~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make Your PUbllCCltlonS VZSlble. h for Economics ' '

Li, Funing; Lang, Sebastian; Hong, Bingyuan; Reggelin, Tobias

Article — Published Version

A two-stage RNN-based deep reinforcement learning
approach for solving the parallel machine scheduling
problem with due dates and family setups

Journal of Intelligent Manufacturing

Provided in Cooperation with:
Springer Nature

Suggested Citation: Li, Funing; Lang, Sebastian; Hong, Bingyuan; Reggelin, Tobias (2023) : A
two-stage RNN-based deep reinforcement learning approach for solving the parallel machine
scheduling problem with due dates and family setups, Journal of Intelligent Manufacturing, ISSN
1572-8145, Springer US, New York, NY, Vol. 35, Iss. 3, pp. 1107-1140,
https://doi.org/10.1007/s10845-023-02094-4

This Version is available at:
https://hdl.handle.net/10419/317743

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

-. http://creativecommons.org/licenses/by/4.0/
Mitglied der
WWW.ECOMSTOR.EU K@M 3
. J . Leibniz-Gemeinschaft

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s10845-023-02094-4%0A
https://hdl.handle.net/10419/317743
http://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Journal of Intelligent Manufacturing (2024) 35:1107-1140
https://doi.org/10.1007/s10845-023-02094-4

®

Check for
updates

A two-stage RNN-based deep reinforcement learning approach for
solving the parallel machine scheduling problem with due dates and
family setups

Funing Li' - Sebastian Lang’2@® - Bingyuan Hong3 - Tobias Reggelin’

Received: 11 April 2022 / Accepted: 9 February 2023 / Published online: 9 March 2023
© The Author(s) 2023

Abstract

As an essential scheduling problem with several practical applications, the parallel machine scheduling problem (PMSP)
with family setups constraints is difficult to solve and proven to be NP-hard. To this end, we present a deep reinforcement
learning (DRL) approach to solve a PMSP considering family setups, aiming at minimizing the total tardiness. The PMSP is
first modeled as a Markov decision process, where we design a novel variable-length representation of states and actions, so
that the DRL agent can calculate a comprehensive priority for each job at each decision time point and then select the next job
directly according to these priorities. Meanwhile, the variable-length state matrix and action vector enable the trained agent
to solve instances of any scales. To handle the variable-length sequence and simultaneously ensure the calculated priority is
a global priority among all jobs, we employ a recurrent neural network, particular gated recurrent unit, to approximate the
policy of the agent. The agent is trained based on Proximal Policy Optimization algorithm. Moreover, we develop a two-stage
training strategy to enhance the training efficiency. In the numerical experiments, we first train the agent on a given instance
and then employ it to solve instances with much larger scales. The experimental results demonstrate the strong generalization
capability of the trained agent and the comparison with three dispatching rules and two metaheuristics further validates the
superiority of this agent.

Keywords Deep reinforcement learning - Parallel machine scheduling - Family setups - Recurrent neural network

Introduction

B Sebastian Lang

sebastian.lang@ovgu.de

Funing Li
funing.li@st.ovgu.de

Bingyuan Hong
hongby @zjou.edu.cn

Tobias Reggelin
tobias.reggelin@ovgu.de

Institute of Logistics and Material Handling Systems, Otto
von Guericke University Magdeburg, Universititsplatz, 2,
39106 Magdeburg, Germany

Fraunhofer Institute for Factory Operation and Automation
IFF, Sandtorstralie, 22, 39106 Magdeburg, Germany

National-Local Joint Engineering Laboratory of Harbor Oil &
Gas Storage and Transportation Technology/Zhejiang
Provincial Key Laboratory of Petrochemical Pollution
Control/School of Petrochemical Engineering and
Environment, Zhejiang Ocean University, Zhoushan 316022,
People’s Republic of China

As customer demands increase due to the globalization-
driven intensification of competition, satisfying due dates of
customer orders plays a more crucial role in today’s business
environment. A series of orders with due date violations is
not desired and could make the manufacturer lose its earnings
and reputation. Thus, effective scheduling that can minimize
delays is in great demand in manufacturing systems.

Among several kinds of scheduling problems, the parallel
machine scheduling problem (PMSP) is an essential prob-
lem since many real-world scheduling problems in various
domains can be considered as a PMSP, such as in semicon-
ductor wafer fabrication (Kim et al., 2010), offshore oil and
gas industry (Abu-Marrul et al., 2021), and thin film transis-
tor liquid crystal display (TFT LCD) manufacturing (Shin &
Leon, 2004).

Due to the variety of orders flowing through a produc-
tion system, different customer orders (jobs) require different

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-023-02094-4&domain=pdf
http://orcid.org/0000-0003-3397-1551

1108

Journal of Intelligent Manufacturing (2024) 35:1107-1140

tools and preparation steps before they can be processed on
a specific machine. In scheduling problems, such conditions
can be modeled by considering, for instance, a family setups
constraint. The family setups constraint postulates an addi-
tional time for preparing a machine when the family of the
job to be processed is different from the previous one. The
PMSPs with due dates and under family setups constraints
are not trivial to solve, considering the following situation:
In some cases, it is beneficial to process jobs from the same
family in succession to reduce the number of occurrences of
the setup time; in other cases, it is also necessary to switch to
another family because there are jobs from that family that
are reaching their due date.

Hence, the PMSP addressed in this paper takes family
setups into consideration and takes minimizing total tardi-
ness as the objective function. The total tardiness is defined
as the cumulative delay of jobs. A mathematical definition is
provided in section “Problem formulation”. Moreover, the
machines considered in this problem are uniform, which
means that some machines process operations on jobs uni-
formly faster in comparison to others. This problem is
NP-hard, since a simpler problem without consideration of
different machine speeds and family setups has been proven
to be NP-hard (Biskup et al., 2008).

As an attractive scheduling problem from both industrial
and academical point of view, PMSP under diverse con-
straints has been intensively researched over the past decades.
Of all the proposed solution methods, dispatching rules and
metaheuristics are the most widely adopted. The mechanism
of dispatching rules is to assign a priority to each job at each
decision point and then select the job with the highest prior-
ity. The algorithm for the assignment of priorities is different
for each specific rule. For example, shortest processing time
(SPT) and earliest due date (EDD) are two classical dispatch-
ing rules that assign the highest priority to the job with a short
processing time and earliest due date, respectively.

To address the scheduling problem with family setups
constraint, Gavett (1965) develops the shortest setup time
(SST) rule. This dispatching rule assigns the highest prior-
ity to the job that requires the shortest setup time. However,
the SST rule might not be sufficient for the scheduling prob-
lem with due date- or flow time-related criteria since only
the setup time is taken into account during scheduling. To
minimize the mean tardiness of the scheduling problems
with family setups, Wilbrecht and Prescott (1969) propose
a modification of the SPT dispatching rule, in which the pro-
cessing time of a job is substituted by the sum of the current
setup time and its processing time when assigning priori-
ties. Numerical experiments conducted by them show the
superiority of this modification over SPT and SST in min-
imizing mean tardiness. Family-based dispatching rules are
a particular category of family addressing dispatching rules,
where a hierarchical approach is followed in prioritizing jobs

@ Springer

(Pickardt & Branke, 2012). MAS_PAR is a specific approach
of family-based dispatching rules that proposed by van der
Zee (2015). The priority of each family is first assigned based
on the number of jobs available in that family and the setup
time of that family. After the family with the highest priority
is selected, jobs in each family are then sequenced by the
SPT rule. Although dispatching rules are characterized by
their high time efficiency and low computational complexity
(Rajendran & Holthaus, 1999), they are not able to search
the solution space and only use their priority criterion for
decision-making. Therefore, a high-quality solution cannot
be guaranteed by dispatching rules.

Opposite to the dispatching rules, metaheuristics can real-
ize higher solution quality, as they usually employ iterative,
randomized search strategies for finding a solution. Balin
(2011) adopts genetic algorithm (GA) to a non-identical
PMSP for makespan minimizing. The results yielded by the
GA significantly outperform those provided by a dispatching
rule, namely the longest processing time (LPT). The parti-
cle swarm optimization (PSO) developed by Fang and Lin
(2013) also indicates its superiority over EDD and weighted
SPT (WSPT) in solving PMSP, where the objective functions
comprising the total weighted job tardiness and the power
cost minimizing. Metaheuristics have obtained outstanding
results in addressing the PMSP with family setups. Cochran
et al. (2003) present a GA with multi-population for identi-
cal PMSP under release dates and family setups constraints
in order to minimize makespan and total weighted tardiness.
GA is also utilized as the basic algorithm in an integrated
metaheuristic developed by Zeidi and MohammadHosseini
(2015), in which the simulated annealing (SA) method is
also in addition applied as a local search procedure for min-
imizing the total cost of tardiness as well as earliness. Lee et
al. (2010) propose a restricted SA approach on an identical
PMSP with sequence-dependent setup times so that the max-
imum lateness is minimized. The same scheduling problem
is also solved by Ying and Cheng (2010) through an iterated
greedy (IG) approach. More recently, Béez et al. (2019) pro-
pose a hybrid metaheuristic algorithm that combines a greedy
randomized adaptive search procedure (GRASP) and vari-
able neighborhood search (VNS), which obtains promising
results for minimizing the total completion time on identi-
cal parallel machines with sequence-dependent setup times.
Moreover, several researchers apply metaheuristics to other
variants of the PMSP with different constraints. Anghinolfi
and Paolucci (2007) propose a hybrid metaheuristic method
for minimizing the total tardiness of a PMSP, in which fea-
tures of tabu search (TS), SA and VNS are integrated.

To achieve a higher computation efficiency, Afzalirad and
Shafipour (2018) propose a genetic algorithm with a heuris-
tic procedure (HGA) for addressing an unrelated PMSP with
machine eligibility restrictions. Comparisons with a pure GA
demonstrate the superiority of the proposed HGA. Armen-

Journal of Intelligent Manufacturing (2024) 35:1107-1140

1109

tano and Yamashita (2000) propose two variants of TS to
minimize the mean tardiness on identical parallel machines.
The first variant substitutes the original short-term memory
with a long-term memory, which can store the frequency of
the moves executed throughout the search. The second vari-
ant makes use of influential moves. The improvements are
indicated by large-scale instances of up to 10 machines and
150 jobs. In order to solve the dynamic scheduling problem,
where all orders to be scheduled are impossible to be known
in advance, Rolf et al. (2020) propose a GA-based method,
which is capable to assign several given dispatching rules at
any time point during the scheduling process. The combina-
tion of dispatching rules provided by this GA method can
outperform any of the composite dispatching rule in solving
the addressed hybrid flow shop scheduling problem. How-
ever, the drawback of metaheuristics is equally obvious since
numerous iterations are required for evaluating and selecting
an appropriate solution among several candidate solutions,
which is a time-consuming process when dealing with large-
scale instances.

In recent years, applying reinforcement learning (RL) to
solve scheduling problems has attracted increasing attention
(Kayhan & Yildiz, 2021). As one of the most promising
branches of machine learning, RL demonstrates a power-
ful ability for decision-making in the context of complex and
dynamic problems, such as in playing Go (Silver et al., 2017)
or video games (Vinyals et al., 2019). The basic idea of RL
is to model a problem as a Markov decision process (MDP),
where an agent is trained to determine the optimal action at
each decision point (Sutton & Barto, 2018). Although the
training process may also be time-consuming, a well-trained
agent can rapidly yield a remarkable result in other untrained
situations. With the characteristics mentioned above, many
researchers model the PMSP as MDP and then employ RL to
solve it. Yuan et al. (2013) and Yuan et al. (2016) propose an
agent trained by the Q-Learning algorithm to solve a dynamic
PMSP and a variant with random breakdowns, respectively.
The agent can select the most proper dispatching rule over
three different rules, namely SPT, EDD and first in first out
(FIFO). Moreover, the agent can also adjust the election per-
centage of the three rules depending on different objectives.
Zhang et al. (2007) apply the Q-Learning algorithm on a
dynamic PMSP with family setups and machine-job qualifi-
cation constraints, in which five dispatching rules are utilized
as actions of the agent to minimize the mean weighted tardi-
ness. The agent trained by the proposed algorithm achieves
a remarkable performance improvement over any of these
five scheduling rules. Guo et al. (2020) train the agent with a
multi-stage Q-Learning algorithm to balance three different
objectives for a non-identical PMSP, which are specifically
minimizing the number of tardy jobs, minimizing maximum
tardiness and minimizing mean waiting time. The agent can
select the most appropriate one based on the assessment of

the state from three given scheduling rules, namely SPT,
FIFO and minimum slack time (MST). Through a proper
selection among these three rules, the proposed agent out-
performs dispatching rules and a comparative agent trained
by single-objective Q-Learning method. Zhang et al. (2012)
address an unrelated PMSP under new jobs arrival constraint
with R-Learning, which is an average-reward RL method.
Minimizing mean weighted tardiness is selected to be the
objective function. The agent can select four dispatching
rules according to eight indicators of the production system.
Computational experiments demonstrate that the proposed
method can obtain better results than the four compared dis-
patching rules on every instances. Zhang et al. (2011) model
a semiconductor test scheduling problem into an unrelated
PMSP with multiple resource constraints. SARSA algorithm
is utilized to minimize the total weighted unsatisfied demand
in the scheduling horizon, in which five heuristics are derived
as the actions. The superiority of the proposed algorithm is
verified by a comparison with individuals and the Industrial
Method (IM), which is an empirical heuristic used at that
time. The previously mentioned traditional RL algorithm,
such as Q-learning and SARSA, is characterized by the appli-
cation of a lookup Q table, where the estimated Q function
value of each state-action pair is stored. However, the number
of state-action pairs in a real-world manufacturing environ-
ment might be so enormous that even constructing a huge Q
table to store all the state-action pairs is almost impossible.
This limitation of traditional RL algorithms is overcome
by deep learning techniques, i.e., deep neural networks
(DNNs). RL algorithms employing DNNs are summarized
under the term Deep Reinforcement Learning (DRL). In
DRL, DNNs serve as a function approximator. Zhang et al.
(2020) model the electric vehicles (EVs) charging scheduling
problem based on the PMSP and the objective function aims
to minimize the total time that EVs spend on charging. They
adopt the deep Q-learning (DQL) algorithm, in which the Q
table is substituted by a DNN called deep Q network (DQN).
DQN is utilized here as a fully-connected neural network,
also known as multilayer perceptron (MLP). Their experi-
mental results demonstrate that the proposed agent trained
by DQL can significantly reduce the time consumed for EV
charging relative to the baseline. Zhou et al. (2020) investi-
gate the usefulness of the DRL approach in solving PMSP.
In particular, they apply the DQL algorithm on an unre-
lated parallel machine to minimize the maximum completion
time of all jobs. A recent literature that utilized an RL-based
approach to solve PMSP with family setups is proposed by
Paeng et al. (2021). The representation of actions is defined
as a tuple of a job family and a machine setup status, where
machine setup status refers to the family of the job that pre-
viously processed by the machine. After executing an action,
only the family of the job to be selected can be determined,
and the selection of the specific job relies on a dispatch-

@ Springer

1110

Journal of Intelligent Manufacturing (2024) 35:1107-1140

ing rule. Rodriguez et al. (2022) propose a multi-agent DRL
approach on an identical parallel machine model to handle the
uncertainty caused by multiple machine failures. Each agent
is responsible for monitoring the state of a single machine,
and it can trigger maintenance action to avoid any failures
that might lead the machine to breakdown. This multi-agent
method significantly reduces the breakdown times and pre-
vents failures with respect to the traditional methods that
are taken into comparison. DRL method is also widely used
in other scheduling problems. Lang et al. (2020) present a
multi-agent DQN approach for solving a flexible job shop
scheduling problem with integrated process planning. DQN
is used to train two agents. One agent is responsible for
the selection of a predefined process plan before releasing
a job. A process plan contains a set of operations, which a
job must undergo, before being completed. A second agent is
responsible for the dispatching of jobs to machines. DQN out-
performs the GRASP metaheuristic in terms of minimizing
the makespan and total tardiness. During inference, the DQN
approach is able to beat the GRASP algorithm in terms of
computational time. The authors further show that the agent is
able to compute solutions in similar quality on problems that
the agent have not seen during the training. Liu et al. (2020)
propose a DRL approach based on the actor-critic mecha-
nism to solve the job shop scheduling problem. The actor
and the critic are both represented by a specific category of
DNN, a convolutional neural network (CNN). The task of the
CNN for actor and critic is to generate a probability distribu-
tion of each candidate action (which is two dispatching rules)
and estimate the value of the current state, respectively. Luo
(2020) develops an agent that is trained through a variant of
DQN, which can select the optimal dispatching rule among
six given rules depending on the current situation. This agent
is utilized to minimize the total tardiness in a dynamic job
shop scheduling environment, in which the arrival of new
jobs is considered. The results show the superiority of the
proposed agent over the composite dispatching rules and an
agent that is trained by traditional Q-Learning. Table 1 sum-
marizes the aforementioned work on utilizing RL for solving
scheduling problems and the differences between these and
our work. The problem properties of the works are indicated
by the Graham notations (Graham et al., 1979), which is
given in Table 2.

Without loss of generality, most of the RL-based approaches
mentioned above employ dispatching rules for job selec-
tion, which is common according to the survey of Wang
et al. (2021). In real-world scheduling, the performance
can be impacted by several factors, but dispatching rules
are restricted to specific criteria for priority assignment. In
contrast, DNN provides the potential to incorporate several
attributes of jobs (i.e., processing time, due date and fam-
ily) and machines (i.e., the family of the previous job and
the processing speed) to calculate a more complex and com-

@ Springer

prehensive priority. Moreover, the agent training process is
time-consuming and cumbersome, especially when the scale
of the instances used for training is large. If the agent could
be trained on a small-scale instance and then applied to solve
large-scale instances in real production without retraining, it
would be a highly desirable property for the manufacturing
industries.

With the motivations above, we propose a DRL approach
with a novel representation of states and actions for address-
ing minimizing the total tardiness in PMSP with family
setups in this paper. The proposed representation of states
and actions enables the agent to generate a comprehensive
way to calculate job priorities and select jobs directly depend-
ing on them. Furthermore, this process of job prioritization
and selection is independent of the number of jobs, therefore
our agent can handle arbitrary scaled instances of PMSP with
family setups. The contributions of this paper can be listed
as follows:

1. We implement a novel, variable-length state represen-
tation, where the number of rows of the state matrix
is equal to the number of available jobs, and the num-
ber of columns is precisely the number of state features.
Meanwhile, the index of each job is taken as the action
representation, so the number of rows of the action
matrix is also equal to the number of available jobs. This
approach is first described by Lang et al. (2021), but has
not yet been implemented and tested on a practical use
case. The number of available jobs at time ¢ is denoted
as n,; and the number of state features is referred to as x,
so the current state is a matrix of n; x x. This matrix is
computed by the agent to a matrix of n; x 1, where each
element denotes the priority of the corresponding job.
This priority vector is converted into a probability dis-
tribution by the SoftMax function, according to which
the job is selected. The job with higher priority has a
higher probability of being selected, and the action to be
executed is the index of the selected job. After a job is
selected, the corresponding row is deleted to block the
illegal action.

2. In order to handle the variable-length matrix of states
and actions, the agent is represented by a recurrent neural
network (RNN) (Elman, 1990), specifically, gated recur-
rent unit (GRU) (Cho et al., 2014), which is one of the
most established models for processing variable-length
sequence.

3. We apply the Proximal Policy Optimization (PPO) algo-
rithm (Schulman et al., 2017) as the basic algorithm
to train the agent. To accelerate the training process
while remaining the policy unchanged, we design a two-
stage training strategy under the inspiration of curriculum
learning (Bengio et al., 2009). In the first training stage,
we design the reward function according to whether the

mm

Journal of Intelligent Manufacturing (2024) 35:1107-1140

Apoa1rp pajo9[as 2q ued qol
sny ‘sqof d[qe[TeAe [[e Jo xopuy

so[nI Suryoyedsip 9

so[nI
Suryojedsip jo uoneurquio))

Qouanbas uonerado uaAIs 4

J[qeproAeun
ST sqo[pI[eAUl JO UOT}OR[OS
*(SQOf) SUBIOIUYDJ) [[& JO Xopu[

1dS ysnoxy Aqrurey oy oprsur
uonod[as qol ‘sarrurey jo xopuyg

SOOIAIAS JO Xopuf
so[nI Suryoredsip ¢

qol ou 1992s YIm
19130303 sorna Suryojedsip

so[n1 Suryoyedsip ¢
so[nI Suryoredsip ¢
sornu Suryojedsip ¢
so[n1 Suryoyedsip ¢

sqol aqe[reae jo
Joquinu 2y} 0) Surpuodsariod
‘urnpeyos Surmp 9[qerIeA

SO[EOs oue)Sul [[e 10 /,

9[eds QoueIsul oY) Aq PIXI]

9[BdS QouBISUI Y} £ POXI]

o[eos douesul oY) £q paxI]

Q[eos oue)sur ay) Aq PaxI]

o[eos douesul o) £q paxI]

Qeos doue)sur Ay) Aq PaxI]

9[BOS 90UBISUI Y} Aq POXT]
SO[eOS QOUEISUI [[E 10J G
9[eds doueisur Ay £q PIXL]
SO[BOS QOUBISUI [[B 10J €

SO[EOs oue)Sul [[e 10J §

YIomiou
[BINQU JUALINDAL YIIM UM
uonezrumd(Q AoT[0g TRWITX0IJ

yIomiou
[eInau pajoouu0d-A[[n}
s Sururea-0) doog
I0MIQU [eINoU
[UOTIN[OAUOD U)IM JUSIPEID)
Korjog onstuturala(q dea
yIomiou
[BIN2U JUALINOAI PUE YIOMIU
[eInau pajoouuod-£[ny
ym Jururea]-Q) doog
Jylomiou
[eINoU PJOAUUOI-AT[NY M
uonezrundQ Ado1[04 [ewrxoiq
Jlomiou
[eInou pajoouuod-£[ny
s Jururea -0 doog
Jlomiou
[eInau pajoouuod-£[ny
ynm Jururea]-Q) doog

VSdVS

Surured -y
Sururea -0
Sunurea -0

Surureal-Q)

Surures-Q)

1 X/s/"o

UX//r

oy fumpyqla/

X4y /la)p

QOUBUJUIRIA] QATIOIPAI]

ASCALYA

.«.Us&b\\:\%
D.L/224d ¥l [ty

e /My

M+ '+ /"0
WS CVELVAD'

'n X+ wu/umpyq/iq
N+l

Niite)

(0z02) on'T

(0T00) Te ¥ NIy

(0202) T8 30 Sue|

(T202T) 'Te 10 zon3Lpoy

(1207) 'Te 10 Suoeq

(0202) T8 10 noyzZ
(1102) 'Te 10 Sueyz

(Z1027) 'Te 32 Sueyz
(0T07) e 30 0D
(£007T) 'Te 32 Sueyz
(9107) e 30 UBNX
(€107) e 30 UBNX

suonoy

Eraeliat

wyIoge Suruea|

ad£) wsrqoig

I0M

swaqoxd Surmnpayos JurA[os 10J spoyleuwl Ty Jo uosuedwo) | 3jqel

pringer

As

1112

Journal of Intelligent Manufacturing (2024) 35:1107-1140

Table2 Graham notations . .
Machine environment

Optimality criteria

Acronym Meaning Acronym Meaning

P, Identical parallel machine Cinax Makespan

Om Uniform paralllel machine Linax Maximum lateness

R, Unrelated parallel machine Tnax Maximum tardiness
T Total tardiness
> U; Total number of tardy jobs
S wT; Total weighted tardiness
% S wiT; Mean weighted tardiness
TC Total cost

Job characteristics

Acronym Meaning

rj Release date

prec Precedence constraints

Sik Sequence dependent setup times

bkdwn Machine breakdown

job being assigned is of the same family as the previous malized as a sequence of vectors (xi, ...Xs,...xy) Where

job. The reward function of the second training stage is
directly the negative of the objective function.

4. Numerical experiments on large scale instances with dif-
ferent parameter configurations demonstrate the robust
generalization capability of the trained agent. The train-
ing process is also provided to validate the effectiveness
of the proposed two-stage training strategy. Compari-
son with three dispatching rules and two metaheuristics
further confirms the superiority of the proposed DRL
approach.

The remainder of this paper is organized as follows. Sec-
tion “Backgrounds” presents the background of RNN and
GRU as well as RL and PPO. The PMSP considered in this
paper is formulated in section “Problem formulation”. The
details of the proposed approach are established in section
“Proposed approach”. Section “Numerical experiments” pro-
vides the training process of the RL agent and its performance
comparisons with considered alternatives with experiments.
Finally, conclusions are drawn in section “Conclusion and
future work”.

Backgrounds

RNN and GRU

RNN is a particular form of artificial neural networks that is
often used for problems with sequential data, such as music
synthesis (Sigtiaetal., 2014) and natural language processing
(Yin et al., 2017). The input of such problems can be for-

@ Springer

X; is the input at the time point t. According to this input
sequence, the RNN generates a sequence of hidden states
(h1,...hs, ... hy)where h; is defined by the following equa-
tion:

hy =gWx, +Uh;—1 +b) (1

where x; is an m-dimensional external input vector at time
t, the h; and h,_; denote the n-dimensional hidden states
at time r and t — 1, g is the activation function inside the
RNN unit which is hyperbolic tangent function in our net-
works. W, U and b are the learnable parameters of the RNN.
W and U are weight matrices, b is the bias vector with the
shapes n x m, n x n and n x 1, respectively. By iterating
through the input sequence to compute the hidden states, the
relationships among sequential data can be captured. The
architecture of the RNN unit is shown in Fig. 1a. Figure 1b
shows the structure of the RNN unit being unfolded along
the time steps. In order to show the transformation of hidden
states, the RNN networks utilized in this paper are demon-
strated in the unfolded structure.

An RNN comprising only hidden states is called simple
RNN, and the gradient for updating the network can be cal-
culated by backpropagation through time (Werbos, 1990).
However, it is almost impossible for the simple RNN to cap-
ture long-term dependencies because the gradients tend to
decay or blow up exponentially through time, which makes
the learning process extremely unstable (Bengio et al., 1994).

To enable RNNs the storage of information over a long-
range sequence, several variants with memory cells have been
developed. Memory cells can be accessed (such as be written,

Journal of Intelligent Manufacturing (2024) 35:1107-1140

1113

Fig.1 The architecture of the Output sequence

RNN unit O Yoo Yn) V-4 e Ye+1
Hidden states
RNN (hy,...he,...hy) he_s RNN Bi..q RNN he RNN heyq
Unit Unit Unit Unit
Xe-1 Xt Xe+1

Input sequence
(gsesnXppsasXn)

(a) General
the RNN unit

be read, be updated and so on) through their corresponding
gate. Among those variants, GRU is a particular architecture
whose memory cell contains areset gate z; and an update gate
r;. These two gates are presented by the following equations:

2t =0 (Wx +Uzhy 1 + by)
re=0W,x; +Urhi—1 + by) (2)

where o is the sigmoid activation function, W, U, and b, are
the weight matrices and the bias vector of the reset gate, while
W, U, and b, correspond to the same for the update gate.
With the integration of the memory cells, the GRU model
can be formulized in the form:

hy=(—2)o0hi_1 +zo0h
hy = g(Wyx; + Up(ry 0 hy—1) + by) A3

where o denotes the elementwise multiplication and %, refers
to the temporary output of the memory cell.

RL and PPO

RL approaches aim to teach an agent a policy of executing
actions in order to maximize the cumulated reward that the
agent receives from the interaction with its environment. This
environment is generally modeled as an MDP. An MDP can
be represented by a four-tuple representation (S, A, p, R),
where S is a set of all possible states, A is a set of all
actions that the agent can take, p is the state-transition func-
tion which provides the probability of a transition between
every pair of states under each action, R is a reward func-
tion which generates a real value to each state-action pair.
At each decision time point ¢, the agent observes the cur-
rent state of the environment s; € S and then conducts the
action a; € A according to the policy m, which is a map-
ping from states to actions. In response to the action, the
environment changes to the next state s;4; with transition
probability p(s;+1 | s¢, a;) and receives an immediate reward
calculated by R(s;, ar, s;+1). For a stationary policy m, the

architecture of (b) The architecture of the RNN that are unfolded along

the time steps

expected cumulative reward upon taking an action a; in state
s; is denoted as Q (s¢, a;), which is also known as the Q-
function. The Q-function is defined as follows:

Ox(s,a) ZE["t + Vit +V2”t+2 +- s =5,

a =a,,n] @)

where 0 < y < 1 is the discount factor that measures the rel-
ative importance between short-term and long-term rewards.
The expected cumulative reward of this state can be estimated
with the following equation:

Ve () =) 7 (s,a) Qx (s, @) (5)

where 7 (s, a) is the probability that the policy performs
action a given state s. V; (s) is called the state-value func-
tion, and it can also be defined as the expected value of the
following expression:

Ve @) =E[n+yr + 7+ s =sn7| 6

Therefore, the optimal policy 7 * maximizing the expected
cumulative reward among all possible states can be defined
as:

¥ = argmﬂaXE [V (s) | 7] @)

In DRL methods, the policy r is represented by a DNN
that contains a set of differentiable parameters 6. These
parameters are updated as 0 < 0,4 + nVEm,M V(Sy)),
where 7 is the learning rate and VE o, (V(81)) is the deriva-
tive of the expected cumulative reward that can be obtained
by the policy from the first state based on the old parame-
ters. However, the updating process is quite unstable since it
always encounters destructively large policy updates (Schul-
man et al., 2017). To prevent the updated policy my from
deviating significantly from the old policy ng,,,, the algo-

rithm Trust Region Policy Optimization (TRPO) (Schulman

@ Springer

1114

Journal of Intelligent Manufacturing (2024) 35:1107-1140

Fig.2 An example of PMSP
with family setups containing

two machines and five jobs from .
two different families. The Machine 1 Job1 Job 3 Job'5
yellow and sky colors indicate
the two families to which jobs
belong to
Machine 2 Job 2 Job 4

Scheduling time

>

I:, Job from family 1

etal.,2015) is proposed, where the difference between 7y and
74, 18 measured through the Kullback-Leibler (KL) diver-
gence. However, the computation of the KL-divergence is
computationally expensive. Against this background, Schul-
man et al. (2017) propose an extension of TRPO called PPO,
where the policy updates are limited by a clipping function
instead of the KL-divergence. Let r; (6) denote the probability
ratio r, () = %, where 7o (a; | s;) and mq,,, (a; | s¢)
refer to the probability of 7g,,, and 7y for taking action g,
under the state s;, respectively. The update rule of the PPO
algorithm is shown in the following:

max [E [IL (s,,a,,ngo,d,é‘)] ®)
0 s,a mg

old
and L is given by:

L (St, at, o,y 9) = min(r; (0) A™1d (51, a;),

clip(r; 0),1 —¢€, 1 +¢€) ATt (s;, a,)) 9)

where A™old (s;, a;) = Q”%m (sr,ar) — Vﬂeold (s;) is the
advantage function that evaluates the advantage of a; over
all other possible actions and 0 < € < 1 is the clip parame-
ter. When the advantage function A™1d (s;, a,) is positive, the
probability ratio ¢ (0) is limited to 1+ €; when the advantage
function A™%ld (s;, a,) is negative, the probability ratio r;(6)
is limited to 1 — €. The policy update is therefore restricted
and a stable improvement is also guaranteed.

Problem formulation

The PMSP with family setups constraint considered in this
paper can be defined as follows. There are n independent
jobs J = {J1, Ja2, ..., Ju} and m uniform parallel machines
M = {My, M, ..., My}. p; and d; refer to the process-
ing time and the due date of the jth job J;, respectively.
Each job belongs to one of N families from the set F' =
{1,2,..., Nr}, and the family of the Jth job J; is denoted
as f 7 Each time the ith machine becomes idle, a job needs
to be selected from all unassigned jobs and assigned to this
machine. The family of the job that this machine just pro-

@ Springer

D Job from family 2 :‘Setuptime

cessed is the setup state of this machine and is represented as
Sfu; . If the selected job belongs to a different family, then a
positive and constant setup time S must be additionally con-
sidered, which is equal to 10 in the problem addressed in this
paper. In addition, each machine M; is characterized by an
individual processing speed v;, which acts as a coefficient of
the processing time of a job (1/v;) x p; and thus, adjusts the
processing time of jobs upwards or downwards. The objec-
tive function is to minimize the total tardiness 7'T, which is
defined as followed:

n
TT = Zmax(o, oF —dj)
j=1

(10)

where C; is the completion time of J;. Intuitively, it is there-
fore desired that each job J; is completed before its due date
dj.

An exemplary schedule of a PMSP with family setups
constraint is given in Fig.2, which contains two machines
and five jobs from two different families. There is no setup
time between Job 1 and Job 3 as they share the same family.
However, since Job 2 and Job 4 (as well as Job 3 and Job 5)
belong to different families, an additional setup time must be
considered.

To simplify the problem at hand, several predefined con-
straints should be satisfied as follows:

1. Each machine can immediately start to process a job after
the setup is finished.
2. Each machine can process only one job at a time, and
each job can be processed on only one machine.
. There is no moving time for the jobs.
4. All the jobs are available at the beginning.

[98]

Then we mathematically describe the PSMP addressed in
this paper based on the mixed integer formulation developed
by Avalos-Rosales et al. (2015). The notations required for
modeling are listed below.

1. Parameters:

e 1n: total number of jobs

Journal of Intelligent Manufacturing (2024) 35:1107-1140

1115

m: total number of machines

Jj,g:index of jobs, j,g=1,2,...,n

i, k: index of machines,i = 1,2,...,m

J: the set of jobs

M the set of parallel machines

pj: the processing time of job J;

dj: the due date of job J;

v;: the processing speed of machine M;

Sjg: setup time for job J, when it immediately fol-
lows job J; (equal to 0 if J, and J; come from same
family, equal to 10 otherwise)

e G: a sufficient large constant

2. Decision variables:

e C;: the completion time of Job J;

e X;jg: 1if J;is a predecessor of J, on machine M;, 0
otherwise

e Y;;:1ifjob J; is assigned to machine M;, 0 otherwise

Moreover, to support the problem formulation, a dummy
job is introduced at the start and end on each machine and J’
denotes the set of jobs includes J and the dummy jobs. The
processing times and setup times related to the dummy jobs
are considered 0. Our model can be therefore stated as:

Objective function:

n
Minimize » max (0, C; —d,) (11)
j=1
Subject to:
ZY,-j=1, Vjield (12)
ieM
Yig= Y Xijg. VgelJ VieM (13)
jel'j#g
Yij= Y Xig. Vjel VieM (14)
get' g #]j
> Xy <1 VieM (15)
jeJ
Co = Cj+ V(I = Xijg) = Sjg + %
i
Vield,Vgel, j#g VieM (16)
Co =0, (17)
Xijg€{0,1), VYjelJ Vegel, j#g YieM (18)
Yijel0,1), YjelJ,VieM (19)
C;>0, VjelJ (20)

Objective 11 minimizes the total tardiness of the solution.
Constraint 12 imposes that each job is assigned to one and
only one machine. Constraints 13 and 14 ensure that each

Action a; (index of the selected job)

1

Production environment

oy -\ -

Reward 7,]

DRL Agent

State s, (information of jobs and machines)

Fig.3 Theinteraction mechanism between the agent and the production
environment

job on the machine it is assigned to has one and only one
predecessor and one successor, respectively. Constraint 15
establishes that at most, one job is scheduled as the first job
on each machine. Constraint 16 forbids overlapping among
the jobs with respect to family setups and machine speeds.
Constraint 17 sets the completion time of the dummy job at
the start on each machine to 0. Constraints 18, 19 and 20
define the domain of the variables.

Proposed approach

In order to employ DRL, we formulate the considered PMSP
as MDP, which can be represented by a four-tuple representa-
tion (S, A, p, R) asdescribed in section “Backgrounds”. The
interaction mechanism between the agent and the production
environment is shown in Fig. 3. We first define the states and
actions representation of the problem. For the representation
of states and actions, we adapt a concept from a previous
publication (Lang et al., 2021), which is characterized by a
variable state and action space, thus being able to apply the
agent’s policy to a flexible amount of jobs. Thereafter, we
describe our two-stage training strategy and the design of the
reward function for each stage. Finally, we describe the PPO
algorithm for the agent training as well as the DNN structure
of the agent representation.

State representation

The state representation we propose is discrete and the state
translates to the next at each decision time point, which is
defined as every time a machine becomes idle. At each deci-
sion point, the priorities of all jobs are computed by the agent.
According to these priorities, a job is selected and then allo-
cated to the current idle machine. The overall scheduling
framework is shown in Fig. 4.

In order to enable the agent to generate a comprehen-
sive priority for each job, we design a two-dimensional state
matrix whose number of rows is equal to the number of cur-

@ Springer

1116

Journal of Intelligent Manufacturing (2024) 35:1107-1140

Wait until there is (are)
idle machine (s)

!

Only one idle
machine?

Select a machine
at random

I
Yes
Priority calculation for
each job based on
information of itself and
this machine

Y

Job selection according
to the priorities

Y

Assign the selected job to
the current idle machine

l

All machine
processing?

Yes

All job
scheduled?

Yes

Fig.4 Overall scheduling framework

rent available jobs and the number of columns is equal to
the number of state features. The state features contain job
features and machine features, where the job features consist
of the processing time, the due date and the family of each
job, while the machine features are the information of the
current idle machine, which consists of the current time, the
family of the previous processed job by this machine and the
speed of this machine. All these features are listed in Table
3. Therefore, the agent can have access to all the information
of all jobs and then conduct the priority calculation for each
job with the consideration of the information of itself and
that of other jobs as well as the information of the current
idle machine.

@ Springer

Table 3 Job features and machine features in the state matrix

State features in the state matrix

Job features Processing time p;
Due date d;
Family f;;
Machine features Current time ¢

Family of the previous job f,

Speed of the machine v;

The structure of the state matrix at decision time point ¢
is illustrated in Fig.5a. It is assumed that there are n, jobs
at time ¢, so the number of rows of the matrix is also n;. In
each row, the first three columns demonstrate the processing
time, the due date, and the family of the jobs, respectively.
The last three columns accommodate the time of the current
decision point, the family of the previous processed job and
the speed of the machine. Therefore, the data in the first three
columns are different in each row, while the data in the last
three columns are identical in each row.

A unique feature of our approach is that the length of the
state matrix is variable. The majority of DRL-based solu-
tion techniques for selecting jobs that are described in the
literature apply a mask (Tassel et al., 2021) on a state matrix
of constant size in order to ensure that already processed
jobs would not be selected again, so the shape of the state
matrix can stay constant. However, the maximum number
of jobs an agent can process is hence limited and if this
limit is exceeded, the agent requires to be retrained. In our
approach, in contrast, the row corresponding to the selected
job is deleted from the state matrix after a job has been
selected. Thus, our approach allows us to deploy a trained
agent for sequencing a variable number of jobs waiting in
a buffer to be processed. The concept of the variable state
matrix is illustrated in Fig. 5. When the job J; is selected and
then assigned to the current idle machine M; at time point
t, the corresponding row is simultaneously deleted from the
state matrix S; as is demonstrated in Fig. 5b. This state matrix
S; will transfer to the state matrix S;41 at the next decision
point 7 + 1, which is defined as the time when there is an idle
machine in the environment again. This idle machine at the
time point + 1 is assumed to be the kth machine, and its
information together with the information of the remaining
jobs are presented in the Sy that is given in Fig. 5c.

Action representation

To select the job directly, the action is the index of the avail-
able jobs. As itis shown in Fig. 5, the action at the time point
t a; is the index of the selected job j. Therefore, the size of
the action space is equal to the number of the current avail-

Journal of Intelligent Manufacturing (2024) 35:1107-1140

117

Row

Machine features
number

Job features

1 féh dl f}1 t fMi VMi

j+1| Pisr | G W t fuy | VM

ng Pn, dn, f:’nt t fui Vm;

(a) State matrix at time point t Sy

R
ow Job features Machine features
number
1 P1 dl f}l t fMi VUm;

Jo | pisa | dis | T t fu; U,

ng — 1 Pn, dnt

(b) jth row is deleted form the state matrix Sy
after the selection of the jth job

R
oW Job features Machine features
number
1 P1 dy t+1 fue | Vmy
J Pj+1 | i1 f]j+1 t+1 fue | Vmy
Ne—1
(nt+l) pnt dnt t+1 ka ka

(c) State matrix at time point ¢t + 1 Si41

Fig.5 The changing process of state matrix when the jth job is selected
at time point # (a¢; = j). The first three columns in each state matrix
are the job features, each row represents a different job and is indi-
cated by a different color (purple, light green, dark green and blue). The

able jobs. To do so, we consider that the agent acts within a
continuous action space. By this means, the agent has only a
single output neuron. However, since the state matrix can be
considered as a batch of states, the resulting batch of actions
is an action vector whose length corresponds to the number
of rows of the state matrix. Suppose there are n; jobs that
are unallocated at time ¢, then the size of the state matrix at
this decision time point is n; x 6, because each job and all
machines provide in total 6 attributes for describing a single
job as the state. The agent forward propagates the matrix and
thus computes a vector with n; elements, where each element
is the priority of the corresponding job. This priority vector
will be passed to a SoftMax function in order to compute

last three columns are machine features, each row represents the same
machine, indicated by the same color in all rows in the same matrix,
and by another color in another matrix (red and yellow)

a probability distribution over the jobs that can be selected,
where the job with the highest priority has the highest prob-
ability of being selected. Finally, the probability distribution
samples the job to be selected by the idle machine. Same as
the state matrix, the action space is reduced by one at the
next decision point ¢ 4 1, since the number of available jobs
1ISN¢41.

Reward design and the two-stage training strategy
Since the objective is to minimize the total tardiness, the

invariance of the objective can be guaranteed if its nega-
tive is set directly to the reward function. However, using

@ Springer

1118

Journal of Intelligent Manufacturing (2024) 35:1107-1140

the objective function as reward function results in sparse
rewards, as reward for the agent is only provided at the end
of an episode. Therefore, it is not possible for the agent to
precisely determine the impact of selected actions, especially
earlier actions, on the final objective. Thus, the agent might
not be able to converge to a high-quality policy.

To address this issue, we develop a novel two-stage train-
ing strategy based on curriculum learning (Bengio et al.,
2009). The basic idea of curriculum learning is to introduce
an additional (or more) training stage with dense rewards
before the agent is trained with the original sparse reward
function. This training strategy achieves great success in han-
dling the task with sparse rewards such as playing first-person
shooting games (Wu & Tian, 2016) and training robotic arms
(Zhou et al., 2021).

In our training strategy, the negative of the total tardiness
represents the reward function of the second training stage.
The design of the dense reward function of the first stage
is based on the fact that a high-quality schedule will not be
accompanied by a high number of setup changes, as each
additional setup time can increase the probability of tardy
jobs. Against this background, the reward function of the first
training stage only considers whether the job being selected
shares the same family as the previous job that has been
processed on the same machine. If both jobs belong to the
same family, i.e., no setup time is required, the agent obtains
a positive reward. If the selected job has a different family
than the previous one and at the same time, there are available
jobs of the same family as the previous one, then the agent
receives a negative reward. Otherwise, the reward is equal to
zero. This procedure to calculate the reward at the first stage
is given in Algorithm 1. Since for each decision point a job
is assigned, this makes the reward function at the first stage
dense and thus simplifies the convergence of the agent.

Algorithm 1 Reward calculation of the first training stage

1: Initialization:s; <— sg, n; < n, reward < 0
2: while n; # 0 do
3. a; < mp(sy)

4: i < a;

5. if fi = fu then

6: reward < reward + 1
7. else

8: for j < Oton, do

9: if f; = fu then

10: reward < reward — 1
11: break

12: end if

13: end for

14: end if

15: s < siv1,n < np — 1

16: end while

The reward of the second stage is the total tardiness yielded
by all jobs and is only provided at the end of each episode,

@ Springer

i.e., when all jobs are scheduled. Moreover, if the total tardi-
ness is equal to zero, the agent obtains an additional reward
R, which is set to be 200 in this paper. The procedure to
generate the reward of the second training stage is given in
Algorithm 2. It is worth noting that although the tardiness
is calculated during the scheduling process, the agent can
only receive the total tardiness at the end of the scheduling
process, since the value of the Reward is assigned after the
while loop. Before the second training stage, the agent is
already able to achieve a suboptimal solution with the guid-
ance of the first training stage. Therefore, compared to agents
with random initialization, agents after the first training stage
can converge and find the optimal solution more efficiently,
instead of wasting time on aimless exploration.

Figure 6 demonstrates this two-stage training process with
an exemplary instance containing only four jobs and one
machine. In the first training stage, the relationship between
every two sequential jobs is forwarded to the agent as the
reward. It is clear that during a complete scheduling process,
the agent can be rewarded multiple times. In our problem,
one complete scheduling process is called one episode of
training for the agent and the first training stage will last for
a specific number of episodes, which is a hyperparameter
defined in advance. After the first training stage, the agent is
introduced into the second training stage, where the reward
is only provided at the end of each episode, i.e., when a
scheduling process is done. The number of episodes for the
second training stage is also a pre-defined hyperparameter.

Algorithm 2 Reward calculation of the second training stage

1: Initialization: s, < sg, n; < n, reward < 0, Tardiness <«
0, Total Tardiness < 0

2: while n; # 0 do

3. ap < mp(sy)

N

5: if t + pi /vy > d; then

6: Tardiness < (t + pi/vy — d;)

7: Total Tardiness < Total Tardiness + Tardiness
8: endif

9: Tardiness < 0

10: s <= Spq1, 0 < np— 1

11: end while

12: Reward < —Total Tardiness
13: if Total Tardiness = 0 then
14: Reward < Reward + R
15: end if

Training algorithm and network structures of the
proposed agent

In this paper, we adopt the PPO algorithm for updating the
proposed agent. Since the PPO algorithm trains the agent
through a batch of (S, A, R) tuples, the state matrices in this
batch must be of the same size. To satisfy this, we first find

Journal of Intelligent Manufacturing (2024) 35:1107-1140

119

Action (index of the selected job)

Action (index of the selected job)

- After the first K
Agent in the training stage Agent in the
second ™ r— first

o le e agent enters A
training stage
g stag the second training stage

training stage

ITraining Environment of
the first stage

Training Environment of
the second stage

iaie

IIEEI:

.
M
Due date

Job from
family 1

|:|Job from

Fig.6 The process of the two-stage training strategy

the matrix with the largest number of rows in a batch, and
then apply zero padding to the other matrices in that batch
so that they all have the same size as the largest one. More-
over, an actor DNN and a critic DNN must be built for the
implementing the PPO algorithm. The actor DNN learns the
decision policy, i.e., which action to execute given a spe-
cific state of the environment. More precisely, the actor takes
the information required as input to calculate the priority of
each job and then generates a probability distribution over all
jobs in order to randomly select a job for the idle machine.
Intuitively, jobs with a higher priority are more likely to be
selected. The critic DNN approximates the state value func-
tion and thus estimates the cumulative future reward starting
from a given state. The state value serves as the training sig-
nal for the actor DNN. The inputs of the critic DNN are the
same as those for the actor DNN. The interaction between the
actor-critic agent and its environment is illustrated in Fig.7.

In DRL, agents are usually represented by a fully-
connected DNN, which is also known as the multilayer
perceptron (MLP). An MLP, however, is not able to analyze
sequential relationships in input data streams. Considering
that the agent calculates n priorities for n jobs waiting in
a buffer before a job is selected to be produced, it seems
evident that the agent should take into account its prioritiza-
tion decisions of all other waiting jobs in the queue, when
prioritizing one specific job. An MLP is hardly able to ana-
lyze such sequential relationships between data. To this end,
RNNSs are employed in the construction of both the actor and
the critic DNN, which are dominant in sequence transduc-
tion and quite suited for handling variable-length sequences.
To be more specific, the RNN used in the actor and critic
architecture is the GRU model.

Setup
family 2 time

Positive Negative
Q reward reward

The actor model can be divided into a GRU part and an
MLP part, where the GRU part consists of the input layer
and a recurrent hidden layer while the MLP part consists
of a fully-connected hidden layer and the output layer. The
architecture of the actor model and the way it calculates the
priorities of the jobs are demonstrated in Fig. 8. When cal-
culating the priority of the jth job over all n jobs, the data
of the jth row in the input matrix is firstly fed into the actor
model through the input layer, and subsequently encoded by
the recurrent hidden layer and then decoded by the fully-
connected hidden layer, the priority of the ith job is finally
given by the output layer.

What is worth to be noted is that the output of the recurrent
layer is called the hidden state and the jth hidden state is
denoted as /. The hidden state is not only used as input to
the fully-connected layer, but also as input to the recurrent
layer itself when calculating the priority of the (j + 1)th
job. It is self-evident that the (j — 1)th hidden state h;_1)
is also taken into account by generating the jth hidden state
h;. The hidden state /; can be considered as a summary
of all the information from the Oth job to the jth job and a
long-term dependence among the information sequences of
jobs is therefore captured. Figure9 presents an example of
the GRU calculating priorities for an instance containing two
jobs and one machine. For a clearer presentation, only the job
features are shown in this example figure. It can be seen that
at the beginning of the scheduling process, the memory cell
of the GRU is in the initial state. Then the GRU summarizes
the information of the first job into the first hidden state /7.
This hidden state, i.e., the summarized information of the first
job, is further processed by the MLP into the priority of the
first job, and simultaneously it is written into the memory
cell. When calculating the priority of the second job, the

@ Springer

1120

Journal of Intelligent Manufacturing (2024) 35:1107-1140

Fig.7 The cooperation

Action (index of the selected job)

mechanism between
DRL-Agent and its learning
environment

DRL Agent

¥

Leaning environment

Reward

.
l
1

Observed state

Fig.8 Architecture of actor
network by utilizing

R Data from the (j — 1)th
one-directional GRU

row of state matrix

Data from the jth row of
state matrix

Data from the (j + 1)th
row of state matrix

summarized information of the first job will be read from the
memory cell by GRU and taken into account in the priority
calculation. Then the information in the memory cell will
be updated to the second hidden state /,, which could be
considered as the summarized information of the first and
second jobs.

It is equally noticeable that the GRU processes the state
matrix in a manner that is independent of the number of rows,
which is thus independent of the number of jobs. When the
number of jobs increases from two in the example to n in
the practical application, only the number of times that the
memory cell is updated increases correspondingly, while the
architecture of the GRU remains unchanged. This character-
istic can allow a trained agent to solve instances of arbitrary
scale without time-consuming retraining.

However, only the information of the jobs before the jth
job is involved in the calculation of the jth priority, which
can lead to myopic behavior of the agent, since the agent
only knows about the given priorities before the current job
to be prioritized, but not about the priorities to be calculated
after the current job. To handle this issue, the recurrent layer
is set to be bidirectional (Yin et al., 2017), so the information

@ Springer

Priority of the
GRU MLP 1 fihick
Priority of the

GRU MLP th job
MLP Priority of the
GRU (G + 1)th job

sequences of jobs could be simultaneously fed into the neural
network in both the forward and backward directions. As a
result, the information from the 1s¢ job until the nth job will
be equally considered when calculating the priority of the
jthjob (1 < j < n). Figure 10 illustrates the computation
of the priority of the actor model employing a bidirectional
GRU.

The input layer consists of six neurons (corresponding to
the number of features for constructing a state—see Fig. 5a).
Since the agent makes decisions within a continuous action
space, thus to be flexible with respect to the number of jobs,
the output layer contains only a single neuron that computes
the priority of a job.

The recurrent hidden layer contains 32 bidirectional GRU
cells, while the fully-connected layer consists of 64 neurons.
The number of neurons of the fully-connected layer is exactly
twice the number of GRU cells, as each neuron needs to
receive information from both the forward and backward fed
sequence (since GRU cells are bidirectional). The activation
function used for this fully-connected layer is Relu.

When the data of each row in the input matrix has been
encoded and decoded by the actor, a vector consisting of the

Journal of Intelligent Manufacturing (2024) 35:1107-1140 1121
Fig.9 Mechanism of GRU in Input layer
calculating job priorities in an
exemplary scheduling :
environment with one machine o A
and two jobs : " L.
; Priority
| : GRU MLP —— of the
[) .
: 1st job
] -=p
P1 dy i : : . el sl
5 ummarized information
> : of the 1st job
d 1
Pz 2 /70 I S ' Memory
Initial hidden Cell
State Matrix state
(a) Priority calculation process for the first job
lnput layer
: Priority
| : GRU MLP —> of the
: 2nd job
! —>
H1 a1 1 :
> Summarized information of the
1st and the 2nd job
d
P2 2 7% I N Memory
i Cell
State Matrix _Summarl.zed
information of
the 1st job

(b) Priority calculation process for the second job

Fig. 10 Architecture of actor
network by utilizing

bi-directional GRU f°é"F‘{’fJ' d MLP Priority of the
Data from the (j — 1)th (j — 1)th job
row of state matrix
backward
GRU
fogv};lard MLP Priority of the
Data from the jth jth job
row of state matrix
backward
GRU
f°g‘;’fjrd MLP Priority of the
Data from the (j + 1)th (J + 1)th job
row of state matrix
backward
GRU

@ Springer

1122

Journal of Intelligent Manufacturing (2024) 35:1107-1140

Fig. 11 Architecture of critic
network by utilizing

bidirectional GRU Data from the (n — 2)th

row of state matrix

Data from the (n — 1)th
row of state matrix

Data from the nth
row of state matrix

priorities of all jobs is obtained. This priority vector is subse-
quently converted into a probability distribution by applying
a SoftMax function. Finally, the agent selects the next job
to be processed by sampling a random job index from the
probability distribution.

The architecture of the critic network is almost identical
to that of the actor network, it also contains a 2-layer GRU
part and a 2-layer MLP part. The difference is that instead
of each hidden state only the last hidden state &, is forward
propagated through the MLP part. Since the last hidden state
is calculated based on all jobs, it can be transformed by the
MLP into a summarized state value over all jobs in the buffer.
In addition, by encoding the information of each job into the
hidden state, we also employ bidirectional GRUs in order to
give the critic network a global view. The structure of the
critic model and the way it computes the value of the current
state are illustrated in Fig. 11.

The number of neurons and GRU cells in each layer of the
critic model is identical to the actor model. The numbers of
neurons belonging to the input layer and output layer are the
same as the number of state features and are equal to one,
respectively. The first hidden layer is the recurrent layer with
32 GRU cells, while the second hidden layer is the fully-
connected layer with 64 neurons. The activation function
used for this fully-connected layer is also Relu.

In summary, the actor model encodes each row of the
input matrix separately with the GRU layer and the MLP
layer decodes the encoded sequence to the priority vector
of the selectable jobs. Meanwhile, the critic model encodes
the complete input matrix with the GRU layer, only after the
GRU has encoded all the data of the input matrix, the MLP
part decodes it to a real number representing the value of the
state.

@ Springer

forward
GRU
backward
GRU
forward
GRU
backward
GRU
forward ’ MLP Value of the
G current state
backward
GRU

Table 4 Parameter settings of different production configurations

Parameter Value

Total number of machines m {10, 11, 12}

Total number of jobs n {350, 400, 450, 500}
Total number of families of jobs Np {7,8,9}

Speed of machines v; {1, 1.25}

Processing time of a job p; Unif [5, 15]

Average tardiness factor r {0.4,0.6}

Relative range of due dates R {0.1,0.2}

Setup time § 10

Numerical experiments

In this section, we first provide the details of the training pro-
cess of the agent. Based on the state-action representations
and the network structure mentioned above, the agent can
process PMSP instances with arbitrary scale, which enables
us to train the agent more quickly on a smaller instance
and then implement it on larger instances in the production
environment. Then the performance of this trained agent on
large-scale instances is demonstrated. To further validate the
generalization ability of the proposed agent, this performance
is compared with that of three dispatching rules and two meta-
heuristics. The instances with large scale used for validation
are generated by the parameters listed in the Table 4.

The two indicators in Table 4, the average tardiness fac-
tor r and the relative range of due dates R, are utilized to
generate the due date of each job according to the genera-
tion procedure used by Potts and Van Wassenhove (1985)
for the single machine scheduling problem. The due date
dj of job J; is generated using a uniform distribution over

Journal of Intelligent Manufacturing (2024) 35:1107-1140 1123
Table 5 Parameter settings for the training environment Table 6 Hyperparameter settings for training

Parameter Value Hyperparameter Value
Total number of machines m 10 Number of episodes in the first training stage 1500
Total number of jobs n 75 Number of episodes in the second training stage 4500
Total number of families of jobs Ny 8 Learning rate n le—4
Number of machines with v = 1.25 5 Discount factor y 0.99
Number of machines with v = 1 5 Clip range € 0.3
Processing time of a job p; Unif [5, 15] Number of steps per update 5
Average tardiness factor r 0.1 Batch size 5
Telative range of due dates R 0.25 Optimizer Adam
Setup time § 10

MP(1—r—%)and MP(1 — r + £). The indicator M P is
calculated as M P = Z;l':l pj/m+ (N - S) /m, where N
is the total number of times that the setup status is switched.
Since the exact number of switches cannot be obtained until
the scheduling is complete, and its maximum and minimum
values are equal to the number of jobs n (each job does not
belong to the same family as the previous one) and the num-
ber of families Ny (the setup status is switched only after all
the jobs of a family have been processed), respectively. Hence
the value of Ny is chosen as the average of the maximum and
minimum values and be calculated as Ny = #

The training process of the agent

We develop our agent in PyTorch and encode it with python.
The proposed agent is trained in an RL environment that
simulates a PMSP. We construct the environment based on
OpenAl Gym (Brockman et al., 2016) and a Python-based
Discrete-Event Simulation (DES) library called Salabim (van
der Ham, 2018). The training process and the comparison
process that follows are conducted on a PC with Intel Core i9-
11900KF@3.50GHz CPU, 16GB RAM and a single Nvidia
RTX 3080 GPU.

The training environment can be described by the param-
eters listed in Table 5, which contains 10 machines with 2
different speeds and 75 jobs from 8 families. The and R are
set to be 0.1 and 0.25, respectively. The agent is trained on
this instance with the reward function Algorithm 1 for 1500
episodes (the first training stage) and then trained with the
reward function Algorithm 2 for 4500 episodes (the second
training stage). The hyperparameters used for the training
process are given in Table 6, where the proposed network
is updated by the optimizer Adam (Kingma & Ba, 2014).
Compared to the classical stochastic gradient descent, Adam
utilizes an adaptive learning rate and history-based updates,
which makes it converge faster and require little tuning (Sun
et al., 2019).

The training process of the first training stage is illustrated
in Fig. 12, in which the abscissa is the number of episodes,
and the ordinate is the average number of setups that the
agent obtained in the previous 20 episodes. According to
Algorithm 1, the agent obtains a negative reward if there are
jobs with the same family as the machine setup state that are
not selected. Meanwhile, the agent obtains a positive reward
if a setup time is avoided. As a result, the curve of the number
of setups declines smoothly with the training process, which
indicates that agents have learned to schedule two jobs from
the same family successively.

The agent is then trained in the second stage to reduce the
total tardiness. The change curve of the total tardiness that
the agent obtained during the second training stage is demon-
strated in Fig. 13, where the abscissa is also the number of
episodes, while the ordinate is the average total tardiness that
the agent obtained in the previous 20 episodes. It can be seen
that the total tardiness that the agent obtained starts at a rela-
tively low level, because the agents have learned to schedule
the jobs of the same family successively to avoid setup times
after the first training stage, so the value of total tardiness
is also reduced by a shorter makespan. Then the total tardi-
ness increases in the beginning episodes, which is because in
the second training stage, Algorithm 2 can only provide the
agent a feedback after all jobs are scheduled, which results in
the agent cannot accurately adjust the policy for priority cal-
culation for each job, and larger total tardiness is generated
in exploring the appropriate policy. However, the superiority
of the proposed two-stage training strategy is that the addi-
tional first stage reduces the time for this exploration. It is
evident that, as the training process proceeds, the curve of
total tardiness decreases gradually and converges to a signif-
icantly lower level, indicating that the agent has learned how
to select the most appropriate job based on information about
the production environment as well as the job itself.

In order to validate this superiority, we also train a com-
parative agent only under the reward function Algorithm 2, to
investigate whether the comparative agent could converge to
a proper value with the same number of episodes without the

@ Springer

1124 Journal of Intelligent Manufacturing (2024) 35:1107-1140
Fig.12 Average number of a
setups over previous 20 episodes 3
that the agent obtains in the first K]
stage of training 65
o
~N
n
3
2 60 -
g
o
o
3 55 A
0n
Q
S
-+t
3 50
Y
)
—
3
€ 45 A1
=]
c
)
o
S 40 A
S
< T T T T
0 500 1000 1500
Episodes
Fig. 13 Average total tardiness 80
over previous 20 episodes that 4
the agent obtains in the second s
stage of training wn 70
o
)
o
N 60 A
0
S
L
E 50 -
o
| -
Q40
)
)
0
2 30
=
—_
8
— 201
©
-
o
4+
© 10 -
o
g
< 04
0 900 1800 2700 3600 4500
Episodes

first training stage. The training process for this comparative
agent trained only by Algorithm 2 is illustrated in Fig. 14,
together with the training process for the agent trained by the
proposed two-stage training strategy. To eliminate the expla-
nation that a better result is obtained by the proposed agent
because of being trained for more episodes, this comparative
agent is trained only under the reward function Algorithm 2
for 6000 episodes, which is exactly equal to the total num-

@ Springer

ber of episodes that the proposed agent has been trained
for (1500 episodes in the first stage and 4500 episodes in
the second stage). The difference between the two curves is
apparent. It can be observed that the curve of the comparative
agent starts at a relatively high level, since the initial agent
selects jobs in a stochastic behavior. Then the total tardiness
that the comparative agent obtained decreases very slowly
with strong fluctuations, because the solution space becomes

Journal of Intelligent Manufacturing (2024) 35:1107-1140

1125

—— Agent trained by proposed two-stage strategy
Comparative agent trained only by Algorithm 2

Fig. 14 Average total tardiness 120
over previous 20 episodes b
obtained by the agent trained by '8
2-stage training strategy in the 0
second stage of training (blue 8‘ 100 A
curve) and the average total o
. . ~N

tardiness over previous 20 0
episodes obtained by the 3 80-
comparative agent trained only >
under reward function g_
Algorithm 2 (gold curve) .

¢ 60

)

)

0

)

=

T 40 A

8

e

o

<= 20 A

9]

o

o

S

< 0 -

0

Fig. 15 A chromosome Index 1 2

3000 4500 6000

Episodes

1500

3 4 5 6 7 8

representation of a PMSP
instance with 8 jobs

Jobs & e

Js J2 J7 N1 Je Is

enormous as the instance scale gets larger, which is very
time-consuming for exploration. In the finishing episodes of
training, the curve of the comparative agent still cannot con-
verge, which suggests that this agent has not learned a proper
policy for job selection. In contrast, also trained under Algo-
rithm 2, the proposed agent can find the optimal solution
much more efficiently. This comparison indicates that the
solution space for exploration was remarkably reduced by
the first training stage and the effectiveness of the proposed
two-stage training strategy is therefore confirmed.

Comparisons with dispatching rules and
metaheuristics

In order to further confirm the effectiveness and general-
ity of the proposed agent, we compare the agent trained
in section“The training process of the agent” with three
dispatching rules, including SPT, EDD and a family-based
dispatching rule which is called MAS_PAR (van der Zee,
2015). SPT selects the job with the shortest processing time.
EDD selects the job with the earliest due date. MAS_PAR is
specially designed for the PMSPs under family setups con-
straint. This dispatching rule selects not only the particular
job, but also decides which family should be scheduled at
each pre-defined decision time point.

Table 7 Parameter settings for GA approach

Basic parameters for GA-Rules and GA-Classic

Number of generations 50
Number of individuals 50
Crossover probability 0.8
Mutation probability 0.8

Specific parameters for GA-Rules

Initial number of switches in each gene 5
Probability of add a new switch 0.2
Probability of drop a existing switch 0.1

Moreover, two metaheuristics are also taken into compar-
ison. The first comparative metaheuristics is a GA developed
by Rolf et al. (2020) for solving a hybrid flow shop schedul-
ing problem, which is denoted as GA-Rules in this paper.
The GA is utilized to assign four dispatching rules during
the scheduling process, namely SPT, EDD, minimum slack
time (MST) and smallest critical ratio (CR). Since CR is
designed for flow shop scheduling problems, it is substituted
by the previously mentioned MAS_PAR rule for addressing
the PMSP in this paper. In GA-Rules, the number of switches
of dispatching rules is a pre-defined hyperparameter, based

@ Springer

1126

Journal of Intelligent Manufacturing (2024) 35:1107-1140

on which two specific mutation operators are developed. The
first operator adds a new switch for each gene by mutation,
while the second operator drops an existing switch for each
gene by mutation.

We also derive a classic GA as another comparative meta-
heuristic, which is referred to as GA-Classic in this paper.
The chromosome representation is a sequence of all jobs. Fig-
ure 15 gives an exemplary chromosome of a PMSP instance
with 8 jobs, which will be assigned to machines in this
sequence in a dispatching behavior. The parameter settings
for both two GA approaches are listed in Table 7.

The PMSP instances used in the comparison are generated
by different settings of the parameters in Table 4, namely the
number of machines m, the number of jobs n, the number of
families N, average tardiness factor r, and relative range of
due dates R. The agent trained in Sect. “The training process
of the agent” is implemented to solve these instances with-
out retraining. Then the performance and the computation
time are compared with those of the aforementioned three
dispatching rules and two metaheuristics.

The performance of the agent could be better evaluated
if the gap from the optimal solution of the agent and all
comparative approaches on each instance could be com-
puted. However, since the proposed PMSP is NP-hard, it
is extremely time-consuming to compute the optimal solu-
tion on large-scale instances. Therefore, we prefer to use a
lower bound in place of optimal solutions. We derive a lower
bound L B for our problem based on the research of Azizoglu
and Kirca (1998) and Schaller (2014). To calculate a lower
bound for identical PMSP without family setups, Azizoglu
and Kirca (1998) introduce the preemption relaxation, which
allows jobs to be simultaneously processed on more than one
machine. After sorting jobs by the SPT rule, the lower bound
can be therefore computed as:

n J)
Zmax {0, %—dm}, (21)

where d[j| < d[j41; for all j. Then Schaller (2014) extends
the above lower bound to the problem with family setups. The
processing time p; is substituted by a modified processing

time mp;, which is defined as mp; = p; + %, where n g,

J
is the number of jobs from the family of the jth job and §
is the setup time. The lower bound for identical PMSP with
family setups is given by:

n j]
3" max {0, Zi= M) d[,-]} 22)
=1

In order to extend this lower bound to the proposed uni-
form PMSP with family setups, the number of machines m
in Eq.22 is replaced by the sum of all machine speeds. The
lower bound LB for our problem can be calculated in the

@ Springer

form of:
n i mp
LB =Y max {0, 2120 g @23)
j=1 Zi:l Vi

Therefore, the performance of each approach can be mea-
sured by the gap to the lower bound Gap, which is defined
as:

TT(A) — LB

Gap(A) = 1B

x 100% (24)

where T'T (A) is the total tardiness obtained by the approach
A.

The gap to lower bound for each approach on all instances
are provided in Tables 8, 9, 10 and 11 where the minimum
Gap is highlighted in bold font. Since the scheduling behav-
ior of agents is characterized by a certain randomness, we
repeat the scheduling of our agent independently 10 times
on each instance. The mean value of the Gap obtained by
the agent over the 10 repetitions is taken into comparison
and the standard deviations are also given in Tables 8§, 9, 10
and 11. Meanwhile, Table 12 demonstrate the computational
time taken by each approach to solve the instance of each
scale, since the computation time is primarily related to the
instance scale rather than the due date setting.

First, it can be observed from Tables §, 9, 10 and 11 that
the proposed RL approach provides the minimum gap to the
lower bound on each instance. And the advantage of the Gap
of the RL agent over the Gap provided by all the other meth-
ods is significant, indicating a much higher solution quality.
Moreover, Table 12 reports that the solutions of such high
quality are provided in a very computationally efficient pro-
cess. The largest instance with 500 jobs can be solved by
the agent within 3's, which takes the metaheuristics multiple
times longer. Only the dispatching rules use less compu-
tational time than the trained RL agent, which is because
of their simple procedures. However, the superiority of the
results yielded by the RL agent over those of dispatching
rules is significantly greater.

Figure 16 shows the comparison of the average Gap
obtained by each method on all instances under each due
date setting. It can be seen that the total tardiness gener-
ated by the RL method is remarkably lower for all due date
settings. Meanwhile, compared to other methods, the perfor-
mance of RL varies relatively little over the instances with
different due date settings.

Figures 17, 18, 19 and 20 illustrate the influence of differ-
ent parameter settings of the instances on the generalization
performance of the trained RL agent. This illustration helps
us to decide how to choose the parameter settings for the
instance used to train the agent, according to the parameters
of the instances in the real application, in order to achieve

Journal of Intelligent Manufacturing (2024) 35:1107-1140 1127
I;Tgai : g’éi‘;‘;‘tl‘; ﬂ‘fffl‘l“g Gapin NEmon RL GA-Rules GA-Classic MAS_PAR SPT EDD
%) of RL Agent and the Gap (in Mean Std
%) of comparative approaches
when 7 = 0.4 and R = 0.1 7 10 350 3231 4.27 120.08 206.82 167.39 476.63 568.39
400 28.79 6.46 132.32 201.45 90.67 483.07 565.01
450 21.97 4.92 117.20 223.47 79.68 507.64 577.98
500 18.49 6.10 109.68 236.99 181.82 496.00 563.01
11 350 32.68 3.78 131.79 202.15 170.52 476.17 558.07
400 29.29 4.89 117.50 219.42 97.85 508.76 534.79
450 20.37 6.97 103.06 220.36 85.80 490.67 584.89
500 15.87 4.21 120.32 222.17 169.05 49595 560.01
12 350 41.41 4.13 155.17 21291 182.66 480.99 531.89
400 37.65 2.86 141.97 208.16 116.00 503.23 570.24
450 34.25 4.28 131.49 226.88 103.02 510.53 573.10
500 24.54 4.13 127.51 230.57 192.45 51575 564.44
8 10 350 41.52 8.71 201.21 286.66 169.52 590.10 639.93
400 39.50 5.76 171.13 281.28 124.44 544.55 647.21
450 35.12 9.07 156.01 287.29 112.89 587.17 635.89
500 30.09 4.86 130.83 284.02 96.31 57775 620.28
11 350 44.54 899 21541 277.48 179.35 558.71 612.74
400 38.17 6.77 180.02 270.06 134.55 561.46 612.96
450 31.48 8.02 167.09 282.59 121.16 568.38 634.26
500 26.49 476 137.93 261.22 102.93 556.80 625.50
12 350 54.11 593 246.47 289.62 200.38 581.57 646.29
400 47.10 428 204.60 291.86 157.52 613.91 628.51
450 43.81 6.76 185.16 290.57 141.93 611.95 613.99
500 31.35 6.63 159.88 297.40 121.81 589.01 653.62
9 10 350 60.32 10.85 175.50 236.01 253.24 526.12 580.64
400 43.42 8.09 142.05 231.57 128.17 535.51 568.60
450 4341 7.40 130.40 250.36 172.24 51523 584.00
500 32.36 9.62 121.12 250.55 138.10 540.16 593.86
11 350 64.58 10.48 192.95 238.22 267.71 520.37 558.19
400 38.07 8.91 168.54 221.40 139.60 523.88 598.30
450 40.13 5.89 153.84 236.57 180.80 517.19 565.23
500 29.88 8.71 136.24 244.23 139.39 528.53 590.48
12 350 71.22 9.93 223.13 232.34 265.56 52298 560.52
400 47.80 11.48 20891 233.93 162.75 537.50 593.64
450 48.19 7.01 173.83 256.01 201.80 532.23 591.46
500 41.02 8.03 163.76 256.20 158.68 519.86 611.79

proper efficiency and performance. It can be seen that the
agent performs better on instances with R = 0.6 andr = 0.1,
where the due dates are relatively tighter and close to each
other. What is also noteworthy is that the agent has better
generalization performance on the instances with 7 families
relative to instances with 8 families, even though this agent
was trained on an instance with 8 families. This might be due
to the fact that an instance with 7 families can be considered as
asimplified instance with 8 families where the number of jobs
of the 8th family is 0. Furthermore, the agent performs only

slightly worse on the instances with 9 families, where the jobs
from the 9th family are completely new to the agent, indicat-
ing a relatively robust generalization capability. Despite the
fact that the agent’s generalization performance fluctuates
on instances with different parameter settings, it still pro-
duces the best solution on each instance among the solutions
of all methods. A further experiment on investigating the
difference in generalization capability of agents trained on
instances of different scales is implemented in Appendix A,
in which two new agents are trained on a larger instance and

@ Springer

1128

Journal of Intelligent Manufacturing (2024) 35:1107-1140

Table9 Mean value and

standard deviation of the Gap(in N m n RL GA-Rules GA-Classic MAS_PAR SPT EDD
%) of RL Agent and the Gap (in Mean Std
%) of comparative approaches
whenr = 0.4 and R = 0.2 7 10 350 51.20 5.00 152.63 250.43 205.16 555.70 644.39
400 49.34 4.78 142.41 258.77 119.18 565.54 643.11
450 43.64 5.36 151.53 279.41 107.89 596.41 660.75
500 39.86 6.22 123.65 283.46 223.13 582.27 642.84
11 350 52.75 3.45 165.92 245.56 208.67 555.26 632.68
400 48.62 6.03 150.84 245.53 127.33 594.67 608.63
450 43.32 6.13 156.04 278.24 114.90 576.98 668.74
500 37.74 4.87 126.63 269.43 208.60 582.26 639.27
12 350 63.41 5.05 192.80 259.95 222.53 560.66 602.92
400 58.55 4.68 180.17 267.24 147.84 588.42 649.08
450 52.50 5.35 161.45 286.03 134.58 599.72 655.11
500 45.33 3.99 152.24 285.23 235.20 604.99 644.34
8 10 350 67.24 10.64 253.28 343.79 214.66 699.55 739.33
400 59.70 6.86 214.77 320.68 162.34 646.40 747.92
450 57.09 11.21 209.13 349.85 148.66 695.45 734.35
500 50.26 4.18 168.76 355.94 129.11 683.61 715.53
11 350 66.00 9.94 269.88 341.67 226.22 662.87 707.80
400 57.95 7.31 228.17 341.62 174.13 666.01 708.30
450 54.21 8.18 207.48 339.78 158.45 673.65 732.68
500 45.39 4.84 177.15 334.56 136.79 659.29 721.60
12 350 79.14 14.62 306.03 349.29 250.11 689.59 746.97
400 69.84 6.32 256.75 352.59 200.53 72695 726.28
450 62.86 10.15 23349 361.72 182.67 724.17 708.95
500 56.66 4.45 202.77 359.86 158.68 696.61 754.34
9 10 350 91.34 9.94 215.45 278.61 302.66 615.05 661.84
400 63.73 10.10 175.48 279.58 160.37 624.55 647.17
450 61.38 9.81 163.24 289.59 212.05 600.29 663.98
500 55.04 7.55 146.82 281.55 173.22 628.84 675.55
11 350 85.45 11.69 235.71 285.72 319.47 608.30 635.97
400 55.27 12.14 189.26 281.70 173.37 611.28 681.22
450 57.29 9.19 198.88 284.13 221.89 602.48 642.55
500 48.46 10.53 160.06 294.29 174.65 61549 671.64
12 350 90.50 12.21 270.34 285.70 316.86 611.45 638.57
400 69.90 798 255.17 285.37 199.67 626.78 67591
450 65.51 8.71 234.63 299.03 245.95 619.67 672.44
500 60.11 8.74 189.47 291.26 196.50 605.58 696.16

a smaller instance, respectively. The results demonstrate that
all the agents outperform the best solution that the compara-
tive approaches could provide, even though they are trained
on different instances.

To summary, the RL agent trained on a much smaller
instance outperforms the comparative dispatching rules and
metaheuristics on all large-scale instances significantly. The
superiority of this RL agent suggests that the knowledge
learned by the agent on a small-scale instance is universal
and valuable for solving large-scale problems.

@ Springer

Conclusion and future work

In this paper, we propose a DRL agent to minimize the
total tardiness on PMSP with family setups. Novel variable-
length representations for state and action are developed,
which enables the agent to calculate a comprehensive pri-
ority for each job and then select the job according to these
priorities every time a machine is idle. Moreover, the length-
agnostic state and action representations allow a trained agent
to solve instances of arbitrary scales without retraining. To
capture the sequential relationships between jobs and handle

Journal of Intelligent Manufacturing (2024) 35:1107-1140 1129
I;Tgalg dg?;‘t‘i‘ovnag‘feﬂj:%ap o Neomoom RL GA-Rules GA-Classic MAS_PAR SPT EDD
%) of RL Agent and the Gap (in Mean Std
%) of comparative approaches
when 7 = 0.6 and R = 0.1 7 10 350 27.73 1.97 77.42 149.96 103.91 242.84 292.12
400 26.54 2.65 73.60 158.63 58.81 246.28 288.77
450 1954 251 72.68 159.14 53.78 253.40 292.32
500 20.98 3.37 76.76 166.91 103.58 247.52 286.44
11 350 28.38 2.31 83.60 151.39 105.40 241.76 288.13
400 2633 2.23 76.07 153.70 62.74 257.12 275.89
450 2135 237 75.17 158.01 57.12 245.87 295.54
500 1947 234 71.05 160.34 97.71 248.54 283.63
12 350 33.35 1.68 95.66 151.69 111.12 24422 276.14
400 31.52 1.46 92.90 159.31 72.40 254.54 291.67
450 26.09 2.25 86.32 165.75 66.10 255.58 289.56
500 22.64 2.38 88.56 168.48 109.10 257.30 286.16
8 10 350 35.51 4.48 118.62 191.32 100.10 287.74 317.90
400 3446 231 104.18 191.48 79.26 267.38 319.73
450 3279 4.6 96.14 190.59 72.90 285.28 314.14
500 28.85 1.55 81.61 193.37 63.95 281.45 307.16
11 350 3896 4.86 125.57 194.72 105.55 274.09 306.16
400 32.49 3.79 108.44 189.64 84.57 274.85 306.10
450 30.04 3.95 99.10 191.92 77.28 277.04 313.99
500 2698 2.01 85.36 193.12 67.50 272.02 309.59
12 350 4408 4.84 140.49 190.77 116.38 283.59 321.20
400 3929 293 120.30 191.08 96.14 298.27 312.03
450 35.21 4.79 110.39 195.14 87.84 296.93 304.98
500 31.82 2.60 96.41 194.10 77.18 286.09 322.59
9 10 350 48.31 4.88 106.38 170.98 139.92 266.26 298.24
400 3392 420 89.42 164.80 81.38 269.88 291.87
450 3430 4.16 84.23 174.29 106.43 260.05 298.29
500 2674 4.51 79.90 175.28 84.18 270.34 300.67
11 350 4549 559 115.30 162.86 147.26 262.40 287.30
400 3293 649 96.44 170.18 87.39 264.56 305.31
450 3353 4.08 98.16 170.62 110.32 259.99 290.01
500 27.60 3.34 86.24 176.88 85.62 264.52 299.13
12 350 4798 5.53 130.49 168.35 147.20 264.54 288.62
400 3962 5.16 124.36 166.53 99.44 270.35 303.40
450 38.86 3.45 105.34 172.50 120.85 266.97 301.08
500 33.36 3.87 98.88 180.24 95.66 260.72 309.26

the variable-length sequence, we utilize an RNN, particular
GRU, to approximate the policy of the agent, which is dom-
inant in sequence transduction. Finally, a two-stage training
strategy is designed to train the agent efficiently under a
sparse reward function.

Numerical experiments with different parameter settings
are conducted to validate the effectiveness and generality of
the proposed agent. The comparison between the proposed
agent and the agent trained under a traditional one-stage
strategy confirms the superiority of the two-stage training
strategy. Moreover, the performances of the proposed agent

on several untrained large-scale instances outperform the
comparative dispatching rules and metaheuristics.

In future work, more dynamic and uncertain constraints
such as new job insertions and machine breakdowns will be
studied. Other objectives like total flow time and production
costs are also considerable. Furthermore, it is worth to be
noted that RNN is not the only network that can handle the
variable-length sequence. The Transformer is a state-of-the-
art model that is also capable of processing variable length
sequences. We will investigate the Transformer and compare
its performance with the agent proposed in this paper.

@ Springer

1130

Journal of Intelligent Manufacturing (2024) 35:1107-1140

Table 11 Mean value and
standard deviation of the Gap(in
%) of RL Agent and the Gap (in
%) of comparative approaches
whenr = 0.6 and R = 0.2

@ Springer

N m n RL GA-Rules GA-Classic MAS_PAR SPT EDD
Mean Std
7 10 350 37.07 1.99 90.04 164.65 117.45 265.62 313.32
400 35.74 2.94 84.99 178.98 69.70 269.87 310.30
450 30.19 2.73 77.80 172.61 64.88 278.24 314.83
500 29.72 2.94 75.95 180.60 117.42 271.65 308.33
11 350 37.90 1.68 96.57 162.44 119.01 264.57 309.04
400 36.37 2.36 89.03 165.04 73.87 281.44 296.61
450 30.08 2.72 87.68 181.21 68.47 270.23 318.33
500 28.70 2.54 82.99 185.16 111.12 272.65 305.17
12 350 43.37 1.64 109.36 172.90 125.11 267.15 296.30
400 41.34 2.12 109.39 178.10 84.15 278.72 313.52
450 37.04 2.12 100.53 179.34 78.04 280.55 311.85
500 32.77 2.77 89.12 181.70 123.27 281.97 308.01
8 10 350 47.92 4.10 137.08 218.20 115.75 317.19 344.68
400 43.94 2.43 118.98 213.52 93.25 295.23 346.48
450 40.98 4.60 113.56 218.30 86.43 314.03 340.13
500 38.19 1.84 95.94 214.69 76.55 309.60 332.18
11 350 48.26 5.26 144.61 218.07 121.56 302.58 331.91
400 42.48 3.10 125.79 202.47 98.98 303.30 331.85
450 39.08 4.66 127.74 214.29 91.14 305.22 340.02
500 36.07 2.68 99.92 214.84 80.36 299.47 334.86
12 350 55.13 7.41 160.77 216.06 133.18 312.84 348.32
400 49.13 2.71 138.55 219.93 111.38 328.45 338.18
450 46.62 3.69 127.58 218.41 102.49 326.56 330.28
500 41.43 2.39 111.67 217.99 90.73 314.59 348.95
9 10 350 57.91 4.84 120.92 186.24 157.07 292.30 321.61
400 43.81 4.97 115.87 184.19 94.14 295.52 314.25
450 43.47 4.44 98.40 188.40 120.62 284.06 320.40
500 38.33 4.57 89.40 194.18 97.42 294.81 322.70
11 350 54.41 6.42 130.40 184.29 164.87 287.99 309.83
400 43.31 4.83 123.97 182.10 100.62 289.79 328.69
450 41.04 3.21 110.10 188.49 124.84 283.94 311.50
500 36.91 4.54 93.43 189.79 98.95 288.54 321.04
12 350 58.49 6.95 146.58 186.77 164.83 290.26 311.30
400 46.33 6.03 138.99 187.16 113.51 296.02 326.62
450 47.02 3.68 128.62 194.23 135.97 291.47 323.33
500 42.63 4.29 107.28 198.05 109.64 284.49 331.95

Journal of Intelligent Manufacturing (2024) 35:1107-1140 1131

Table 12 Comparison of the

. . N m n RL GA-Rules GA-Classic MAS_PAR SPT EDD
computational time(sec) of all

approaches for solving instances 7 10 350 1.54 15.95 49.19 0.12 0.13 0.12

with different scales

400 1.90 31.61 54.35 0.12 0.11 0.12

450 2.37 13.91 60.14 0.14 0.14 0.14

500 2.89 31.15 66.47 0.12 0.12 0.12

11 350 1.49 15.34 48.67 0.10 0.11 0.10

400 1.91 14.19 54.36 0.15 0.10 0.15

450 2.36 14.36 60.09 0.16 0.10 0.16

500 2.88 34.53 66.52 0.16 0.11 0.16

12 350 1.50 14.57 48.75 0.12 0.11 0.12

400 1.90 30.43 54.48 0.11 0.19 0.11

450 2.37 14.67 60.23 0.14 0.11 0.14

500 2.88 31.75 66.53 0.12 0.11 0.12

8 10 350 1.56 13.11 49.90 0.06 0.07 0.06

400 1.91 22.64 55.15 0.07 0.08 0.07

450 2.38 30.27 60.99 0.08 0.08 0.08

500 2.90 17.37 67.71 0.08 0.08 0.08

11 350 1.50 14.26 49.57 0.07 0.08 0.07

400 1.91 13.90 55.44 0.07 0.08 0.07

450 2.38 28.81 61.34 0.08 0.08 0.08

500 2.89 16.00 67.49 0.08 0.08 0.08

12 350 1.50 13.40 49.42 0.07 0.07 0.07

400 1.91 13.05 55.23 0.08 0.07 0.08

450 2.38 14.79 61.15 0.07 0.07 0.07

500 2.89 14.66 67.62 0.07 0.08 0.07

9 10 350 1.56 16.07 49.85 0.06 0.07 0.06

400 1.92 31.02 54.98 0.07 0.07 0.07

450 2.37 30.73 60.82 0.08 0.08 0.08

500 2.89 33.40 67.29 0.09 0.08 0.09

11 350 1.49 14.87 49.17 0.07 0.07 0.07

400 2.36 13.52 54.93 0.08 0.07 0.08

450 2.38 32.49 60.99 0.09 0.08 0.09

500 2.89 29.55 67.39 0.08 0.08 0.08

12 350 1.60 13.33 49.24 0.07 0.08 0.07

400 1.91 33.77 55.09 0.08 0.09 0.08

450 2.37 34.62 60.87 0.09 0.08 0.09

500 2.88 28.33 67.03 0.08 0.07 0.08

@ Springer

1132 Journal of Intelligent Manufacturing (2024) 35:1107-1140

Fig.16 The average Gap (%) 700 4
obtained by RL agent and all = RL
comparative approaches over all GA-Rules
instances under different due 600 B GA-Classic
date settings EEE MAS PAR
500 - s SPT
I EDD

X
5
C
>
o
Q0
o
3 400 A
()
=
2 300 1
o
©
(@]
S 200 -
o
2
<4
100 A
0 .
r=0.4, R=0.1 r=0.4, R=0.2 r=0.6, R=0.1 r=0.6, R=0.2
Due date setting
95
—@— 7 families
—@— 8 families
85 —e— 9 families

75 A

65

55

45

Gap to the lower bound(%)

35 A

25 A

15 1

m=10, m=10, m=10, m=10, m=11, m=11, m=11], m=11, m=12, m=12, m=12, m=12,
n=350 n=400 n=450 n=500 n=350 n=400 n=450 n=500 n=350 n=400 n=450 n=500

Instance scales

Fig. 17 Gap(%) obtained by the agent on instances with different number of machines m, number of jobs n and number of families Ny when
r=04and R =0.1

@ Springer

Journal of Intelligent Manufacturing (2024) 35:1107-1140

1133

Gap to the lower bound(%)

95

85

75 A

65

55 4

45

35 4

25 A

15

—0— 7 families
—®— 8 families
—8— 9 families

m=10, m=10, m=10, m=10, m=11, m=11, m=11], m=11, m=12, m=12, m=12, m=12,
n=350 n=400 n=450 n=500 n=350 n=400 n=450 n=500 n=350 n=400 n=450 n=500

Instance scales

Fig. 18 Gap(%) obtained by the agent on instances with different number of machines m, number of jobs n and number of families Ny when
r=04and R =0.2

Gap to the lower bound(%)

95

85

75 A

65

55 4

45 1

35 1

25 A

—@— 7 families
—0— 8 families
—8— 9 families

15

m=10, m=10, m=10, m=10, m=11, m=11], m=11], m=11l, m=12, m=12, m=12, m=12,
n=350 n=400 n=450 n=500 n=350 n=400 n=450 n=500 n=350 n=400 n=450 n=500

Instance scales

Fig. 19 Gap(%) obtained by the agent on instances with different number of machines m, number of jobs n and number of families Ny when
r=0.6and R =0.1

@ Springer

1134 Journal of Intelligent Manufacturing (2024) 35:1107-1140
95
—0— 7 families
—@— 8 families
85 A —8— 9 families
— 751
s\‘i
k]
c
3 65 4
o
el
—_
g
955-
0]
c
-
o 45 1
-+t
Q
©
035-
25 4
15 T T T T T T T T T T T T
m=10, m=10, m=10, m=10, m=1l1l], m=11], m=11], m=11l], m=12, m=12, m=12, m=12,
n=350 n=400 n=450 n=500 n=350 n=400 n=450 n=500 n=350 n=400 n=450 n=500

Instance scales

Fig. 20 Gap(%) obtained by the agent on instances with different number of machines m, number of jobs n and number of families Ny when

r=06and R =0.2

Acknowledgements Li is supported by the China Scholarship Coun-
cil (CSC) to pursue a master’s degree at Otto von Guericke University
Magdeburg. The authors acknowledge the financial support by the Fed-
eral Ministry of Education and Research of Germany (BMBF) within
the framework of the SENECA project (Grant Number: 011S20019A).
The authors acknowledge Benjamin Rolf from Otto von Guericke Uni-
versity Magdeburg for his assistance with the experiments.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: Performance of the agents
trained on instances of different scales

The training process demonstrated in section “The train-
ing process of the agent” is also implemented on a smaller
instance and a larger instance. A comparison of the scales
of the instances utilized in section “The training process of

@ Springer

the agent” and the smaller and larger instances are given
in Table 13, while the parameter settings used for training
environment description that are not listed in this table are
the same as in Table 5. As the instance utilized for training
becomes larger and smaller, the number of episodes required
for both two training stages increases and decreases, respec-
tively. The number of episodes required to train an agent on
the three previously mentioned instances are listed in Table
14. The other hyperparameters required for training are the
same as given in Table 6.

Tables 15, 16, 17 and 18 illustrated the generalization per-
formance of the agents trained on the smaller and the larger
instances as well as of the agent trained in Section 5.1, in

Table 13 Comparison of the scales of the instance in section “The
training process of the agent” and of the larger and smaller instances

Instance in section “The Number of machines m 10
training process of the
agent”
Number of jobs n 75
Number of families Ng 8
Larger instance Number of machines m 14
Number of jobs n 100
Number of families Ng 9
Smaller instance Number of machines m 6
Number of jobs n 40
Number of families Ng 7

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Intelligent Manufacturing (2024) 35:1107-1140 1135
Z;?;: d1et rer:rthirr:;n:gia?i an Number of episodes in the first training stage
agent on tk}e instance in section Instance in section “The training process of the agent” 1500
“The training process of the .
agent” and on the larger and Larger instance 2500
smaller instances Smaller instance 600
Number of episodes in the second training stage
Instance in section “The training process of the agent” 4500
Larger instance 6000
Smaller instance 3900
Z;';'galj dﬁg‘i’;‘govnag‘fetﬁ‘e‘d Ne m n RL RL-Large RL-Small Compar-Min
Gap(in %) of Agents trained on Mean Std Mean Std Mean Std
different instances and
minimum Gap(in %) provided 7 10 350 32.31 4.27 38.41 4.69 25.77 6.50 120.08
by all comparative approaches 400 28.79 6.46 33.63 3.40 25.89 4.69 90.67
when7 = 0.4 and R =0.1 450 2197 492 3015 330 1484 433 79.68
500 18.49 6.10 28.39 3.04 25.54 3.91 109.68
11 350 32.68 3.78 39.09 4.99 24.66 5.12 131.79
400 29.29 4.89 34.65 3.48 26.93 3.97 97.85
450 20.37 6.97 29.01 4.50 13.60 4.94 85.80
500 15.87 4.21 27.01 1.64 23.30 4.88 120.32
12 350 41.41 4.13 48.34 4.97 37.23 3.92 155.17
400 37.65 2.86 45.23 5.17 30.62 3.42 116.00
450 34.25 4.28 41.03 3.61 20.97 5.96 103.02
500 24.54 4.13 36.42 2.25 28.28 5.26 127.51
8 10 350 41.52 8.71 61.70 6.27 65.30 14.57 169.52
400 39.50 5.76 57.44 5.11 72.63 11.82 124.44
450 35.12 9.07 46.35 4.08 67.64 14.98 112.89
500 30.09 4.86 39.48 3.29 70.54 11.34 96.31
11 350 44.54 8.99 64.15 6.67 81.14 12.04 179.35
400 38.17 6.77 57.94 6.78 66.33 13.38 134.55
450 31.48 8.02 44.88 5.08 60.36 14.55 121.16
500 26.49 4.76 38.99 4.96 58.03 14.98 102.93
12 350 54.11 5.93 79.02 6.06 80.66 15.39 200.38
400 47.10 4.28 69.75 5.95 92.01 11.07 157.52
450 43.81 6.76 59.40 3.94 73.79 16.26 141.93
500 31.35 6.63 49.00 5.15 65.67 14.23 121.81
9 10 350 60.32 10.85 51.55 5.75 109.53 17.90 175.50
400 4342 8.09 48.99 491 90.82 13.29 128.17
450 43.41 7.40 42.81 4.75 123.85 10.97 130.40
500 32.36 9.62 41.12 3.12 102.42 15.30 121.12
11 350 64.58 10.48 51.00 6.73 107.60 14.71 192.95
400 38.07 8.91 47.55 5.83 79.66 19.86 139.60
450 40.13 5.89 43.05 4.82 122.09 10.10 153.84
500 29.88 8.71 39.97 5.19 99.86 15.02 136.24
12 350 71.22 9.93 60.73 7.50 118.63 12.74 223.13
400 47.80 11.48 60.61 6.49 92.76 17.97 162.75
450 48.19 7.01 52.17 5.19 124.84 10.73 173.83
500 41.02 8.03 46.79 5.74 105.13 17.70 158.68

@ Springer

1136

Journal of Intelligent Manufacturing (2024) 35:1107-1140

Table 16 Mean value and

standard deviation of the NFr m n RL RL-Large RL-Small Compar-Min
Gap(in %) of Agents trained on Mean Std Mean Std Mean Std
different instances and
minimum Gap(in %) provided 7 10 350 51.20 5.00 59.16 6.40 44.80 5.86 152.63
by all comparative approaches 400 49.34 4.78 50.63 6.31 44.54 6.57 119.18
when7 = 0.4 and R = 0.2 450 4364 536 4997 339 3204 823 107.89
500 39.86 6.22 48.42 3.08 43.57 5.95 123.65
11 350 52.75 3.45 58.27 4.93 4417 4.99 165.92
400 48.62 6.03 56.00 4.86 42.14 6.88 127.33
450 43.32 6.13 51.47 3.95 30.60 6.93 114.90
500 37.74 4.87 47.04 2.99 43.24 5.87 126.63
12 350 63.41 5.05 69.28 6.78 53.61 6.16 192.80
400 58.55 4.68 62.03 5.74 49.64 4.54 147.84
450 52.50 5.35 61.91 4.61 38.69 7.66 134.58
500 45.33 3.99 56.59 3.80 49.94 6.09 152.24
8 10 350 67.24 10.64 90.43 8.39 96.45 17.59 214.66
400 59.70 6.86 79.85 8.06 109.65 16.89 162.34
450 57.09 11.21 70.72 4.75 92.39 19.15 148.66
500 50.26 4.18 65.03 5.39 99.17 14.07 129.11
11 350 66.00 9.94 92.29 8.98 112.21 15.11 226.22
400 57.95 7.31 83.44 9.09 107.49 12.93 174.13
450 54.21 8.18 69.92 6.04 98.08 18.19 158.45
500 45.39 4.84 65.82 4.98 85.79 14.16 136.79
12 350 79.14 14.62 104.98 10.16 110.25 17.29 250.11
400 69.84 6.32 97.72 8.53 121.91 10.33 200.53
450 62.86 10.15 84.05 6.63 102.04 20.16 182.67
500 56.66 4.45 74.64 5.82 90.28 19.81 158.68
9 10 350 91.34 9.94 69.29 6.90 150.55 18.96 21545
400 63.73 10.10 68.42 6.27 125.69 13.45 160.37
450 61.38 9.81 64.68 4.66 158.13 14.78 163.24
500 55.04 7.55 60.87 4.52 118.68 21.36 146.82
11 350 85.45 11.69 72.35 6.17 138.55 16.65 235.71
400 55.27 12.14 73.06 4.49 112.50 16.60 173.37
450 57.29 9.19 63.53 6.04 148.99 14.44 198.88
500 48.46 10.53 60.88 6.72 122.78 19.00 160.06
12 350 90.50 12.21 83.51 6.61 153.96 16.12 270.34
400 69.90 7.98 83.48 5.94 119.08 22.55 199.67
450 65.51 8.71 74.42 5.42 157.65 16.29 234.63
500 60.11 8.74 69.01 5.97 128.63 18.37 189.47

which the agent trained on larger instance, the agent trained
on smaller instance and the agent trained in Section 5.1 are
denoted as RL-Large, RL-Small and RL, respectively. The
scheduling behavior of RL agents is characterized by a certain
randomness, we repeat the scheduling of all the three agents
independently 10 times on each instance. Therefore, the value
of the Gap obtained by the agent presented in Tables 15, 16,
17 and 18 is the mean value over the 10 repetitions. Mean-
while the standard deviations are also given in the tables.

@ Springer

The minimum value from the Gap obtained by all com-
parative approaches on each instance is also taken into com-
parison, which is referred to as Compar-Min. The minimum
and maximum values of Gap generated by all approaches
on each instance are highlighted in bold and italic, respec-
tively. Figure 21 demonstrates the comparison of the average
Gap of these three agents and the Compar-Min on instances
with different number of families. It is worth noting that the
three agents trained on instances with three different scales,
outperform the best solution that the comparative approaches

Journal of Intelligent Manufacturing (2024) 35:1107-1140 1137
I;Tgaz dlgf::go\;aloufetﬁgd NFr m n RL RL-Large RL-Small Compar-Min
Gap(in %) of Agents trained on Mean Std Mean Std Mean Std
different instances and
minimum Gap(in %) provided 7 10 350 27.73 1.97 31.81 2.18 26.13 2.72 77.42
by all comparative approaches 400 26.54 2.65 27.74 2.40 24.40 2.74 58.81
whenr =0.6and R =0.1 450 1954 251 2498 282 1603 513 53.78
500 20.98 3.37 24.42 1.93 23.67 2.33 76.76
11 350 28.38 2.31 32.47 2.80 25.99 2.77 83.6
400 26.33 2.23 29.76 2.07 22.10 3.26 62.74
450 21.35 2.37 25.52 3.03 15.84 3.57 57.12
500 19.47 2.34 25.19 2.13 21.10 2.30 71.05
12 350 33.35 1.68 35.27 3.53 31.50 3.54 95.66
400 31.52 1.46 33.40 2.49 26.88 4.02 72.4
450 26.09 2.25 31.71 3.09 19.51 291 66.1
500 22.64 2.38 29.94 2.62 25.82 3.21 88.56
8 10 350 35.51 4.48 49.41 3.73 46.13 6.18 100.1
400 34.46 2.31 44.48 3.23 44.53 7.77 79.26
450 32.79 4.76 40.20 2.08 45.73 7.43 72.9
500 28.85 1.55 35.27 2.44 49.25 5.12 63.95
11 350 38.96 4.86 50.50 3.61 46.80 6.95 105.55
400 32.49 3.79 46.15 3.80 49.99 4.88 84.57
450 30.04 3.95 40.36 2.39 42.71 5.85 77.28
500 26.98 2.01 36.15 2.16 44.04 4.49 67.5
12 350 44.08 4.84 54.45 4.28 54.23 6.28 116.38
400 39.29 2.93 53.49 2.97 55.38 5.80 96.14
450 35.21 4.79 47.60 3.13 49.84 7.69 87.84
500 31.82 2.60 41.50 2.27 48.36 4.76 77.18
9 10 350 48.31 4.88 40.90 3.67 73.43 6.11 106.38
400 33.92 4.20 40.01 3.07 54.69 8.75 81.38
450 34.30 4.16 37.00 2.97 70.13 5.05 84.23
500 26.74 4.51 33.57 2.47 63.39 5.52 79.9
11 350 45.49 5.59 39.46 3.77 69.00 7.84 115.3
400 32.93 6.49 42.53 2.07 55.63 5.58 87.39
450 33.53 4.08 35.50 3.57 64.48 6.29 98.16
500 27.60 3.34 33.32 2.35 59.40 7.75 85.62
12 350 47.98 5.53 47.41 2.73 75.59 5.05 130.49
400 39.62 5.16 44.63 3.44 57.63 9.33 99.44
450 38.86 3.45 41.25 291 72.28 5.99 105.34
500 33.36 3.87 39.36 2.59 63.86 6.61 95.66

could provide, which verifies the generalization capability of
the proposed two-stage RNN-based PPO algorithm.
Furthermore, the agent RL-Small trained on the instance
with 7 families has the smallest Gap when solving all
instances with 7 families. To be more specific, it outper-
forms the other two agents on 36 instances out of a total
of 144 instances, which are all the instances with 7 families.
However, its performance deteriorates significantly as the
number of families increases. In contrast, the performances

of the agents trained on instances with 8 and 9 families are
relative stable over instances with different families.

The training process demonstrated in section “The train-
ing process of the agent” is also implemented on a smaller
instance and a larger instance. A comparison of the scales
of the instances utilized in section “The training process of
the agent” and the smaller and larger instances are given
in Table 13, while the parameter settings used for training
environment description that are not listed in this table are
the same as in Table 5. As the instance utilized for training

@ Springer

1138

Journal of Intelligent Manufacturing (2024) 35:1107-1140

Table 18 Mean value and

standard deviation of the NFr m n RL RL-Large RL-Small Compar-Min
Gap(in %) of Agents trained on Mean Std Mean Std Mean Std
different instances and
minimum Gap(in %) provided 7 10 350 37.07 1.99 35.62 3.65 33.67 2.16 90.04
by all comparative approaches 400 35.74 2.94 33.84 2.40 32.96 2.40 69.70
when7 = 0.6 and R = 0.2 450 3019 273 3476 197 2428 272 64.88
500 29.72 2.94 33.12 2.40 30.14 2.74 75.95
11 350 37.90 1.68 34.98 4.49 33.46 2.55 96.57
400 36.37 2.36 34.66 3.22 31.42 2.70 73.87
450 30.08 2.72 34.43 2.15 24.28 2.34 68.47
500 28.70 2.54 33.61 2.33 31.39 3.18 82.99
12 350 43.37 1.64 39.96 4.88 39.60 2.34 109.36
400 41.34 2.12 38.43 3.39 35.05 2.12 84.15
450 37.04 2.12 38.74 2.46 28.20 3.01 78.04
500 32.77 2.77 38.52 2.06 34.84 2.90 89.12
8 10 350 47.92 4.10 59.02 3.48 68.67 5.31 115.75
400 43.94 2.43 55.24 3.28 71.60 6.11 93.25
450 40.98 4.60 50.94 2.79 68.24 5.94 86.43
500 38.19 1.84 46.79 3.06 61.59 5.56 76.55
11 350 48.26 5.26 59.92 3.64 70.62 5.48 121.56
400 42.48 3.10 55.01 4.16 72.36 5.15 98.98
450 39.08 4.66 50.80 2.94 66.17 4.88 91.14
500 36.07 2.68 46.53 2.65 59.24 5.09 80.36
12 350 55.13 7.41 64.74 3.84 76.27 4.54 133.18
400 49.13 2.71 59.99 3.53 77.57 5.43 111.38
450 46.62 3.69 56.49 3.34 67.62 5.20 102.49
500 4143 2.39 49.16 3.03 68.49 5.81 90.73
9 10 350 57.91 4.84 49.13 3.38 90.52 7.16 120.92
400 43.81 4.97 48.01 3.34 91.58 5.53 94.14
450 4347 4.44 44.49 2.85 89.88 5.15 98.40
500 3833 4.57 41.77 2.75 87.18 7.52 89.40
11 350 54.41 6.42 50.30 3.43 90.99 7.75 130.40
400 43.31 4.83 45.99 3.45 87.43 7.49 100.62
450 41.04 3.21 43.00 3.29 87.33 5.56 110.10
500 36.91 4.54 41.94 3.13 87.95 7.09 93.43
12 350 58.49 6.95 54.87 3.31 98.53 8.45 146.58
400 46.33 6.03 52.46 3.36 94.98 6.25 113.51
450 47.02 3.68 49.42 3.09 93.35 6.23 128.62
500 42.63 4.29 46.76 3.59 93.74 5.68 107.28

becomes larger and smaller, the number of episodes required
for both two training stages increases and decreases, respec-
tively. The number of episodes required to train an agent on
the three previously mentioned instances are listed in Table
14. The other hyperparameters required for training are the
same as given in Table 6.

Tables 15, 16, 17 and 18 illustrated the generalization per-
formance of the agents trained on the smaller and the larger
instances as well as of the agent trained in section “The train-
ing process of the agent”, in which the agent trained on larger

@ Springer

instance, the agent trained on smaller instance and the agent
trained in section “The training process of the agent” are
denoted as RL-Large, RL-Small and RL, respectively. The
scheduling behavior of RL agents is characterized by a cer-
tain randomness, we repeat the scheduling of all the three
agents independently 10 times on each instance. Therefore,
the value of the Gap obtained by the agent presented in Tables
15-18 is the mean value over the 10 repetitions. Meanwhile
the standard deviations are also given in the tables.

Journal of Intelligent Manufacturing (2024) 35:1107-1140

1139

140 { ™= RL
RL-Large

s RL-Small

120 | W=— Compar-Min

100 A

80 A

60 -

40 4

Average gap to the lower bound (%)

201

Instances with Instances with All instances
8 families 9 families

Instances of different family numbers

Instances with
7 families

Fig. 21 The average Gap(%) obtained by RL agents trained on dif-
ferent instances and the the minimum Gap(%) of all comparative
approaches over instances of different family numbers

References

Abu-Marrul, V., Martinelli, R., Hamacher, S., & Gribkovskaia, I. (2021).
Matheuristics for a parallel machine scheduling problem with
nonanticipatory family setup times: Application in the offshore oil
and gas industry. Computers & Operations Research, 128,105162.

Afzalirad, M., & Shafipour, M. (2018). Design of an efficient genetic
algorithm for resource-constrained unrelated parallel machine
scheduling problem with machine eligibility restrictions. Journal
of Intelligent Manufacturing, 29(2), 423-437.

Anghinolfi, D., & Paolucci, M. (2007). Parallel machine total tardiness
scheduling with a new hybrid metaheuristic approach. Computers
& Operations Research, 34(11), 3471-3490.

Armentano, V., Yamashita, D. S., et al. (2000). Tabu search for schedul-
ing on identical parallel machines to minimize mean tardiness.
Journal of Intelligent Manufacturing, 11(5), 453—460.

Avalos-Rosales, O., Angel-Bello, F., & Alvarez, A. (2015). Efficient
metaheuristic algorithm and re-formulations for the unrelated
parallel machine scheduling problem with sequence and machine-
dependent setup times. The International Journal of Advanced
Manufacturing Technology, 76(9), 1705-1718.

Azizoglu, M., & Kirca, O. (1998). Tardiness minimization on parallel
machines. International Journal of Production Economics, 55(2),
163-168.

Béez, S., Angel-Bello, F., Alvarez, A., & Melian-Batista, B. (2019).
A hybrid metaheuristic algorithm for a parallel machine schedul-
ing problem with dependent setup times. Computers & Industrial
Engineering, 131, 295-305.

Balin, S. (2011). Non-identical parallel machine scheduling using
genetic algorithm. Expert Systems with Applications, 38(6), 6814—
6821.

Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Cur-
riculum learning. Proceedings of the 26th annual international
conference on machine learning, (pp. 41-48).

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term depen-
dencies with gradient descent is difficult. I[EEE Transactions on
Neural Networks, 5(2), 157-166.

Biskup, D., Herrmann, J., & Gupta, J. N. D. (2008). Scheduling iden-
tical parallel machines to minimize total tardiness. International
Journal of Production Economics, 115(1), 134-142.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J.,
Tang, J., & Zaremba, W. (2016). Openai gym. arXiv:1606.01540.

Cho, K., Van Merriénboer, B., Bahdanau, D., & Bengio, Y. (2014).
On the properties of neural machine translation: Encoder—decoder
approaches. arXiv:1409.1259.

Cochran, J. K., Horng, S.-M., & Fowler, J. W. (2003). A multi-
population genetic algorithm to solve multi-objective schedul-
ing problems for parallel machines. Computers & Operations
Research, 30(7), 1087-1102.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2),
179-211.

Fang, K.-T., & Lin, B. M. (2013). Parallel-machine scheduling to min-
imize tardiness penalty and power cost. Computers & Industrial
Engineering, 64(1), 224-234.

Gavett, J. W. (1965). Three heuristic rules for sequencing jobs to a single
production facility. Management Science, 11(8), 166—-176.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979).
Optimization and approximation in deterministic sequencing and
scheduling: A survey. Annals of Discrete Mathematics, 5, 287—
326.

Guo, L., Zhuang, Z., Huang, Z., & Qin, W. (2020). Optimization of
dynamic multi-objective non-identical parallel machine schedul-
ing with multistage reinforcement learning. 2020 [EEE 16th
international conference on automation science and engineering
(CASE), (pp. 1215-1219).

Kayhan, B. M., & Yildiz, G. (2021). Reinforcement learning applica-
tions to machine scheduling problems: A comprehensive literature
review. Journal of Intelligent Manufacturing, 34, 1-25.

Kim, Y.-D., Joo, B.-J., & Choi, S.-Y. (2010). Scheduling wafer lots on
diffusion machines in a semiconductor wafer fabrication facility.
IEEE Transactions on Semiconductor Manufacturing, 23(2), 246—
254.

Kingma, D. P, & Ba, J. (2014). Adam: A method for stochastic opti-
mization. arXiv:1412.6980 .

Lang, S., Behrendt, F., Lanzerath, N., Reggelin, T., & Miiller, M. (2020).
Integration of deep reinforcement learning and discrete-event sim-
ulation for real-time scheduling of a flexible job shop production.
Winter Simulation Conference (WSC), 2020, 3057-3068.

Lang, S., Kuetgens, M., Reichardt, P., & Reggelin, T. (2021). Mod-
eling production scheduling problems as reinforcement learning
environments based on discrete-event simulation and openai gym.
IFAC-PapersOnLine, 54(1), 793-798.

Lee, Z.-J., Lin, S.-W., & Ying, K.-C. (2010). Scheduling jobs on
dynamic parallel machines with sequence-dependent setup times.
The International Journal of Advanced Manufacturing Technol-
ogy, 47(5), 773-781.

Liu, C.-L., Chang, C.-C., & Tseng, C.-J. (2020). Actor-critic deep
reinforcement learning for solving job shop scheduling problems.
IEEE Access, 8, 71752-71762.

Luo, S. (2020). Dynamic scheduling for flexible job shop with new job
insertions by deep reinforcement learning. Applied Soft Comput-
ing, 91, 106208.

Paeng, B., Park, I.-B., & Park, J. (2021). Deep reinforcement learning for
minimizing tardiness in parallel machine scheduling with sequence
dependent family setups. IEEE Access, 9, 101390-101401.

Pickardt, C. W., & Branke, J. (2012). Setup-oriented dispatching rules-
a survey. International Journal of Production Research, 50(20),
5823-5842.

Potts, C. N., & Van Wassenhove, L. N. (1985). A branch and bound
algorithm for the total weighted tardiness problem. Operations
Research, 33(2), 363-377.

Rajendran, C., & Holthaus, O. (1999). A comparative study of dispatch-
ing rules in dynamic flowshops and jobshops. European Journal
of Operational Research, 116(1), 156-170.

Rodriguez, M. L. R., Kubler, S., de Giorgio, A., Cordy, M., Robert, J.,
& Le Traon, Y. (2022). Multi-agent deep reinforcement learning

@ Springer

http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1412.6980

1140

Journal of Intelligent Manufacturing (2024) 35:1107-1140

based predictive maintenance on parallel machines. Robotics and
Computer-Integrated Manufacturing, 78, 102406.

Rolf, B., Reggelin, T., Nahhas, A., Lang, S., & Miiller, M. (2020).
Assigning dispatching rules using a genetic algorithm to solve a
hybrid flow shop scheduling problem. Procedia Manufacturing,
42, 442-449.

Schaller, J. E. (2014). Minimizing total tardiness for scheduling identi-
cal parallel machines with family setups. Computers & Industrial
Engineering, 72, 274-281.

Schulman, J., Levine, S., Abbeel, P.,, Jordan, M., & Moritz, P. (2015).
Trust region policy optimization. International conference on
machine learning, (pp. 1889-1897).

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov,
O. (2017). Proximal policy optimization algorithms.
arXiv:1707.06347 .

Shin, H.J., & Leon, V. J. (2004). Scheduling with product family set-up
times: An application in TFT LCD manufacturing. International
Journal of Production Research, 42(20), 4235-4248.

Sigtia, S., Benetos, E., Cherla, S., Weyde, T., Garcez, A., & Dixon, S.
(2014). RNN-based music language models for improving auto-
matic music transcription. Proceedings of the 15th International
Society for Music Information Retrieval Conference (ISMIR), (pp.
53-58).

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A.,
Guez, A., et al. (2017). Mastering the game of go without human
knowledge. Nature, 550(7676), 354-359.

Sun, S., Cao, Z., Zhu, H., & Zhao, J. (2019). A survey of optimization
methods from a machine learning perspective. IEEE Transactions
on Cybernetics, 50(8), 3668-3681.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An intro-
duction. MIT Press.

Tassel, P., Gebser, M., & Schekotihin, K. (2021). A reinforcement learn-
ing environment for job-shop scheduling. arXiv:2104.03760.

van der Ham, R. (2018). salabim: Discrete event simulation and anima-
tion in python. Journal of Open Source Software, 3(27), 767.

van der Zee, D.-J. (2015). Family-based dispatching with parallel
machines. International Journal of Production Research, 53(19),
5837-5856.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik,
A., Chung, J., et al. (2019). Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature, 575(7782), 350-354.

Wang, L., Pan, Z., & Wang, J. (2021). A review of reinforcement learn-
ing based intelligent optimization for manufacturing scheduling.
Complex System Modeling and Simulation, 1(4), 257-270.

Werbos, P. J. (1990). Backpropagation through time: What it does and
how to do it. Proceedings of the IEEE, 78(10), 1550-1560.

Wilbrecht, J. K., & Prescott, W. B. (1969). The influence of setup time
on job shop performance. Management Science, 16(4), 274-280.

@ Springer

Wu, Y., & Tian, Y. (2016). Training agent for first-person shooter game
with actor-critic curriculum learning.

Yin, W., Kann, K., Yu, M., & Schiitze, H. (2017). Comparative study of
cnn and rnn for natural language processing. arXiv:1702.01923.

Ying, K.-C., & Cheng, H.-M. (2010). Dynamic parallel machine
scheduling with sequence-dependent setup times using an iterated
greedy heuristic. Expert Systems with Applications, 37(4), 2848—
2852.

Yuan, B., Jiang, Z., & Wang, L. (2016). Dynamic parallel machine
scheduling with random breakdowns using the learning agent.
International Journal of Services Operations and Informatics,
8(2), 94-103.

Yuan, B., Wang, L., & Jiang, Z. (2013). Dynamic parallel machine
scheduling using the learning agent. IEEE International Confer-
ence on Industrial Engineering and Engineering management,
2013, 1565-1569.

Zeidi, J. R., & MohammadHosseini, S. (2015). Scheduling unrelated
parallel machines with sequence-dependent setup times. The Inter-
national Journal of Advanced Manufacturing Technology, 81(9),
1487-1496.

Zhang, C., Liu, Y., Wu, F,, Tang, B., & Fan, W. (2020). Effective charg-
ing planning based on deep reinforcement learning for electric
vehicles. IEEE Transactions on Intelligent Transportation Sys-
tems, 22(1), 542-554.

Zhang, Z., Zheng, L., Hou, F., & Li, N. (2011). Semiconductor final
test scheduling with sarsa (A, k) algorithm. European Journal of
Operational Research, 215(2), 446-458.

Zhang, Z., Zheng, L., Li, N., Wang, W., Zhong, S., & Hu, K. (2012).
Minimizing mean weighted tardiness in unrelated parallel machine
scheduling with reinforcement learning. Computers & Operations
Research, 39(7), 1315-1324.

Zhang,Z.,Zheng, L., & Weng, M. X. (2007). Dynamic parallel machine
scheduling with mean weighted tardiness objective by g-learning.
The International Journal of Advanced Manufacturing Technol-
0gy, 34(9), 968-980.

Zhou, D., Jia, R., & Yao, H. (2021). Robotic arm motion planning
based on curriculum reinforcement learning. 2021 6th Interna-
tional Conference on Control and Robotics Engineering (ICCRE),
(pp. 44-49).

Zhou, L., Zhang, L., & Horn, B. K. (2020). Deep reinforcement
learning-based dynamic scheduling in smart manufacturing. Pro-
cedia CIRP, 93, 383-388.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2104.03760
http://arxiv.org/abs/1702.01923

	A two-stage RNN-based deep reinforcement learning approach for solving the parallel machine scheduling problem with due dates and family setups
	Abstract
	Introduction
	Backgrounds
	RNN and GRU
	RL and PPO

	Problem formulation
	Proposed approach
	State representation
	Action representation
	Reward design and the two-stage training strategy
	Training algorithm and network structures of the proposed agent

	Numerical experiments
	The training process of the agent
	Comparisons with dispatching rules and metaheuristics

	Conclusion and future work
	Acknowledgements
	Appendix A: Performance of the agents trained on instances of different scales
	References

