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Abstract
We consider the temporal bin packing problem with fire-ups (TBPP-FU), a branch of opera-
tions research recently introduced in multi-objective cloud computing. In this scenario, any
item is equippedwith a resource demand and a lifespanmeaning that it requires the bin capac-
ity only during that time interval. We then aim at finding a schedule minimizing a weighted
sum of the total number of bins required and the number of switch-on processes (so-called
fire-ups) caused during operation. So far, research on the TBPP-FU has mainly focused
on exact approaches and their improvement by valid cuts or variable reduction techniques.
Although these studies have revealed the problem considered here to be very difficult to cope
with, theoretical contributions to heuristic solution methods have not yet been presented in
the available literature. Hence, in this article we investigate the worst-case behavior of some
approximation algorithms, ranging from classic online algorithms to a more sophisticated
look-ahead heuristic specifically designed for the TBPP-FU. In addition, we theoretically
study three heuristics the ideas of which are inspired by solution methods for generalized bin
packing problems in the field of logistics. As a main contribution, we constructively show
that the feasible solutions obtained by all these approaches can be arbitrarily bad. By doing
so, we (i) identify a new open problem in cutting and packing, and (ii) establish another
previously unknown difference between the classical TBPP and the extended problem with
fire-ups, rendering the latter the more difficult problem even from a heuristic point of view.
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1 Introduction

The temporal bin packing problem (TBPP) generalizes the classic BPP, see Delorme et al.
(2016) and Scheithauer (2018), with respect to an additional time dimension. More precisely,
any item i ∈ I := {1, . . . , n} is specified by a resource demand (or item size) ci ∈ Z+ that
has to be satisfied only during the lifespan [si , ei ) of that item, where si , ei ∈ Z+ with
si < ei denote the starting and ending time, respectively. A set of given items then has to be
assigned to as few bins as possible while respecting the bin capacity C ∈ Z+ at any instant
of time. It is important to note that even though the relationships to two-dimensional packing
problems seem obvious, the TBPP is an independent problem in operations research. This
is particularly due to the fact that the bin capacity represents a renewable resource at every
instant of time, and, consequently, items do not have to occupy the same units (of the bin)
over their entire lifespan, see Dell’Amico et al. (2020) and Martinovic et al. (2021) for a
more detailed explanation.

Although the TBPP is a fairly natural extension of the extensively studied BPP, its sci-
entific foundations have been driven mainly by previous research on the temporal knapsack
problem (TKP), see Bartlett et al. (2005), Caprara et al. (2013) and Gschwind and Irnich
(2017). Consequently, the TBPP was first described rather lately in the relevant literature
in an application-oriented publication from the field of computer science, see de Cauwer et
al. (2016). Nonetheless, addressing the exact solution of the TBPP has been successfully
advanced by two sophisticated approaches, namely a branch-and-bound algorithm (using
Ryan-Foster branching together with a wide variety of different bounds), see Dell’Amico et
al. (2020), and a layer-based combinatorial arcflow model of manageable exponential size,
see Martinovic et al. (2023). Surprisingly, searching the relevant literature for contributions
on heuristic methods for the TBPP does not immediately lead to the desired results. This is
not because such approaches do not exist at all, but rather because they were already dis-
cussed in early publications on the so-called dynamic bin packing problem about 40 years
ago (and thus well before the introduction of the term TBPP), see Coffman et al. (1983). As
a consequence of that, it seems that any follow-up article dealing with that topic, like Chan
et al. (2008, 2009), has stuck to this original terminology rather than harmonizing it with
the parallely evolving “temporal notations”. These publications mainly focussed on rather
simple heuristics the properties of which were already well studied for the classical BPP. To
be more precise, special emphasis was given to the following iterative online1 algorithms:

– any-fit (AF), scheduling the current item to an arbitrary open bin, see Chan et al. (2008),
– first-fit (FF), assigning the current item to the lowest-indexed open bin, see Chan et al.

(2008, 2009) and Coffman et al. (1983)
– best-fit (BF) andworst-fit (WF), trying to pack an item into the open bin with the currently

largest (BF) or smallest (WF) load, respectively, see Chan et al. (2008).

For all these heuristics, the quality of the feasible solutions obtained has been studied
thoroughly and, in many cases, tight approximation factors could be found. In this context,
it is remarkable that none of these publications is cited in the most recent TBPP literature,
such as Dell’Amico et al. (2020) and Martinovic et al. (2023), suggesting that the existence
of these theoretical contributions is largely unknown to the cutting and packing community.
For this reason, we will briefly summarize some of the results in the next section, also to
better display the differences that arise when so-called fire-ups are included.

1 An online algorithm has to make its decision just with the information available when placing the current
item. In particular, there is no further knowledge of which items will arrive next.
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Considering fire-ups in item-to-bin assignments is a relatively new aspect of modelling
and optimization introduced as the temporal bin packing problem with fire-ups (TBPP-FU)
in an application from the field of cloud computing, see Aydin et al. (2020). The basic idea is
that an unused server (or bin) can be temporarily put into some idle mode to save energy, see
Fettweis et al. (2019), but it has to be re-activated later if necessary.2 Any such transition from
an empty state into active operation is counted as one fire-up and it is rather energy-intense,
meaning that, as a second objective, the number of fire-ups should be kept small to operate
sustainably. Roughly spoken, a low number of fire-ups relates to continuous operation of the
servers or a scenario where servers can be switched off without being required again later.

Typically, a weighted sum method (scaling the number of fire-ups by some parameter
γ > 0) is used to address both goals together in one objective function, see Aydin et al.
(2020). More abstractly, using a server induces costs for the pure provision of the server
resources, but additionally also “temporal costs” depending on the operation mode of this
server (specified by the interaction of all items on the server). Note that the latter is different
to, for instance, the cost terms appearing in generalized bin packing applications in the
field of logistics, see Baldi et al. (2019) and Crainic et al. (2021), where typically the item-
dependent costs (of a schedule) are only influenced by the individual item-to-bin assignment
decisions (and not the overall packing pattern). A more detailed discussion of these and
other fundamental differences between the temporal problems considered here and those
encountered in the previously mentioned application is part of Sect. 4.

Although there is a quite strong relation between the TBPP-FU and the TBPP, research has
shown that important properties are lost as a consequence of the extended problem statement.
In the literature, the two main differences are given by:

– An optimal solution to the TBPP-FU typically uses more bins than required in an optimal
configurationwithout considering fire-ups, see Example 2.2 inAydin et al. (2020). Hence,
solving the TBPP does not necessarily lead to an upper bound on the number of bins
required in the TBPP-FU.

– In general, temporal decompositions cannot be applied to the TBPP-FU, see Theorem
3 in Martinovic and Strasdat (2022), meaning that an instance typically cannot be split
into independent subinstances of smaller size.

So, not only the solution sets of the two problems may be completely disjoint, but also
some fundamental techniques exploiting the structural properties of an instance cannot be
used to obtain these solutions in case of the TBPP-FU, in general. As a consequence of
that, research has mainly dealt with improving the ILP formulations (called M1 and M2)
proposed in Aydin et al. (2020) by various aspects like symmetry breaking conditions and
valid cuts, see Martinovic et al. (2021), as well as clique-based reduction methods or the
use of heuristic information, see Martinovic et al. (2022). For the latter, the constructive
look-ahead heuristic (CLH) introduced in Aydin et al. (2020) was used, since it is the only
approximation algorithm, known in the literature, specifically addressing the fire-up term in
the objective function. While empirically it was shown that lots of variables and constraints
can be removed based on the heuristic solution, its theoretical properties have not been dealt
with at all so far.

In this article, wewould therefore like to focus on the approximation guarantee of heuristic
approaches for the TBPP-FU.As already alluded to earlier, wewill start with a short repetition
of standard online algorithms known from the classic TBPP, collect their main theoretical
properties (→Sect. 2), and show that theirworst-case performance ratio is no longer bounded,

2 Note that similar ideas are also discussed in the field of thermal units, see Frangioni and Gentile (2006).
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when fire-ups have to be respected (→ Sect. 3). As a main contribution, we prove the same
result for CLH thus closing an open theoretical question for the only TBPP-FU heuristic
known in the literature (→ Sect. 3). Moreover, we also theoretically study further types of
constructive heuristics the ideas of which are based on neighboring bin packing applications
from the field of logistics (→ Sect. 4). In total, we prove that eight different heuristics for
the TBPP-FU possess an unbounded approximation guarantee. Altogether, our investigations
are not only the first to cover theoretical properties of heuristic approaches for the TBPP-
FU, but they do also establish a third fundamental difference between the problem under
consideration and the underlying TBPP, that is, the hardness of finding reasonably good
approximate solutions by (common) heuristics.

2 Heuristics for the TBPP: an overview and important results

Let us start with the following definition:

Definition 1 A tuple E = (n,C, c, s, e), where c, s, and e are n-dimensional vectors collect-
ing the input-data (item size, starting time, ending time) of the items, is called an instance
(of the TBPP).

Without loss of generality, we assume the items to be sortedwith respect to non-decreasing
starting times (breaking ties in an arbitrary way) and to satisfy ci ≤ C to ensure solvability.
For any given algorithm ALG, we define the (worst case) performance ratio σ := σ(ALG)

by

σ(ALG) := sup
E

ALG(E)

OPT (E)
,

with ALG(E) and OPT (E) denoting the heuristic and the optimal value (of E), respectively.
For a fixed instance E , the optimal value OPT (E) can either be determined by theoretical
arguments or by an exact formulation. For the sake of exposition, here we just mention the
textbook formulation given in Dell’Amico et al. (2020) as one example. It is based on classic
assignment variables xik ∈ {0, 1}, where xik = 1 holds if and only if bin k ∈ K (with K
denoting some index set of the bins) carries item i ∈ I . In addition, there are bin-dependent
variables zk ∈ {0, 1} with zk = 1 if and only if bin k is used. Then, we obtain the

Assignment Model for the TBPP

z =
∑

k∈K
zk → min

s.t.
∑

k∈K
xik = 1, i ∈ I , (1)

∑

i∈It
ci xik ≤ C · zk, t ∈ T , k ∈ K , (2)

xik ∈ {0, 1}, i ∈ I , k ∈ K , (3)

zk ∈ {0, 1}, k ∈ K . (4)

The objective function minimizes the total number of servers in use. Moreover, the two
sets of constraints make sure that any job is executed precisely once (see (1)) and that the
capacity of the servers is respected at any instant of time t ∈ T := ⋃

i∈I {si , ei } (see (2)).
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Additionally, the latter prevent jobs from being assigned to unused servers at all. Note that
It is an index set collecting the items i ∈ I with t ∈ [si , ei ), i.e., the items active at time
t ∈ T . Some improvements of this textbook model as well as further (more sophisticated)
exact approaches can be found in Dell’Amico et al. (2020) and Martinovic et al. (2023).

Although there is a certain body ofwork dealingwith heuristics for theTBPP, asmentioned
earlier, the fact that theywere all publishedwith respect to a completely different terminology
might be the reason why there is no link between the most recent literature dealing with
exact approaches (partly requiring and benefiting from heuristic information) and the former
theoretical results related to what was called dynamic bin packing. To close this gap, let us
briefly repeat the most important results obtained at that time.

The first heuristic proposed in the literature is of first-fit type, see Coffman et al. (1983),
and an interval for the performance ratio is given by the following result.

Theorem 1 (see Theorem 2 and Theorem 6 in Coffman et al. (1983)) We have

2.389 ≈ 43

18
≤ σ(FF) ≤ 5

2
+ 3

2
log

(√
13 − 1

2

)
≈ 2.897.

The lower bound also holds for any arbitrary online algorithm.

The proofs related to these bounds are very technical and shall therefore be omitted. Among
others, establishing the lower bound requires an instance construction containing eleven steps
(partly with several subcases). Note that, even if the true value of σ(FF) was not identified
in that early publication, the results obtained are nevertheless quite remarkable:

– First of all, we see that adding a temporal dimension to the classical BPP makes it much
harder to find a feasible solution of good quality with reasonable numerical efforts. By
that, we particularly mean that the known approximation factor of FF for the BPP [that
is, 1.7, see Dósa and Sgall (2013)] is possibly raised by up to more than one unit.

– Secondly, already this very first article dealing with heuristics for the TBPP was able to
establish a lower bound for a wide variety of approximation algorithms.

In Chan et al. (2008), the authors present new results for all the simple heuristics mentioned
in the above list, see Sect. 1, but some of their considerations are limited to unit fraction item
sizes (meaning that the bin capacity C is an integer multiple of any ci , i ∈ I ). In the cutting
and packing literature, such a scenario is sometimes also referred to as the divisible case, see
Coffman et al. (1987), Marcotte (1983) and Martinovic (2022).

Remark 1 Note that an upper bound for σ(AF) also holds for FF, BF, andWF, since the latter
are, in a sense, “special cases” that can occur in the random bin selection process of AF.

In particular, the following results are obtained:

Theorem 2 (see Theorem 7 and Theorem 8 in Chan et al. (2008))We have σ(WF) ≥ 3 and
σ(BF) ≥ 3.

Interestingly, in Theorem 6 in Chan et al. (2008), the tightness of these approximation fac-
tors (of BF and WF) for instances with unit fraction item sizes was shown. In fact, the
corresponding proof can be easily extended to arbitrary instances, so that even the following
result holds:

Theorem 3 We have σ(AF) ≤ 3.
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Fig. 1 An illustration of E(α, β) for α = 10 and β = 0

In the light of Remark 1, we now know that BF andWF do possess a worst-case performance
ratio of 3. This is a remarkable qualitative difference to the situation for the classic BPP due
to two reasons:

– Firstly, we see that there is no difference between BF and WF in terms of the approxi-
mation guarantee. For the BPP, BF is known to perform better than WF, see Dósa and
Sgall (2014), Johnson (1973).

– Secondly, FF is better than BF for the TBPP, whereas from a worst-case perspective both
of them were equivalent for the BPP, see Dósa and Sgall (2013), Dósa and Sgall (2014).

As a last point, we mention that for FF the following two improvements of the lower bounds
from Coffman et al. (1983) can be obtained:

Theorem 4 (see Theorem 1 and Theorem 5 in Chan et al. (2008)) We have σ(FF) ≥ 2.45.
Moreover, for the subclass of unit fraction item sizes the performance ratio of FF is bounded
above by a constant less than 2.5.

Theorem 5 (see Theorem 1 in Chan et al. (2009)) For any online algorithm, we have
σ(ALG) ≥ 5

2 .

Both together imply that approximating the TBPP is harder for arbitrary item sizes than for
unit fractions. However, the exact performance guarantee of FF is still not known in either
case.

3 Heuristics for the TBPP-FU: a worst-case analysis

Let us define a family of TBPP-FU instances E(α, β) parametrized byα, β ∈ Z+ withα ≥ 1.
More precisely, any such instance uses the bin capacityC = 2, some scaling parameterγ > 0,
and is given by the following items:

– two items (Type ’A’) with [sA, eA) = [1, 2α) and cA = 1,
– β items (Type ’B’) [sB , eB) = [1, 2α) and cB = 2,
– α items (Type ’C’, labelled from 1 to α) with [si , ei ) = [2i − 1, 2i) and ci = 1,

i = 1, . . . , α.

Note that γ does not affect the shape of the items, so that we do not have to specify this value
when illustrating an instance. Some exemplary configurations are given in Figs. 1 and 2.

Remark 2 Counterexamples in the field of the TBPP-FU often benefit from the interaction
of relatively few long jobs and many very short jobs, see also Example 2.2 in Aydin et al.
(2020), where an instance with C = 4 and three different item types (either short or long)
with ci ∈ {2, 3} is used to state that an optimal solution to the TBPP-FU does not have to
use the minimum number of bins possible. In fact, this is an important result, because it
demonstrates the first key difference between the TBPP and the TBPP-FU from a structural
(and algorithmic) point of view.
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Fig. 2 An illustration of E(α, β) for α = 8 and β = 2

With the help of these instances, we will show that any heuristic from the literature
proposed for the TBPP and the TBPP-FU can be arbitrarily bad. To this end, let us first
construct an optimal solution of E(α, β).

Theorem 6 For any feasible choice of (α, β) and any scaling parameter γ > 0 we have

OPT (E(α, β) = (1 + γ ) · (β + 2).

Proof Given the items available at t = 1, at least β + 2 bins are required in an optimal
solution. Hence, it suffices to find a feasible solution using precisely this number of bins
in continuous operation (i.e., with one fire-up per bin). To achieve this, we consider the
following assignment:

– Any of the β items of type ’B’ requires a separate bin, leaving no space for any other
item to be added.

– We pack one item of type ’A’ together with all the α items of type ’C’.
– The last bin just contains one item of type ’A’.

Altogether, this solution uses β + 2 bins each having exactly one fire-up (at the very begin-
ning). Hence, the optimal value is given by (1 + γ ) · (β + 2) and the claim is proved. �	

As a direct consequence of that, we can state:

Theorem 7 For any γ > 0, the worst-case performance ratio of AF, FF, BF, andWF (applied
to the TBPP-FU) is unbounded.

Proof Let us consider the instance E(α, 0) with some arbitrary γ > 0, see also Fig. 1. Then,
in any of the heuristics mentioned before the items are placed in the same way since there
is precisely one possibility in every iteration. Hence, either way, we end up with one bin
grouping the two items of type ’A’ (that is, one fire-up) and one bin collecting all items of
type ’C’ (that is, α fire-ups). Altogether, we have ALG(E(α, 0)) = 2+γ · (1+α), meaning
that the ratio ALG(E)/OPT (E) is unbounded when α tends to infinity. �	
Remark 3 Of course, the heuristics studied so far are not tailored to tackle the TBPP-FU
since only a part of the objective function (namely, the number of bins) is addressed in the
iterative decisions. However, in general, this fact alone is not sufficient to explain the resulting
change towards an unbounded approximation guarantee. For example, the same FF algorithm
applied to the problem of busy time minimization with bounded parallelism (i.e., an objective
function that no longer includes the number of bins as a cost term at all) would still yield a
4-approximation, see Flammini et al. (2010).
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Remarkably, the previous theorem also holds for any other iterative online algorithm, since
the reason for the bad performance is that the algorithm is not allowed to

(I) open an additional bin when the existing bins are able to accommodate the currently
considered item,

(II) consider several items (and their expected interaction) at once and place them together
on the most suitable server.

In fact, these restrictions cannot be relaxed either, because an online algorithm does not
know which items will follow in future (if any), and so – by way of example – there is no
basis for deciding whether to add an extra bin or not.

Although these critical features have not been identifiedor reported before, the constructive
look-ahead heuristic (CLH) proposed in Aydin et al. (2020), see Algorithm 1, was intuitively
equipped with some tailored modifications addressing issue (I). First of all, it is not an online
algorithm since it uses a certain amount of future items (specified by q) when making the
current decision. Moreover, and even more importantly, it allows to open an additional bin
at every stage to possibly get around the critical situation observed in the previous example.
Indeed, CLH would solve the instance displayed in Fig. 1 and any other instance E(α, 0)
correctly. Note that heuristics focussing on issue (II) from the above list will be discussed
later in Sect. 4.

Algorithm 1 CLH with look-ahead parameter q
Input: Item list ordered by non-decreasing starting times si , parameter q ∈ N.
1: Initialize the “empty” assignment A(0) := ∅.
2: for i ∈ I do
3: Assign item i to any open bin of A(i − 1) that can accommodate it and (as another alternative) also

to a new empty bin. By that we obtain the assignments A1 := A1(i), . . . ,Ap := Ap(i) for some
p := p(i) ≤ n.

4: Add the next q items (or less, if i + q > n) to each of these allocations in a best-fit fashion and obtain
the (updated) assignments Ã1, . . . , Ãp .

5: Choose one assignment from Ã1, . . . , Ãp with the lowest objective value (breaking ties with the lower
index s ∈ {1, . . . , p} of the assignment), say Ãopt , and define Aopt as A(i), that is, the starting point
of the next iteration.

6: end for
Output: heuristic solution with objective value CLHq (E).

Remark 4 Note that a deeper look into the future (i.e., a larger value of q) does not neces-
sarily lead to an equivalent or even better result. More formally, the property CLHq(E) ≥
CLHq+1(E) does not hold, in general. By way of example, let us consider the instance E
defined by n = 5, C = 2, γ = 1, and the following item characteristics

c = (1, 1, 1, 1, 2), s = (1, 1, 2, 4, 5), e = (6, 6, 3, 5, 6).

For q = 1, CLH finds an optimal solution using two bins and three fire-ups by forming the
bins B1 = {1, 2} and B2 = {3, 4, 5}. Contrary to that, q = 2 leads to a worse objective
value by requiring the three bins B̃1 = {1, 3, 4}, B̃2 = {2}, and B̃3 = {5}, together with
three fire-ups. Hence, there is no strict relation between q and the objective value obtained
by Algorithm 1.

By inserting sufficiently many items of type ’B’, as in Fig. 2, the possibilities to success-
fully look into the future can be limited, especially for the crucial decision how to deal with
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the first two items (of type ’A’). Hence, for the instance family denoted by E(α, β), we obtain
the following result, in which we refer to Algorithm 1 and a fixed choice of q by CLHq .

Theorem 8 For any feasible choice of (α, β) ∈ N×Z+, γ > 0, and q ∈ [0, β + 1+ α] we
have

CLHq(E(α, β)) =
{

β + 2 + γ · (β + 1 + α), if q ≤ β + 1,

(1 + γ ) · (β + 2), if q ≥ β + 2.

Proof Let E(α, β) be an instance constructed according to the rules stated at the beginning
of Sect. 3. First of all, note that the maximum lookahead for item i = 1 in Algorithm 1 is
equal to β + 1 + α, given the total number of items in the considered instance. Now let us
go through the two cases:

(I) For q ≤ β + 1, we have the following observations according to the rules given in
Algorithm 1:

– The first item of type ’A’ is scheduled to bin k = 1.
– The second item of type ’A’ can either enter bin k = 1 (Assignment A1) or open

a new bin k = 2 (Assignment A2). The decision between these two possibilities is
done by involving the next q ≤ β + 1 items in a best-fit fashion. For q ≤ β, the next
q items are all of type ’B’, and so they will consume precisely one bin in any feasible
assignment. Hence, in terms of the objective value, CLH will choose to pack both
items of type ’A’ into the same bin (that is, k = 1). Technically, for q = β + 1 there
is a tie between
– assigning the items of type ’A’ together in the same bin k = 1, any item of type

’B’ in a separate bin, and to open a new bin k = β + 2 for item i = 1
– assigning the items of type ’A’ to two different bins (k = 1 and k = 2), any item

of type ’B’ in a separate bin, and to add item i = 1 to (the lower-indexed) bin
k = 1.

Given the rules of CLH, the candidate assignment with the lower index (that is,
assignment A1) is chosen in such a situation. Hence, we end up with the same
configuration for any q ≤ β + 1.

– The next β items (all type ’B’ items) will always be assigned to a separate bin, since
they cannot be packed in any of the existing bins. Due to the same reason, the first
item of type ’C’ (labelled i = 1) has to open a new bin (with index k = β + 2).

– The remaining items of type ’C’ can either go to the same bin (as i = 1) or open an
additional one. However, the latter will lead to a larger objective value for any γ > 0.
Hence, they are all scheduled to the same bin k = β + 2.

Altogether, we have β + 1 bins with precisely one fire-up and one bin with α fire-ups,
summing up to β + 2 bins and β + 1 + α fire-ups. This proves the the first part of the
claim.

(II) For q ≥ β + 2, we have the following observations according to the rules given in
Algorithm 1:

– The first item of type ’A’ is scheduled to bin k = 1.
– The second item of type ’A’ can either enter bin k = 1 (Assignment A1) or open

a new bin k = 2 (Assignment A2). The decision between these two possibilities is
done by involving the next q ≥ β + 2 items (i.e., at least two items of type ’C’) in a
best-fit fashion.
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– Extending A1 leads to a situation, where all items of type ’B’ enter a separate
bin. Then, all remaing q − β items of type ’C’ are scheduled to a new bin (with
index k = β + 2).

– Extending A2 leads to a situation, where all items of type ’B’ enter a separate
bin as well. But then, all remaing q − β items of type ’C’ are scheduled to bin
number k = 1 (given the tie-break rule in CLH).

Obviously, the second variant gives the lower objective value, and hence the two
items of type ’A’ will be placed in different bins (k = 1 and k = 2).

– The next β items (all type ’B’ items) will always be assigned to a separate bin, since
they cannot be packed in any of the existing bins. Moreover, any item of type ’C’
will enter bin k = 1 according to the tie-break rule.

Altogether this produces β + 2 bins each of which requiring precisely one fire-up. In
fact, the optimal solution is found in this case, and the second part of the claim is proved.

�	
Obviously, both observations together ensure that for any possible q the heuristic solution
obtained by CLH can be arbitrarily bad.

Theorem 9 For any look-ahead parameter q ∈ N we have

σ
(
CLHq

) = sup
E

CLHq(E)

OPT (E)
= ∞.

In particular, this result is independent of the choice of γ > 0.

Proof For any fixed γ > 0, we can use the instances E(α, β) with β = q and consider the
case α → ∞. �	

Altogether, we see that the approximation guarantee ofCLH is unbounded for every choice
of q , too. In other terms, for any look-ahead parameter q an arbitrarily bad approximation
guarantee can be obtained rather easily. This is a quite remarkable result since CLH was able
to use information of future items to keep the objective value low, e.g., by already opening
an additional bin for the item to be scheduled right now.

4 An outlook: constructive heuristics from the field of logistics

As already indicated, a wide variety of general and also temporal extensions of the classical
bin packing problem has been studied in the literature, implying that the ideas of potentially
promising heuristics go far beyond the algorithmic concepts investigated so far. Since one of
the most important areas of bin packing applications is in the field of logistics, in this outlook
we would like to exemplarily discuss some constructive methods from Baldi et al. (2019)
and Crainic et al. (2021) and interpret their main ideas appropriately in terms of the TBPP-
FU. The latter is mandatory, since the problems considered therein, i.e., the generalized bin
packing problem with bin-dependent item profits (GBPPI) and the multi-period bin pack-
ing problem (MPBPP), while exhibiting a few of the modeling aspects relevant in temporal
bin packing, in fact differ rather strongly from our intended scenario. Before going into the
details, let us briefly introduce one possible compact formulation for the TBPP-FU, because
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this will help to better understand the relations to the other BPP variants considered in this
section. For the sake of exposition, here we just focus on the original version of model
M1, introduced in Aydin et al. (2020), but we also highlight that this formulation has seen
numerous improvements over the last couple of years, see Martinovic et al. (2021, 2022).
In addition to the ingredients already used for the TBPP model in Sect. 2, we require the
following two types of (temporal) variables:

– To display the status of server k ∈ K at time t ∈ T the decision variables ytk ∈ {0, 1}
will be used in the sense that ytk = 1 represents a positive load on server k at time t .

– The variables wtk ∈ {0, 1} with k ∈ K and t ∈ TS := ⋃
i∈I {si } contain information

about the fact whether server k has been switched on at time t or not.

Then, according to Aydin et al. (2020), we obtain the

Assignment Model 1 (M1) for the TBPP-FU

z = γ ·
∑

k∈K

∑

t∈TS
wtk +

∑

k∈K
zk → min

s.t. ytk ≤
∑

i∈It
ci · xik ≤ ytk · C, k ∈ K , t ∈ T , (5)

∑

k∈K
xik = 1, i ∈ I , (6)

xik ≤ ysi ,k, i ∈ I , k ∈ K , (7)

ytk ≤ zk, k ∈ K , t ∈ T , (8)

ytk − yt−1,k ≤ wtk, k ∈ K , t ∈ TS, (9)

xik ∈ {0, 1}, i ∈ I , k ∈ K , (10)

ytk ∈ {0, 1}, k ∈ K , t ∈ T , (11)

wtk ∈ {0, 1}, k ∈ K , t ∈ TS, (12)

zk ∈ {0, 1}, k ∈ K . (13)

The objective function minimizes a weighted sum of the number of all fire-ups (first term)
and all used servers (second term). Conditions (5) make sure that the capacity of any server
is respected at any instant of time. Moreover, at least one job must be allocated to an active
server. Constraints (6) again guarantee that each job will be executed on exactly one server.
Conditions (7–9) are used to couple the different types of variables. In particular, a fire-up
on server k ∈ K must be registered at time t ∈ TS if this server was inactive at the previous
instant of time (for simplicity referred to by yt−1,k = 0) and has been switched on at time t
(i.e., ytk = 1).

Now, let us move forward to a more detailed discussion of the BPP variants contained
in Baldi et al. (2019) and Crainic et al. (2021). Although the TBPP (and the TBPP-FU) can
be coarsely covered by the label 1/U/U/S/N[ITW] in the classification3scheme applied in

3 The different labels of the term 1/U/U/S/N[ITW] state that: the physical dimension of any item is equal to
1, the fixed costs of using a bin are uniform (U), the bin size is uniform (U), just a single (S) “category” of
items is considered (all items are mandatory and they have to be placed), a multi-period (N) time horizon is
given, and time windows are attached to the items (indicated by the additional attribute [ITW]).

123



492 Annals of Operations Research (2024) 333:481–499

Crainic et al. (2021), these two problems are different to those from Baldi et al. (2019) and
Crainic et al. (2021) due to the following main reasons:

– Both GBPPI andMPBPP rely significantly on the assumption of heterogeneous bins with
different capacities, but also different item-to-bin assignment costs. The latter, however,
differ significantly from considering fire-ups in our cost function, since these fire-up costs
cannot be determined by the individual item-to-bin assignment costs, but depend on the
overall pattern assigned to the respective bin.

– In both, the GBPPI and the MPBPP, not all items have to be assigned to the given bins. In
the case of the GBPPI, there are so-called non-compulsory items, while in the case of the
MPBPP, there is the possibility to use so-called spot-market bins for packing the given
items. Both possibilities do not comply with the specifications of temporal bin packing.

– In GBPPI there is no time dimension at all. Consequently, it is not a generalization of
TBPP.

– In MPBPP, a time dimension exists at least implicitly. This means that the assignment of
an item (to a bin) must happen within a certain time interval, but the items themselves do
not possess a lifespan in our sense (or formulated differently: reside only exactly one time
step in the bin). Furthermore, the bins in the MPBPP do not represent two-dimensional
objects (in the capacity-time plane), but may also only be used at an arbitrarily chosen
point in time (then as a one-dimensional bin). Consequently, the TBPP (and also the
TBPP-FU) are not special cases of the MPBPP.

All these reasons contribute to the fact that we cannot directly apply the heuristics pre-
sented in Baldi et al. (2019) and Crainic et al. (2021), because many of the sortings used
therein have no meaning in our setting, and the decisions to be made would have to be inter-
preted appropriately. Therefore, in transferring the heuristics from Baldi et al. (2019) and
Crainic et al. (2021), we restrict ourselves to essential core ideas that did not appear in our
previous approaches yet, but (as a result of the previous argumentation) we use heuristics
with sometimes significant modifications compared to the algorithms in Baldi et al. (2019)
and Crainic et al. (2021). Altogether, as a result of this literature study the following general
concepts have been identified as potentially promising:

– Lowest Cost (LC)with limited lookahead (in light of the heuristics called Best Profitable
and Best Assignment in Subsect. 4.1. in Baldi et al. (2019)).

– Bin Best (BB) (in light of bin-centric heuristics from Subsect. 5.2 in Crainic et al. (2021)).
– Best Clique (BC) (in light of decomposition-based heuristics from Sect. 6 in Crainic et

al. (2021)).

Let us start withLowest Cost (LC) fromBaldi et al. (2019), whichwouldwork as illustrated
in Algorithm 2 if applied to our scenario4:

4 In fact, the heuristics called Best Profitable and Best Assignment in Baldi et al. (2019) make use of some
problem-specific features (like different bin types, fixed item-to-bin assignment costs, non-compulsory items,
etc.)which are not relevant to the TBPP-FU introduced here.As a consequence of that, some steps of these algo-
rithms (like checking for cost-reducing packing pattern swaps between two used bins in the post-processing)
are not meaningful in our case, while other steps have to be interpreted “in the sense of the TBPP-FU cost
function”. In particular, there is no difference between BP and BA for the TBPP-FU.
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Algorithm 2 Lowest Cost (LC) for the TBPP-FU
Input: Item list ordered by non-decreasing starting times si , look-ahead parameter N ∈ N with N � n.
1: Place the first item in the first bin k = 1. Remove this item from I .
2: while I = ∅ do
3: Label the first N (or less, if |I | < N ) items from I by r = 1, . . . ,min{N , |I |}.
4: Execute the following step independently for any such item: Compute the bin B�(r) which is able to

accommodate item r while inducing the lowest costs (breaking ties by the lowest bin index). If there
is no such bin, pack item r to a new bin and call this bin B�(r).

5: Choose the item r� that generated the lowest costs (breaking ties by the lowest item index) in the
previous step and place it to the corresponding bin B�(r�). Remove item r� from I .

6: end while
Output: heuristic solution with objective value LCN (E).

In this algorithm, the item list is iteratively reduced by choosing an item which would
currently(!) add the lowest costs (includingboth, newfire-ups andnewservers) to the objective
function. To be more precise, this item has to be chosen from a sublist involving the next
N � n items, meaning that a typically rather limited look-ahead (see Baldi et al. (2019))
is allowed. Note that, in our scenario, we have to add tie-break rules, since there are only
three possible cost terms that can appear when adding one item to a bin. Indeed, an item can
locally generate no costs at all (neither causing a fire-up nor a new bin), γ cost units (causing
a fire-up in an existing bin), or (1 + γ ) cost units (opening a new bin).

Remark 5 Although there are at least two similarities between CLH and LC, namely a look-
ahead strategy and the best-cost argumentation, both heuristics are fundamentally different.
In particular, CLH always places the currently lowest-indexed item i . The decision where to
place this item is done by (at least implicitly) assigning the items from the look-ahead to the
existing servers. Contrary to that, LC just places some item r� from the currently considered
sublist (of length N ). Moreover, the remaining items from the look-ahead are not involved
(in the sense of being scheduled together with r�) when evaluating the costs of placing an
item.

The next result shows that the approximation guarantee of Algorithm 2 can be arbitrarily
bad.

Theorem 10 For any look-ahead parameter N ≥ 1 we have

σ (LCN ) = sup
E

LCN (E)

OPT (E)
= ∞.

In particular, this result is independent of the choice of γ > 0.

Proof By way of example, let us consider an instance E(α, β) with β ∈ Z+ and sufficiently
large α, so that N � n holds. Obviously, the first item of type ’A’ is placed in bin k = 1
as an initialization. When making the decision, where to place the second item of type ’A’,
we have to consider the next N items individually. This sublist of items contains one item of
type ’A’, possibly together with some items of type ’B’ and ’C’ (depending on the precise
choice of β and N ). Now, we have the following item-specific cost-minimal assignments:

– The second item of type ’A’ has to go in bin k = 1, where it adds zero units to the cost
function.

– Any item of type ’B’ has to open a new bin, producing 1 + γ cost units.
– Any item of type ’C’ is scheduled to k = 1 without generating further costs.
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According to the tie-break rules, the second item of type ’A’ is added to bin k = 1. Given the
characteristics of the remaining items, Algorithm 2 will schedule them in exactly the same
way as CLHq before. So, we end up with an objective value of β + 2 + γ (β + 1 + α). For
α → ∞ the claim follows. �	

While the heuristics studied so far have placed exactly one item per step and, thus, could
not predict the interaction with items yet to be placed in the future, we would now like to
consider two more approaches originating from concepts proposed in Crainic et al. (2021).
These approaches are offline algorithms, since they require knowledge of all input data (from
the beginning) and assign a subset of items in one or every iteration.

Let us start with a bin-oriented heuristics called Best Bin (BB), see Algorithm 3:

Algorithm 3 Best Bin (BB) for the TBPP-FU
Input: Instance E of the TBPP-FU.
1: while I = ∅ do
2: According to a decision criterion, find the best items-to-bin assignment (using the items of I ).
3: Remove the items required and update set I .
4: end while
Output: heuristic solution with objective value BB(E).

In fact, the above heuristic iteratively constructs promising packing patterns and fills
exactly one bin per iteration, meaning that a temporal knapsack problem with fire-ups is
considered in any step. Of course, there is wide variety of potential decision criteria which
could be used in the main part of Algorithm 3. According to the objective function of the
TBPP-FU, themost important objective surely is that any of the obtained items-to-bin assign-
ments should possess a (preferably) low number of fire-ups. However, this goal alone is not
sufficient to obtain good-quality solutions, in general. This is because, in any step, assign-
ing just one item to the currently considered bin would be optimal. Thus, it is important to
not only keep the number of fire-ups low, but to try to assign further items to the same bin
while not (substantially) changing its contribution to the overall objective function. Among
others, the latter can be achieved by adding (i) the total area of items assigned or (ii) the total
number of items assigned to the objective function and formulating the decision criterion (in
Algorithm 3) in a weighted-sum fashion. Given two weighting parameters K1, K2 ∈ (0, 1)
with K1 + K2 = 1, a more reasonable score to rank5 various items-to-bin assignments can
be defined as

K1 ·
∑

t∈T
wt − K2 ·

∑

i∈I
ci · (ei − si ) · xi or K1 ·

∑

t∈T
wt − K2 ·

∑

i∈I
xi ,

with xi ∈ {0, 1} denoting whether item i ∈ I is part of the allocation or not, and wt ∈ {0, 1}
stating whether a fire-up is perceived at starting time t ∈ TS . By that, the costs of fire-ups
are appropriately included in our heuristic. Moreover, using such a decision criterion, the
probability of obtaining single-item bins (by Algorithm 3) is reduced considerably.

The following result shows that also the bin-oriented heuristic can be arbitrarily bad.

Theorem 11 For any valid choice of the parameters K1 and K2, the worst-case performance
ratio of Algorithm 3 is unbounded, i.e.,

σ (BB) = sup
E

BB(E)

OPT (E)
= ∞.

5 Here, a lower score would mean that the packing pattern is more promising.
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Fig. 3 An illustration of E(p) for
p = 5

In particular, this result is independent of the choice of γ > 0.

Proof Let us consider a family of instances E(p) characterized by p ≥ 2 and defined in the
following way:

– We use a bin capacity of C = 2.
– We have 2p items (called type ’X’), consisting of p groups of two items each. The items

of group i ∈ {1, . . . , p} satisfy ci = 2 and [si , ei ) = [2i − 1, 2i).
– We have 2(p − 1) items (called type ’Y’), consisting of p − 1 groups of two items each.

The items of group i ∈ {1, . . . , p − 1} satisfy ci = 1 and [si , ei ) = [2i, 2i + 1).

For clarity, an example with p = 5 is illustrated in Fig. 3.
We now study the optimal and heuristic solution belonging to E(p):

– Obviously, an optimal solution is given by using two servers with one X-item of each
of the p groups. Moreover, on any of the two servers the temporal gap between two
successive X-items can be bridged by precisely one Y-item. This leads to two bin that
are executed without interruption, i.e., we have

OPT (E(p)) = 2 · (1 + γ ).

– When using Algorithm 3, the first bin would be filled completely (identical to the lower
half of Fig. 3), because this assignment just produces one fire-up, but uses the largest
possible area or the largest number of items, respectively. In any possible schedule,
the remaining items will produce exactly p fire-ups and use at least one additional bin
(possibly more bins, depending on the precise choice of K1 and K2), so we end up with

BB(E(p)) ≥ 2 + γ · (1 + p).

Altogether this leads to:

BB(E(p))

OPT (E(p))
≥ 2 + γ · (1 + p)

2 · (1 + γ )

which tends to infinity for p → ∞. This proves the claim. �	
The last heuristic to be discussed here is based on the idea of a temporal decomposition of

the considered instance. This concept of focussing on the items available at different points
in time is inspired by the investigations in Sect. 6 in Crainic et al. (2021), and one possible
implementation (in the sense of the TBPP-FU) can be found in Algorithm 4. Recall that TS
denotes the set of starting points of a given instance. To better understand the key ideas of
the heuristic, we first repeat an important definition from the TBPP literature.

Definition 2 (Dell’Amico et al. (2020)) Let E be an instance of the TBPP and let t1 < t2 ∈ TS
follow each other directly in the chronologically ordered set T of all time instants. If t2 is not
also an ending time, then t1 is dominated by t2. The set of all non-dominated starting times
is referred to as T nd

S ⊆ TS .
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Note that there is a bijection between the non-dominated starting times and the maximum
cliques of the interval graph belonging to E , see Martinovic et al. (2023), implying a canon-
ical order of the maximum cliques. Moreover, the latter can be efficiently determined in
polynomial time, see Biedl (2005) or Algorithm 1 in Furini (2011), for an implementation
with O(n2) time.

The details of the clique-based heuristic calledBest Clique (BC) can be found inAlgorithm
4:

Algorithm 4 Best Clique (BC) for the TBPP-FU
Input: Instance E of the TBPP-FU with an item list ordered by non-decreasing starting times si .
1: Compute the maximum cliques C = {C1,C2, . . . ,Cm } of E .
2: for all Cl ∈ C do
3: Solve the bin packing problem related to Cl . Let z

�
l denote the number of bins required to pack the

items of Cl .
4: end for
5: Let l� indicate the index of the clique having the largest value z�l (breaking ties by the lowest running index

l). Assign the items of Cl� according to the solution obtained by solving the bin packing problem.
6: Starting at Cl� , iteratively move to the left-neighbor clique (until there is no left neighbor anymore) and

assign the unpacked items (of that respective clique) to the existing bins in a best-cost fashion (breaking
ties by assigning the item in a best-fit fashion among the cost-minimal candidates, and, if a further criterion
is required, choosing the lowest-indexed bin). If an item does not fit into the existing bins, a new bin has
to be opened to accommodate this item.

7: Starting at Cl� , iteratively move to right-neighbor clique (until there is no right neighbor anymore) and
assign the unpacked items (of that respective clique) to the existing bins in a best-cost fashion (breaking
ties by assigning the item in a best-fit fashion among the cost-minimal candidates and, if a further criterion
is required, choosing the lowest-indexed bin). If an item does not fit into the existing bins, a new bin has
to be opened to accommodate this item.

Output: heuristic solution with objective value BC(E).

The idea of this algorithm is to first find themost restrictive point in time (i.e., themaximum
clique is likely to be responsible for opening the most bins) and to assign the items of that
clique in a locally optimal way. Then, in both directions, the new items of the neighboring
cliques are iteratively added to that fundament in a best-cost fashion trying to keep the number
of required bins and the number of fire-ups low. Again, the local(!) costs of adding an item to
some existing schedule can be 0 (item does neither open a new bin nor leads to a new fire-up
on the server), γ (item leads to an additional fire-up on the server), or 1 + γ (item is placed
on an empty server). As a consequence of that, a two-staged tie-break system was added to
Algorithm 4.

Remark 6 Given its focus on maximum cliques, the BC heuristic strongly exploits the tem-
poral structure of a given instance (e.g., by focussing on the non-dominated starting times).
Moreover, adding an item to a bin is done in a best-cost fashion, so that both aspects of
the objective function (number of bins and number of fire-ups) are always present in the
decision-making process.

The following result shows that also the clique-based heuristic can be arbitrarily bad.

Theorem 12 We have

σ (BC) = sup
E

BC(E)

OPT (E)
= ∞.

In particular, this result is independent of the choice of γ > 0.
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Proof Let us consider an instance Ẽ(α, 0) with C = 2 that is similar to E(α, 0) with α ≥ 2,
but where the first item of type ’C’ (labelled i = 1 in Fig. 1) is replaced by two items (referred
to as type ’D’) with ci = 2 and [si , ei ) = [1, 2).
– Since α ≥ 2 holds, an optimal solution requires four bins. Two of these bins contain

precisely one item of type ’D’. The third bin is filled with one item of type ’A’, and the
fourth bin contains the remaining items (one item of type ’A’ and all items of type ’C’).
In total, this leads to four bins with one fire-up each, i.e., we have

OPT (Ẽ(α, 0)) = 4 · (1 + γ ).

– Obviously, any odd t represents a non-dominated starting time (maximum clique). The
clique for t = 1 contains two items of types A and D each, the cliques for t = 1
contain one item of type ’C’ together with two items of type ’A’. Hence, C1 leads to
the largest objective value for the classic bin packing problem (z�1 = 3), and our starting
configuration consists of one bin (k = 1) with both items of type ’A’ (so this bin cannot
accept any further item), and two bins (k = 2, 3) with one item of type ’D’ each. Since
C1 was the left-most clique, we can just proceed in right direction. In every iteration (that
is, in any clique considered), precisely one item of type ’C’ is unassigned, and so it has
to enter the given bins in a best-cost fashion. According to the tie-break rules, all these
items are added to bin k = 2.
In the end, we have two bins with exactly one fire-up (k = 1 and k = 3) and one bin with
a total of α fire-ups (k = 2). This leads to

BC(Ẽ(α, 0)) = 3 + γ · (2 + α).

Hence, for α → ∞ the worst-case performance ratio becomes arbitrarily large, and the claim
is proved. �	

Altogether, we have shown that neither the ideas obtained from constructive heuristics
in the field of logistics lead to approaches with bounded approximation guarantee. This
observation is remarkable, since we have now dealt with a wide variety of online, semi-
online, and offline heuristics – and none of them was theoretically able to handle fire-ups
efficiently.

5 Conclusions

In this article, we considered heuristic approaches from the literature for two neighboring
optimization problems, the TBPP and the TBPP-FU. For the former, we briefly repeated some
important results obtained from publications on dynamic bin packing, because according
to our impression these contributions have not yet made their way into the most recent
scientific discussion on the TBPP. For the TBPP-FU, in a first step we were able to show
that the worst-case performance ratio of the former TBPP heuristics is unbounded when
fire-ups have to be considered. Having identified the critical features of these algorithms, we
observed that they are not present in the only heuristic specifically designed for the TBPP-
FU in the literature, that is, CLH from Aydin et al. (2020). However, despite the promising
modifications contained in CLH, the approximation guarantee of this heuristic is unbounded,
too. As an outlook, similar results were shown for further constructive heuristics the ideas
of which originating from a logistics application, see Baldi et al. (2019) and Crainic et al.
(2021). Remarkably, all results are independent of the scaling parameter γ and the look-ahead
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parameterq (resp. N ).Altogether, thiswork represents the first systematic framework to study
theoretical properties of heuristic approaches for the TBPP-FU, showing some previously
unknown differences between the two temporal problems under consideration. On the other
hand, our contributions inevitably lead to a new open challenge for future research in cutting
and packing, that is: How to construct a (preferably simple) heuristic for the TBPP-FU, the
performance ratio of which can be shown to be bounded?
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