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Abstract
This work deals with the analysis of longitudinal ordinal responses. The novelty 
of the proposed approach is in modeling simultaneously the temporal dynamics 
of a latent trait of interest, measured via the observed ordinal responses, and the 
answering behaviors influenced by response styles, through hidden Markov models 
(HMMs) with two latent components. This approach enables the modeling of 
(i) the substantive latent trait, controlling for response styles; (ii) the change over 
time of latent trait and answering behavior, allowing also dependence on individual 
characteristics. For the proposed HMMs, estimation procedures, methods for 
standard errors calculation, measures of goodness of fit and classification, and 
full-conditional residuals are discussed. The proposed model is fitted to ordinal 
longitudinal data from the Survey on Household Income and Wealth (Bank of Italy) 
to give insights on the evolution of households financial capability.
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1  Introduction

Psychometric literature widely debated the different behavior patterns of 
respondents to rating surveys, which may introduce distortions or inaccuracies 
in their responses. Questions on attitudes, opinions, perceptions are usually 
Likert-type or rating-scale items, and the observed responses may not reflect 
the respondents’ true preferences but their tendency to use only a small number 
of the available rating scale options, governed by an underlying behavioral 
mechanism, known as Response Style (RS) (e.g., Van Vaerenbergh and Thomas 
2013, for an overview). The activation of a response style mechanism influences 
systematically the way interviewees use response scales, introducing bias in the 
responses and scale usage heterogeneity, which may impact the data quality and 
the validity of the results (e.g., Baumgartner and Steenkamp 2001; Roberts 2016).

What is new in our approach is the interest on the longitudinal perspective 
where respondents are asked, at several time occasions, to give a subjective 
assessment about rating-scale items and their responses are indicators of a latent 
trait of interest (e.g., health status, environmental risk, customer satisfaction). 
Moreover, responses can be driven or not by RS, the RS attitude can vary 
dynamically and the change over time of responses and answering behaviors can 
depend also on individual characteristics.

More precisely, in the context of longitudinal ordered categorical data 
analysis, the methodological contribution of the paper is a hidden Markov model 
(HMM) with a bivariate latent Markov chain that jointly models an unobservable 
trait of interest and an unobservable binary indicator of the respondent’s form 
of answering (response style driven or not) over time. The use of HMMs in 
the context of categorical longitudinal data is not new, often referred to as 
latent Markov models for longitudinal data (see Bartolucci et  al. 2012, 2017, 
for a comprehensive review), but to date there does not exist any HMM-based 
procedure useful for modeling the evolution of an underlying response behavior 
over time. A further contribution of the proposed approach lies on providing 
a parsimonious parametrization of the probability functions of the observed 
responses dictated by RS. Several RSs have been identified and studied (e.g., 
Baumgartner and Steenkamp 2001) and here a model is introduced that enables 
capturing easily the most commonly encountered RS. In fact, in our approach, 
the observation probability functions, conditionally on the presence of RS, 
depend on two parameters only, but offer a great flexibility in the types of RS 
that can be modelled such as tendency to select categories at random (careless 
RS, CRS), tendency to prefer positive response categories/answer with agreement 
(acquiescent RS, ARS), or negative response categories (disacquiescent RS, 
DRS), middle/neutral categories (middle RS, MRS), or extreme categories 
(extreme RS, ERS). Other approaches to simultaneously tackle multiple RSs, 
for cross-sectional data, rely on more complex models such as multi-trait models 
(e.g., Wetzel and Carstensen 2015; Falk and Cai 2016) or IRT models (e.g., 
Böckenholt 2012; Henninger and Thorsten 2020; Zhang and Wang 2020) or latent 
class factor models (Kieruj and Moors 2013).
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Furthermore, novelty is also in the use of stereotype logit models (Anderson 
1984) to investigate how covariates affect the initial and transition probabilities of 
the latent Markov chain. To our knowledge, such parsimonious models of sound 
interpretation have not been previously used in the HMM framework.

In summary, our approach enables: (i) the identification of groups of 
individuals with a different dynamics of a latent categorical trait of interest 
taking into account the presence of RS driven responses, (ii) the accommodation 
of different RSs and their change over time, (iii) the use of a very parsimonious 
distribution of the responses affected by RS, (iv) the introduction of covariates 
influencing the initial/transition probabilities of both the latent construct and the 
unobservable response style indicator, (v) the use of stereotype logit models for 
the initial/transition probabilities of the latent construct.

The proposed methodology is of interest in all longitudinal surveys that 
model attitudes, opinions, perceptions or beliefs, that are indicators of non 
directly measurable and observable variables. For example, in healthcare studies, 
patients are asked, at several occasions, to give a subjective assessment of their 
health status or disability in daily living; in marketing research, customers are 
required to evaluate their satisfaction for services/products; in socio-economic 
contexts, citizens are invited to answer to what extent they agree or disagree with 
sensitive topics (immigration, criminality, gender gap); in environmental studies, 
interviewees are asked to reveal their perception of the impact of climate changes 
and environmental risk. In all these cases, the presence of RS cannot be ignored 
and substantive latent traits need to be measured taking into account effects due 
to RSs.

To show the practical usefulness of our proposal, we investigate the evolution 
over time of the household financial capability (a broader term encompassing 
behavior, knowledge, skills and attitudes of people with regard to managing 
their financial resources, e.g. Zottel et  al. 2013) as a latent psychological and 
behavioral trait that influences the household’s decision-making to face financial 
issues. The latent financial capability is here measured in terms of two observed 
indicators: the self-perceived ability to make ends meet and the self-report of 
perceived risk related to financial investments. These indicators have great impact 
on the score measuring the financial capability, as defined according to the 
Organization for Economic Cooperation and Development methodology (survey 
OECD 2020), applied by 36 countries and in Italy implemented by the Bank of 
Italy (D’Alessio et al. 2020).

The structure of the work is as follows. In Sect.  2, the data of our motivating 
problem from a survey on financial conditions of Italian households are introduced, 
and the issues to be tackled described. In Sect. 3, the modeling of different response 
style effects in the longitudinal perspective through HMMs is proposed and the 
advantages of our approach are highlighted. In Sect.  4, latent and observation 
components of the proposed HMM are described in detail. Alternative HMMs are 
examined in Sect. 5, most of them being special cases of the here presented model. 
Section  6 is devoted to methodological contributions on: maximum likelihood 
estimators of the parameters, measures of goodness of fit and classification, 
and full-conditional residuals. In Sect.  7, the proposed model is fitted on the real 
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data of Sect.  2, implementing the developed estimation procedure and providing 
answers to the questions raised in Sect. 2. Concluding remarks are given in Sect. 8. 
Technical details on the methods to calculate the standard errors are postponed in 
the Appendix.

2 � Motivating example

Our work meets the growing interest in the households financial capability. The 
governments are now playing an active role in meeting the financial capability 
challenge. Initiative taking forward to increase capability are provided throughout 
starting from National Strategy for Financial Capability in UK (HM-Treasury 
2007), to EU Commission (Valant 2015), National Financial Capability Study in 
USA (Lin et  al. 2019), OECD (OECD 2020), among others. Psychological and 
behavioral aspects affecting people’s economic and financial decisions (studied 
as behavioral economics) are also inserted into practices to strengthen financial 
consumer protection (as agreed in the action plan endorsed by G20/OECD, Lefevre 
and Chapman 2017). In this direction, we propose here to model the dynamics of 
the households’ perception of their financial conditions, accounting for the way 
households disclose their perceptions, through HMM.

The data are from the waves of the Survey on Household Income and Wealth 
(SHIW). It is conducted by the Bank of Italy every two years since the 1960 s to 
collect information about the income, wealth and saving of Italian households. 
Over the years, the survey has grown in scope and now it includes also aspects of 
households’ economic and financial behavior, furthermore since 2004 it contains 
information on attitude towards financial risk. The data1 used refer to 1109 Italian 
households involved in all the waves from 2006 to 2016. We considered the items:

R1 reveals the perception of the household’s financial ability to make ends 
meet based on the answers of the head of the households to the question: Is your 
household’s income sufficient to see you through to the end of the month.... very 
easily, easily, fairly easily, fairly difficultly, with some difficulty, very difficulty;

R2 indicates the risk perception in managing financial investments measured 
through the response to the question: in managing your financial investments, would 
you say you have a preference for investments that offer: low returns, with no risk of 
losing the invested capital (risk averse); a fair return, with a good degree of protec-
tion for the invested capital (risk tolerant), good-high returns, but with a fair-high 
risk of losing part of the capital (risk lover).

We focus on these two indicators, among others, since they strongly orient 
policy maker choices. In particular, insights into ability helps to: developing 
effective programs to educate people to manage their resources, reducing welfare 
dependency, and identifying vulnerable groups of the population for which targeted 
interventions can be designed. The OECD, in the recent survey (OECD 2020), 

1  All the data are available at https://​www.​banca​dital​ia.​it/​stati​stiche/​temat​iche/​indag​ini-​famig​lie-​impre​
se/​bilan​ci-​famig​lie/​distr​ibuzi​one-​micro​dati/​index.​html.

https://www.bancaditalia.it/statistiche/tematiche/indagini-famiglie-imprese/bilanci-famiglie/distribuzione-microdati/index.html
https://www.bancaditalia.it/statistiche/tematiche/indagini-famiglie-imprese/bilanci-famiglie/distribuzione-microdati/index.html
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recognises that large groups of citizens are lacking the necessary financial behavior 
and financial resilience to deal effectively with everyday financial management. 
This is particularly concerning at the time of the unfolding crisis as a result of the 
COVID-19 pandemic, which is likely to put considerable economic and financial 
pressures on individuals and test their ability to preserve their financial well-being. 
Moreover, to understand the financial capability it is important to comprehend 
how households think and feel about the risks they face, Slovic (2010). The risk 
perception is an important determinant of protective behavior, as in general, the 
success of public intervention programs is largely dependent on individual risk 
perception. Comprehension of the perceived risk may offer useful prompts for 
the design of effective investor education programs and orient towards vulnerable 
individuals preventive initiatives against bad financial decisions (e.g., Pidgeon 1998; 
Nguyen et al. 2019).

Some demographical and economical characteristics that can affect the degree of 
financial coping of a household are the covariates gender (G): female ( 27% ), male 
( 73% ); job (J): self-employee (Jse, 10% ), housekeeper/retired/student (Jhrs, 47% ), 
employee (Je, 43%)); children (CH): with children ( 34% ), no children ( 66% ); debts 
(D): with debts ( 22% ), no debts ( 78% ); savings (S): with savings ( 83% ), no savings 
( 17% ); education (E): up to secondary school ( 62% ), over secondary school ( 38% ), 
with the reference categories being in italics and the percentages referred to the 
initial year 2006. The frequencies of all the 18 pairs of categories of the two items, 
R1 and R2 , over the six years are represented in Fig. 1. The perceptions evidently 
change over time. The most commonly chosen responses are a fairly difficult ability 
to make ends meet and a risk loving behavior towards financial proposals. The choice 
falls frequently also on the pairs: very easily-averse, easily-averse, fairly easily-
averse. The number of households who selected these four most common responses 
is represented in Fig.  2, over the years, for four groups of households, identified 

Fig. 1   Frequencies of (R1,R2) responses over time occasion
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as those with the most representative profiles (most frequent configurations of 
the covariates among the 94 truly observed ones in the data at hand). These plots 
exemplify just a portion of the data on the three dimensions: responses × covariates 
× time.

In our context, responses R1 and R2 can be considered as the manifest expressions of 
the latent household’s financial capability. Moreover, we believe that an unobservable 
answering behavior drives respondents that can reveal their perceptions in two ways: 
with awareness, when their answers reflect the respondents’ true opinion, or according 
to a response style, when in doubt or reluctant to disclose their opinion they prefer 
extreme or middle points of the rating scale, or according to their inclination they focus 
on the positive or negative side of the rating scale.

Our approach gives us various opportunities: (i) to describe simultaneously the 
dynamic behavior of respondents in the way of answering and in disclosing their 
perceived financial capability measured through the degree of difficulty or ease in 
matching monthly expenses with disposable income and their attitude toward risk 
of investments, that change over time in line with Schildberg-Hörisch (2018) and 
De  Blasio et  al. (2021); (ii) to investigate if the households feel and communicate 
their perceptions differently according to their demographic and socio-economic 
characteristics; (iii) to discriminate groups of respondents, with certain profiles, in the 
latent classes that identify various degrees of the latent financial capability, taking into 
account that they can answer with awareness or may prefer a response style. Section 7 
will shed light on these aspects of interest.

Fig. 2   Frequencies of the most common responses over the six years for the four most present profiles of 
households
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3 � Response styles in longitudinal studies

RS mechanisms lead to biased measurement of the traits of interest that may 
influence seriously the results of a survey and thus be responsible for non-optimal 
decisions. Underlying RSs affect all levels of the analysis of survey data, from 
being responsible for violations of the adopted model assumptions up to biased 
estimation of parameters and measures of interest, like correlations in cross-
sectional survey data, as shown, among others, by Piccolo et al. (2019) for CRS, 
Dolnicar and Grün (2009) for ARS and ERS, Tutz and Berger (2016) and Tutz 
(2021) for MRS and ERS. Approaches aiming at better estimation of the original 
substantive trait, by controlling for RSs, are mostly based on mixtures models and 
employ latent variables (e.g., Grün and Dolnicar 2016; Huang 2016; Böckenholt 
and Meiser 2017, among many others). Several simulation studies provide 
evidence that ignoring response styles implies bias on the parameter estimates, 
see Tutz and Berger (2016); Colombi et al. (2019, 2021), among others.

Though accounting for RSs in cross sectional studies has achieved considerably 
attention in the literature and effective models have been proposed, dealing with 
RSs in longitudinal data remains challenging. Questions on whether or to what 
extend RSs remain stable over time are still open. This paper investigates whether 
RS behavior is an individual time invariant feature (Bachman and O’Malley 1984; 
Paulhus 1991) or it is not necessarily consistent over time, depending on the 
measurement situation (Weijters 2006; Aichholzer 2013). In this regard, the RS 
is described through time-invariant and time-specific latent factors in (Weijters 
et  al. 2010). A recent proposal in the direction of dynamic response styles is 
by Soland and Kuhfeld (2020), who concluded that the stability over time of 
within-subject RS factors is not always justified, by comparing multidimensional 
nominal response models (Bolt and Johnson 2009).

In the context of longitudinal data, we tackle the problem of time dependence 
of RSs within the latent variable context, considering two unobserved classes of 
responses: aware (AWR) responses, i.e. not affected by any RS, and RS driven 
responses, assuming that an individual can switch over time from AWR to RS 
type of responses and vice versa.

Among the approaches to modeling longitudinal categorical data 
(representative sources are, for example, Molenberghs and Verbeke 2005; 
Hedeker and Gibbons 2006; Bergsma et  al. 2009), we resort to the family of 
hidden Markov models for their flexibility in modeling time dependence, based 
on sound assumptions, and their computational tractability. The novelty of the 
contribution is the modeling of the temporal dynamic of rating responses with 
a bivariate latent Markov chain that jointly models an unobservable construct 
of interest and an unobservable indicator of the respondent’s form of answering 
(AWR or RS driven). The second latent component indeed allows us to describe 
how the RS behavior dynamically changes over time, in contrast to other 
approaches where the RS is thought as a continuous time-invariant latent trait 
(Billiet and Davidov 2008).
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4 � HMMs with two latent variables

Consider r ordinal responses observed on n units (subjects/items) at T time 
occasions. In particular, let Yjit , Yjit ∈ Cj = {1,… , cj} , denote the j-th ordinal 
response variable, j ∈ R = {1,… , r} , of the i-th unit, i ∈ I = {1,… , n} , at the t-
th occasion, t ∈ T = {1,… , T} . The responses are assumed to reflect the levels 
of unobservable latent constructs Lit , i ∈ I  , t ∈ T  , with finite discrete state space 
SL = {1,… , k} . Furthermore, they can be observed under two latent regimes: 
awareness (AWR) and response style (RS) that are captured by binary latent 
variables Uit , i ∈ I  , t ∈ T  , with state space SU = {1, 2} , where 1 and 2 denote the 
RS and AWR states, respectively. For this, Uit are called response style indicators. 
The presence of the above mentioned two regimes is based on the idea that 
respondents either manifest their true preference or select categories according to a 
RS (CRS, ERS, DRS, MRS, ERS).

The proposal is a HMM defined by two components that describe the Markov 
chain of the latent variables and the conditional distributions of the responses 
given the latent variables. The model will be referred to as a HMM with a RS 
component (RS-HMM). Next subsections are devoted to specifying the two model 
components by parameterizing the observation probabilities and the initial/transition 
probabilities through suitable logit models. To avoid difficulties in interpreting the 
results, covariates are assumed to affect only the distribution of the latent variables. 
In our view, in fact, the covariate effect is captured by the latent constructs Lit which 
are indirectly observed trough the responses Yjit.

4.1 � The latent model

The latent variables Lit and Uit are independent across units and, for every unit, the 
process {Lit,Uit}t∈T  is assumed to evolve in time according to a first order bivariate 
Markov chain with states (u, l), u ∈ SU , l ∈ SL.

For the sequel, let always i ∈ I  and consider states u, ū ∈ SU and l, l̄ ∈ SL.
The latent component of the model is specified through its initial and transition 

probabilities. The initial probabilities ( t = 1 ) of the latent bivariate process 
{Lit,Uit}t∈T  are �i1(u, l) = P(Li1 = l,Ui1 = u), and the transition probabilities are 
𝜋it(u, l|ū, l̄) = P(Lit = l,Uit = u|Lit−1 = l̄,Uit−1 = ū), t = 2,… , T . Furthermore,

denote the marginal transition probabilities for the latent variables Lit and

are the transition probabilities of the latent RS indicators Uit , conditioned on the 
transition (l̄, l) of the latent construct, called for short as conditional RS transition 
probabilities.

(1)𝜋L
it
(l|ū, l̄) = P(Lit = l|Lit−1 = l̄,Uit−1 = ū)

(2)𝜋
U|L
it

(u|l, ū, l̄) = 𝜋it(u, l|ū, l̄)
𝜋L
it
(l|ū, l̄)
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The introduced probabilities are required to satisfy the following conditions: 

	A1.	 Granger non causality assumption: 𝜋L
it
(l|ū, l̄) = 𝜋L

it
(l|l̄), t = 2,… , T .

		    It states that Lit ⟂ Uit−1|Lit−1 , i.e. the latent construct, given its past, does not 
depend on the past of the RS indicator.

	A2.	 Conditional independence of the current latent RS indicator from the past of the 
latent construct: 𝜋U|L

it
(u|l, ū, l̄) = 𝜋

U|L
it

(u|l, ū), t = 2,… , T .

		    This restriction on the probabilities (2) means that: Uit ⟂ Lit−1|Uit−1, Lit , i.e. 
the current way of answering, depends on its past and on the contemporaneous 
latent construct but not on the past of the latent construct.

	A3.	 Independence of the latent processes at the initial time: �i1(u, l) = �U
i1
(u)�L

i1
(l).

Assumptions A1 and A2 simplify the transition probabilities of the bivariate Markov 
chain {Lit,Uit}t∈T  to 𝜋it(u, l|ū, l̄) = 𝜋

U|L
it

(u|l, ū)𝜋L
it
(l|l̄), t = 2,… , T , while A3 is used 

to reduce the number of parameters, but can be relaxed.
In the sequel, x(m)

i
 and z(m)

it
 , m ∈ {L,U} , t ∈ {2,… , T} , stand for the covariate 

row vectors influencing the initial and transition probabilities of the latent variables 
for the i-th unit, respectively. The associated number of covariates is p(m)

1
 and p(m)

2
 , 

respectively. Covariates for the transition probabilities can be time specific.
Under the assumptions A1 − A3 , the initial and transition probabilities of the 

latent RS indicator and of the latent construct are specified by the following logit 
models:

–	 A linear baseline logit model for the initial probabilities of the latent construct: 

 This model involves (k − 1)(1 + p
(L)

1
) parameters.

–	 A logit model for the initial probabilities of the RS indicator: 

 This model has (1 + p
(U)

1
) parameters.

–	 A set of |SL| = k linear baseline logit models for the marginal transition prob-
abilities of the latent construct, each having as reference category the state l̄ of 
the previous occasion, i.e. for l̄ ∈ SL : 

 The total number of parameters for these models equals k(k − 1)(1 + p
(L)

2
).

(3)log
�L
i1
(l)

�L
i1
(1)

= �0l + ��
1l
x
(L)

i
, l = 2,… , k.

(4)log
𝜋U
i1
(2)

𝜋U
i1
(1)

= 𝛼̄0 + �̄�
1
x
(U)

i
.

(5)log
𝜋L
it
(l|l̄)

𝜋L
it
(l̄|l̄) = 𝛽0ll̄ + ��

1ll̄
z
(L)

it
, l ∈ SL, l ≠ l̄, t = 2,… , T .
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–	 A logit model for the conditional RS transition probabilities for each possible 
RS state ū of the previous occasion and for each current state l of the latent con-
struct: 

 The 2k models have in total 2k(1 + p
(U)

2
) parameters.

The number of parameters of models (3) and (5) for the latent construct is 
increasing in the number of states k, which is a draw back of these models. More 
parsimonious models can be considered, alternative to (3) and (5), that provide 
sound interpretation options. A convenient class of models for such purposes is that 
of stereotype logit models (Anderson 1984; Agresti 2010), which we shall employ 
for modeling the initial and marginal transition probabilities of Lit.

The stereotype logit model for the initial probabilities, that can replace (3), is:

where �l , l = 2,… , k, are scores to be estimated. For identifiability purposes, since 
the model is invariant under scale transformations of the scores, we set �2 = 1 . This 
model has (k − 1) + (k − 2) + p

(L)

1
 parameters that is (k − 2)(p

(L)

1
− 1) parameters less 

than model (3). Model (7) imposes a special structure on the way the covariates 
affect the odds of any two categories of Lit . In particular, for any l1, l2 ∈ SL , it is:

i.e. the effect of the covariates on the log-odds is proportional to the difference 
between the �-scores corresponding to the categories l1 and l2.

The stereotype logit models for the transition probabilities, that can replace (5), 
are defined analogously as:

for t = 2,… , T  . For l̄ ≠ 1 , 𝜈1l̄ = 1 , for l̄ = 1 , 𝜈2l̄ = 1 while the rest of the �-scores are 
parameters to be estimated. These models require k(k − 1 + k − 2 + p

(L)

2
) parameters 

that is k(k − 2)(p
(L)

2
− 1) parameters less than model (5). For any l1 ≠ l2 , we have:

i.e. the effect of the covariates on the log-odds is proportional to the difference 
between the �-scores corresponding to the categories l1 and l2.

(6)log
𝜋
U|L
it

(2|l, ū)
𝜋
U|L
it

(1|l, ū) = 𝛽0lū + �̄
�

1lū
z
(U)

it
, l ∈ SL, ū ∈ SU , t = 2,… , T .

(7)log
�L
i1
(l)

�L
i1
(1)

= �0l + �l�
�
1
x
(L)

i
, �2 = 1, l = 2,… , k,

(8)log
�L
i1
(l2)

�L
i1
(l1)

= �0l2 − �0l1 + (�l2
− �l1

)��
1
x
(L)

i
, �01 = �1 = 0,

(9)log
𝜋L
it
(l|l̄)

𝜋L
it
(l̄|l̄) = 𝛽0ll̄ + 𝜈ll̄�

�

1l̄
z
(L)

it
, l ≠ l̄, l, l̄ ∈ SL,

(10)log
𝜋L
it
(l1|l̄)

𝜋L
it
(l2|l̄)

= 𝛽0l1 l̄ − 𝛽0l2 l̄ + (𝜈l1 l̄ − 𝜈l2 l̄)�
�

1l̄
z
(L)

it
, 𝛽0l̄l̄ = 𝜈l̄l̄ = 0,
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If the scores 𝜈ll̄ in (9) are equal to 1, we obtain a more parsimonious model, 
according to which the log odds (10) do not depend on covariates when l1 ≠ l2 ≠ l̄. 
According to this model there is a covariate effect on the odds of a transition to a 
different state but this effect is the same for all the states different from the current 
one. Under this restriction, (9) simplifies to parallel baseline logit models for the 
transition probabilities having k(k − 1 + p

(L)

2
) parameters.

A different simplification follows by assuming that the scores �l , �1 = 0 , �2 = 1 , 
𝜈ll̄ , 𝜈l̄l̄ = 0 , 𝜈1l̄ = 1, l̄ ≠ 1 , 𝜈2l̄ = 1, l̄ = 1, are linear functions of l, l ∈ SL . In this case, 
(7) and (9) are equivalent to parallel adjacent categories logit models for the ini-
tial and transition probabilities having (k − 1) + p

(L)

1
 and k(k − 1 + p

(L)

2
) parameters, 

respectively. Nevertheless, while the previous stereotype models are invariant with 
respect to permutations of the k latent states, the parallel adjacent categories logit 
model is not and should be considered only in case the ordering of the latent classes 
is known a priori.

Simplifying restrictions can also be introduced for the conditional RS transition 
probabilities if, coherently with the idea that covariate effects are captured by the 
latent constructs Lit , the conditional RS transition probabilities are assumed time 
and subject invariant, that is: 𝜋U|L

it
(u|l, ū) = 𝜋U|L(u|l, ū), i ∈ I, t = 2,… , T .

4.2 � The observation model

Let Yi be the vector of the ordinal responses Yjit, j ∈ R, t ∈ T  of unit i, i ∈ I  . Some 
independence assumptions specify the observation model: 

	B1.	 Subject independence. The vectors Yi , i ∈ I  are independent random vectors.
	B2.	 Hidden Markov assumption. For every unit i and occasion t, given {Lit,Uit}t∈T  , 

the responses Yjit , j ∈ R , are independent from their own past and depend only 
on (Lit,Uit).

	B3.	 Contemporaneous independence. For every unit i, at any occasion t, the 
responses Yjit , j ∈ R , are independent given the current state of the latent 
process {Lit,Uit}t∈T .

	B4.	 Subject and time invariance. The marginal probability functions of Yjit , 
conditioned on the RS or AWR latent states (u, l) are both time and subject 
invariant. That is, for t ∈ T  and i ∈ I  , it holds: 

Under the previous assumptions, the observation probability functions are 
parameterized by the following logit models (without covariates), involving 
k
∑r

j=1
(cj − 1) + 2rk parameters:

–	 Given the RS regime, every probability function fj|1(yj|l) , j ∈ R, l ∈ SL , is 
specified by the linear local logit model: 

fj|u(yj|l) = P(Yjit = yj|Lit = l,Uit = u), j ∈ R, u ∈ SU , l ∈ SL, yj ∈ Cj.
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–	 Given the AWR regime of the RS indicator, every probability function fj|2(yj|l) , 
j ∈ R, l ∈ SL , is parameterized by cj − 1 adjacent categories logits: 

The �0lj,�1lj in (11) are parameters to estimate and the scores sj(yj) are known 
constant defined as: sj(yj) = 1 for yj < cj∕2 , sj(yj) = 0 for yj = cj∕2 , sj(yj) = −1 for 
yj > cj∕2 , yj = 1, 2,… , cj − 1.

These scores have been proposed by Tutz and Berger (2016) to extend the 
adjacent categories logit model to account for RS effects.

Parameter �0lj governs the skewness of the probability function fj|1(yj|l) , so 
that it is symmetric with �0lj = 0 , left and right skewed with 𝜙0lj > 0 and 𝜙0lj < 0 , 
respectively.

Increasing positive values of �1lj rise (decrease) the logits (11) for every yj which 
precedes (succeeds) cj

2
 . Hence, for a fixed �0lj , greater positive values of �1lj make 

the response probability function fj|1(yj|l) , yj = 1,… , cj, more concentrated around 
the middle category cj+1

2
 (for cj odd) or the two middle categories cj

2
,
cj

2
+ 1 (for cj 

even). With negative decreasing �1lj , instead, the response probability function tends 
to be more concentrated on the extreme points. A formal definition of concentration 
around middle points of probability functions is given by Colombi et al. (2021).

The suitability of model (11) for describing ARS, DRS, MRS, ERS and CRS behav-
iors is justified by the fact that the RS probability function defined by (11) can be uni-
modal only at the middle or extreme points categories of the response scale. In detail, 
for 𝜙1lj > 0 , the probability function has a mode at the smallest category yj = 1 if 
𝜙0lj < −𝜙1lj (DRS) and at the highest category yj = cj if 𝜙0lj > 𝜙1lj (ARS). For 𝜙1lj > 0 
and −𝜙1lj < 𝜙0lj < 𝜙1lj , the mode is at the middle (MRS) category yj = (cj + 1)∕2 
when cj is odd, while for even cj , the mode is at the middle category yj = cj∕2 (when 
−𝜙1lj < 𝜙0lj < 0 ) or at the middle category yj = cj∕2 + 1 (when 𝜙1lj > 𝜙0lj > 0 ). If 
�0lj = −�1lj ( �0lj = �1lj ), the previous modal categories and all the categories to the 
left (to the right) are equiprobable modes. For 𝜙1lj < 0 , the probability function is 
U-shaped if 𝜙1lj < 𝜙0lj < −𝜙1lj (ERS) and the mode corresponds to the smallest (high-
est) category when 𝜙0lj < 0 ( 𝜙0lj > 0 ). If �0lj = 0 , then the extreme categories are 
equiprobable modes. Finally, it is worth noting that �1lj = �0lj = 0 gives the uniform 
distribution, commonly used to model CRS. Examples of the different shapes of the RS 
probability functions are illustrated in Fig 3 to show the flexibility to model ARS, DRS, 
ERS, MRS, CRS.

(11)log
fj|1(yj + 1|l)
fj|1(yj|l) = �0lj + �1ljsj(yj), yj = 1, 2,… , cj − 1.

(12)log
fj|2(yj + 1|l)
fj|2(yj|l) = �yjl

, yj = 1, 2,… , cj − 1.
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5 � Alternatives based on different assumptions

The proposed modelling approach lies within the framework of HMMs where 
multiple observed time series are assumed to depend on a multivariate latent 
process. While existing approaches, such as coupled or linked HMMs (e.g. 
Pohle et  al. 2021; Colombi and Giordano 2015), assume that each observed 
variable depends on its own specific latent process, our model considers that 
all the observed variables are driven by a common bivariate latent process. 
This is a feature that our approach has in common with the factorial HMMs 
(e.g. Ghahramani and Jordan 1997; Koski 2001). However, in our proposal the 
interaction between the two underlying latent processes is governed by Granger 
non causality and conditional independence assumptions A1 and A2. Condition 
A1 ensures that the {Lit}t∈T  is marginally a Markov chain (see Colombi and 
Giordano 2012) and together with assumption A2 imposes a hierarchy on the two 
latent variables according to which Ut depends on Lt , t ∈ T .

By modifying assumption A2, interesting models, proposed in the litera-
ture in different frameworks, can be obtained as special cases of RS-HMM. 
These models deserve to be considered because they help us to understand the 

Fig. 3   Response probability functions of respondents with ARS ( �0lj = 1,�1lj = 1 , or �0lj = 2,�1lj = 1 ), 
DRS ( �0lj = −2,�1lj = 1 , or �0lj = −1,�1lj = 1 ), MRS ( �0lj = 0,�1lj = 1 or �0lj = −0.5,�1lj = 1 or 
�0lj = 0.5,�1lj = 1 ), ERS ( �0lj = 0,�1lj = −1 ) and CRS ( �0lj = 0,�1lj = 0 ) patterns, for response catego-
ries ranging from 1 = strongly disagree to 6 = strongly agree 
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assumptions on the latent RS component of our approach. Under the assumption 
𝜋
U|L
it

(u|l, ū, l̄) = 𝜋U
it
(u|ū), i ∈ I, t ∈ T  , more restrictive than A2, the Markov chains 

Lit, t ∈ T  , and Uit, t ∈ T  are independent for every i ∈ I  (i.e. parallel Markov 
chains) and the RS-HMM model becomes a factorial HMM for longitudinal data. 
In this case, the RS latent component is unaffected by the latent construct com-
ponent and vice versa, but both latent components influence the same observation 
component.

It is also worth noting that under the simplifying restriction 𝜋U|L
it

(u|l, ū) 
= �

U|L
it

(u|l), of memoryless RS indicator (hereafter m.r.s.i), the RS-HMM model 
is equivalent to the HMM with the latent Markov variables Lit, t ∈ T  only and 
with the univariate observation probability functions given by the mixtures:

for l ∈ SL , yj ∈ Cj , j ∈ R where fj|1 and fj|2 are the marginal probability functions 
of Yjit , conditioned on the RS or AWR latent states, respectively, which are time 
and unit invariant (s. B4 in Sect.  4.2). HMMs with mixtures in the observation 
components have been considered by Volant et  al. (2014) in a general framework 
where the mixtures can have a different number of components depending on the 
state of the latent construct.

Under the stronger restriction 𝜋U|L
it

(u|l, ū) = 𝜋
U|L
it

(u) , the RS indicators Uit , t ∈ T  
are a sequence of independent random variables for every unit i ∈ I  . This restriction 
has been used by De Santis and Bandyipadhyay (2011) to model zero inflation in 
longitudinal count data. According to their approach, the latent variables Uit indicate 
presence or lack of a structural zero while the Lit are associated to different rates or 
intensities of Poisson counts.

Under the even stronger restriction 𝜋U
it
(u|ū) = dū(u), i ∈ I, t ∈ T  , dū(ū) = 1 , 

dū(u) = 0, if u ≠ ū , the RS component becomes a time invariant random component 
that impacts all the repeated observations on a subject. This is a case of a HMM 
with a discrete random effect on the observation component, according to the 
terminology by Bartolucci et  al. (2012). Such a model belongs to the broad class 
of mixed HMMs that incorporate time invariant random effects in the conditional 
model for the observed variables (Maruotti 2011) to take into account unit-specific 
effects due to unobserved heterogeneity at the observation level. However, a time 
invariant RS component does not align well with the fact that the respondent’s 
attitude may vary across different latent regimes (AWR and RS) at each instant. 
Compared to the previous sub-models, our model is more general and flexible since 
it does not assume time invariance for the RS component and, more generally, 
independence of the RS component from its own past or the latent construct.

Furthermore, a model, not nested in the RS-HMM, is obtained if A2 is replaced 
by the Granger non causality condition 𝜋U|L

it
(u|ū, l̄) = 𝜋U

it
(u|ū), t = 2,… , T , which is 

analogous to the Granger non causality assumption A1. This model, according to 

(13)fi1(yj|l) = �U
i1
(1)fj|1(yj|l) + �U

i1
(2)fj|2(yj|l), t = 1,

(14)fit(yj|l) = 𝜋
U|L
it

(1|l)fj|1(yj|l) + 𝜋
U|L
it

(2|l)fj|2(yj|l), t > 1,
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which each latent variable does not Granger cause the other one, is a special case 
of the graphical multiple HMMs introduced by Colombi and Giordano (2015). The 
drawback of this model is that, under the two non Granger causality conditions, 
the transition probabilities 𝜋it(u, l|ū, l̄) do not have a closed expression and must be 
computed numerically as a function of the probabilities 𝜋U

it
(u|ū) , 𝜋L

it
(l|l̄) and a set of 

k − 1 odds ratios defined on the bivariate transition probabilities. See Colombi and 
Giordano (2015) for more details on these Granger non causality conditions and on 
a marginal parametrization that can be used in this context.

A final note concerns one of the major limitation of the HMM approach: 
the Geometric sojourn-time distribution in the states, implied by the Markov 
assumption, is restrictive when the probabilities of leaving a state are function of 
the length of time spent there. This limitation suggests interesting extensions of the 
proposed model, based on Markov chains with order greater than one (Zucchini 
et  al. 2017) or on hidden-semi-Markov models, at the expense of an increased 
number of parameters or computational cost (see Pohle et al. 2022; Yu 2010, among 
others). However, in our proposal, the Markov assumption is not an overly restrictive 
condition since the transition probabilities of both, latent construct and RS indicator, 
depend on time varying covariates.

6 � Inference

Let � denote the vector of all the parameters of the latent and observation models. 
For example, in the simple case of a memoryless model with k = 2 , no covariates and 
one response with four categories, it is: � = (𝛼01, 𝛼0, 𝛽21, 𝛽12, 𝛽01, 𝛽02,𝜑11,𝜑21,𝜑31, 
�12,�22,�32,�01,�11,�02,�12). Hereafter, procedures to provide maximum 
likelihood estimates (MLE) of these parameters and standard errors are illustrated.

6.1 � Estimation via an EM algorithm

The latent binary variable d(1)
it
(u, l) is equal to 1 when the i-th unit (subject) is at time 

t in state (u, l) and the latent binary variable d(2)
it
(u, l;ū, l̄) is 1 if at time t, t > 1 , the 

i-th subject is in state (u, l) while at occasion t − 1 was in (ū, l̄) , l, l̄ ∈ SL , u, ū ∈ SU . 
Moreover, the observable binary variable djit(yj) is equal to 1 if at time t the category 
yj of Yjit , j ∈ R , is observed on the i-th individual, i ∈ I .

If the above binary latent variables were observable, the parameters could be 
estimated by maximizing the following complete log-likelihood (i.e. the joint log-
likelihood of the observations and the latent variables):
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where fj|1 and fj|2 are provided in (11) and (12).
As the latent variables are not observable and it is not easy to maximize the 

marginal log-likelihood, obtained by summing the joint log-likelihood over all the 
possible realizations of the latent indicators, it is common, in the context of HMMs, 
to use the EM algorithm, to compute the maximum likelihood estimates. Details on 
the EM algorithm in the context of HMMs are presented in many papers and books. 
See Bartolucci and Farcomeni (2015) for a presentation specific to the context of 
longitudinal data. Every iteration of the EM algorithm is composed by two steps: the 
Expectation (E) step and the Maximization (M) step. With respect to our model, in the 
E step the following expected values are computed:

where Eobs() is the expected value taken conditionally on the observed values of the 
responses Yjit and on the covariates and given the current value �̄ of the parameters. 
The previous expected values are computed by the Baum-Welch forward-backward 
algorithm (Zucchini and MacDonald 2009, Ch. 4).

In the M step, the following conditional expectation of the complete log-likelihood 
function is maximized in order to obtain an updated �̄:

(15)
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Note that Q(�|�̄) is obtained from the complete log-likelihood by replacing d(1)
it
(u, l) 

and d(2)
it
(u, l;ū, l̄) with their expected values (16).

The six addends of (17), corresponding to the models specified by (3) or (7), (4), 
(5) or (9), (6) and (11-12) of Sects. 4.1 and 4.2, depend on disjoint subsets of the 
vector � and can be maximized separately. The maximization of the sixth addend 
is simple as there is a closed form for the maxima. Moreover, the first addend is 
equivalent to the ML estimation of the logit model (3) or its stereotype variant (7), 
and the third and fifth terms simplify to the estimation of k(r + 1) separate logit 
models described by (5) or (9) and (11). A similar remark applies to the second and 
fourth addends and the logit models defined by (4) and (6), respectively. The terms 
within curled brackets correspond to the log-likelihoods of the logit models that can 
be maximized separately. In the first two addends, the curled brackets are omitted as 
only one logit model is involved. The expected values within squared brackets play 
the role of observed frequencies.

If the model is correctly specified, the estimates of the standard errors can be 
based either on the matrix of second derivatives of the log-likelihood function 
(observed information matrix, in short OIM), see Bartolucci and Farcomeni (2015), 
or on the outer products of the individual contributions to the score functions (outer 
product information matrix, OPIM, or BHHH estimate, Berndt et al. 1974). When 
the model is misspecified, the information matrix equivalence does not hold and the 
standard errors have to be calculated using the so called Sandwich matrix (White 
1982), say SDW. Alternatively, standard errors can be computed using the boostrap 
(BOOT) technique. Technical details are given in Appendix.

All the R functions, for the estimates and standard errors (with the four men-
tioned methods) are available from the authors.
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(u�ū, l)
�

+

r�
j=1

k�
l=1

⎧
⎪⎨⎪⎩

cj�
yj=1

�
n�
i=1

T�
t=1

𝛿
(1)

it
(1, l;�̄)djit(yj)

�
log fj�1(yj�l)

⎫
⎪⎬⎪⎭

+

r�
j=1

k�
l=1

⎧⎪⎨⎪⎩

cj�
yj=1

�
n�
i=1

T�
t=1

𝛿
(1)

it
(2, l;�̄)djit(yj)

�
log fj�2(yj�l)

⎫⎪⎬⎪⎭
.



18	 R. Colombi et al.

1 3

6.2 � Goodness of fit and classification

The goodness of fit testing and model selection in latent Markov models for 
longitudinal data is not straightforward, since standard asymptotic results for 
test statistics may not hold. The use of Akaike’s information criterion (AIC) or 
Bayesian information criterion (BIC) is a broadly used and accepted procedure. 
In particular, for HMM, the use of BIC dominates, even though its theoretical 
properties are not clear (e.g., Bartolucci et  al. 2009; Zucchini and MacDonald 
2009).

Furthermore, there have been proposed in the literature normalized indices for 
assessing the overall fit of a model. For example, Bartolucci et al. (2009) used the 
index:

for assessing the fit of the model against the independence model characterized by 
k = 1 and no RS effects, with 

∑r

j=1
(cj − 1) parameters and log-likelihood function 

�̂0 . It holds R2 ∈ [0, 1] , with higher values indicating a better fit.
Indices can be introduced for measuring the quality of classification and the 

distinguishability of the latent classes as well; Bartolucci et al. (2009) proposed 
an index based on the posterior probabilities of the latent classes, which in our 
set-up is:

with �∗
it
 being, for unit i at time t, the maximum with respect to (u, l) of the posterior 

latent class probabilities 𝛿(1)
it
(u, l;�̄) , introduced in (16). Measure Sk lies between 0 

and 1, where 1 represents certainty in classification and a perfect separation among 
latent classes, while values close to 0 indicate that most of �∗

it
 are close to 1/2k, that 

is like choosing the classes at random. This index is very suitable for our context 
where the observed responses are manifest realizations of the latent variables, there-
fore a good quality in terms of separation of the 2k latent states is crucial. In line 
with the literature which ignores the answering behavior, we can measure the qual-
ity of the separation of the latent construct states marginally with respect to U, so 
that (18) reduces to:

Moreover, in our context, the distinguishability among the k states of the latent con-
struct can be interestingly measured at the AWR and RS regimes separately. The Sk 
index is specified for this aim as follows:

R
2 = 1 − exp

{
2[�̂0 − �(�̂)]∕nr

}
,

(18)Sk =

∑n
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it
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It can also be of interest to measure the ability to discriminate between AWR and 
RS behaviors, regardless of the latent construct. For this aim, the measure (18) is 
modified as:

Finally, the concern can be directed to measure how well separated are the two 
responding regimes, in every class of the latent construct. An insight in this sense is 
given by:

6.3 � Residual analysis

After the selection of a reasonable model according to indices of goodness of 
classification, and indices for judging the overall fit of the model, a residual analysis 
which detects features of the data not captured by the model has to be carried out.

We assess the adequacy of the selected model by analysing full-conditional 
residuals, introduced in the context of HMMs by Buckby et al. (2020), as exvisive 
residuals. Full-conditional residuals are an alternative to the forecast or predictive 
residuals (Buckby et  al. 2020). The difference is that in full-conditional residuals, 
the expected values of observed counts at time t are taken given all the other 
observations while in forecast residuals they are taken given the observations before 
time t. Full-conditional residuals are more useful in evaluating goodness of fit while 
forecast residuals are more helpful to assess the predictive accuracy of the model. 
In the application that follows, we use Pearson full-conditional residuals, whose 
technical details are given below.

To simplify the notation, let xit = (x
(U)�

i
, z

(U)�

it
, x

(L)�

i
, z

(L)�

it
)� be the set of covariates 

for individual i at time t, i ∈ I  , t ∈ T  . Let Dt = {x1, x2,… , xdt} be the set of dif-
ferent configurations of covariates observed at time t ∈ T  and D = ∪tDt . Moreo-
ver C is the set of the c =

∏
j cj different configurations of the responses. For 

every vector yit, yit ∈ C , of the r responses of unit i at time t, we define the rest 
of yit as Y−

it
= {yi1, yi2 … , yit−1, yit+1,… , yiT}. For y ∈ C, i ∈ I  , t ∈ T  , the indicator 

S
L�RS
k

=

∑n

i=1

∑T

t=1
(𝛿

L�RS
it

− 1∕k)

(1 − 1∕k)nT
, with 𝛿

L�RS
it

= max
l∈SL

𝛿
(1)

it
(1, l;�̄)

∑
l∗∈SL

𝛿
(1)

it
(1, l∗;�̄)

,

S
L�AWR

k
=

∑n

i=1

∑T

t=1
(𝛿

L�AWR

it
− 1∕k)

(1 − 1∕k)nT
, with 𝛿

L�AWR

it
= max

l∈SL

𝛿
(1)

it
(2, l;�̄)

∑
l∗∈SL

𝛿
(1)

it
(2, l∗;�̄)

.

SU
k
=

∑n

i=1

∑T

t=1
(𝛿U

it
− 1∕2)

(1 − 1∕2)nT
, with 𝛿U

it
= max

u∈SU

�
l∈SL

𝛿
(1)

it
(u, l;�̄).

S
U�L=l
k

=

∑n

i=1

∑T

t=1
(𝛿

U�L
itl

− 1∕2)

(1 − 1∕2)nT
, with 𝛿

U�L
itl

= max
u∈SU

𝛿
(1)

it
(u, l;�̄)

∑
u∗∈Su

𝛿
(1)

it
(u∗, l;�̄)

, l ∈ SL.
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dit(y) = 1 if yit = y, dit(y) = 0 otherwise, is defined and summing over units the 
counts nt(y, x) =

∑
i∶xit=x

dit(y) are obtained for every x ∈ Dt.
We introduce a residual for every x ∈ Dt , t ∈ T  , and y ∈ C by comparing the 

previous counts with their expected values defined below. Let fit(y|D,Y−
it
) , y ∈ C , 

i ∈ I, t ∈ T  be the joint probability density function (pdf) of the responses given the 
covariates and the rest of yit . The computation of this pdf is described by Buckby et al. 
(2020), by Zucchini and MacDonald (2009) in the related context of pseudo residuals, 
and can be obtained as a by product of the Baum-Welch algorithm. Starting from 
these pdf, we define the following conditional expected values of the counts nt(y, x) : 
�t(y, x) =

∑
i∶xit=x

fit(y�D,Y−
it
), for every x ∈ Dt , t ∈ T  , y ∈ C . Accordingly, the 

following full-conditional Pearson residuals are introduced:

for every x ∈ Dt , t ∈ T  , y ∈ C . Plotting full-conditional Pearson residuals is an 
useful tool to investigate the lack of fit of the model and to highlight particular 
features of the data. Standardizing these residuals is possible in theory but the 
computation of the standard errors is not an easy analytical and computational task. 
This could be done by the methods used in Titman (2009) for HMMs in continuous 
time but, an in depth-study is needed to asses the feasibility in presence of many 
residuals.

For every time occasion t, t ∈ T  , and every observed covariate configuration x , the 
squared full-conditional Pearson residuals sum to the corresponding Pearson’s chi-
squared statistic �2

t
(x) =

∑
y∈C �t(y, x)

2. In this paper, the averages of full-conditional 
Pearson residuals over the c response configurations, i.e. �

2
t
(x)

c
, x ∈ Dt, t ∈ T, are used 

to summarize the comparison of the estimated cell probabilities under the assumed 
model with the observed proportions.

In applications of multivariate responses, practical interest may lie on univariate 
responses Yj or bivariate responses (Yj, Yj� ) , with j ≠ j′ , j, j� ∈ R . In such cases, 
residuals (19) can be marginalized to:

 where  is a configuration of the responses of interest and  the associated set of 
indices. The consideration of marginalized residuals is also useful in case of sparsity 
in response configurations.

7 � SHIW data analysis

We applied the proposed models to the panel data from the Survey on Household 
Income and Wealth described in Sect. 2 to answer the questions raised there. The 
household’s financial capability (or condition) is the latent trait of interest measured 
trough the ability to make ends meet R1 and the perceived financial risk R2 , with 

(19)�t(y, x) =
nt(y, x) − �t(y, x)√

�t(y, x)
,
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covariates gender (G), job (J), children (CH), debts (D), savings (S), education (E), 
cf Sect. 2.

7.1 � Model selection

Models based on different hypotheses on the latent transition probabilities are 
compared in Table 1, each one considered for an increasing number of latent states. 
When the initial or transition probabilities depend on the covariates are said to be 
heterogeneous otherwise they are homogeneous. The compared models differ in 
their computational complexity as the number of parameters varies. In particular, 
as expected, models with unrestricted effect of covariates are computationally more 
intensive than models with a parallel effect.

In the models of Table  1, the initial probabilities �L
i1
(l) are modelled through 

stereotype logits (models M3, M4, M7, M8) when a stereotype model or a parallel 
baseline logit model is used for the transition probabilities of the latent construct, 
otherwise they are modelled by unrestricted logit models (models M1, M2, M5, 
M6). RS initial probabilities are always assumed to depend on the covariates to 
capture heterogeneity in the answering behavior at the beginning.

The minimum BIC corresponds to the model M8 with k = 4 states defined by 
stereotype models (7) for the latent construct initial probabilities and parallel base-
line logit models (9) with scores 𝜈ll̄ = 1 , l ≠ l̄ , for the transition probabilities, and 
no covariate effects on the RS conditional transition probabilities, specified in (6). 
Model M8 with k = 3 is the second best according to the BIC criterion. Both the 
models M8 with k = 3 and k = 4 have a very high value of R2 , so they fit similarly 
and well enough the data at hand, stressing that the dependence of the responses on 
time and covariates is supported by the data. Nevertheless, there is evidence of quite 
overfitting for Model M8 ( k = 4 ), since the conditional response probabilities in two 
states are not easily distinguishable. Looking at the goodness of the classification 
of units into the latent classes, measured by the Sk index (18), it results that model 
M8 with k = 3 has S3 = 0.757 greater than S4 = 0.712 obtained for k = 4 , thus the 
simple model seems to better separate the latent classes. Moreover, the results of all 
the variants of the Sk index, i.e. measures SL

k
 , SU

k
 , SL|RS

k
 , SL|AWR

k
 , SU|L=l

k
 with l ∈ SL 

(Sect.  6.2), illustrated in Table  2, confirm the superiority of M8 with k = 3 over 
the analogous model with k = 4 in terms of distinguishing the states of the latent 
financial capability within the two groups of AWR and RS respondents, and also the 
greater ability to distinguish the AWR and RS behaviors, marginally and condition-
ally on the latent classes l, except for l = 1 only.

Therefore, the latent construct - the households financial capability - is reason-
ably chosen with three states meaning that households can be grouped accord-
ing to whether they feel financially confident ( l = 1 ), financially fair ( l = 2 ), 
financially distressed ( l = 3 ). The choice of model M8 implies that the transition 
probabilities of the latent construct are well described under the parsimonious 
model, where the effects of covariates on the transition probabilities depend on 
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the previous latent state l̄ but do not change over the current latent state l. Other 
less restrictive hypotheses do not fit better, also when combined with a smaller 
number of latent states.

The chosen model is then compared with the latent Markov models, with 
three states and six states, proposed by Bartolucci et  al. (2012), say B, that are 

Table 1   The maximum value of the log-likelihood function (loglike), the number of states k, the number 
of parameters, BIC, Sk and R2 values are reported for models defined by different hypotheses on the tran-
sition probabilities

Model Hypotheses on transition probabilities k loglike n. par. BIC S
k R

2

𝜋L

it
(l|l̄) 𝜋

U|L
it

(u|l, ū)
M1 Unrestricted logit 

models
Heterogeneous, 

m.r.s.i.
2 −15119.64 70 30730.07 0.707 0.805
3 −14716.95 129 30338.34 0.699 0.864
4 −14497.80 204 30425.89 0.692 0.888
5 −14309.60 295 30687.50 0.713 0.906

M2 Unrestricted logit 
models

Heterogeneous 2 −14773.11 86 30149.18 0.798 0.857
3 −14447.88 153 29968.47 0.760 0.893
4 −14289.60 236 30233.85 0.720 0.903
5 −14191.18 335 30731.12 0.715 0.915

M3 Stereotype logit 
models

Heterogeneous 2 – – – – –
3 −14465.32 129 29835.08 0.764 0.892
4 −14330.35 176 29894.68 0.717 0.904
5 −14282.73 227 30157.01 0.681 0.908

M4 Parallel baseline logit 
models

Heterogeneous 2 −14773.11 86 30149.18 0.798 0.857
3 −14466.80 126 29817.02 0.768 0.891
4 −14350.83 168 29879.55 0.716 0.902
5 −14307.23 212 30100.84 0.691 0.906

M5 Unrestricted logit 
models

Homogeneous, 
m.r.s.i.

2 −15340.33 49 31024.21 0.695 0.762
3 −14860.61 101 30429.35 0.690 0.845
4 −14625.49 169 30435.88 0.645 0.875
5 −14457.99 253 30689.81 0.660 0.892

M6 Unrestricted logit 
models

Homogeneous 2 −14833.29 58 30073.23 0.800 0.849
3 −14512.86 111 29803.96 0.759 0.887
4 −14364.24 180 29990.50 0.702 0.901
5 −14265.30 265 30388.58 0.691 0.909

M7 Stereotype logit 
models

Homogeneous 2 – – – – –
3 −14532.10 87 29674.19 0.760 0.885
4 −14413.66 120 29668.66 0.695 0.897
5 −14354.00 157 29808.76 0.661 0.902

M8 Parallel baseline logit 
models

Homogeneous 2 −14833.29 58 30073.23 0.800 0.849
3 −14534.76 84 29658.46 0.764 0.885
4 −14427.96 112 29641.18 0.713 0.895
5 −14370.93 142 29737.46 0.697 0.900
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alternative to our model but do not account for a distinct latent variable repre-
senting the answering behavior. The comparison with the B model with k = 3 
( loglike = 14883.72 , npar = 85 , BIC = 30363.39 ) validates the idea that an under-
lying binary latent variable that distinguishes AWR and RS respondents is coher-
ent with the data at hand, thereby strengthening empirically the usefulness of 
our approach. Moreover, the comparison with the alternative B model with k = 6 
( loglike = −14612.20 , npar = 322 , BIC = 31482.02 ) confirms that the restrictions 
hypothesized in our model on the transition probabilities and on the RS probabil-
ity functions are reasonable for the analyzed data.

To complete the assessment of the chosen model we carry out a residual 
analysis. Fig 4 illustrates the 3 × 6 × 6 box plots of the full-conditional Pearson 
residuals (hereafter residuals), described in (19), calculated within the 6 time 
occasions for every combination of the categories of the two responses. Box 
plots, within each time occasion and responses configuration, correspond to 
different covariate profiles.

All the residuals, across all time occasions, have very small values around zero 
with median = −0.210 , Q1 = −0.437 , Q3 = −0.025 , mean = −0.011 , sd = 0.93 . In 
particular, 95.6% of them are between -2 and 2. Overall, 11% are out of whiskers 
in the box plots of Fig 4 while only 22 residuals in total are greater than 5 (2.5 
‰). The maximum residual corresponds to the profile of a male, with a job (self-
employee or employee), no children, no debts, no savings and a low educational 
level. A slightly larger dispersion appears for residuals (s. Fig 4) corresponding to 
the choice fairly easily for R1 combined with all possible responses on risk per-
ception R2 (averse, tolerant and lover).

Furthermore, we calculated the averages of the full-conditional Pearson’s 
residuals (Sect.  6.3); Fig 5 illustrates the box plots of these averages, for every 
covariate configuration at every time occasion. We observe quite small values 
overall, with the exception of two points having average of Pearson’s residuals 
greater or equal to 4, both at time t = 3 (one of them not shown on the plot for 
better visualization purposes). They correspond both to female respondents with 
quite opposite profiles. In one of them they are not self-employee, with no chil-
dren-debs-savings and a low education, while in the other, they have a job (self-
employee or employee), children-debs-savings and a high educational level.

Table 2   Results of indices of quality of classification illustrated in Sect. 6.2 for models M8 with k = 3 
and k = 4 states of the latent construct

k S
k S

L

k
S
U

k
S
L|RS
k

S
L|AWR

k
S
U|l=1
k

S
U|l=2
k

S
U|l=3
k

S
U|l=4
k

3 0.757 0.824 0.747 0.847 0.837 0.823 0.813 0.821
4 0.712 0.783 0.738 0.801 0.805 0.872 0.736 0.785 0.823
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7.2 � Model interpretation

Fig  6 allows us to characterize the answers of AWR and RS respondents in the 
three latent states, for both response variables. The top panels of Fig  6 illustrate 
the response probability functions of the perceived household’s financial ability to 
make ends meet R1 in the three stata of the latent construct for the AWR (colored 
bars) and RS (grey bars) regimes. According to Sect.  4.2, the estimates 𝜙̂011 and 
𝜙̂111 reported in Table 3 imply that the probability function of RS respondents in the 
state l = 1 has mode at the middle category ( c1∕2 ) fairly easily, at the middle point 
( c1∕2 + 1 ) fairly difficulty in the state l = 2 , and at the extreme ( c1 ) very difficulty 
in l = 3 , respectively. This means that individuals, in the group of financially safer 
households ( l = 1 ), when in doubt about their perceived capability, tend to choose 
with more chance the middle category (MRS) fairly easily on the optimistic side of 
the scale, the uncertain households with a fair capability ( l = 2 ) instead take refuge 

Fig. 4   Box plots of residuals for occasion time and configurations of responses
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in the middle category (MRS) fairly difficulty on the pessimistic side and, finally, 
the reluctant households in the group that deals with financial stress ( l = 3 ) show 
a tendency towards the worrying categories (DRS), with a remarkable preference 
for the extreme difficulty. On the other hand, looking at the probability functions 
of AWR respondents to question R1 we deduce that, in the latent class of financial 
confident families, aware people seem more optimistic than the RS respondents in 
the same latent group, and concentrate quite all the probabilities on the right catego-
ries meaning easy affordability, with mode at fairly easily. In the intermediate state, 

Fig. 5   Box plots of the averages of full-conditional Pearson’s residuals for every covariate configuration 
at every time occasion

Table 3   Estimates (standard errors) of parameters �0lj and �1lj of the RS probability functions in the stata 
l = 1, 2, 3 and responses Rj , j = 1, 2

financially confident (l = 1) financially fair (l = 2) financially distressed (l = 3)

R1 �0l1
−1.4642 (0.1106) 1.2743 (0.1446) 3.8061 (0.0897)

�1l1 2.5575 (0.1256) 2.2705 (0.1431) 2.9025 (0.1132)
R2 �0l2 1.4101 (0.1052) −1.5093 (0.9448) −0.9618 (0.0539)

�1l2 0.4533 (0.1611) −0.4743 (0.9496) −0.1526 (0.0824)
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Fig. 6   Conditional response probability functions of AWR and RS respondents in the three latent states 
of the financial condition
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two highly preferred middle points fairly easily and fairly difficulty characterize the 
probability function of the AWR respondents who deal with a fair financial capabil-
ity, while the RS respondents in the same group prefer more negative positions. The 
two most selected categories move to fairly difficulty and difficulty for AWR people 
facing financial struggles ( l = 3 ). Thus, in this state, AWR respondents are prone to 
manifest their difficulties in managing family’s financial resources, but are most of 
the RS respondents, who experience financial distress, extremely struggling to make 
ends meet.

Bottom panels in Fig 6 refer to the probability functions of the observed response 
R2 about financial risk perception for AWR (colored bars) and RS (grey bars) 
households. The RS probability functions in every latent state have mode at the 
smallest category risk averse since all the parameters �0l2 and �1l2 are negatively 
estimated (Table  3) for l = 2, 3 and 𝜙̂012 < −𝜙̂112 in the first state. It seems that 
reticent respondents take refuge in the status of extreme risk-aversion, may be for 
not blaming themselves for their financial condition. Completely different are the 
distributions of AWR respondents. We can clearly see left skewed, right skewed 
and quite symmetric probability functions, respectively in the group of financially 
confident ( l = 1 ), financially fair ( l = 2 ), and financially distressed ( l = 3 ) 
households, all with mode at the middle category risk tolerant. The preference for 
risk averse is more evident in the groups of more financially vulnerable (fair and 
distressed) households, who may find it prudent to avoid unnecessary or excessive 
financial risk. Instead, risk lovers mainly belong to two categories of households: 
the ones confident with their financial plan and budget that can afford risky financial 
practices, and those respondents who got into financial difficulties because of their 
poor financial behavior. Finally, risk averse and risk tolerant are the preferred 
responses of people with fair ability to manage their finance, thereby showing their 
propensity to stay out of financial troubles.

Estimates of the parameters of the models for the initial and transition 
probabilities are in Table 4. The reported standard errors are calculated using the 
OPIM method, even if all the methods illustrated in Sect. 6.1 and Appendix have 
been applied. They provided quite overall similar results, also close to the standard 
errors obtained by the bootstrap method. Table 5 shows, for the sake of simplicity, 
the standard errors of the estimators for the parameters of the models of the 
initial and transition probabilities of the latent construct, calculated with the three 
illustrated methods and the bootstrap technique. There is coherence in the results, 
except for some cases. Some numerical issues appear mostly in correspondence with 
high estimates of the parameters.

By the sign of the estimates of the parameters of model (7), in Table 4 row 1, 
we deduce that at the first occasion employees, people without savings and with 
high education are in a worse financial status ( l = 2, 3 ) with higher probability. 
This effect is strengthened for the status that describes greater financial 
incapability as the score 𝜇̂3 is greater than 1. In particular, for high educated 
people, the odds of being financially distressed ( l = 3 ) instead of confident ( l = 1 ) 
is quite 10 times the odds for low educated respondents. Similarly, for households 
with no savings (with an employee job), the odds of being in financial 
vulnerability ( l = 3 ) instead of being confident in managing the disposable 
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income is 7 times (about 6 times) the odds when households can count on savings 
(on a self employee job). In addition, by considering the difference between the 
scores in discussing the effect of the educational level, it follows that 
�L
i1
(3,E=overhighschool)

�L
i1
(2,E=overhighschool)

= exp{1.3434 ∗ (1.7 − 1)}
�L
i1
(3,E=uptosecondaryschool)

�L
i1
(2,E=uptosecondaryschool)

 , at the first 
occasion, the propensity of strongly struggling to make ends meet ( l = 3 ) instead 
of managing their finances without much effort ( l = 2 ), for high educated 
respondents is about 2.5 times that of low educated ones. Analogously, the odds 
ratios are 2.23 and 2.07 when groups of households with/without savings and 
with employee/self employee-householder, respectively, are compared.

Looking at the estimated parameters (row 4) of the RS initial probabilities 
modelled by (4), we deduce that at the beginning of the survey, female and low 
educated respondents seem more inclined towards response styles when describing 
their financial condition.

From the estimated parameters (rows 7, 10, 13, 15) of model (9) with parallel 
restriction ( 𝜈ll̄ = 1 ) for the transition probabilities of the latent financial capability, it 
seems that, in two consecutive moments, women, highly educated, with no children 

Table 5   Standard errors (SE) for the parameters of the models of the initial and transition probabilities 
of the latent construct, calculated with the methods illustrated in Sect. 6.1 and Appendix: outer product 
information matrix (OPIM), observed information matrix (OIM), sandwich matrix (SDW), and bootstrap 
(BOOT)

SE Score Intercepts Covariates

G Jse Jhrs CH D S E

�L

1
�3 �02 �03 �′

1

OPIM 0.2231 0.3702 0.3834 0.1385 0.2443 0.1480 0.1338 0.1549 0.2390 0.2079
OIM 0.2363 0.3763 0.3934 0.1401 0.2544 0.1532 0.1272 0.1495 0.2390 0.2212
SDW 0.3681 0.4848 0.5144 0.1640 0.4026 0.1985 0.1340 0.1980 0.2844 0.2935
BOOT 0.2614 0.4190 0.4009 0.1417 0.2651 0.1684 0.1210 0.1391 0.2891 0.2133

�021 �031 �′

11

𝜋L(l|l̄) OPIM 0.6210 0.6858 0.3996 0.5458 0.5100 0.4716 0.4454 0.4637 0.4057
OIM 0.7240 0.7833 0.4408 0.5978 0.5328 0.4313 0.4984 0.4971 0.4432
SDW 1.4397 1.5217 0.6823 0.7312 0.6020 0.5125 0.6133 0.7334 0.5986
BOOT 0.4424 0.4880 0.3771 0.3984 0.4504 0.3637 0.3242 0.3684 0.3490

�012 �032 �′

12

OPIM 1.0086 0.7573 0.5730 0.7669 0.7337 0.6080 0.6662 0.7058 0.6230
OIM 1.2990 0.8712 0.8269 0.9260 0.8681 0.7443 0.7004 1.1187 0.5891
SDW 2.7221 1.1781 1.7513 1.5455 1.2890 1.6226 0.9298 2.6344 0.8313
BOOT 0.8202 0.7802 0.5664 0.7465 0.6842 0.6489 0.7295 0.5843 0.5926

�013 �023 �′

13

OPIM 0.3486 0.2493 0.2999 0.6179 0.3370 0.3019 0.3942 0.2926 0.3486
OIM NA NA 0.2966 0.5482 0.3502 0.3083 0.3921 NA 0.3454
SDW NA NA 0.4164 0.8712 0.4467 0.4439 0.4327 NA 0.4096
BOOT 0.8542 0.8273 0.2465 0.4785 0.3012 0.2644 0.3961 0.7738 0.2678
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and no savings with higher probability move from a financially confident condition 
( ̄l = 1 ) to a worse status of financial vulnerability ( l = 2, 3 ). When the starting status 
corresponds to a fair financial confidence ( ̄l = 2 ), self-employees with no savings 
to rely on and a low level of education are more likely to move towards other lev-
els of financial capability ( l = 1, 3 ). Individuals who suffer in one occasion finan-
cial distress but can count on personal savings, tend to improve their condition in 
the next time by moving with more probability towards the stata of financial sta-
bility ( l = 1, 2 ). Moreover, it is worthwhile to note that all the intercepts are nega-
tive, therefore there is evidence of a higher propensity to rest in the same previous 
financial status. This is more striking for households who experience financial dis-
tress ( ̄l = 3 ) and with very small probabilities pass to more comfortable conditions 
( l = 1, 2 ). The estimated intercepts of model (6) for the RS transition probabilities 
(rows 18, 21), suggest that respondents tend to keep the same behavior in answer-
ing the two questions in two consecutive occasions, regardless the latent state which 
represents the current perceived financial capability.

Table  6 reports the transition probabilities of the latent financial capability, 
averaged over time and units, while Fig.  7 illustrates the boxplot of same transi-
tion probabilities but averaged only over time to show the individual heterogeneity. 
It is evident a strong persistence in the past status with high variability. Further-
more, a greater tendency to worsen the status when starting from a fair condition is 
observed.

Table 7 gives the estimated homogeneous conditioned RS transition probabilities. 
It illustrates how the attitude towards a response behaviour tends to be maintained, 
more so for respondents experiencing financial distress, somewhat less so for 
confident responders.

8 � Concluding remarks

A HMM for longitudinal data of ordered categorical variables, that takes into 
account that responses can be determined by a RS, has been introduced. The 
proposed model is an extension of previous proposals both in the field of RS 
modeling and of HMMs for longitudinal data. The new model can cope with both 
RS effects and temporal dependence, but there are some points that deserve further 
attention in future research. Some open issues are: (i) testing time invariance against 
time dependence of the response style component, (ii) the possibility of introducing 
more RS latent variables, specific to different sets of a partition of the response 

Table 6   Transition probabilities 
𝜋L
it
(l|l̄) of the latent financial 

capability averaged over time 
and units

l

Confident Fair Distressed

l̄ Confident 0.886 0.008 0.014
Fair 0.086 0.951 0.112
Distressed 0.028 0.041 0.874



31

1 3

Hidden Markov models for longitudinal rating data with dynamic…

variables, in order to relax the assumption that, at a given time point t, RS affects 
all response variables or none, (iii) allowing covariate effects in the observation 
component, (iv) modelling unobserved heterogeneity on the transition probabilities.

Under assumption A2 and if the conditional RS transition probabilities are 
homogeneous, the hypothesis 𝜋U|L(u|l, ū) = dū(u) of time invariance of the RS 
indicator constrains 2k parameters on the frontier of the parametric space. A test 
based on the log likelihood ratio statistic can be used but in this case the asymptotic 
distribution of the statistic is a mixture of chi-squared distributions known as chi 
bar squared distribution. The test can be easily implemented as shown in Bartolucci 
(2006) and Colombi and Forcina (2016) who dealt with related problems.

Point (ii) above can be based on the approach of graphical HMMs by Colombi 
and Giordano (2015). Regarding (iii), Assumption B4 can be relaxed by modelling 
the observation probabilities as function of individual covariates as an alternative 
to the presence of covariate effects on the latent component. This can be the case 
when the main interest is on the observed responses and the latent variable serves 
to account for time dependence and respondent’s unobserved heterogeneity not 
explained by RS. If this is the focus of modelling, alternative models exist often 
referred to as Markov-switching logistic models and Markov-switching dynamic 
logistic models (e.g. Frühwirth-Schnatter 2006). Mixed HMMs and finite mixture 
of HMMs (e.g. Maruotti 2011; Bartolucci et al. 2012) are further classes of models 
in this direction that include time invariant random effects to model unit specific 
heterogeneity. It is also worth mentioning the models with multiple time varying 
random effects by Farcomeni (2015).

Fig. 7   Individual transition probabilities of the latent financial capability averaged over time 𝜋̄L
i
(l|l̄)
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Finally, an additional extension can involve (continuous or discrete) random 
effects (e.g. Altman 2007; Bartolucci et  al. 2012) on the transition probabilities 
to deal with time invariant unobserved individual heterogeneity (point iv). These 
effects would extend our model with additional individual-specific characteristics 
that remain constant throughout the observed period. Incorporating discrete random 
effects would allow us to account for group-level heterogeneity that affects the tran-
sition probabilities.

Appendix: Standard errors

We discuss three approaches to the estimation of the standard errors of the maxi-
mum likelihood estimator �̂ of � . Hereafter, the upper index (m), m ∈ {L,U} , will 
be omitted from the vectors of covariates x(m)

i
 and z(m)

it
 to simplify the notation.

Let yi , i ∈ I  , be a realization of the Tr observable variables Yjit , j ∈ R , t ∈ T, 
collected in the vector Yi . The joint probability function of Yi , conditioned on the 
vector of covariates xi, zi ( zi is obtained by stacking the zit, t > 1 ), is denoted by 
q(yi|xi, zi;�) . The log-likelihood function of the observations yi , i ∈ I  , is:

and the vector of the score functions is:

The calculation of standard errors can be based on OIM, OPIM, SDW methods, as 
mentioned in Sect. 6.1. We here sketch briefly some technical details of the three 
methods, an alternative approach is based on the well known parametric bootstrap 
technique.

The OIM can be computed using the Oakes identity (Oakes 1999):

�(�) =

n∑
i=1

log q(yi|xi, zi;�),

s(�) =

n∑
i=1

� log q(yi|xi, zi;�)
��

=

n∑
i=1

si(�).

Table 7   Homogenous 
conditioned RS transition 
probabilities 𝜋U|L(u|l, ū)

ū l̄ u

RS AWR​

RS Confident 0.981 0.019
Fair 0.996 0.004
Distressed 1 0

AWR​ Confident 0.123 0.877
Fair 0.072 0.928
Distressed 0.056 0.944
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as shown by Bartolucci and Farcomeni (2015). The first term inside the square 
brackets is easy to compute, using the outputs of the last M step, as it is block 
diagonal with blocks given by the Hessian matrices of the six addends of (17). The 
computation of the second term inside the square brackets is more demanding as it 
requires the derivatives with respect to �̄ of log 𝛿(1)

it
(u, l;�̄) and log 𝛿(2)

it
(u, l;ū, l̄;�̄) . 

These derivatives can be obtained as an output of the Baum-Welch forward-back-
ward algorithm as described by Bartolucci and Farcomeni (2015). For every element 
𝜃̄h of �̄ , the terms of − 𝜕2Q(�|�̄)

𝜕𝜃̄h𝜕�
� |�̄=�

 are obtained by the derivatives with respect to �′ of 

the six addends of (17) if 𝛿
(1)

it
(u, l;�̄) and 𝛿

(2)

it
(u, l;ū, l̄;�̄) are replaced by 

𝛿
(1)

it
(u, l;�̄)

𝜕 log 𝛿
(1)

it
(u,l;�̄)

𝜕𝜃̄h
 and 𝛿(2)

it
(u, l;ū, l̄;�̄)

𝜕 log 𝛿
(2)

it
(u,l;ū,l̄;�̄)

𝜕𝜃̄h
 , respectively.

Notice that, when the necessary expected values and derivatives are obtained 
from the Baum-Welch forward-backward algorithm, the computation of the stand-
ard errors require repeated calls to a function that estimates logit models. Matrix 
J(�) is estimated by Ĵ = J(�̂) where �̂ is the MLE of �. The standard errors of the 
maximum likelihood estimators are estimated by the square roots of the diagonal 
elements of Ĵ

−1
.

If the RS-HMM is correctly specified, estimates of the standard errors can be 
also derived from the OPIM matrix I(�) =

∑
i si(�)si(�)

� . The matrix I(�) is esti-
mated by Î = I(�̂) and the estimated standard errors of the maximum likelihood 
estimators are the square roots of the diagonal elements of Î

−1
. The matrix Î is 

easier to compute than Ĵ , due to the effort needed to compute 𝜕
2Q(�|�̄)
𝜕�̄𝜕�� |�̄=�.

Remind that the HMM with a RS component is misspecified if there does not 
exist a � such that �(y|x, z) = q(y|x, z;�) with probability 1 where, for every x , z , 
�(y|x, z) is the true probability function generating the data. In this case, �̂ is a 
pseudo maximum likelihood estimator which is a consistent estimator of the 
pseudo-true value �0 = argmin�

(
Ex,zEy�(y|x, z) log �(y|x,z)

q(y|x,z;�)
)
 , see Vuong (1989) 

and White (1982). When the RS-HMM is misspecified, estimated standard errors 
of the pseudo maximum likelihood estimators are given by the square roots of the 
diagonal elements of Ĵ

−1
ÎĴ

−1
. The estimators of the standard errors, obtained in 

this way, are robust in the sense that they are consistent, independently from the 
correct specification of the model. The matrix nĴ

−1
ÎĴ

−1
 is a consistent estimator 

of the SDW matrix A(�0)
−1B(�0)A(�0)

−1 where A(�0) = −Ex,zEy
�2 log q(y|x,z;�)

�����
 and 

B(�0) = Ex,zEy
� log q(y|x,z;�)

��

� log q(y|x,z;�)
���

. The SDW matrix plays a central role in test-
ing problems on misspecified models (Vuong 1989). As all models are possibly 
misspecified, the estimator of the standard errors based on the sandwich matrix 
should be always used in practice. However, computational complexity and 
numerical instability problems make the use of estimates based on the matrix Î 
more practical in the case of the model considered here.

J(�) = −
𝜕2�(�)

𝜕�𝜕��
= −

[
𝜕2Q(�|�̄)
𝜕�𝜕�� |�̄=�

+
𝜕2Q(�|�̄)
𝜕�̄𝜕�� |�̄=�

]
,
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