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Abstract
The computational utility of inductive linearizations for binary quadratic programs
when combined with a mixed-integer programming solver is investigated for several
combinatorial optimization problems and established benchmark instances.

Keywords Non-linear programming · Binary quadratic programming ·
Mixed-integer programming · Linearization

Mathematics Subject Classification 68R01 · 90C05 · 90C09 · 90C10 · 90C11 ·
90C20 · 90C30

1 Introduction

Given a binary quadratic program (BQP) comprising linear (and possibly quadratic)
constraints, the inductive linearization technique (Mallach 2021) may serve as a com-
putationally attractive compromise between the well-known “standard” linearization
as of Glover and Woolsey (1974), and a complete application of the Reformulation
Linearization Technique [RLT, see e.g. Adams and Sherali (1999, 1986)]. In sev-
eral relevant cases, inductive linearizations are more constraint-side compact than the
“standard” linearization and provide a continuous relaxation that is at least as tight.
Prominent combinatorial optimization problemswhere this applies are for instance the
QuadraticAssignment, theQuadraticMatching, and theQuadratic Traveling Salesman
Problem.

Given this theoretical basis, the central contribution of this paper is a systematic
computational study in order to address a number of research questions: Does the
mentioned symbiosis of compactness and continuous relaxation strength translate
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48 S. Mallach

into a faster solution time of the corresponding mixed-integer programs? How do the
obtained relaxation bounds compare with the “standard” linearization and the RLT at a
broader scope? For which problem structures is the inductive linearization technique
(not) well-suited and why? Can an inductive linearization be obtained quickly in
practice, and if so, how?

To this end,we investigate the performance of the inductive aswell as the “standard”
linearization in combination with (and in comparison to) a professional mixed-integer
programming solver on various BQPs with linear constraints. More precisely, we look
at theQuadraticAssignment Problem, theQuadraticKnapsack Problem, theQuadratic
Matching Problem, the Quadratic Shortest Path Problem, and on further instances of
the well-established QPLIB1 and MINLPLib.2 Besides that, an algorithmic frame to
derive inductive linearizations in practice, and thus complementing the mixed-integer
programming (MIP) approach from Mallach (2021), is presented.

The outline of this paper is as follows: In the beginning of Sect. 2, we briefly review
themain concepts of the inductive linearization technique and then strongly emphasize
on its practical application. In Sect. 3, we present the aforementioned applications
along with the respective problem formulations as well as the benchmark instances
used for the computational study, and a detailed discussion of the respective results.
Finally, a conclusion is given in Sect. 4.

2 Inductive linearization

The inductive linearization technique addresses optimization problems adhering to or
comprising the structure

min xTC0x + cTx

s.t. xTCk x + gT
k x ≤ βk k = 1, . . . , m Q

Ax � b

x ∈ {0, 1}n,

where, forn, mL ∈ N\{0} andm Q ∈ N, thematrices A ∈ R
mL×n aswell asCk ∈ R

n×n

for k ∈ {0, . . . , m Q}, the vectors gk ∈ R
n for k ∈ {1, . . . , m Q} and c ∈ R

n , and finally
the scalars b aswell asβk ∈ R for k ∈ {1, . . . , m Q} are given as input data. Throughout
this paper, we will denote by N := {1, . . . , n} the index set of the binary variables
x ∈ {0, 1}n . Moreover, the set of products P truly present in the problem is determined
by the the objective function and the quadratic restrictions as follows:

P := {(i, j) ⊆ N × N | ∃ k ∈ {0, . . . , m Q} : Cki j �= 0}
Naturally, we assume that P is non-empty and, since we have for binary solutions

that xi x j = x j xi for i, j ∈ N , i �= j , and xi = x2i for all i ∈ N , we assume further
that the matrices Ck , k ∈ {0, . . . , m Q}, are strictly upper triangular so that we have
i < j for each (i, j) ∈ P .

1 https://qplib.zib.de.
2 https://www.minlplib.org.
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Inductive linearization for binary quadratic programs with… 49

While quadratic constraints may or may not be present, some linear constraints
on the binary variables are actually necessary to apply the inductive linearization
technique. We assume w.l.o.g. that these are given as equations and less-or-equal
inequalities, hence denoted Ax � b. More precisely, the requirement is that each
binary variable xi , i ∈ N , being a factor of a product in P (to be linearized with
the technique proposed), appears in at least one of these constraints (with a non-zero
coefficient). Clearly, this can be assumed (or established) for a binary problemwithout
loss of generality. Indeed, if there is a factor xi , i ∈ N , that is entirely free w.r.t. the
linear constraints then in principle any linear equation or less-or-equal inequality may
be employed that is valid for its feasible set (even, though rather not so desirable,
xi ≤ 1). Moreover, if some factor is left free w.r.t. the linear constraints, then this
does not affect a successful inductive linearization of other products that do have
linearly constrained factors. For simplicity, we thus assume from now on that all
factors appearing in P are linearly constrained.

The inductive linearization technique is a generalization of a principle proposed
by Liberti (2007) for the special case of equations with right hand side and left hand
side coefficients equal to one, and of its later revision (cf. Mallach (2018)). In his
original article, Liberti coined the name “compact linearization” because it typically
adds fewer constraints to the mentioned problems than the “standard” linearization as
of Glover and Woolsey (1974). For the problem under consideration, a general form
of the latter reads:

min dT y + cTx

s.t. hT
k y + gT

k x ≤ βk k = 1, . . . , m Q

Ax � b (1)

yi j − xi ≤ 0 (i, j) ∈ P (2)

yi j − x j ≤ 0 (i, j) ∈ P (3)

xi + x j − yi j ≤ 1 (i, j) ∈ P (4)

y ≥ 0

x ∈ {0, 1}n

With m := |P|, we here use y ∈ R
m to denote the linearized products, d ∈ R

m

to denote their corresponding objective coefficients, and hk ∈ R
m , k = 1, . . . , m Q ,

to express their coefficients in the original quadratic constraints. Thereby, we use the
subscript notation yi j for i < j and analogously definedi j = (C0)i j andhki j = (Ck)i j .
Of course, if di j < 0 (4) can be omitted, and if di j > 0 (2) and (3) can be omitted for
(i, j) ∈ P .

As we will see, in many cases, inductive linearizations are constraint-side compact
aswell.However, this cannot be guaranteed for anykindofBQPwith linear constraints.
Moreover, depending on how the method is applied, more than |P| linearization vari-
ables may be induced (although this can, in principle, always be circumvented as
described in Sect. 2.3). Therefore, and to have a clear distinction from other lineariza-
tions being called “compact”, as well as to emphasize that the proposed method aims
at “inducing” the products associated to the set P by multiplying original constraints
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50 S. Mallach

with original variables, the technique is referred to as “inductive linearization” since
its generalization first presented in Mallach (2021).

2.1 Mathematical derivation of inductive linearizations

Given a problem as introduced at the beginning of this section, suppose that we identify
aworking (sub-)set of the linear constraints Ax � b to actually induce the linearization
with. Let us denote the index set of the selected equations and inequalities with KE

and K I , respectively. That is, we consider the constraints

∑

i∈Ik

ai
k xi = bk for all k ∈ KE (5)

∑

i∈Ik

ai
k xi ≤ bk for all k ∈ K I (6)

where Ik := {i ∈ N | ai
k �= 0} denotes the respective support index set for each

k ∈ KE or k ∈ K I .
As already mentioned, we require w.l.o.g. a choice of K := KE ∪ K I such that

there exist indices k, � ∈ K with i ∈ Ik and j ∈ I� for all (i, j) ∈ P . To refer to the
respective constraints, we will use the notation K (i) := {k ∈ K : i ∈ Ik}, as well
as KE (i) and K I (i) analogously defined if more preciseness is in order. Moreover,
although we do not require this for the original problem, let us temporarily assume in
addition that bk > 0 for all k ∈ K and ai

k > 0 for all i ∈ Ik , k ∈ K . We will elaborate
in Sect. 2.4 on how to handle constraints not fulfilling these prerequisites.

The first step of the inductive linearization approach nowassociates to each equation
k ∈ KE another index set M E

k ⊆ N that is supposed to specify original variables used
as multipliers. To each inequality k ∈ K I , two such index sets M+

k , M−
k ⊆ N are

associated. The corresponding interpretation is as follows: If j ∈ M E
k ( j ∈ M+

k )
the equation k ∈ KE (inequality k ∈ K I ) is multiplied by x j , and if j ∈ M−

k , the
inequality k ∈ K I is multiplied by (1 − x j ).

This leads to the following set of first-level RLT constraints:

∑

i∈Ik

ai
k xi x j = bk x j for all j ∈ M E

k , k ∈ KE (7)

∑

i∈Ik

ai
k xi x j ≤ bk x j for all j ∈ M+

k , k ∈ K I (8)

∑

i∈Ik

ai
k xi (1 − x j ) ≤ bk(1 − x j ) for all j ∈ M−

k , k ∈ K I (9)

Let Mk := M E
k if k ∈ KE , and Mk := M+

k ∪ M−
k if k ∈ K I . Then

Q := {(i, j) | i ≤ j and ∃k ∈ K : i ∈ Ik and j ∈ Mk , or j ∈ Ik and i ∈ Mk}

is the index set of the products induced by (7)–(9).
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Inductive linearization for binary quadratic programs with… 51

For ease of reference, we also define

M :=
⋃

k∈K

Mk

which is to be regarded as a multiset of multiplier indices.

Remark 1 In the general approach described above, the induced set Q may contain
tuples that correspond to squares. It is a simple and worthwhile optimization to replace
these by their linear counterparts before actually deriving the respective linearization
constraint (see also Sect. 2.2 and Mallach (2021)).

If we now rewrite (7)–(9) by substituting for each (i, j) ∈ Q the product xi x j by
a continuous linearization variable yi j that has explicit lower and upper bounds, i.e.,
0 ≤ yi j ≤ 1, we obtain the linearization constraints:

∑

i∈Ik ,(i, j)∈Q

ai
k yi j +

∑

i∈Ik ,( j,i)∈Q

ai
k y ji = bk x j for all j ∈ M E

k , k ∈ KE (10)

∑

i∈Ik ,(i, j)∈Q

ai
k yi j +

∑

i∈Ik ,( j,i)∈Q

ai
k y ji ≤ bk x j for all j ∈ M+

k , k ∈ K I (11)

∑

i∈Ik ,(i, j)∈Q

ai
k(xi−yi j ) +

∑

i∈Ik ,( j,i)∈Q

ai
k(xi−y ji ) ≤ bk(1−x j ) for all j ∈ M−

k , k ∈ K I (12)

Now, as is expressed by the following theorem, for all the induced (i, j) ∈ Q and
binary xi , x j , one has yi j = xi x j if the following three consistency conditions are
met:

Condition 1 There is a k ∈ K (i) such that j ∈ M E
k or j ∈ M+

k , respectively.

Condition 2 There is a k ∈ K ( j) such that i ∈ M E
k or i ∈ M+

k , respectively.

Condition 3 There is a k ∈ K (i) such that j ∈ M E
k or j ∈ M−

k , respectively, or a
k ∈ K ( j) such that i ∈ M E

k or i ∈ M−
k , respectively.

Theorem 4 [Mallach (2021)] For any integer solution x ∈ {0, 1}n, the linearization
constraints (10)–(12) imply yi j = xi x j for all (i, j) ∈ Q if and only if Conditions 1–3
are satisfied.

So altogether, if we choose M consistently in terms of the three conditions and such
that Q contains P , we obtain a linearization for our original problem. In fact, at the
potential expense of losing some continuous relaxation strength, it is always possible
to have Q = P as is described in Sect. 2.3.
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52 S. Mallach

2.2 Linear relaxation strength of inductive linearizations

The case where the constraint set K employed satisfies bk = 1 for all k ∈ K , and
ai

k = 1 for all i ∈ Ik is an example of practical relevancewhere the linear programming
relaxation obtained from an inductive linearization is provably at least as tight as the
one obtained from the “standard” linearization. The same is true for equations with
a right hand side of two and zero–one left hand side coefficients if these equations
are multiplied by all variables on their left hand sides (i.e., Mk = Ik) and squares are
ruled out.

More generally, the corresponding proofs in Mallach (2021) make apparent that
the tightness of the relaxations of inductively linearized BQPs relates (besides other
criteria) to the ratio between the right hand side and the left hand side coefficients. It
also provides an example case where an inductive linearization provably has a strictly
stronger continuous relaxation than the “standard” linearization.

In our computational study, we will identify experimentally further cases where
this relation is achieved and further investigate how far the bounds deviate in practice.

2.3 Practical derivation of inductive linearizations and their compactness

Given a problem formulation on sheet, a multiset M that induces a set Q ⊇ P and
establishes a consistent linearization can often be derived by inspection once the nec-
essary implications imposed by Conditions 1–3 are understood (see also Sect. 2.4).
For instance if the factor pairs in P or the constraints at hand have a complicated
structure, it may nevertheless be non-trivial to find a consistent combination of con-
straints andmultipliers, especially if the outcome is supposed to be compact or to meet
other objectives. Moreover, an automated derivation is desirable for larger problem
instances and allows for a linearization framework to be coupled with a mixed-integer
programming solver.

Concerning the computation of an inductive linearization, it has been shown in
Mallach (2021) that the associated optimization problem (allowing e.g. to derive a lin-
earization that is as compact as possible in termsof additional variables and constraints)
is NP-hard. This result is however rather of theoretic prominence as it considers the
general case of any possible input program whereas common inputs are usually struc-
tured and the associated “covering problems” turn out to be often simple to solve.
Indeed they can frequently be solved even exactly, using e.g. a mixed-integer program
or combinatorial polynomial-time algorithms for more specifically structured BQPs.
Typically, the number of candidate constraints to induce a certain product, respec-
tively to satisfy one of the three conditions, is anyway rather small. Likewise, for
many applications, the complexity can also be reduced by carefully preselecting the
set K of original constraints considered for inductions.

It is further apparent from the hardness proof as well as the mixed-integer program
in Mallach (2021) that the compactness of the resulting linearization is influenced by
the support of the employed constraint set K and its relation to the factor pairs given by
P . In this context, it is also worth to mention that the presolve routines of a MIP solver
may well eliminate some of the variables and constraints imposed by an inductive
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Inductive linearization for binary quadratic programs with… 53

linearization that is not “most compact”. Moreover, a few additional constraints may
sometimes improve the relaxation strength, so compactness need not necessarily be
an ultimate goal.

Notwithstanding, it is also possible to eliminate (all) variables in Q\P if (all of)
these have been generated from inequalities (possibly obtained from equations in a
preprocessing step). As is clear from inequalities (11) and (12), removing summands
on their left hand sides will neither harm their validity nor their necessary implications
on the respective remaining linearization variables. In general, however, the feasible
region of the continuous relaxation may of course be enlarged by this procedure
(referred to as weakened inductive linearization in Sect. 3).

As a particularly practical approach to derive inductive linearizations, we present
(the heuristic) Algorithm 1 which is an extension of a special-case combinatorial
algorithm fromMallach (2018) to the general case. It also serves to derive the inductive
linearizations during the computational study in Sect. 3.

Algorithm 1Main routine of the heuristic to construct an inductive linearization.

function ConstructSets(Sets P , K , w)
for all k ∈ K E do

M E
k ← ∅

for all k ∈ K I do
M+

k ← ∅; M−
k ← ∅

Q ← P
Qnew ← P
while ∅ �= Qadd ← Append(Q, Qnew, K , M) do

Q ← Q ∪ Qadd
Qnew ← Qadd

return Q and M

Algorithm 1 consists of two simple components. First, the major routine Con-
structSets which is to be supplied with the input sets P and K as well as weights
wE

k j , respectivelyw+
k j andw−

k j , indicating a “cost” of creating a linearization constraint
bymultiplying constraint k ∈ K with original variable x j , respectively 1−x j , just as in
the mixed-integer program inMallach (2021). The major routine then invokes the sub-
routineAppend (listed as Algorithm 2) which extends a partial inductive linearization
represented by Q and M . It does so by inducing additional linearization constraints
in order to satisfy Conditions 1–3 for the variables Qnew added in the previous iter-
ation (initially, Qnew = P), and by appending the variables Qadd newly induced
when creating these linearization constraints. Algorithm 1 terminates if a steady state
is reached, i.e., if no further constraint-factor multiplications are necessary to satisfy
Conditions 1–3 for the current Q, which is then, together with the constraint multiplier
set M , returned.
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54 S. Mallach

Algorithm 2 Subroutine used by the heuristic to construct an inductive linearization.

function Append(Sets Q, Qnew, K , M , w)
Qadd ← ∅
for all (i, j) ∈ Qnew do

if j /∈ M E
k ∀ k ∈ KE (i) ∧ j /∈ M+

k ∀ k ∈ K I (i) then � If Condition 1 is not satisfied

k̄ ← nil; w̄ ← 0
if KE (i) �= ∅ then

k̄ ← argmink∈K E (i) wE
k j ; w̄ ← wE

k̄ j

if K I (i) �= ∅ ∧ (k̄ = nil ∨ mink∈K I (i) w+
k j < w̄) then

k̄ ← argmink∈K I (i) w+
k j

M+
k̄

← M+
k̄

∪ { j}
else

M E
k̄

← M E
k̄

∪ { j}
for all a ∈ Ik̄ do

if a ≤ j ∧ (a, j) /∈ Q ∪ Qadd then Qadd ← Qadd ∪ {(a, j)}
else if a > j ∧ ( j, a) /∈ Q ∪ Qadd then Qadd ← Qadd ∪ {( j, a)}

if i /∈ M E
�

∀ � ∈ K E ( j) ∧ i /∈ M+
�

∀ � ∈ K I ( j) then � If Condition 2 is not satisfied

�̄ ← nil; w̄ ← 0
if KE ( j) �= ∅ then

�̄ ← argmin�∈K E ( j) wE
�i ; w̄ ← wE

�̄i

if K I ( j) �= ∅ ∧ (�̄ = nil ∨ min�∈K I ( j) w+
�i < w̄) then

�̄ ← argmin�∈K I ( j) w+
�i

M+
�̄

← M+
�̄

∪ {i}
else

M E
�̄

← M E
�̄

∪ {i}
for all a ∈ I�̄ do

if a ≤ i ∧ (a, i) /∈ Q ∪ Qadd then Qadd ← Qadd ∪ {(a, i)}
else if a > i ∧ (i, a) /∈ Q ∪ Qadd then Qadd ← Qadd ∪ {(i, a)}

if j /∈ Mk ∀ k ∈ KE (i) ∧ j /∈ M−
k ∀ k ∈ K I (i) ∧ i /∈ M� ∀ � ∈ KE ( j) ∧ i /∈ M−

�
∀ � ∈ K I ( j)

then
� If Condition 3 is not satisfied

k̄ ← nil; �̄ ← nil; w̄1 ← 0; w̄2 ← 0
if KE (i) �= ∅ then

k̄ ← argmink∈K E (i) wE
k j ; w̄1 ← wE

k̄ j

if K I (i) �= ∅ ∧ (k̄ = nil ∨ mink∈K I (i) w−
k j < w̄1) then

k̄ ← argmink∈K I (i) w−
k j ; w̄1 ← w−

k̄ j

if KE ( j) �= ∅ then
�̄ ← argmin�∈K E ( j) wE

�i ; w̄2 ← wE
�̄i

if K I ( j) �= ∅ ∧ (�̄ = nil ∨ min�∈K I ( j) w−
�i < w̄2) then

�̄ ← argmin�∈K I ( j) w−
�i ; w̄2 ← w−

�̄i

if w̄1 ≤ w̄2 then
if k̄ ∈ KE (i) then

M E
k̄

← M E
k̄

∪ { j}
else

M−
k̄

← M−
k̄

∪ { j}
for all a ∈ Ik̄ do

if a ≤ j ∧ (a, j) /∈ Q ∪ Qadd then Qadd ← Qadd ∪ {(a, j)}
else if a > j ∧ ( j, a) /∈ Q ∪ Qadd then Qadd ← Qadd ∪ {( j, a)}
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Inductive linearization for binary quadratic programs with… 55

else
if �̄ ∈ K E ( j) then

M E
�̄

← M E
�̄

∪ {i}
else

M−
�̄

← M−
�̄

∪ {i}
for all a ∈ I�̄ do

if a ≤ i ∧ (a, i) /∈ Q ∪ Qadd then Qadd ← Qadd ∪ {(a, i)}
else if a > i ∧ (i, a) /∈ Q ∪ Qadd then Qadd ← Qadd ∪ {(i, a)}

return Qadd

2.4 Normalization, inductive linearizations with general linear constraint sets

We shall now discuss how to deal with the case that some (or all) of the original
constraints k ∈ K to be employed, i.e., (5) and (6), do not satisfy bk > 0 and ai

k > 0
for all i ∈ Ik . To this end, suppose that

∑

i∈Ik

ai
k xi � bk

is an equation or ≤-inequality in K , and let I −
k ⊆ Ik be the set of variable indices

such that ai
k < 0 for each i ∈ I −

k . For ease of notation, define also I +
k = Ik\I −

k .
The explicit approach (see also, e.g. Hammer et al. (1984)) to deal with such con-

straints is to define a new complement variable x̄i for each i ∈ I −
k , k ∈ K , along with

the corresponding equation:

xi + x̄i = 1 (13)

Apparently, the equations (13) have only positive coefficients on the left hand side
and a positive right hand side. Moreover, we may now replace any of the original
constraints with

∑

i∈I +
k

ai
k xi +

∑

i∈I −
k

ai
k(1 − x̄i ) � bk

⇔
∑

i∈I +
k

ai
k xi +

∑

i∈I −
k

−ai
k x̄i � bk +

∑

i∈I −
k

−ai
k

where the term −∑
i∈I −

k
ai

k on the left and on the right hand side is non-negative
as well.

Carrying out this procedure for every equation or inequality with negative coeffi-
cients on the left hand side clearly gives a normalized system with only non-negative
coefficients on the left. Now if any of the resulting right hand sides is negative, the
system is obviously infeasible. Furthermore, if any of them is zero then the values of
all the variables on the respective left hand side can be fixed, and these variables can
thus be removed from the formulation. We conclude that the prerequisites bk > 0 for
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56 S. Mallach

all k ∈ K and ai
k > 0 for all i ∈ Ik , k ∈ K , can therefore be satisfied without loss of

generality.
From a computational point of view, the explicit approach however has some draw-

backs. The first is clearly that it may add up to n variables and equations while it is
not clear a priori which of the resulting normalized constraints are eventually at all
employed for multiplications. Moreover, the additional equations (13) are rather unde-
sirable candidates for multiplications as the resulting linearization constraints provide
a linkage of linearization and original variables that is similarly poor as in case of the
“standard” linearization.

A more economical strategy is to keep the original constraints as they are, and to
consider them for multiplication with each x j (and (1− x j ) for case (9)) and each x̄ j

(and (1 − x̄ j ) for case (9)) without ever truly introducing the complement variables.
Instead, the idea of this implicit approach is to choose, for each i ∈ Ik , the “right” of
the four possible combinations xi x j , x̄i x j , xi x̄ j , and x̄i x̄ j to be induced, such that the
respective linearization constraint imposes the necessary implications on their value.

More precisely, as can be verified from the proof of Theorem 4 in Mallach (2021),
the inequalities (8) (respectively their linearized counterparts (11)) have the effect
of enforcing all the products (respectively, linearization variables) on the left hand
side to be zero if the multiplier x j is zero. Similarly, the constraints (9) (respectively,
(12)) enforce any xi x j (yi j ) on the left hand side to coincide with xi if x j is one.
The equations (7) respectively (10) directly impose both relationships at once. These
implications are exactly what is established by Conditions 1–3 if the coefficients and
right hand sides of the original constraints are non-negative respectively positive.

To achieve the same in the general case, one has to replace (8) by

∑

i∈I +
k

ai
k xi x j +

∑

i∈I −
k

ai
k(1 − x̄i )x j ≤ bk x j

⇔
∑

i∈I +
k

ai
k xi x j +

∑

i∈I −
k

−ai
k x̄i x j ≤

⎛

⎜⎝bk +
∑

i∈I −
k

−ai
k

⎞

⎟⎠ x j

respectively by

∑

i∈I +
k

ai
k xi x̄ j +

∑

i∈I −
k

ai
k(1 − x̄i )x̄ j ≤ bk x̄ j

⇔
∑

i∈I +
k

ai
k xi x̄ j +

∑

i∈I −
k

−ai
k x̄i x̄ j ≤

⎛

⎜⎝bk +
∑

i∈I −
k

−ai
k

⎞

⎟⎠ −
⎛

⎜⎝bk +
∑

i∈I −
k

−ai
k

⎞

⎟⎠ x j .

The Eq. (7) are to be replaced analogously. It is easy to see that, as desired, the
linearization variables to be substituted for the products are forced to zero whenever
the multiplier x j respectively x̄ j is zero, and in particular that this effect is preserved
when re-substituting the conceptual x̄ j by (1 − x j ) in linear terms.
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Further, the inequalities (9) need to be replaced by

∑

i∈I +
k

ai
k xi (1 − x j ) +

∑

i∈I −
k

ai
k(1 − x̄i )(1 − x j ) ≤ bk(1 − x j )

⇔
∑

i∈I +
k

ai
k(xi − xi x j ) +

∑

i∈I −
k

ai
k(xi + x̄i x j ) ≤ bk −

⎛

⎜⎝bk +
∑

i∈I −
k

−ai
k

⎞

⎟⎠ x j

respectively by

∑

i∈I +
k

ai
k xi (1 − x̄ j ) +

∑

i∈I −
k

(ai
k(1 − x̄i ))(1 − x̄ j ) ≤ bk(1 − x̄ j )

⇔
∑

i∈I +
k

ai
k(xi − xi x̄ j ) +

∑

i∈I −
k

ai
k(xi + x̄i x̄ j ) ≤

⎛

⎜⎝bk +
∑

i∈I −
k

−ai
k

⎞

⎟⎠ x j +
∑

i∈I −
k

ai
k .

Here, one may again verify that, if x j respectively x̄ j is equal to one, then the
inequalities enforce the linearization variables to be substituted for the products to
equal xi if i ∈ I +

k and to equal (1 − xi ) if i ∈ I −
k , just as desired. Again, this effect

is preserved when re-substituting the conceptual x̄i or x̄ j by respectively (1− xi ) and
(1 − x j ) in linear expressions.

As a result, we achieved that complement variables and the associated equations
need not be introduced. Instead, it now suffices to enforce for each (i, j) ∈ Q that
a linearization variable is induced for at least one of the products xi x j , x̄i x j , xi x̄ j ,
and x̄i x̄ j , and that its associated Conditions 1–3 are satisfied by means of the adapted
linearization constraints above. Given this situation, original terms involving other
products that refer to the same index pair (such as products xi x j present in the objective
function or in quadratic constraints but without an associated linearization variable
induced) may then be substituted for based on the following relations:

xi x j = x j − x̄i x j ⇔ x̄i x j = x j − xi x j

xi x j = xi − xi x̄ j ⇔ xi x̄ j = xi − xi x j

xi x j = x̄i x̄ j + xi + x j − 1 ⇔ x̄i x̄ j = xi x j − xi − x j + 1

Remark 2 By contrast, back-substitution into the adapted linearization constraintsmay
invalidate the construction derived above and thus the linearization. It is crucial that
the satisfaction of the consistency conditions of at least one linearization variable w.r.t.
an index pair remains unaffected by such substitutions, as only this ensures the validity
of the latter in arrears.

We conclude that although the handling of negative factor coefficients becomes
almost oblivious with the implicit approach, the complexity of deriving an inductive
linearization still increases with their presence in practice, and the resulting lineariza-
tions may be less compact as multiple linearization variables w.r.t. the same index pair
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may be induced along with further corresponding linearization constraints. Neverthe-
less, the opportunity to eliminate any linearization variable in Q\P as described in
Sect. 2.3 is retained. Moreover, besides splitting equations, one may consider both an
original equation and its equivalent resulting from a multiplication with −1 as candi-
dates to create linearization constraints (and to induce linearization variables) if the
original one has positive and negative coefficients on its left hand side.

3 A computational study

Some evidence for the computational utility of inductive linearizations is already avail-
able in the literature for specific applications [e.g. (Davidović et al. 2007; Liberti 2007;
Mallach 2017, 2018, 2019)]. Here, we provide a systematic study and a structured
overview of computational results for various well-known and well-suited as well as
not so well-suited binary quadratic programs with linear constraints.

To this end, we identified a number of prominent combinatorial optimization prob-
lems and benchmark instances commonly used by the community in order to evaluate
inductive linearizations in comparison with “standard” linearizations. More precisely,
we consider and distinguish the following linearizations:

• An inductive linearization (IL), if necessary with implicit normalization.
• A weakened inductive linearization (ILW), with Q = P enforced as described in
Sect. 2.3.

• The complete “standard” linearization (SLC) involving |P| additional variables,
3|P| additional inequalities, and 7|P| additional non-zeros.

• The reduced “standard” linearization (SLR), which only comprises those of the
inequalities (2)–(4) that are required due to the objective coefficients.

On the one hand,we evaluate the performance in terms of the running times achieved
when passing these linearizations to a mixed-integer programming solver. Here, we
emphasize that the purpose of these experiments is to support an assessment towards
the question which kind of problem structures (respectively classes of constraints) the
inductive linearization technique appears particularly suited or rather not suited for.
Clearly, the displayed (wall clock) running times can only serve as an indicator for this
assessment, especially as they depend on various influences (as e.g. seeds, parameters,
branching decisions, solver versions) whose possible combinations would justify a
computational study on their own.

On the other hand, we compare the optimality gaps obtained with the linear relax-
ations that are associated with the different linearizations. The corresponding figures
depict this gap on the ordinate axis in percent, computed as 100(1 − zL P

zO PT
) (respec-

tively 100(1 − zO PT
zL P

)), where zL P is the bound obtained by solving the relaxation
and zO PT is the optimum value for a minimization (maximization) problem. Where
appropriate, we will also put the corresponding results into relation with a first-level
RLT. We emphasize that however the bound computed by a MIP solver after solving
the linear relaxation may still be better due to presolve mechanisms.

Of course, the different linearizations were created based on the same input formu-
lation in which, as a preprocessing, all linear greater-or-equal inequalities were turned
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into less-or-equal ones, and, if a left hand side has only integer coefficients, right hand
sides were rounded down if fractional.

To actually derive the inductive linearizations, we employed Algorithm 1. In each
iteration of the function Append, the cost coefficients associated to the constraint-
multiplier combinations (see Sect. 2.3) were recomputed as the negated number of
products in Qadd for which one of Conditions 1–3 would be satisfied if the respective
combination was realized. In contrast, coefficient ranges and right hand sides as well
as the number of non-zero coefficients were not taken into account. Further, due
to the order of looking up constraints being candidates for multiplications, a slight
implicit preference of equations over inequalities (in case of equal costs) is imposed
by the implementation. In the subsequent subsections, the table columns titled “A1[s]”
display the running time of this algorithm (i.e., the wall clock time to derive the
respective inductive linearization) in seconds.

In order to finally solve the resulting MIPs, we employed Gurobi3 in version 9.11
with its seed parameter set to one, and its MIPGap parameter set to 10−6 which was
sometimes necessary to ensure a solution process until proven optimality.

All computations were carried out using a single thread on a Debian Linux system
equipped with an Intel Xeon E5-2690 CPU (3 GHz) and 128 GB RAM. Each run had
a time limit of 48 h. If it was exceeded, this is indicated by “–” in the respective table
columns.

3.1 The quadratic assignment problem

Given T , D ∈ R
n×n and c ∈ R

n , a quadratic assignment problem (QAP) in the form
by Koopmans and Beckmann (1957) can be written as follows.

min
n∑

i=1

n∑

p=1

n∑

j=1

n∑

q=1

ti j dpq xipx jq +
n∑

i=1

n∑

p=1

cipxip

s.t.
n∑

i=1

xip = 1 for all p ∈ {1, . . . , n} (14)

n∑

p=1

xip = 1 for all i ∈ {1, . . . , n} (15)

xip ≥ 0 for all i, p ∈ {1, . . . , n}
xip ∈ Z for all i, p ∈ {1, . . . , n}

Frieze and Yadegar (1983) derived a linearization of the QAP that is actually an
inductive one, but that is not yet most compact. To characterize a most compact
inductive linearization for the case where all (meaningfully) possible products are
of interest, observe first that each of the variables X := {xip | i, p ∈ {1, . . . , n}}
occurs exactly once in the equation set (14) and exactly once in the equation set (15).
Thus, in order to induce all products and to satisfy Conditions 1 and 2 for them, it

3 https://www.gurobi.com/.
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would suffice to either multiply all of the constraints (14) with X , or to multiply
all of the constraints (15) with X . Moreover, since objective coefficients for x2i p may
be moved to the linear part, and since the variables yipiq for all p, q ∈ {1, . . . , n}
as well as all variables yipjp for all i, j ∈ {1, . . . , n} can be eliminated, it suffices to
formulate the resulting constraints only for i �= j , or p �= q, respectively. If one further
identifies y jqip with yipjq whenever i < j , a most compact inductive linearization of
all meaningfully possible products is:

min
n∑

i=1

n∑

p=1

n∑

j=i+1

n∑

p �=q=1

(ti j dpq + t j i dqp)yipjq +
n∑

i=1

n∑

p=1

(cip + tii dpp)xip

s.t.
n∑

i=1

xip = 1 for all p ∈ {1, . . . , n}
n∑

p=1

xip = 1 for all i ∈ {1, . . . , n}

j−1∑

i=1

yipjq +
n∑

i= j+1

y jqip = x jq for all p, j, q ∈ {1, . . . , n}, p �= q (16)

yipjq ≥ 0 for all i, j, p, q ∈ {1, . . . , n}, i < j, p �= q

xip ∈ {0, 1} for all i, p ∈ {1, . . . , n}

In this formulation, (16) could also be replaced by the constraints

q−1∑

p=1

yipjq +
n∑

p=q+1

yipjq = x jq for all i, j, q ∈ {1, . . . , n}, i < j

q−1∑

p=1

y jqip +
n∑

p=q+1

y jqip = x jq for all i, j, q ∈ {1, . . . , n}, j < i

which resembles again the freedom to choose one of (14) and (15) as the basis for
inductions.

The total number of additional equations thus amounts to only n3 − n2 instead of
3 · ( 1

2 (n
2 − n)(n2 − n)

) = 3
2 (n

4 − 2n3 + n2) inequalities when using the complete
“standard” linearization and creating yipjq only for i < j and p �= q as well. However,
these most compact formulations have a weaker linear programming relaxation than
the ones by Frieze and Yadegar (1983) and Adams and Johnson (1994) that comprise
more constraints.

If P does not contain all meaningfully possible products, several linearization con-
straints, i.e., constraint-factor combinations, can be saved. The best possible reduction
then depends on the actual factor pairs in P and their “distribution” over the assignment
constraints.
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Fig. 1 Optimality gaps obtained with continuous relaxations (in percent) for the QAPLIB instances solved
by using at least one of the linearizations (time limit 48 h)

Instance Description
With the only exception of esc16f (that has T = 0), we report on those of the

established QAPLIB (Burkard et al. 1997) instances that could be solved within the
48 h limit using either IL or one of the standard linearizations SLC and SLR. Thereby,
the density 100|P|/(|N |

2

)
of the 42 instances solved spreads between 1 and 87%.

LP Relaxation Bounds and MIP Performance
As shown in Fig. 1, for all considered instances, the “standard” linearization SLC

provides a lower bound of zero which translates into an optimality gap of 100%. For
someesc instances, the computed inductive linearization IL and even a first-level RLT
(here derived using square reductions as of Remark 1 in addition) do not improve on
this bound. More typically, a strong first-level RLT bound is obtained and IL delivers
an optimality gap that is closer to the one of the RLT than to the one of SLC.

As is displayed in Table 1, using Gurobi with IL clearly outperforms its combi-
nation with each of the two “standard” linearizations SLC and SLR. With the only
exception of esc32e, the running times with IL are faster in all the remaining 41
cases, frequently by orders of magnitude. Supported further by the compactness of
the derived inductive linearizations, their usually better relaxation strength translates
into a superior performance compared with the “standard” linearizations.

We find that assignment constraints prove typically (but not always) suitable for
inductive linearizations, even though they are of course not competitive to state-of-the-
artmethods for the pureQAP.Whilewehere observe that only thoseQAPLIB instances
with up to about 20000 products can be handled within the time limit, it is observed in
Sects. 3.5 and 3.6 that inductive linearizations turn out to be frequently attractive for
related problemswith additional structure in terms of further variables and constraints.
This is also in line with results that have been obtained earlier for e.g. quadratic
semi-assignment problems (Billionnet andElloumi 2001), graph partitioning (Mallach
2018), multiprocessor scheduling (Mallach 2017), or graph layering (Mallach 2019).

Table 1 further shows that the task to find a good combination satisfying Condi-
tions 1 and 2 for all induced products could be solved very quickly with Algorithm 1
for the considered QAPLIB instances. In some further experiments, the mixed-integer
program fromMallach (2021) could also be solved by Gurobi at the root of its branch-
and-bound tree.
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3.2 The quadratic 0–1 knapsack problem

The certainly simplest inequality-only application for the inductive linearization tech-
nique is the quadratic 0–1 knapsack problem (QKP). It is particularly interesting for
the computational study because here the left hand side coefficients (item sizes) and
the right hand sides (knapsack capacity) vary and they relate to each other at different,
and sometimes large, ratios.

The canonical formulation with a capacity b ∈ R, and a variable x j for each item
j of a ground set J with size a j ∈ R reads:

max
∑

i, j∈J ,i< j

qi j xi x j +
∑

i∈J

ci xi

s.t.
∑

i∈J

ai xi ≤ b (17)

xi ∈ {0, 1} for all i ∈ J

It has then been observed in the literature that inequalities of type (8) could be used
in combination with the “standard” linearization (see e.g., Billionnet and Calmels
(1996)), and also inequalities of type (9) have been applied in the context of semidef-
inite relaxations to improve the obtained dual bounds (Helmberg et al. 2000). A
corresponding square-reduced inductive linearization is the following mixed-integer
program:

max
∑

i, j∈J ,i< j

qi j yi j +
∑

i∈J

ci xi

s.t.
∑

i∈J

ai xi ≤ b

∑

i∈J ,i �= j

ai yi j ≤ (b − a j )x j for all j ∈ J

∑

i∈J ,i �= j

ai (xi − yi j ) ≤ b(1 − x j ) for all j ∈ J

yi j ∈ [0, 1] for all i, j ∈ J , i < j

xi ∈ {0, 1} for all i ∈ J

Irrespective of the cardinality of P , the Conditions 1–3 must be established
using (17) for any product which implies that all possible products are induced as
soon as P is non-empty. Thus, this formulation is constraint-side compact, and more
and more superior over “standard” linearizations in this respect with increasing den-
sity. Assuming |J | = n, even a QKP involving all

(n
2

)
possible products could be

linearized using only 2n −1 constraints (n −1 inequalities of type (9) suffice to satisfy
Condition 3 for all of them while n of (8) are needed for Conditions 1 and 2). How-
ever, in the general case of arbitrary a j , j ∈ J , and b, an implication of the “standard”
linearization inequalities (2)–(4) cannot be expected.
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Fig. 2 Optimality gaps obtainedwith continuous relaxations (in percent) for the sixty selectedQKP instances

Instance Description
As a benchmark set, we selected the 60 largest of the randomly generated instances

by Billionnet and Soutif (2004) for presentation while the remaining ones with 100
elements could be solved more routinely using all methods. Their naming scheme
follows the pattern jeu_n_d_i where n is the number of items, d indicates the
approximate product density, and i is a running index.

LP Relaxation Bounds and MIP Performance
The optimality gaps obtained with ILW and SLC are shown in Fig. 2. They confirm

what could be expected from theory: Due to the comparably large ratios between the
constraint coefficients and right hand sides, the upper bounds obtained with ILW (the
gap is 31.65% on average) are typically significantly weaker than with SLC (2.10%).
While being considerably less compact in size, IL achieves the same bounds as ILW.
Since there is only a single inequality comprising all original variables that serves
as a basis for inductions, a first-level RLT basically coincides with IL, but involves
a “standard” linearization in addition. While the latter is here already able to almost
close the gaps standalone, side experiments showed that the much larger full first-level
RLT did not suffice as well to close it entirely.

The MIP results are displayed in Table 2. Only in two of the considered cases,
it is slightly faster to use ILW than to pass a “standard” linearization to the MIP
solver while considerably more timeouts are observed. As it turns out, the improved
linearization variable-constraint linkage does not suffice in order to compensate for
the weaker relaxation bounds of ILW.Moreover, whereas the numbers of linearization
constraints are smallerwith ILWthanwith the “standard” linearizations, the converse is
true for the induced numbers of non-zeros. However, despite these preconditions apply
broadly, one still observes a considerable variance in the solution times even within
each size and product density group, with positive and negative outliers. Moreover, for
the densest instances with 200 items in Table 2, only those with a comparably small
knapsack capacity remain solvable using ILW while the left hand side coefficient
ranges do (almost) not vary over the entire instance set. Even though there is less
correlation for the other density groups, the theory-predicted sensitivity of the strength
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of inductive linearizations to the “ratio” between the right hand side and the left hand
side coefficients is here apparent.

The suitability of using inductive linearizations for more complex problems with
knapsack constraints may as well be influenced by the mentioned ratio and of course
by the additional inherent structure. As mentioned above, deriving an inductive lin-
earization is trivial when based on the knapsack inequality and the unique solution
was also computed fast with Algorithm 1 in our experiments.

3.3 The quadratic matching problem

Given an undirected graph G = (V , E), a canonical BQP that models the quadratic
matching problem (QMP) on G [see e.g. (Hupp et al. 2015)] can be expressed as

max
∑

e, f ∈E,e �= f

qe f xex f +
∑

e∈E

cexe

s.t.
∑

e:{i, j}∈E

xe ≤ 1 for all i ∈ V (18)

xe ∈ {0, 1} for all e ∈ E .

It is easily observed that each edge (factor) occurs in exactly two constraints, namely
those inequalities (18) associated with its endpoints. In this sense, the situation is
similar as in case of the QAP. However, the constraints need not be as regular as they
depend on the structure of G. Notwithstanding, their coefficients and right hand sides
ensure that (the relaxation of) an inductive linearization will imply the inequalities of
a “standard linearization”.

Instance Description
For our experiments, we first employed all the instances used by Hupp et al. (2015),

and finally selected a representative subset of those called “BM” in this reference,
as the other ones with less variables or products could be solved quickly using all
linearization approaches, and the other instances of about the same size produced
similar results as has been the case also in the reference. The product densities of the
selected instances lie between 63% and 83%, increasing from suffixes _80 to _100.

LP Relaxation Bounds and MIP Performance
As can be seen from Fig. 3, the optimality gaps obtained when solving the relax-

ations of the 50 representative instances with ILW are close to the strong RLT bounds
while the upper bounds obtained with SLC are weak. Over the entire “BM” set con-
sisting of 150 instances, the bounds are always within 13% and 32% for ILW, within
5% and 30% using the RLT, and between 84% and 92% for SLC.

Concerning the MIP solver performance, there is a clear picture: For all the “BM”
instances (including the representative ones displayed in Table 3), Gurobi could solve
the problems better using one of the inductive linearizations than when using SLC
or SLR. In 101 of the entire 150 cases, the best results are obtained with ILW that,
on average, took about 36% and 42% of the running time that was required with
SLC and SLR, respectively. Besides the stronger relaxations, this performance of the
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70 S. Mallach

Fig. 3 Optimality gaps obtainedwith continuous relaxations (in percent) for the fifty selectedQMP instances

inductive linearizations is further supported by the constraint-side compactness while
the number of induced non-zeros is typically higher. Although using ILW turned out
to be more effective than using IL, both are displayed in Table 3 in order to support
an assessment of the model size reduction obtained by the weakening. Roughly, the
number of linearization constraints compared to ILwas reduced by theweakening pro-
cedure by about 21%, 12%, and 2% for the instances with the suffixes _80, _90, and
_100, respectively. The running times obtained indicate only a slight and inconsistent
correlation to the three density levels, and with IL and ILW the numbers of additional
constraints and the additional non-zeros generated by Algorithm 1 are typically even
smaller for the denser instances.

We conclude that the matching constraints appear as rather attractive candidates for
inductive linearizations. In additional experiments, computing an inductive lineariza-
tion with a mixed-integer programs turned out to be comparably more difficult for
the MIP solver employed. On the contrary, Algorithm 1 delivered good linearizations
routinely and quickly.

3.4 The quadratic shortest path problem

Given a directed graph G = (V , A), a source node s ∈ V and a target node t ∈ V , a
canonical BQP that models the quadratic shortest s-t-path problem (QSPP) on G (see
e.g. Rostami et al. (2018)) can be expressed as

min
∑

a,b∈A,a �=b

qabxa xb +
∑

a∈A

ca xa

s.t.
∑

a:(i, j)∈A

xa −
∑

a:( j,i)∈A

xa = b(i) for all i ∈ V

xa ∈ {0, 1} for all a ∈ A,

(19)

where b(i) = 0 for all i ∈ V \{s, t}, b(s) = 1, and b(t) = −1.
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Fig. 4 Optimality gaps obtained with continuous relaxations (in percent) for the QSPP instances solved by
using at least one of the linearizations (time limit 48 h)

Since the left-hand side coefficients of the only constraints (19) are from the set
{−1, 1}, normalization is inevitably required when creating an inductive linearization
of this BQP.

Instance Description
For the experiments, we self-generated grid instances as described by Rostami et al.

(2018), three for each proposed type and size. Their density is about 50%.

LP Relaxation Bounds and MIP Performance
The given density and instance sizes lead to a relatively large number of products

so that only 24 out of the 39 generated instances could be solved within an 48 h time
limit when passing one of the linearizations to the MIP solver.

Looking at the optimality gaps obtained for these instances as shown in Fig. 4, the
bounds computed with IL tend to get weaker with increasing size while the bounds
derived with the “standard” linearization reside on an even weaker level. More pre-
cisely, for the solved grid1 instances, the gaps are between 76% and 85% with IL
and between 90% and 95% with SLC. In case of the solved grid2 instances the
optimality gaps are closer to each other and between 89% and 93%. The better but
still rather weak IL bounds are attenuated by effects of the normalization as is fur-
ther described below. The discussion indicates a direction to achieve potential bound
improvements as well as an explanation why the further addition of constraint-variable
multiplications is not auspicious, while especially the model size of a first-level RLT
would here be anyway to excessive.

As one can see from Table 4, SLC and especially SLR work better with Gurobi
for the considered instances. Despite that the LP bounds obtained with the “standard”
linearizations are even worse than with IL, the obtained running times are orders
of magnitudes faster than with IL. The negative coefficients respectively the model
size play here an important role: Influenced by the required normalization, the num-
ber of induced products and non-zeros is significantly larger using IL while many
linearization variables referring to the same pair of original variables are generated.
Moreover, the constraint linkage among these linearization variables is poor and so
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is consequently the impact on the bound. Therefore, although one could reduce the
total number of linearization variables by a factor of about three when investing more
time to derive an inductive linearization using the MIP from Mallach (2021), which
improves the solution times considerably, the latter are still not competitive to those
obtained with the “standard” linearization, and especially not to those obtained with
specialized methods for the QSPP as in Rostami et al. (2018). Moreover, for some
instances, even the root linear program of IL turned out to be comparably challenging
to solve with Gurobi.

The suitability of typical “flow conservation” constraints like (19) to derive induc-
tive linearizations thus appears to be limited so far. However, side experiments indicate
that strong bounds could be achieved with an inductive linearization that resolves the
indicated poor linearization variable-constraint linkage while preserving consistency
(e.g. using careful back-substitutions as indicated in Sect. 2.4) which is a subject for
further research.

Currently, the structure of the present constraints where each potential factor (arc)
occurs on the left hand sides of two constraints (those associatedwith its endpoints), but
with opposite signs, impairs theMIP solution times to derive an inductive linearization.
Algorithm 1 is also but less affected. Not surprisingly, for the largest instances with
|P| > 105, a noticeable increase in the derivation time occurs.

3.5 MINLPLib

To further broaden the experimental setting,we incorporated library collections such as
theMINLPLib. In addition, they provide instance formats that onemay pass on directly
to Gurobi (we used the .lp format) giving rise to another meaningful comparison.

Instance Description
We employed all linearly constrained BQPs from MINLPLib except for six QSPP

instances and one QAP instance. All except ten of these instances have equations
only, however also for these exceptions only equations were employed to create the
inductive linearizations. The first two of these exceptions are crossdock_15x7 and
crossdock_15x8 which have 30 equations (with only zero–one coefficients and
a right hand side of one) and 14 respectively 16 inequalities (with larger coefficients
and right hand sides). The same applies to the eight generalized assignment problem
instanceswith prefixpbwhosefirst (second) twodigits refer to the number of equations
(inequalities). Stemming from Cordeau et al. (2006), they have been contributed to the
MINLPLib by Monique Guignard. In Pessoa et al. (2010), the instance pb351575
still remained unsolved due to a missing optimality certificate for the objective value
of 6301723. In all conscience, its solution has not been reported until present. By
investing more computational resources and time in addition to the main experiments
presented, we could solve all these instances to optimality using IL and thus confirm
their optimal values as listed in Table 5.
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Table 5 Confirmed optimal
solution values for some
generalized assignment problem
instances from the MINLPLib

Instance Optimal Value Instance Optimal value

pb302035 3379359 pb351535 4456670

pb302055 3593105 pb351555 4639128

pb302075 4050938 pb351575 6301723

pb302095 5710645 pb351595 6670264

Fig. 5 Optimality gaps obtainedwith continuous relaxations (in percent) for theMINLPLib instances solved
by using at least one of the linearizations (time limit 48 h). Some instance names where shortened, gp-
stands for graphpart- and m- for maxcsp-

LP Relaxation Bounds and MIP Performance

Figure 5 displays the sustained relaxation optimality gaps for the instances that
could be solved within 48 h using at least one method. The MIP results are shown in
Tables 6 and 7.

Besides the alreadymentionedcrossdock andpb instances, the twocolor_lab
instances are the only ones that do not have their non-zero left hand side coefficients
and right hand sides all equal to one. As forward referenced from Sect. 3.1, an induc-
tive linearization is frequently (but not always) suited and superior to a “standard”
linearization for instances with this structure. In several cases, this is also true when
compared with Gurobi as a standalone solver.

On the one hand, for the crossdock and the pb instances, the improved bounds
with IL translate into a betterMIP performance, supported further by the ideal situation
that IL is here also very effective in terms of the number of linearization equations
and additional non-zeros. Moreover, for celar6-sub0, the inductive linearization
is orders of magnitude faster even though there are many products and induced non-
zeros, and even though there is no according indication in terms of the relaxation
optimality gaps.

On the other hand, for the maximum constraint satisfiability problems, SLR per-
forms clearly best with Gurobi while IL requires less linearization constraints but
induces more non-zeros and linearization variables, and even its root linear program
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Fig. 6 Optimality gaps obtained with continuous relaxations (in percent) for the QPLIB instances with
linear inequality constraints that were solved by using at least one of the linearizations (time limit 48 h)

proved difficult to solve with Gurobi. Moreover, the color_lab instances turn out
to be difficult when using IL, even though the bound obtained with its continuous
relaxation is much better than with SLC and also the model size is auspicious.

For the “semi-assignment”-like graph partitioning instances (see also a more com-
prehensive study in Mallach (2018) with an additional normalization constraint), we
see a diverse picture aswell:While thegraphpart-2 and graphpart-3 instances
prove rather simple for all methods (which also achieve the same relatively strong
relaxation optimality gaps), the bounds obtained for the graphpart-clique-
instances are equal to zero and they become especially challenging for IL with
increasing size. In the latter instances, each node must be assigned to one of three
partitions and the costs of placing any pair of nodes in the same partition are equal
for all partitions. The initial number of products P as well as the computed induc-
tive linearizations are significantly larger than for the other graphpart instances
mentioned before. Additional experiments revealed that the bounds for most of the
instances, in particular the graphpart and the maxcsp instances, could not be
improved even when multiplying all constraints with all variables which here leads to
a (square-reduced) first-level RLT since the “standard” linearization inequalities are
then implied for these instances.

3.6 QPLIB

Finally, we look at the QPLIB (Furini et al. 2019), and we again chose the .lp format
to pass the selected instances directly to Gurobi.

Instance Description
Here, we selected all BQPs with linear inequality constraints to be part of our

testbed, especially since the MINLPLib experiments only involved instances with
linear equation constraints, and since most instances of this kind in QPLIB are also
part of the MINLPLib and QAPLIB experiments.

LP Relaxation Bounds and MIP Performance
For those selected instances that could be solved within 48 h using at least one

method, Fig. 6 shows the relaxation optimality gaps. For the majority of the instances,
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these gaps are large irrespective of the method used. Zero lower bounds (100% gaps)
are frequently observed for minimization problems like e.g. most instances with pre-
fix 100 that have large ratios between the right hand sides and the left hand side
coefficients. For a few of these with slightly better gaps, the SLC bound turns out
to be superior. Also for instance 0067 (actually, a QKP), the ILW gap of 16.25% is
weaker than the 1.26% gap obtained with SLC which is in line with Sect. 3.2. Another
example is instance 0752 where the ILW gap of 77.60% is considerably worse than
the 39.83% gap obtained with SLC. Due to negative coefficients this instance requires
normalization, and so do the instances with first digits 2 and 3. Here, a similar effect
as in Sect. 3.4 concerning poorly linked linearization variables referring to the same
pair of original variables applies. Only for the instances with first prefix 5, the ILW
bounds are slightly superior even though on a weak level.

The MIP results are presented in Table 8. After the above discussion regarding the
relaxation bounds and the impact of normalization, it could be expected that better
results are obtained when using Gurobi as a standalone solver or sometimes also when
supplying it with one of the “standard” linearization than when using ILW (which still
worked better than IL). Indeed, while the instances with prefix 100 and their special
coefficient ranges turn out to be unsuited for an inductive linearization, also the size
of the linearizations for the instances starting with the digits 2 and 3 turns out to be
unfavorable. Only for the instances with first digit 5, competitive model sizes and
solution times are achieved with IL.

4 Conclusion

A framework to derive inductive linearizations in practice has been outlined and it has
been demonstrated that it can be effectively applied to a variety of binary quadratic
programs with linear constraints. The experiments covered the Quadratic Assign-
ment, Knapsack, Matching and Shortest Path Problems, as well as instances from the
MINLPLib and QPLIB.

Addressing the research questions mentioned in the introduction, the best results
are typically obtained with an inductive linearization if its continuous relaxation is
comparably tight and the number of linearization constraints and induced non-zero
coefficients keep moderate at the same time. These ideal conditions are for example
observed for Quadratic Assignment andQuadraticMatching Problems. If only the first
property is fulfilled, for instance because the original constraints employed have right
hand sides equal to one and zero–one left hand sides but the structure of the factor
pairs or constraints impedes a compact model extension, or if the formulation is more
compact without providing a strong relaxation, the results show that an inductive lin-
earization may or may not compare well with a “standard” linearization. Whether one
or the other case applies may then depend on further parameters such as the density
of the given product terms and the actual distribution of their factors over the set of
(employed) constraints, which in turn again also influence the achievable compact-
ness and relaxation strength of inductive linearizations.Moreover, if the ratios between
right hand sides and (non-negative) left hand side coefficients are large, the relaxations
of inductive linearizations tend to become weaker, and “standard” linearizations may
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lead to superior running times with a mixed-integer programming solver as has been
observed with the Quadratic Knapsack Problem. Until now, negative constraint coef-
ficients may also impair the performance sustained with inductive linearizations. One
reason is that the corresponding normalization step typically counteracts a compact
reformulation, another is that often a poor linkage between linearization variables
referring to the same pair of original variables is established by the induced con-
straints. Improvements in this respect are a natural subject for further research. The
explanations for positive and negative observations at hand, it should be emphasized
that they can only provide a partial image while exceptions from the respective rules of
thumb exist naturally, especially since a MIP solution process depends on various fur-
ther influences such as e.g. branching decisions or cutting place effectiveness. Across
the instance sets considered, the inductive linearization technique frequently led to
a continuous relaxation that is at least as tight as the one provided by a “standard”
linearization. In several cases, the bounds also turned out to be equal or almost as
good as those provided by a full first-level RLT even though being typically much
more compact. The broad computational experiments further revealed that inductive
linearizations can be computed quickly in an automated fashion for the various differ-
ent application instances, and that this can typically be done well even with a simple
combinatorial heuristic.
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