tested global scale
factor.

Figure 19 displays the actions (die velocity adjustments),
rewards and element stresses over time obtained from testing
the trainedANNcontroller for the cylinder compression envi-
ronment. As can be seen, the action profiles for all the tested
stress surfaces exhibit frequent oscillations with relatively
high amplitudes. Particularly from around 80s until the end
of deformation. Furthermore, high acceleration and deceler-
ation was applied initially. For a physical press, repeated and
sharp velocity changes can lead to excessive wear and dam-
age to the equipment. In addition, certain press types are not
able to quickly adjust the die velocity. However, the behavior
of the ANN controller can be improved by tailoring the RL
and FE co-simulation to a specific press. For example, the
maximum allowable velocity adjustments or the frequency
of the adjustments can be limited more appropriately, a more

Fig. 20 Element stresses for the cylinder compression environment
using the fixed acceleration profile. The input synthetic stress surfaces
were generated using the global scale factors 0.9500, 1.0325, 1.1150,
1.1975 and 1.2800

complexFEmodel that includes the physical aspects and con-
straints of the press can be used, or the reward function can
be expanded to give negative rewards for decisions that lead
to equipment being used outside of its tolerance. However,
this can involve increased development time, longer training
times, requires more knowledge and more complex model-
ing. The velocity adjustments made by the controller were
not wider than the maximum allowable range of ±6× 10−3

mm/s.As canbe observed, approximately constant stress dur-
ing plastic deformation was achieved by the controller for all
the tested global scale factors. In every time step, the reward
was between 0 and 3 for all the tested global scale factors.
The rewards were 1 for the global scale factors 0.9500 (blue)
and 1.2800 (red) at around 30s, as the difference between
the stress and the goal stress of 61 MPa became greater than
±2 MPa.

Figure 20 displays the element stresses over time of the
cylinder compression environment using the fixed accelera-
tion profile shown in Fig. 5. The roughnesses of the synthetic
flow stress surfaces can be observed more distinctly com-
pared to Fig. 19c. As the workpieces were all deformed
according to a fixed profile, the processing time was around
235s for all the tested global scale factors. Themaximumdif-
ference in flow stress observed using the fixed acceleration
profile was around 17 MPa.

Figure 21 displays a histogram of element stresses
obtained at 100s from testing the trained ANN controller
for the cylinder compression environment. The results were
obtained from 400 tests using synthetic stress surfaces gener-
atedwith pseudorandomglobal scale factors varyingbetween
0.9500 and 1.2800. The time of 100s was used as this was
during plastic deformation for all the tested global scale fac-
tors. The goal stress of 61 MPa is indicated by the vertical
black solid line plot. The stresses approach a normal distri-
bution approximately around 61 MPa. The results show that
the stresses were kept inside a range of ±2 MPa of the goal
stress for all the tested synthetic stress surfaces.
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Fig. 21 Element stress histogram at 100s for the cylinder compres-
sion environment. The results were obtained using 400 synthetic stress
surfaces generated using pseudorandom global scale factors between
0.9500 and 1.2800

Fig. 22 Element stresses at 100s for the cylinder compression envi-
ronment. The results were obtained using 800 synthetic stress surfaces
generated using pseudorandom global scale factors between 0.7850 and
1.4450

Figure 22 displays a scatter plot of element stresses
obtained at 100s from testing the trained ANN controller
for the cylinder compression environment. The results
were obtained from 800 tests using synthetic stress sur-
faces generated with pseudorandom global scale factors
varying between 0.7850 and 1.4450. If the total process-
ing time was below 100s, as it occasionally was for the
lower end range of the scale factors, the element stress
from the last time step was used. The limits of the global
scale factors used for training are indicated by the ver-
tical black solid line plots. As indicated by the results,
the ANN controller performed consistently inside ±2 MPa
of the 61 MPa goal stress for the global stress factor
interval of 0.9500 to 1.2800 that was used for training.
Furthermore, the performance was consistently inside the
±2 MPa range approximately between the global scale fac-
tors 0.8700 and 1.3300. Beyond these scale factors in both
directions, the element stresses increasingly diverged from
the goal stress. This indicates that the developed ANN con-
troller can consistently achieve element stresses near a ±2
MPa range of the 61 MPa goal stress from the global scale

Fig. 23 Training evolution for the bone compression environment

factor of around 0.8700 to around 1.3300 for the cylinder
compression environment.

Bone compression environment

The RL algorithm “Reinforcement learning fundamentals”
section was trained by interacting with an FE model of a 1/8
3D bone compression “Finite element model setup” section.
The observations were the die force, velocity and displace-
ment and the actions were die velocity adjustments. The
action range was set to between −5 × 10−3 and 5 × 10−3

mm/s. The reward function used is presented in “Reward
function” section and was calculated based on the difference
between the goal stress and the stresses in two chosen ele-
ment groups in the workpiece mesh. The goal stress was set
to 61 MPa.

Figure 23 displays the evolution from training the RL
agent in the bone compression environment. The blue line
plot represents the reward achieved in each episode, the red
line plot represents the average reward achieved over 50
episodes and the green line plot represents the episode Q0,
which is the discounted long-term reward at the beginning
of each episode predicted by the critic network. The episode
rewards for the bone compression environment were higher
compared to the cylinder compression environment due to
the process lasting longer, giving the agent more time steps
to collect rewards. Initially, the average rewards were in the
range of 0 to −1000 as the agent explored the minimum and
maximum actions in the action range. A few episodes ended
with the die velocity reaching 0, as can be seen from the
episode rewards of around −1000 until around episode 180.
From this episode, the average rewards steadily increased
until around episode 600 where they begin to flatten out.
However, the training evolution for the bone compression
environment was comparatively less stable than for the cylin-
der compression environment. The RL agent required more
episodes in order to find the actions that led to rewards com-
pared to the cylinder compression environment, which began
achieving relatively high rewards after around episode 300
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Fig. 24 Observations for the bone compression environment; a die
velocity, b die displacement and c die force. The input synthetic stress
surfaces were generated using the global scale factors 0.9500, 1.0325,
1.1150, 1.1975 and 1.2800

(Fig. 17). Furthermore, the RL agent was not able to achieve
steady state for a wide window of episodes compared to the
cylinder compression environment. This was possibly due to
the more complex workpiece geometry, as the agent needed
to first accelerate the deformation of the base part of the
geometry, decelerate before the die made contact with the
shaft and finally accelerate the deformation of the shaft, in
order to collect rewards. Thus, making decisions that led to
reduced rewards was more likely compared to the cylinder
compression environment. Around episode 970, the aver-
age rewards peaked with a relatively smaller episode reward
range. After this point, the average rewards decreased with
a few episodes achieving relatively low rewards. Therefore,
the training was stopped after 1200 episodes. The final ANN
controller used for producing the results was obtained from
episode 968, as this episode achieved a high average reward
of around 1147.6 over 50 episodes and as the performance
of the agent was consistent over a window of around 250
episodes. Each episode took on average around 10min to
complete, giving a total training time of around 12,000min
or around 8.3 days to complete 1200 training episodes.

Figure 18 displays the observations (die velocity, displace-
ment and force) over time obtained from testing the trained
ANN controller for the bone compression environment. As
can be seen, the controller predicts velocity profiles that are
comparable in shape to the fixed velocity profile displayed in
Fig. 7b. As with the cylinder compression environment, the
RL agent found the optimization of accelerating the process

Fig. 25 aAction,b reward and c element stresses for the bone compres-
sion environment. The solid line plots are the stresses from the element
group in the base part of the bone geometry and the dotted line plots
are the stresses from the element group in the shaft. The input synthetic
stress surfaces were generated using the global scale factors 0.9500,
1.0325, 1.1150, 1.1975 and 1.2800

during the initial elastic deformation. The results show that
the controller accelerated the die velocity during the deforma-
tion of the base and decelerated before the die made contact
with the shaft. The processwas subsequently accelerated dur-
ing plastic deformation of the shaft to a comparatively lesser
extent. This behavior was displayed for all the tested global
scale factors. The velocity profiles range from the slowest
profile corresponding to the global scale factor 1.2800 (red)
with a processing time of around 557s, to the fastest profile
corresponding to the global scale factor 0.9500 (blue) with
a processing time of around 331s. This gives a difference of
around 226s in processing time between the highest and the
lowest tested global scale factor (Fig. 24).

Figure 25 displays the actions (die velocity adjustments),
rewards and element stresses over time obtained from test-
ing the trained ANN controller for the bone compression
environment. Both the element stresses from the base (solid
line plots) and the shaft (dotted line plots) parts of the bone
geometry are shown. As with the cylinder compression envi-
ronment, the action profiles for all the tested global scale
factors exhibit frequent oscillations with high amplitudes.
However, the adjustments were increased both in amplitude
and frequency compared to the cylinder compression envi-
ronment. The velocity adjustments were not wider than the
maximum allowable range of ±10 × 10−3 mm/s. Approxi-
mately constant stress during plastic deformation for both the
base and the shaft parts of the bone geometry was achieved
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Fig. 26 Element stresses for the bone compression environment using
the fixed acceleration profile. The solid line plots are the stresses from
the element group in the base part of the bone geometry and the dotted
line plots are the stresses from the element group in the shaft. The input
synthetic stress surfaces were generated using the global scale factors
0.9500, 1.0325, 1.1150, 1.1975 and 1.2800

for all the tested global scale factors. In every time step, the
reward remained between 0 and 3 for all the tested global
scale factors. However, time steps where the rewards were 1
and 0 were significantly increased compared to the cylinder
compression environment. Furthermore, a relatively higher
number of steps achieved 0 reward around the transition
between deforming the base to deforming the shaft for the
global scale factors 0.9500, 1.0325, 1.1150 and 1.1975, as
the stress was 5 MPa or more below the 61 MPa goal stress.
Thus, the ANN controller for the bone compression environ-
ment was not able tomaintain the stress inside the desired±2
MPa of the 61 MPa goal stress during plastic deformation.

Figure 26 displays the element stresses over time of the
bone compression environment using the fixed acceleration
profile shown in Fig. 7. The results indicate that using the
fixed acceleration profile with the smooth sigmoid transition
can avoid significantly increased stress in the shaft compared
to the base. However, the dip in stress at around 250s indi-
cates that this acceleration method results in lost processing
time during the transition between deforming the base and
deforming the shaft. By comparing the results to the stresses
achieved by the ANN controller in Fig. 25c, the RL agent
seems to be able to optimize the die velocity in order to
avoid this stress dip. The processing time was around 520s
for all the tested global scale factors. The highest observed
difference in flow stress using the fixed acceleration profile
was around 19 MPa.

Figure 27 displays a histogram of element stresses
obtained at 100s from testing the trained ANN controller
for the bone compression environment. The results were
obtained from 400 tests using synthetic stress surfaces gener-
atedwith pseudorandomglobal scale factors varyingbetween
0.9500 and 1.2800. The goal stress of 61 MPa is indicated
by the vertical black solid line plot. The stresses approach a
more dispersed distribution with a wider range compared to

Fig. 27 Element stress histogram at 100s for the bone compression
environment. The results were obtained using 400 synthetic stress
surfaces generated using pseudorandom global scale factors between
0.9500 and 1.2800

Fig. 28 Element stresses at 100s for the bone compression environ-
ment. The results were obtained using 800 synthetic stress surfaces
generated using pseudorandom global scale factors between 0.7850 and
1.4450

the cylinder compression environment. The results demon-
strate that the stresses were kept inside a range of ±5 MPa
of the goal stress for all the tested synthetic stress surfaces.

Figure 28 displays a scatter plot of element stresses
obtained at 100s from testing the trained ANN controller
for the bone compression environment. The results were
obtained from 800 tests using synthetic stress surfaces
generated with pseudorandom global scale factors varying
between 0.7850 and 1.4450. The element stress from the
last time step was used if the total processing time was
below 100s. The limits of the global scale factors used
for training are indicated by the vertical black solid line
plots. The results indicate that the stresses achieved by the
ANN controller were not as consistent as for the cylinder
compression environment. For the global stress factor inter-
val of 0.9500 to 1.2800 that was used for training, a few
points were outside of the ±2 MPa range of the 61 MPa
goal stress, especially around the global scale factors 1.0300
and 1.2800. From 0.9500 to around 0.8600, the stresses
were consistently around the goal stress. Below around
0.8600 and above around 1.2800, the stresses increasingly
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diverged from the goal stress. This indicates that the devel-
oped ANN controller can consistently achieve stresses near a
±5 MPa range of the 61 MPa goal stress using global scale
factors from around 0.8600 to around 1.2800 for the bone
compression environment.

Conclusions and future work

Conclusions

This study has presented the development of an artificial neu-
ral network (ANN) controller using the deep deterministic
policy gradient (DDPG) reinforcement learning (RL) algo-
rithm and FE simulations. The aim was to accelerate the hot
deformation of the titanium aluminide alloy TNM-B1 (Ti–
43.5Al–4Nb–1Mo–0.1B). The ANN controller was trained
in two separate FE environments; the compression of a cylin-
der workpiece between flat dies and the compression of a
bone workpiece between flat dies. The RL algorithm inter-
acted with the FE environments by adjusting the die velocity
based on the observations die velocity, die displacement and
die force.Rewardswere given if the stress in a chosen element
or group of elements in the workpiece geometry was within
a specified range of a goal stress set to 61 MPa. In order to
simulate the observed variations in material behavior for the
FE environment, a synthetic flow stress surface was gener-
ated for each training episode based on the experimental data.
In addition, using synthetic data can contribute to reducing
overfitting and increasing the real-world applicability of the
ANN controller. The experimental data were obtained from
performing hot compression tests of the TNM-B1 alloy using
the constant strain rates 0.0013, 0.005, 0.01 and 0.05 s−1

at a constant temperature of 1150 ◦C. Surfaces with global
scale factors ranging from 0.9500 to 1.2800 were used for
training. The cylinder and bone compression FE environ-
ments were tested using the final trained ANN controller.
For comparison, fixed acceleration profiles controlling the
die velocity were tested. The performances of the respec-
tive controllers and the behavior of the environments were
analyzed and compared based on training evolution, training
time, the behavior of the die velocity adjustments, die veloc-
ity, die displacement, die force, rewards and stresses in the
chosen elements using synthetic flow stress surfaces with the
set global scale factors 0.9500, 1.0325, 1.1150, 1.1975 and
1.2800. The same surfaces were used for both the cylinder
and bone compression environments. Furthermore, the abil-
ity of the ANN controllers to control the process for global
scale factors outside the range used for training was inves-
tigated. The main conclusions drawn from this investigation
are:

• Using the presented RL and FE co-simulation, it was
possible to develop an ANN controller that could control
the die velocity of the same FE environment used for
training. Furthermore, the same RL setup was able to
adapt to two different workpiece geometries.

• Given the reward function designed for this work, the
RL algorithm was able to find an optimization in accel-
erating during elastic deformation that was not explicitly
programmed.

• For the cylinder compression environment, theANNcon-
troller consistently achieved element stresses near a ±2
MPa range of the goal stress for global scale factors vary-
ing from around 0.8700 to around 1.3300. For the bone
compression environment, the ANN controller consis-
tently achieved element stresses near a ±5 MPa range
of the goal stress for global scale factors varying from
around 0.8600 to around 1.2800. This demonstrates that
the performance of the trained ANN controller and its
ability to make decisions for environment states outside
the ones used for training is reduced with increasing
workpiece complexity.

• The training evolution for the cylinder compression
environment quickly reached high rewards from around
episode 200 and reached an approximate steady state
from around episode 1550. For the bone compression
environment, the training evolution was comparatively
less stable and more gradual due to the more complex
workpiece geometry. Furthermore, the training time for
the bone compression environment (around 8.3 days for
1200 episodes) increased significantly compared to the
cylinder compression environment (around 6.3 days for
3000 episodes).

Future work

This work has displayed the potential for using an RL and
FE co-simulation setup for developing ANN controllers.
However, the controllers were tested in the same simulated
environments used for training. The logical next step is to
implement a trained ANN controller in a physical press by
connecting it to die velocity, force anddisplacementmeasure-
ments and allowing it to adjust the die velocity. In order to
achieve this, a range of practical problems need to be solved.
The performance of the controller strongly depends on the
FE environment used for training. Thus, the closer the FE
model corresponds to the physical process, the more appli-
cable the final controller will be. Improving the FE model
and thereby the controller can involve considerable iterative
work,where the controller is tested using the press, the results
are checked, the FE model is tuned accordingly, a new con-
troller is trained, repeating the process until desirable results
are accomplished. In particular, the FEmodel has to be tuned
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such that the observations and actions match the real-world
measurements. In this work, the goal of the controller was
to achieve a goal stress state. Future work could incorpo-
rate more advanced microstructure or damage models into
the FE model in order to be able to define more specific
and complex goals for the reward function, such as reaching
desirable microstructures or damage behaviors in the work-
piece. Finally, the RL and FE co-simulation could potentially
be used to analyze FE environments and help find alternative
process routes and optimizations that are difficult for humans
to discover.
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