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Abstract
Power in human societies is a central phenomenon. Even though, it took ages to understand
it and – even more – to measure it. Only in the last decades attempts were made to model
power relations and to assign respective power indices to actors in a network. The present
work goes a step further. It measures power of actors and groups of actors in networks by
means of conditional relations. In a probabilistic framework, such relations are specified as
conditionals: Which actor receives power given that the adjacent actor has it, and which actor
looses power given that the neighbour dominates. This pattern of power relations allows
for an exact calculation of an actor’s and groups of actors’ power index. The new decision
analytics tool for this is maximizing entropy for the whole net and evaluating each actor’s
influence therein. The new concept is applied to a middle size Kronecker net of clans and
subclans operating in a today’s society.

Keywords Network analytics · Entropy · Power networks · Power support · Power
suppression

1 Introduction

Power in human societies partly is a constructive and partly is a destructive phenomenon.
Possibly in all cultures sociologists, philosophers, economists and politicians were concerned
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with the intrinsic What and How of power relations. In other words, it is the very question of
how people treat each other. In more recent scientific articles, authors like (Emerson, 1962),
(Zegler, 1975), (Witte, 2001) and many others studied the determinants of power. They tried
to find outwho exerts power onwhom, towhich degree and bywhichmeans.Which resources
and which costs will an actor insert, and what is the resistance of the aggrieved party. We
cite (Emerson, 1962), p. 32:

Power (Pab) The power of actor A over actor B is the amount of resistance on the part
of B which can be potentially overcome by A.

Other authors like (Bonacich, 1987), (Bozzo & Franceschet, 2016) widen this local view
of direct contact of actors to global power relations in networks. From basic insights such as
“An actor is powerful if it is connected to powerless actors”, cf. Bozzo and Franceschet (2016)
on page 76, they deduce mathematical equations to measure power. Literature as to power
is almost endless but mostly treats exertion of power on somebody (PO). The treatment of
power from somebody (PF) is of minor interest. In this work, both aspects of power relations
will be analysed and integrated into a global model.

Support attitude (PF) is a frequently observed relation in societies. A clique of classmates
in high-school, associations or unions, fraternities are typical social groupings with PF-
relations. “All for one, one for all”. Suppress attitude (PO) is inducement or evenmanipulation
of others’ ideas or positions. “Everbody against everybody”.

Can these two attitudes be joined in a decision model? Can they be modeled and analysed
by tools of Social Network Analysis (SNA)? That is the very question of this article. In
other words: Actors might try to suppress each other (PO), or they might try to support each
other (PF). In either case, these two behaviourist attitudes are central relations in any human
society. We will analyse how they penetrate the whole social structure and, finally, determine
each actor’s influence, namely its power. The reader familiar with SNA might guess that
power is equivalent to one of the centrality concepts: degree centrality, closeness centrality,
or betweenness centrality. This guess is wrong. Already Cook et al. in 1983 recognized very
clearly the difference, a central actor must be surrounded byweak actors to become powerful;
the reader is referred to Cook et al. (1983). There are several occasions and concepts to study
actors and groups of actors in networks, perhaps with the aim of detecting or measuring their
influential value. For the interested reader, we refer to Can and Alatas (2019), Chen et al.
(2020), Saura (2021), Restrepo et al. (2021), and Ghorbani and Azadi (2021).

Graphs – consisting of vertices and edges – are models of the social fabric and first were
established byMoreno (1934). But are they able to drawapicture even of positive and negative
relations in and between groups of actors? A first step in the right direction might be a signed
network (sN), a network with positive and negative edges. Figure 1 shows such an sN with
positively linked groups of vertices =̂ actors embedded in and meshed with negative edges.
The semantics of these edges might be sympathy (+) and antipathy (−). Newman (2012)
shows on pages 206 ff. that an inconsiderate distribution of+ and− can cause contradictions.

In this paper,+ and− edgeswill bemodeled byprobalitistic conditionals,meaning support
(PF) and suppression (PO), respectively. Applying conditionals showed fruitful results in
Brenner et al. (2017), Rödder et al. (2019), Dellnitz and Rödder (2020). None of these works
treats power in sN, however.

This contribution is organized as follows. The next section shows signed networks and
developes conditions for a net to be decomposable or clusterable into support and suppression
subnets. Sect. 3.1 provides conditional-probabilistic preliminaries and their application to sN
in 3.2. In Sect. 4.1,we define power in conditional-probabilistic nets and illustrate this concept
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Fig. 1 A signed network with
positive (support) and negative
(suppression) edges

in 4.2 for PF-, in 4.3 for PO- and in 4.4 for mixed PF/PO-nets. Mixed nets melt friendly and
hostile relations among actors and result in a complex pattern of freedom/bondage on the
one hand and equality/disparity on the other. This leads to a sociopolitical contemplation
on balance of power in such nets. Section 4.5 widens the conditional forms and shows net
transformations when power in a vertex becomes evident. In Sect. 5, power is measured for
all 50 vertices in a Kronecker net. Section 6 is a resumé and shows the road ahead.

2 Signed networks

A graph is a set of vertices V and a set of edges E connecting some of the vertices. Graphs are
models of actors =̂ vertices and their relations =̂ edges in a real social fabric. Edges might
be undirected, directed, weighted or signed. These characteristic features describe certain
properties of the social structure of the real world: Undirected edges represent symmetrical
relations like friendship or kinfolk, directed edges stand for transfer of material goods or
convictions, opinions, attitudes. Such transfer can be attenuated – material goods might rot,
convictions might not convince – and this attenuation is expressed by weights on edges.
Signed edges were shown in Fig. 1, they are topic of the remainder of this section.

(V , E+ ∪̇ E−) is a signed graph, being E+ the set of positive and E− the set of negative
edges; see again Fig. 1. To avoid contradictions in signed graphs, we postulate clusterability
like in Definition 1 and supplement respective examples.

Definition 1 A signed graph is clusterable if it is decomposable into disjoint induced sub-
graphs such that

• each subgraph with more than one vertex has only positive edges,
• they are interconnected by only negative edges.

An induced subgraph contains all connecting edges from (V , E+ ∪̇ E−). An one-vertex
subgraph is called degenerated.
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Example 1 (clusterable and non-clusterable signed graphs)

i) ii)
iii)

iv) v)

vi)
vii)

The signed graphs (iv), (v), (vi) you find in ((Newman, 2012), p. 206 ff.). Together with
(i), (ii), (iii), (vii) they illustrate pretty well the concept of clusterability. (i), (ii), (iii), (iv)
obviously satisfy the postulations of Definition 1, (v) has three degenerated subgraphs, only
incident with negative edges and hence also meets the definition; (vi) and (vii) do not. The
cohesive subgraph in (vi) is not induced and neither is the one in (vii).

To prove clusterability of sN, respective literature provides algorithms. Roughly speaking
they build maximal cohesive subnets and then check negative edges therein. If there are no
such negative edges, clusterability applies and fails, otherwise.

3 Conditional probabilistic signed networks

3.1 Conditional-probabilistic preliminaries

Let (V , E+∪̇E−) be an sN with |V| = n. Each vertex Vi ∈ V is a boolean variable with
Vi = 1 or Vi = 0. For Vi = 1 the vertex is powerful, for Vi = 0 it is powerless. v =
(v1, v2, . . . , vn) = (V1 = 1/0, V2 = 1/0, . . . , Vn = 1/0) are 2n states or configurations of
the net. On {v} we define probability distributions Q; they convey power relations. For this,
we impose structuring postulations:

• Q(Vj = 1 | Vi = 1) = 1. and Q(Vi = 1 | Vj = 1) = 1. for(i, j) ∈ E+ (1+)

• Q(Vj = 0 | Vi = 1) = 1. and Q(Vi = 0 | Vj = 1) = 1. for(i, j) ∈ E− (1-)

• Q(Vi = 1) = 1. for some verticesi (1E)

Conditioned postulations are called conditionals or rules, unconditioned postulations are
facts. The two rules in (1+) enforce mutual transfer of power. If Vi is powerful then Vj also
is and vice versa. The two rules in (1−) enforce mutual suppression. If vertex Vi is powerful
(Vi = 1) and is able to assert it on Vj (1.), then Vj is powerless (Vj = 0) and vice versa.
Facts in (1E) connote evidence of real power rather than a mere “if it is so”.

We observe that edges in E+ support power transfer like in cliques of classmates in high-
school, between members of unions or fraternity brothers. “All for one, one for all”. On
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the other hand, adjacent actors incident with vertices from E− try to suppress their neigh-
bours. “Everybody against everybody”. A vertex might be connected to some neighbours
with positive and to others with negative edges, of course. The distribution Q must be chosen
thoroughly. Besides respecting the rules or facts in (1+), (1−) or (1E) it must be a pru-
dent representative of all intended conditional structure among the variables Vi , i = 1, ..., n.
Maximising entropy in Q, H(Q) = −∑

vQ(v)log2Q(v), and likewise satisfying the rules
or facts is the clue for this task. It is called MaxEnt principle and has a very strict axiomatic
justification, see Kern-Isberner (1998) or Brenner et al. (2017). H measures mutual indepen-
dence among the variables Vi . The greater H , the greater independence; and the smaller H ,
the less independence. This feature of entropy will be very helpful to model power structures
in sN.

3.2 Creation of power structures in signed networks

We study three optimisation problems and explain.

Q+ = argmax H(Q) (2+)

s.t.Q(Vj = 1 | Vi = 1) = 1.

Q(Vi = 1 | Vj = 1) = 1. for(i, j) ∈ E+

Q− = argmax H(Q) (2-)

s.t.Q(Vj = 0 | Vi = 1) = 1.

(Q(Vi = 0 | Vj = 1) = 1.) for(i, j) ∈ E−

As conditionals in brackets are redundant they can be omitted.

Q+− = argmax H(Q) (2+-)

s.t. like in(2+)and in(2−)

In (2+), MaxEnt-distribution Q+ is determined for a net with only positive edges, (2−)
treats a net with only negative edges. And finally (2 + −) considers a general sN. The
restrictions in these equations postulate respective conditioned probabilities equal to 1., being
| the well-known conditional operator.

For the nets (i) to (v) in Example 1, we stated clusterability; for these, the optimisation
problems are feasible. Not so for the nets (vi) and (vii). We observe inconsistancy and hence
infeasibility for the respective optimisation problems. Once vertex 1 in net (vi) is powerful
this makes vertices 2 and 3 powerful. On the other hand a powerful vertex 2 enforces a
powerless 3. A contradiction.

Equation 3 shows the optimisation problem for net (iv) in Example 1. Again rules in
brackets are redundant and can be omitted.

Q+− = argmax H(Q) (3)

s.t . Q(V3 = 1 | V1 = 1) = 1. Q(V1 = 1 | V3 = 1) = 1.

Q(V5 = 1 | V3 = 1) = 1. Q(V3 = 1 | V5 = 1) = 1.

Q(V6 = 1 | V4 = 1) = 1. Q(V4 = 1 | V6 = 1) = 1.

Q(V2 = 0 | V1 = 1) = 1. (Q(V1 = 0 | V2 = 1) = 1.)

Q(V2 = 0 | V3 = 1) = 1. (Q(V3 = 0 | V2 = 1) = 1.)
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Q(V4 = 0 | V3 = 1) = 1. (Q(V3 = 0 | V4 = 1) = 1.)

Q(V6 = 0 | V5 = 1) = 1. (Q(V5 = 0 | V6 = 1) = 1.)

The until now generic term “power” needs a mathematical specification. That is what the
next section is about.

4 Structural power in sN

4.1 Power in a conditional-probabilistic framework

After solving (2+−) we have Q+−. Q+−(Vi = 1) for i = 1, ..., n then are the probabilities
of vertices Vi to be powerful. From textbooks in information theory like (Roman, 1997) or
Topsœ1974, we know that − log2 Q+−(Vi = 1) is the information the sN recieves when
power in vertex Vi becomes evident. The difference − log2 Q+−(Vi = 1) − (− log2(1.))
measures change of all mutual dependencies in the net. The greater this difference, the
greater the potential influence of vertex Vi . For more details on this issue, see (Brenner et al.
(2017), p. 5). A good reason for Definition 2.

Definition 2 spi = − log2 Q+−(Vi = 1) is structural power of vertex Vi , i = 1, ..., n.

For the little net (ii) in Example 1, we now determine all spi , i = 1, ..., 4.

Example 2 (structural power of vertices in an sN) After solving (2+−) we have Q+− like in
the attached contingency table. It was calculated by means of the expert system shell SPIRIT
(2011).

V1 V2 V3 V4 Q+− V1 V2 V3 V4 Q+− with Q+−(V1 = 1) =
Q+−(V2 = 1) = 1

5
1 1 1 1 0 0 1 1 1 0 Q+−(V3 = 1) =

Q+−(V4 = 1) = 2
5

1 1 1 0 0 0 1 1 0 0

1 1 0 1 0 0 1 0 1 0

1 1 0 0 1
5 0 1 0 0 0

1 0 1 1 0 0 0 1 1 1
5

1 0 1 0 0 0 0 1 0 1
5

1 0 0 1 0 0 0 0 1 1
5

1 0 0 0 0 0 0 0 0 1
5

In this table, a 0-probability appears for such configurations which contradict the rules. E.g.,
Q+−(1, 1, 1, 1) = 0. because V1 = 1 and V3 = 1 would contradict the rule Q(V3 =
0 | V1 = 1) = 1. Non 0-probabilities are equal due to maximum entropy. Summing up
probabilities of respective configurations yields results on the right side. The vertices V1 and
V2 show equal power sp = − log2 1/5 = 2.322 and so do V3, V4 with sp = − log2 2/5 =
1.322. Vertices in cohesive subnets always are of equal power, as will be developed later. So
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vertices V3 and V4 confront the same homogeneous subnet and due to symmetry are equally
powerful, too.

Mere PF and PO-nets are of special interest and are studied in the next two sections.

4.2 Structural power in PF-nets

All edges in PF-nets are positive, Vi
+− Vj , here represented by two conditionals, cf. (2+).

From a graph theoretical point of view, such a net is strongly connected and forms an SCS.
For such nets, Brenner et al. (2017) provided propositions which we repeat and explain.

Theorem 1 Let Q+ be solution of (2+). Then we have:

a. Q+(Vi = 1) = 1
2 for all i = 1, . . . , n.

b. spi = 1. for all i = 1, . . . , n.
c. H(Q+) = 1.

Proof Due to the rules in (2+), all configurations v with Vi = 1 and Vj = 0 for some
i �= j have probability 0. Remain configurations v1 = (V1 = 1, V2 = 1, ..., Vn = 1)
and v2 = (V1 = 0, V2 = 0, ...,Vn = 0). Q+ has maximal entropy and hence Q+(v1) =
Q+(v2) = 1

2 . This implies Theorem 1a. and b. For a proof of c. mind the fact that H(Q+) =
1
2 (− log2

1
2 ) + 1

2 (− log2
1
2 ) = 1

2 · 1. + 1
2 · 1. = 1. ��

H(Q+) is the remaining mutual independence in the PF-net. It is small and it fully
disappears whenever any vertex exerts full power. This benefits them all and all become
powerful.

4.3 Structural power in PO-nets

All edges in PO-nets are negative, Vi
−− Vj , here represented by two conditionals, cf. (2−).

For PO-nets the propositions in Theorem 2 hold.

Theorem 2 Let Q− be solution of (2−). Then we have:

a. In a complete PO-net, all vertices Vi have equal structural power spi = log2(n+1) > 1.
b. Entropy in complete PO-nets equals log2(n + 1) > 1.
c. In incomplete PO-nets, usually the vertices have different structural power.
d. Also in incomplete PO-nets, all vertices Vi have structural power spi > 1.
e. Also in incomplete PO-nets, entropy always exceeds 1.

Proof Ad a. Choose an arbitrary Vi . Because of the rules in (2−) for a configuration v,
Q−(v) > 0 holds iff

• Vi = 1 and all Vj = 0, j �= i or
• V1 = V2 = ... = Vn = 0.

The number of these configurations is n + 1 and under MaxEnt all probabilities are 1
n+1 .

This implies Q−(Vi = 1) = 1
n+1 and spi = log2(n + 1) > 1 for all i.

Ad b. Entropy adds up to (n + 1) 1
n+1 (− log2

1
n+1 ) = log2(n + 1) > 1.

Ad c. We exemplify.

Example 3 (unequal structural power in incomplete PO-nets)
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i. For the net

we have
sp1 = sp2 = log2

5
2

sp3 = log2 5

ii. For the star

we have
sp2 = sp3 = sp4 = log2

9
4

sp1 = log29

Both results confirm our intuition.
Ad d. The proof is bulky and so it is put in the appendix.
Ad e. From b. we know that in a complete PO-net, entropy exceeds 1. Now, for an incomplete
PO-net,

• round it up to a complete net (V , E−) with H > 1.,
• regard that H > 1. is H(Q−) for (2−) with rules linking all vertices to all vertices,
• delete the added rules and solve (2−) again, resulting in H(Q−),
• verify H(Q−) ≥ H(Q−) > 1., as deletion of rules means enlargement of the feasibility

set. ��
Resuming the last two sections we have the surprising result that PO-nets give more

structural power to vertices than PF-nets do. “Everybody against everybody” in our model
generates selfdetermination and selfconfidence. “All for one, one for all” in contrast, generates
heteronomy. As to entropy, it is small in PF-nets indicating mutual dependence. And it grows
in PO-nets alluding to independence. We come back to this issue in Sect. 4.5. Before doing
so, we study structural power in general sN including positive and negative edges.

4.4 Structural power in general sN

From Defintion 2 in Sect. 4.1, we have power spi = − log2 Q+−(Vi = 1) in any general sN,
allVi . InmerePF-nets, it always amounts to 1.; seeTheorem1 inSect. 4.2. This statement does
not prevail anymore in general sN. Now, strongly connected subgraphs SCS are embedded
in a net of positive and negative edges. This in fact gives all its vertices the same structural
power, but not necessarily equal 1. A proof is given in Brenner et al. (2017), Theorem 1. To
make this contribution more self-contained, we verify the statement for net ii) of Example 1.

The sN contains SCS , embedded in a
net of negative edges. Q+−, marginal
probabilities, and structural power are
as follows.
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V1 V2 V3 V4 Q+− V1 V2 V3 V4 Q+− with Q+−(V1 = 1) =
Q+−(V2 = 1) = 1

5
1 1 1 1 0 0 1 1 1 0 Q+−(V3 = 1) =

Q+−(V4 = 1) = 2
5

1 1 1 0 0 0 1 1 0 0 sp1 = sp2 = 2, 322

1 1 0 1 0 0 1 0 1 0 sp3 = sp4 = 1, 322

1 1 0 0 1
5 0 1 0 0 0

1 0 1 1 0 0 0 1 1 1
5

1 0 1 0 0 0 0 1 0 1
5

1 0 0 1 0 0 0 0 1 1
5

1 0 0 0 0 0 0 0 0 1
5

Configurations with (v1, v2) = (1, 0) and with (v1, v2) = (0, 1) have probability 0

because of . Probability of configurations with (0,0) adds up to 4
5 , the one with (1,1)

to 1
5 . So the vertices in the SCS show structural power 2.322 rather than 1. like in

a mere SCS.
As announced, we now solve (3) by means of the expert system shell (SPIRIT, 2011). The

shell supports the architect of a network solving equations (2+), (2−), (2+ −) for hundreds
of variables and rules; for the rich applicability of SPIRIT, cf. Rödder et al. (2006). In the
present paper, respective variables and rules are shown in Figs. 2 and 3. The figures illustrate
the vertices (rectangles) and links between vertices (lines). To identify + and − links, we
added the rule tables in the lower part of the two figures. Figure 2 furtheron displays the
marginals of Q+− for all variables (bars in the rectangles). The numbers in the vertices of
Fig. 3 provide structural power indices− log2 Q+−(Vi = 1). V1, V3, V5 are equally powerful
and so are V4, V6; these groups form strongly connected subgroups. The power of V2 equals
that of V4, V6 accidentally, only, due to the structure of the net.

An SCS shows equal marginals for all its vertices and consequently they all have equal
structural power. They all are “kindred”. Can such an SCS be compressed so as to simplify
the net? The remainder of this section gives the answer. For proofs, we recommend (Brenner
et al., 2017).

Definition 3 (SCS-compression) Let VSCS ⊂ V be the vertices of an SCS and VREM =
V\VSCS . For an SCS-compression, we have:

• V becomes VS ∪ VREM, with VS being a supervertex which substitutes VSCS .
• All conditionals in SCS vanish, and all conditionals which have connected SCS to some

Vj ∈ VREM now connect VS to Vj ∈ VREM. Redundant conditionals disappear.

Let Q+− be the solution of (2 + −) with vertices VS ∪ VREM and conditionals like in
Definition 3 and let Q+− be the solution of (2 + −) before compression. Then we have the
following lemma.

Lemma 1 a. All Vk ∈ VSCS have equal marginals in Q+−.
b. VS has the same marginal in Q+− as all Vk have in Q+−.
c. All Vj ∈ VREM have the same marginals in Q+− and Q+−.
d. The entropies in Q+− and Q+− equal.
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Fig. 2 Example 1iv). Rules (bottom) and marginals for Q+−

Fig. 3 Example 1v). Rules (bottom) and sp-values for Q+−

123



Annals of Operations Research (2024) 338:1083–1100 1093

Fig. 4 Example 1iv). Rules (bottom) and marginals in Q− after compression

SCS-compression does not change marginals and consequently it does not change struc-
tural power. SCS-compression is power-invariant. Repeating compression for all SCS in (V ,
E+∪̇ E−) yields a mere PO-net (V , E−) with all results from Theorem 2. In particular, each
vertex has power > 1 and we have H > 1.

Example 4 (SCS-compressions) Figure 2 shows the graph for Example 1iv) before compres-
sion. {V1, V3, V5} is an SCS and so is {V4, V6}. Marginals in each SCS coincide, just as
structural power; see Fig. 3. Compression of both SCS like in Definition 3 results in graph,
rules and mariginals like in Fig. 4 and in structural power like in Fig. 5.

SCS-compression is a suitable means to reduce a network without loss of structural infor-
mation. In Sect. 5, we will reduce a network from 50 to 21 vertices maintaining all relevant
net structure.

Perhaps this is the moment for some sociopolitical contemplations on our so far results.
Liberté, Égalité, Fraternité

chanted the masses during the french revolution.
Liberty, Equality, Fraternity

are incorporated in almost all constitutions of modern democracies. How do these claims
combine with our theory of power?

• In a society exclusively formed by PF-relations, all actors are equal, see Theorem 1. H
as the measure of independence is small; all actors’ power situation is the same: If one of
them is powerful, they all are. If one of them is powerless, they all are, too. This leaves
no room for individual freedom: Égalité, Fraternité.

• In a society exclusively formed by PO-relations, each actor’s power index exceeds 1.
Each of them is free to suppress its neighbours, and vice versa, once power becomes
evident. H as the global measure of such freedom =̂ independence – as per Theorem 2
– also exceeds 1.: Liberté.
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Fig. 5 Example 1iv). Rules (bottom) and sp-values in Q− after compression

• In a society formed by PF- and PO-relations, equality holds for members of an SCS. And
their structural power increases as they draw it from the overlying PO-net. H always
exceeds 1: Liberté, Égalité, Fraternité.

4.5 Power evidence in general sN

After solving (2 + −) with result Q+−, the question arises: how does power evidence in
a vertex influence the whole network. What if a vertex exerts power on its neigbours –
not potentially but really? Please fold back to Figs. 2 and 3. When adding, e.g., the fact
Q(V3 = 1) = 1., the net alterations are like those in Figs. 6 and 7. In Fig. 6, the fact V3 = 1
becomes evident (the red bar) implying in certain V1 = 1, V5 = 1 and in certain V2 = 0,
V4 = 0, V6 = 0. The fact changed the whole net as it should be.

In Fig. 7, a 0 for Vi = 1 means full exploitation of power potential, ∞ indicates a
contradiction for an additional evidence of this fact.

For a more ambitious study of multiple evidence, see Dellnitz and Rödder (2020),
Sect. 3.

5 Power, dependence and independence in amiddle size Kronecker
graph

Literature research in the field of sN leads us to

• directed signed graphs; see Kim et al. (2018). That is not the focus of our paper.
• the question of how to generate sN, but unfortunately with disregard of clusterability of

respective nets; cf. Jung et al. (2020).
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Fig. 6 Example 1iv). Evident fact V3 = 1 and marginals

Fig. 7 Example 1iv). Evident fact V3 = 1 and sp-values

• the very nice work about political ties and opposition between indigenous tribes of the
central highlands in New Guinea from Read (1954).

The disregard of clusterability in those publications makes the construction of a new net
mandotory so as to meet all requirements of our theory.

The net under consideration is supposed to be composed by criminal clans and subclans
in any nowadays country. A clan consists of subclans, which support each other. “All for
one, one for all”. When a subclan finds out about a quick police raid, it informs the whole
clan. Not so between different hostile clans. With faked news they try to damage each other.
“Everybody against everybody”.

We opt for the construction of a 64 × 64 Kronecker-net as follows.

1. With the initiator (.8.5
.6
.3) and applying 5 iterations, we determine a 64 × 64 stochastic

Kronecker matrix. For details see (Leskovec et al. (2010), pages 998 ff.). As the initiator
is asymmetric, the matrix also is.

2. Construct a matrix A of negative edges by means of uniform random numbers: Make
A(i, j) = −1, i �= j if the respective entry in the Kronecker matrix exceeds the random
number; and make A(i, j) = 0, otherwise. A is asymmetric, in general.
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Fig. 8 A signed Kronecker graph of 50 vertices (actors) and their structural power

3. Make B(i, j), i �= j , equal to the minimum of A(i, j) and A( j, i). B then is a symmetric
matrix of negative adjacencies, forming a PO-net.

4. Choose vertices at random and suround them by SCS, also at random.
5. Check all SCS in the net. Eliminate negative links between vertices within each SCS,

thus forming a clusterable sN.

With this process, we produced 28 negative edges, 28 positive edges and 14 isolated
vertices; the latter are eliminated. Further characteristics of the net read:

• 15 degenerated SCS with 1 vertex,
• 3 SCS with 2 vertices,
• 1 SCS with 4 vertices,
• 1 SCS comprising 11 vertices,
• 1 SCS comprising 14 vertices.

Figure 8 shows the signed Kronecker graph plus structural power of each vertex. We
arranged the vertices in such a way that the SCS are apparent:

• the 14 vertices SCS top left,
• the 11 vertices SCS top middle,
• the 4 vertices SCS top right, followed by the 2 vertices SCS,
• the 15 degenerated SCS bottom.

All vertices in an SCS have equal power as we developed earlier. We highlight the most
important results.

• The degenerated SCS V1 has greatest structural power sp = 5.56; it is negative adjacent
to the 14 vertices SCS, to the 4 vertices SCS, to the upper and lower 2 vertices SCS
and some degenerated SCS. These negative adjacencies make V1 powerful. Evidencing
V1 = 1makes them all powerless. Evidencing V1 = 1 does reach neither the degenerated
V12 nor V44, however. V1 and V12 or V44 are no “neighbours”. There is no negative edge
linking them. Wether a powerful V1 makes V12 or V44 powerful or powerless, the system
does not know. It makes the structural power of V12 a neutral 1. The same holds for V44.
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Fig. 9 Compressed network from Fig. 8

• After V1, the next powerful SCS is the one with 4 vertices and sp = 4.8, each. Followed
by the SCS with 14 vertices, then with 11 vertices, etc. We notice that structural power
is not a function of an SCS’s cardinality but rather of its dominance over others.

• The entropy as ameasure of conditional independence in the net amounts to H = 15.538.
Each evidence of power in a vertex reduces the entropy. When evidencing V1, then V29
as a member of the 11 vertices SCS, then the degenerated SCSs V12, V18, V31, V44, V49,
entropy becomes 0. All conditional independence vanishes.

Now, we study the consequences of mathematical results for the criminial clans, as
announced:

• All subclans in an SCS support each other and have equal structural power.
• Structural power between different clans varies significantly: from sp = 5.56 for the

degenerated V1, via sp = 4.87 for the 4 vertices SCS and sp = 3.31 for the 14 vertices
SCS to sp = 1.03 for V37.

• Even the small clan V1 or the small clan of 4 subclans can damage many other clans.
Once they find out about a quick police raid they broadcast true news to friends and
scatter fake news to enemies.

Figure 8 contains 50 (sub-)clans and hence might be somewhat labyrinthine. In Definition
3 and the subsequent lemma, we developed the concept of compression. An SCS can be
compressed to a supervertex and such compression is power-invariant. If we repeat such
compression for all SCS, the result is a mere PO-net; see again Sect. 4.4 right after the
lemma. Figure 9 shows all supervertices of our network.

For a better transparency, we arranged them similar as in Fig. 8. We verify power invari-
ance: the structural power of a superclan equals that of each subclan before compression.
And entropy as a measure of mutual independence does not change, either.

This kind of analyses in signed networks gives new insights beyond a mere description
of their characteristics, such as number of negative/ positive edges, number of triads, etc. It
shows the power pattern all over the net and might be the basis for reshaping such pattern.
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Hopefully, we are on the right way towards a deeper understanding of power determinants
and power emergents in modern societies.

6 Summary and future work

Measuring power in a social fabric was the focus of the following paper: “An entropy-based
framework to analyse structural power and alliances in social networks”; see Dellnitz and
Rödder (2020). There power is derived from mutual suppression as a driving force among
actors. In the present paper, we go a step further and consider mutual suppression and mutual
support, modeled by negative and positive edges in a graph. Even in such complex signed
networks, power is measurable for each actor =̂ vertex. But for this, nets must be balanced
or – more precisely – must be clusterable. Power then is the degree of influence of an actor
upon the whole net rather than upon its neighbours, only. To be able to calculate this power
in bigger nets, we need an optimisation software called (SPIRIT, 2011).

Clusterability in signed networks is a pretty rigid demand. Roughly speaking: My friends
(mutual support) should not be enemies (mutual supression). We generate such a net with
the property of clusterability and apply it to a group of 50 criminal (sub-)clans which partly
support each other and partly try to damage each other. To make the net realistic, we use the
technique of stochastic Kronecker matrices.

As we mentioned above, is clusterability a rigid demand, but necessary for a respective
determination of power indices. Here immediately the question arises whether this rigid
demand can be weakened. Is it possible to calculate entropy-based power indices even when
clusterability is missing?

In the present paper, we study nets with positive and negative edges representing friend-
ship and enmity. Are there further relations which can be embedded into an entropy-based
framework? To answer these questions is a must and a rule for our future work.
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Appendix A: Proof of Theorem 2d

Proof In an incomplete PO-net, all vertices have a structural power > 1.
Choose an arbitrary Vi and an arbitrary adjacent Vj .

1. A PO-net allows positive probabilities only if not Vi = 1, Vj = 1 for adjacent vertices.
2. If a configuration with Vi = 1 shows a positive probability, then also the configuration

with Vi = 0 and identical, otherwise, does.
3. Choose configuration v̄ with Vi = 1, Vj = 1, Vk = 0, all Vk ∈ V\{Vi , Vj }. Q−(v̄) = 0,

as Vi , Vj are adjacent. Now, make v̄ → ¯̄v by changing Vi = 1 to Vi = 0, resulting in
Q−( ¯̄v) > 0.

4. Because of the MaxEnt principle all positive probabilities in Q− equal.
5.

∑

vwith Vi=1
Q−(v) <

∑

vwith Vi=0
Q−(v)

�⇒ Q−(Vi = 1) < Q−(Vi = 0)
�⇒ Q−(Vi = 1) < 1

2�⇒ − log2(Q−(Vi = 1)) > 1

��
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