
Helber, Stefan; Kellenbrink, Carolin; Südbeck, Insa

Article — Published Version

Evaluation of stochastic flow lines with provisioning of
auxiliary material

OR Spectrum

Suggested Citation: Helber, Stefan; Kellenbrink, Carolin; Südbeck, Insa (2023) : Evaluation of
stochastic flow lines with provisioning of auxiliary material, OR Spectrum, ISSN 1436-6304, Springer
Berlin Heidelberg, Berlin/Heidelberg, Vol. 46, Iss. 3, pp. 669-708,
https://doi.org/10.1007/s00291-023-00737-9

This Version is available at:
https://hdl.handle.net/10419/317050

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 http://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s00291-023-00737-9%0A
https://hdl.handle.net/10419/317050
http://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Vol.:(0123456789)

OR Spectrum (2024) 46:669–708
https://doi.org/10.1007/s00291-023-00737-9

1 3

ORIGINAL ARTICLE

Evaluation of stochastic flow lines with provisioning
of auxiliary material

Stefan Helber1 · Carolin Kellenbrink1 · Insa Südbeck1

Received: 18 December 2022 / Accepted: 18 October 2023 / Published online: 4 December 2023
© The Author(s) 2023

Abstract
Flow lines are often used to perform assembly operations in multi-stage processes.
During these assembly operations, components that are relatively small, compared
to the work pieces travelling down the flow line, are mounted to the work pieces at
a given stage. Those components, or more generally, any kind of auxiliary material,
are provisioned to the corresponding production stage in a repetitive but not nec-
essarily deterministic manner using a certain delivery frequency, each time filling
the local storage up to a predetermined order-up-to level. Just like random process-
ing times, machine failures, and repairs, the randomness of the provisioning process
can impact the long-term throughput of such a flow line. In this paper, we develop
a fast and accurate analytical performance evaluation method to estimate the long-
term throughput of a Markovian flow line of this type for the practically important
case of limited buffer capacities between the production stages. We first give an
exact characterization of a two-machine line of that type and show how to determine
system state probabilities and aggregate performance measures. Furthermore, we
show how to use this two-machine model as the building block of an approximate
decomposition approach for longer flow lines. As opposed to previous decomposi-
tion approaches, even the state space of the two-machine lines can become so large
that an exact solution of the Markov chains can become impractical. We hence show
how to set up, train, and use an artificial neural network to replace the Markov chain
solver embedded in the decomposition approach, which then leads to an accurate
and extremely fast flow line evaluation tool. The proposed methodology is evaluated
by a comparison with simulation results and used to characterize the structural pat-
terns describing the behaviour of flow lines of this type. The method can be used to
systematically consider the combined impact of the delivery frequency and the local
order-up-to levels for the auxiliary material when designing a flow line of this type.

 *	 Stefan Helber
	 stefan.helber@prod.uni-hannover.de

1	 Institut für Produktionswirtschaft, Leibniz University Hannover, Königsworther Platz 1,
Hannover D‑30167, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00291-023-00737-9&domain=pdf

670	 S. Helber et al.

1 3

Keywords  Flow line evaluation · Auxiliary material · Decomposition · Markov
chain · Artificial neural network · Automatically guided vehicles

1  Introduction

In this paper, we consider a model of a stochastic flow line with buffers of lim-
ited size between adjacent machines at the respective production stages. As in
previously published papers, we assume random processing times, random times
to failure and random repair times, see (Papadopoulos et al. 2019) for a recent
overview. In such systems, a main design question is to choose the size of buffers
between adjacent machines for given machine parameters.

The additional feature characterizing this paper is a further random process
directed at the provisioning of auxiliary material at the production stages. Exam-
ples of this auxiliary material are components that are mounted on the work
pieces as part of the assembly operation performed at the respective production
stage. In practice, one can find storage facilities such as racks, containers, or
shelves next to the machines in which the auxiliary material is temporarily stored.
As the auxiliary material is being depleted during the assembly operation, new
material has to be provisioned in a regular manner.

One way to achieve this is to operate with a so-called milk-run system in which
a vehicle travels along the stations of the line to provision those stations with a
common delivery frequency. Another option is to operate with vehicles that head
during each provisioning trip from the auxiliary material warehouse to only a
single station at the line. In this type of system, the delivery frequency can be
station-specific, which can be advantageous, e.g. if at some stations very volu-
minous types of auxiliary material are delivered rather frequently to save storage
space along the line. Such a material provisioning system can, for example, be
realized with automatically guided vehicles (AGVs). From the perspective of an
individual station, the arrival process of those vehicles can then appear as ran-
dom, in a manner similar to the arrival process of work pieces to a machine in an
automated flexible manufacturing system.

Upon arrival of such a vehicle, the local storage of the auxiliary material gets
refilled to a predetermined order-up-to level. This leads to further important
design questions beyond the distribution of buffers. On the one hand, it is not
attractive to have oversized local storage systems, in particular as they require
valuable floor space. On the other hand, overly frequent replenishment operations
place a heavy burden on the transportation system used to bring the auxiliary
material to the flow line, which can also be costly in terms of required vehicles
and furthermore lead to congestion in the internal transportation system.

Analysing such a system with complex interactions between main product
movements down the stochastic flow line and auxiliary material provisioning at
the stations is a non-trivial task, in particular if random processing, failure, repair,
and material provisioning times together drive the performance of the flow line.
For this reason, we propose a Markovian model of such a flow line by assuming

671

1 3

Evaluation of stochastic flow lines with provisioning of…

that all those random times follow individual exponential distributions. In this
attempt, we encounter the typical problem of the explosion of the state space. For
this reason, we use a decomposition method as proposed by Choong and Gersh-
win (1987) to numerically analyse the system. The building block of the decom-
position is a two-machine model which we need to solve frequently, quickly, and
accurately. In previously proposed decomposition methods for stochastic flow
lines, it typically turned out to be unproblematic to solve the two-machine model,
i.e. to quickly and exactly determine the steady-state probabilities and, subse-
quently, performance measures such as long-term throughput, blocking and starv-
ing probabilities, since the state space of the two-machine models was typically
rather small.

In our case, however, this is no longer true. The size of the state space of the two-
machine model can become so large that analysing the two-machine system becomes
a problem which requires special attention. We use a Gauss–Seidel (GS) approach to
determine the steady-state probabilities of the two-machine lines numerically. As a
methodological alternative, we also trained an artificial neural network (ANN) based
on numerically determined performance data for two-machine lines and then used
this neural network to predict the relevant performance measures and state prob-
abilities inside of the decomposition approach for longer flow lines with more than
two machines, to show how a hybrid between established flow line decomposition
approaches and artificial neural networks can be constructed in the case of extremely
large two-machine system state spaces. This approach is in principle applicable to
other system configurations as well.

Our paper contributes to the research on manufacturing systems in multiple ways.
First, we add the modelling component of exponentially distributed inter-replenish-
ment times of the auxiliary material to the Markovian model of unreliable flow lines
with random processing times, times to failure, and repair times. For the case of
the two-machine model, we give a detailed description of the resulting continuous
time Markov chain (CTMC) model and show how to determine steady-state prob-
abilities and performance measures numerically, in spite of the relatively large state
space of the two-machine model. We furthermore show to which extent those values
can be predicted by a neural network. Second, we show how the decomposition for
longer lines proposed in Choong and Gershwin (1987) can be adapted to deal with
the new flow line feature. Third, we use the models to study the delicate interactions
of the different sources of randomness and design parameters such as buffer sizes,
order-up-to levels, and delivery frequencies on the performance on the flow line.
This helps to develop intuition about the conditions under which the provisioning
process for the auxiliary material has a major impact on the line.

The remainder of this paper is organized as follows: In Sect. 2, we review the
relevant literature. A technical description of the studied system as well as a formal
model is given in Sect. 3. The core of the paper is Sect. 4 in which we describe
several methods used to determine performance measures for flow lines of the stud-
ied type. We start with the two-machine model and then move on to the analysis of
longer lines via a decomposition approach. Numerical results for the application of
those methods are then presented in Sect. 5. We conclude with Sect. 6 and give hints
for further research.

672	 S. Helber et al.

1 3

2 � Review of the literature

Over the decades, a rich body of literature has emerged that addresses flow line
design and operation problems from many different angles. A first and tremendously
important decision area addresses the line balancing problem of allocating tasks to
stations of the line, see (Becker and Scholl 2006; Scholl and Becker 2006; Boy-
sen et al. 2022). More recently, the organization of material supply for the stations
has gained attention, in particular for mixed-model assembly lines and often via tow
trains, see, for example, Emde and Boysen (2012); Emde et al. (2012); Boysen and
Emde (2014) for surveys. The integration of the so-called “supermarkets” holding
the material as well as Kanban number optimization for the auxiliary material is
studied, for example, by Nourmohammadi et al. (2019); Faccio et al. (2013); Delice
et al. (2023). The decisions treated in these works essentially shape the system stud-
ied in this paper, which in turn focuses on a probabilistic perspective. For this rea-
son, the relevant literature for this work concerns stochastic flow lines systems in
general, decomposition approaches for analysing these systems, and the supply of
auxiliary material. Dallery and Gershwin (1992); Papadopoulos and Heavey (1996),
and Papadopoulos et al. (2009) provide general overviews of the analysis and design
of flow lines. Additionally, Hudson et al. (2015) provides an overview of unbalanced
flow lines. We can find overviews of the analysis of two-machine systems in Li et al.
(2006) and Papadopoulos et al. (2019).

The exact analysis of flow lines with CTMC is limited to very small systems.
However, we can use the developed methods even to evaluate longer lines within
approximate approaches such as aggregation and decomposition. In aggrega-
tion, virtual machines iteratively model the aggregated behaviour of the subse-
quent or previous system. Li and Meerkov (2009) develop several extensions for
this approach. In the decomposition method introduced by Gershwin (1987), one
two-machine-one-buffer system is introduced for each buffer of the flow line. The
parameters of the virtual machines are updated iteratively until the flow through
all substitute systems is identical. Choong and Gershwin (1987) extended the
approach to exponential processing, failure, and repair rates. Dallery et al. (1988)
developed the Dallery-David-Xie (DDX) algorithm to solve the decomposition
equations efficiently. Burman (1995) developed the accelerated DDX, which is
faster and more robust than the DDX.

Several authors developed decomposition approaches for different assump-
tions on the flow line systems, e.g. Tempelmeier and Bürger (2001), and Hel-
ber (2005). Helber (1998), Manitz (2015), and Tancrez (2020) examine flow lines
with assembly/disassembly operations. Helber (1999) additionally considers
rework loops within these systems. The work of Li (2005) considers a decomposi-
tion approach for flow lines with rework loops and scrapping. Sachs et al. (2022)
developed a decomposition approach for flow lines with spare parts needed for a
machine’s repair process. To our knowledge, there is no decomposition approach
for evaluating flow lines with auxiliary material.

There is only a limited number of publications on flow lines with the provision-
ing of auxiliary material. Some articles consider flow lines with a synchronous

673

1 3

Evaluation of stochastic flow lines with provisioning of…

flow of work pieces, e.g. Bukchin and Meller (2005); Alnahhal and Noche (2015),
and Baller et al. (2020). However, we consider systems with an asynchronous
flow of work pieces. Hence, the processing is independent of each other on the
different stages of the flow line. Yan et al. (2010) consider the problem of assign-
ing drivers for the supply of line-side buffers to avoid material shortages. The
authors develop a simulation-based algorithm. Chang et al. (2013) analyse a man-
ufacturing and material handling system. They develop an integrated model for
evaluating the throughput, work in progress, driver utilization, and material sup-
ply. Weiss et al. (2017) use a sample-based approach in combination with a rule-
based local search procedure to optimize the buffer allocation within a flow line
where the first machine needs a limited material. Based on this model, the authors
evaluate different order policies for the supply of the first machine. Mindlina and
Tempelmeier (2022) analyse flow lines with a milk-run supply of material. In
such systems, a transport vehicle visits all stations in a deterministic time inter-
val. The authors develop a mixed integer model for the integrated evaluation and
optimization of the flow line and material supply. Südbeck et al. (2023) evaluate
milk-run-supplied flow lines with a recurrent neural network. They optimize the
buffers and material supply with different gradient and local search approaches.

3 � Problem and model description

Figure 1 depicts a schematic representation of the flow line model considered in this
paper. Squares indicate machines and circles represent buffers. The model is based
on the following assumptions: The work pieces travel through the system from the
left to the right and leave the system again when the process on the last machine
has been completed. Upstream of the first machine, there is an infinite supply of
work pieces to be processed. Likewise, there is an infinite space downstream of the
last machine. The first machine can hence never be starved and the last machine
can never be blocked. The system can therefore be analysed in isolation from its
surroundings.

Processing times at machine i are exponentially distributed with rate �i . The buff-
ers between adjacent machines i and i + 1 can hold up to Ci work pieces. We assume
blocking after service (BAS), i.e. if upon process completion at machine i the buffer

∞ M1

µ1, p1, r1

B1

C1

M2

µ2, p2, r2

B2

C2

M3

µ3, p3, r3

B3

C3

M4

µ4, p4, r4

∞

S1 S2 S3 S4

γ1 γ2 γ3 γ4

Fig. 1   Example of a four-machine flow line

674	 S. Helber et al.

1 3

downstream of machine i is full, the processed work piece remains on machine i which
is then blocked.

While a machine i operates, it can fail, i.e. we assume operation-dependent failures
(ODF). In other words, a machine that is blocked or starved cannot fail. Times to failure
as well as repair times are exponentially distributed with rate pi and ri , respectively.

For each operation on a work piece, the machine requires one unit of the auxiliary
material, e.g. a component to be mounted to the work piece. This is not a limitation
of generality, since for example a set of four screws may be defined as one unit. The
auxiliary material is brought to machine i with exponentially distributed inter-arrival
times with rate �i . Upon arrival of the transport of the auxiliary material for machine i,
the local level is raised up to the order-up-to level Si . This could be due to an individual
AGV driving to an individual station (as opposed to a tow train visiting several adja-
cent stations in a single trip) exchanging a partially empty transportation box or rack
for auxiliary material by a full one. (In a practical setting, we typically find Si ≫ 1 and
hence 𝛾i ≪ 𝜇i.)

The state of the system at any given moment in time can be described by specifying
for each machine i the following elements:

•	 The number ni = 0, ...,Ci + 2 of work pieces already processed by machine i,
but not yet by machine i + 1 , so that for ni > 0 we have one such work piece on
machine i + 1 and the remaining ni − 1 work pieces are waiting in buffer between
machine i and i + 1 or on machine i itself if the buffer is full,

•	 the state �i , with �i = 1 indicating that machine i is operational and �i = 0 that it is
down, and

•	 the level li = 0, ..., Si of the auxiliary material, with li = 0 indicating that machine i
cannot operate as it lacks the auxiliary material.

In order for machine i to operate, we must simultaneously have
(ni−1 > 0) ∧ (ni < Ci + 2) ∧ (𝛼i = 1) ∧ (li > 0) , i.e. the machine is neither starving nor
blocked, operational and there is at least one unit of auxiliary material available. The
state of an I-stage flow line can hence be described as the following tuple:

Not all combinations of values for the elements of the tuple constitute a feasible
state. For example, due to the assumption of operation-dependent failures, we
know that if machine i is down, i.e. �i = 0 , then we cannot possibly have ni−1 = 0
(machine is starved) or ni = Ci + 2 (machine is blocked) or li = 0 (machine lack the
auxiliary material).

If we denote with

the probability of being in state s, then we can define the throughput of the system as
determined via the last machine I, i.e. �I = 1 , nI−1 > 0 , and lI > 0 , as follows:

(1)s = (n1, n2, ..., nI−1, �1, �2,, �I , l1, l2,, lI)

(2)P(s) = P(n1, n2, ..., nI−1, �1, �2,, �I , l1, l2,, lI)

675

1 3

Evaluation of stochastic flow lines with provisioning of…

Other performance measures can, in principle, be defined similarly. Note, however,
this is merely of conceptional interest as the state space is extremely large, so that it
is practically impossible to determine steady-state probabilities P(s) in Eq. (2) for a
line with more than two machines.

4 � Solution approaches for two‑machine models and for longer lines

4.1 � Two‑machine model: transitions and performance measures

For a flow line with only two machines, denoted as the upstream (u) and the down-
stream (d) machines, the state can be given as the following five-dimensional tupel:

To determine the steady-state probabilities P(s) for such a two-machine model, we
have to find a solution to the set of transition equations describing the dynamics of
the underlying continuous-time Markov chain and the additional normalization con-
dition with N = C + 2:

As a notational tool, we define an indicator function 1(L) operating on a logical
proposition L as follows:

With the help of this indicator function, we can now state the balance equations for
the two-machine system being in steady state for n = 0, ...,N = C + 2, �u ∈ {0, 1},
�d ∈ {0, 1}, lu = 0,⋯ , Su , and ld = 0,⋯ , Sd:

(3)

TP =

C1+2∑

n1=0

⋯

CI−2+2∑

nI−2=0

CI−1+2∑

nI−1=1

1∑

�1=0

⋯

1∑

�I−1=0

S1∑

l1=0

⋯

SI−1∑

lI−1=0

SI∑

lI=1

P(n1, n2,⋯ , nI−1, �1, �2,⋯ , �I = 1, l1, l2,⋯ , lI) ⋅ �I

(4)s = (n, �u, �d, lu, ld)

(5)
N∑

n=0

1∑

�u=0

1∑

�d=0

Su∑

lu=0

Sd∑

ld=0

P(n, �u, �d, lu, ld) = 1

(6)1(L) =

{
1, if L is true

0, if L is false.

676	 S. Helber et al.

1 3

For small buffer sizes C and order-up-to levels Su and Sd , this linear system of equa-
tions of the unknown state probabilities (including the normalization constraint)
can be solved directly, for example, using MATLAB. However, even for moder-
ate buffer sizes of C = 10 and order-up-to levels of Su = Sd = 20 , we already have
(10 + 3) ⋅ 2 ⋅ 2 ⋅ (20 + 1) ⋅ (20 + 1) = 22, 932 different system states and setting
up the complete generator matrix Q quickly becomes impractical. Fortunately, we
can exploit the fact that it is a sparse matrix in which most entries are 0. We hence
employ a tailored implementation of GS which takes advantage of the fact that the
generator matrix of the CTMC defined by Eq. (7) is extremely sparse to solve the
two-machine model, i.e. to determine its steady-state probabilities.

Given the values of the steady-state probabilities P(n, �u, �d, lu, ld) , we can com-
pute the throughput of the system via, for example, the upstream machine as

and the average buffer level as

This two-machine model can, on the one hand, already be used for an exact analysis
of the behaviour of a short line of the type under consideration. However, it can also
serve as a building block in a decomposition approach suitable to analyse longer
lines.

Over the course of that decomposition, we will need three further identities
related to the two-machine models. The first identity stems from the fact that, in

(7)

P(n, 𝛼u, 𝛼d, lu, ld) ⋅
(
(𝜇u + pu) ⋅ 1(n<N, 𝛼u=1,lu>0)

+ (𝜇d + pd) ⋅ 1(n>0, 𝛼d=1,ld>0)

+ ru ⋅ 1(𝛼u=0)
+ rd ⋅ 1(𝛼d=0)

+ 𝛾u ⋅ 1(lu<Su)
+ 𝛾d ⋅ 1(ld<Sd)

)

=P(n − 1, 𝛼u, 𝛼d, lu + 1, ld) ⋅ 𝜇u ⋅ 1(n>0, 𝛼u=1,lu<Su)

+P(n + 1, 𝛼u, 𝛼d, lu, ld + 1) ⋅ 𝜇d ⋅ 1(n<N, 𝛼d=1,ld<Sd)

+P(n, 𝛼u + 1, 𝛼d, lu, ld) ⋅ pu ⋅ 1(n<N, 𝛼u=0,lu>0)

+P(n, 𝛼u, 𝛼d + 1, lu, ld) ⋅ pd ⋅ 1(n>0, 𝛼d=0,ld>0)

+P(n, 𝛼u − 1, 𝛼d, lu, ld) ⋅ ru ⋅ 1(𝛼u=1)

+P(n, 𝛼u, 𝛼d − 1, lu, ld) ⋅ rd ⋅ 1(𝛼d=1)

+

Su−1∑

l�
u
=0

P(n, 𝛼u, 𝛼d, l
�
u
, ld) ⋅ 𝛾u ⋅ 1(lu=Su)

+

Sd−1∑

l�
d
=0

P(n, 𝛼u, 𝛼d, lu, l
�
d
) ⋅ 𝛾d ⋅ 1(ld=Sd)

(8)TP = �u ⋅

N−1∑

n=0

1∑

�d=0

Su∑

lu=1

Sd∑

ld=0

P(n, �u = 1, �d, lu, ld)

(9)BL =

N∑

n=0

1∑

�u=0

1∑

�d=0

Su∑

lu=0

Sd∑

ld=0

n ⋅P(n, �u, �d, lu, ld).

677

1 3

Evaluation of stochastic flow lines with provisioning of…

the long run, for each failure, say of the upstream machine, there must be a repair
of that upstream machine:

For the virtual upstream machine to be able to fail, it must be up, not be blocked,
and it must not lack the auxiliary material. On the other hand, a machine being down
implies that it is not blocked and does not lack its auxiliary material.

A further identity, the two-machine flow rate–idle time (FRIT) equation,
addresses the two-machine line throughput from the perspective of either the up-
or the downstream machine. The key idea is that the throughput of the upstream
machine

is the product of its isolated processing rate �u , the efficiency (or “availability”)
eu =

ru

ru+pu
 of that machine, and the probability that the machine is neither blocked

nor lacking its auxiliary material. This identity can be solved for the latter probabil-
ity as follows:

From an alternative formulation of Eq. (8)

together with Eq. (10), a further identity results:

Analogous identities hold for the downstream machine, i.e.

and

Those four identities (13), (15), (16), and (17) will all be used in the derivation of
the decomposition equations.

(10)
pu ⋅P[𝛼u = 1 ∧ n < N ∧ lu > 0]

= ru ⋅P[𝛼u = 0 ∧ n < N ∧ lu > 0]

(11)TP = �u ⋅
ru

ru + pu
⋅ (1 −P[n = N ∨ lu = 0])

(12)= �u ⋅ eu ⋅ (1 −P[n = N ∨ lu = 0])

(13)1 −P[n = N ∨ lu = 0] =
TP

�u ⋅ eu

(14)TP = 𝜇u ⋅P[𝛼u = 1 ∧ n < N ∧ lu > 0],

(15)P[𝛼u = 0 ∧ n < N ∧ lu > 0] = TP
pu

𝜇u ⋅ ru

(16)1 −P[n = 0 ∨ ld = 0] =
TP

�d ⋅ ed

(17)P[𝛼d = 0 ∧ n > 0 ∧ ld > 0] = TP
pd

𝜇d ⋅ rd
.

678	 S. Helber et al.

1 3

4.2 � Decomposition approach for longer lines

4.2.1 � Basic idea of the decomposition approach

As shown in Fig. 2, the basic idea of the decomposition approach as presented
by Choong and Gershwin (1987) is to introduce as many virtual two-machine
lines as the original system has buffers. The goal is to break down the flow line
into coupled subsystems that are each in itself easier to solve. In Fig. 2, the vir-
tual upstream machine Mu(2) of the second virtual line, for example, serves as an
aggregate representation of the part of the original line that is upstream of buffer
B2 of that original line and drives the flow of work pieces into that buffer.

In our exposition below, we follow the convention to use subscripts to denote
parameters or performance measures related to the original line and indices in
parentheses as we denote virtual lines or their machines. So r3 denotes the repair
rate of machine 3 of the original line, whereas ru(3) is the repair rate of the
upstream machine of virtual two-machine line 3.

The parameter types and the general behaviour of the virtual machines equal
those of the machines in the original line. Selected parameters, i.e. the buffer
sizes C, order-up-to levels S, and auxiliary material replenishment rates � of the
virtual machines are even assumed to be identical to those of the corresponding
machines in the original line. As in Gershwin’s original approach, we assume,
however, that

•	 processing rates �u(i) and �d(i),
•	 failure rates pu(i) and pd(i) , and
•	 repair rates ru(i) and rd(i)

Fig. 2   Flow line with four machines and corresponding decomposition

679

1 3

Evaluation of stochastic flow lines with provisioning of…

of virtual up- and downstream machines of virtual line L(i) have to be determined
in such a coupled (!) way that the performance measures of the virtual two-
machine lines (to be determined as explained in Sect. 4.1) can be used to approxi-
mate the performance measures of the original line. As we have I − 1 virtual
lines for a flow line with I machines, each with six unknown parameters as given
above, we need a total of 6 ⋅ (I − 1) equations to determine those parameters.

In the original line, we clearly observe conservation of flow, i.e. the throughput
through all machines is identical in the long run. If a decomposition of a longer
line into a set of coupled two-machine lines works as desired, then the throughput
of all the virtual lines must also be identical. Therefore, we postulate the follow-
ing relationship for a flow line with I machines:

As it is not necessary to distinct between TPu(i) and TPd(i) , we denote TP(i) as the
throughput of the virtual line L(i). We use this equality condition not only in the
derivation of equations to determine the virtual machine parameters, but also as a
termination criterion of the iterative numerical algorithm to solve those equations.

4.2.2 � Decomposition equations

As suggested by Choong and Gershwin (1987), we have to derive the following
three types of decomposition equations:

1.	 Flow Rate–Idle Time (FRIT) equations deal with the effects of blocking and starv-
ing on the throughput. They are also used to propagate the effects of a lack of
auxiliary material specific for the flow line model treated in this paper and serve
to determine processing rates �u(i) and �d(i) for virtual machines.

2.	 Resumption-of-Flow (ROF) equations model the aggregated repair processes and
are used to determine repair rates ru(i) and rd(i) of virtual machines.

3.	 Interruption-of-Flow (IOF) equations characterize the aggregated failure pro-
cesses. They serve to determine failure rates pu(i) and pd(i) of virtual machines.

The FRIT equation for a machine i of the original line with availability ei =
ri

ri+pi

is an approximation as it neglects the (typically small) probability of a machine
being starved and blocked simultaneously.

We can reformulate this equation to

(18)TP1 = TP2 = ⋯ = TPI = TPu(1) = TPd(1) = ⋯ = TPd(I − 1)

(19)TPi = �i ⋅ ei ⋅ (1 −P[ni−1 = 0 ∨ ni = Ni ∨ li = 0)]

(20)
≈ �i ⋅ ei ⋅ (1 −P[ni−1 = 0 ∨ li = 0]

−P[ni = Ni ∨ li = 0]

+P[li = 0])

680	 S. Helber et al.

1 3

We now combine the FRIT for machine i of the original line with the two-
machine FRIT equations (13) as well as (16) and set the auxiliary material levels
li = lu(i) = ld(i − 1) to find

If the decomposition approach works as intended, we can use the identities
TP(i − 1) = TP(i) = TP(i + 1) = TPi to further find

We obtain an estimate for P[li = 0] of the original line, which we cannot observe,
by averaging, i.e. as 0.5 ⋅ (P[i − 1;ld = 0] +P[i;lu = 0]) , over the corresponding
probabilities stemming from the analysis of the corresponding two-machine lines
L(i − 1) and L(i), respectively. The probability P[li = 0] of machine i in the origi-
nal line is a new component of the decomposition that does not exist in the original
decomposition as suggested by Choong and Gershwin (1987).

The final version of the new decomposition equations reads as follows:

with

Analogously, we obtain the following equation for the downstream machine

with

The derivation of both the ROF equations and the IOF equations is documented in
the electronic appendix for the sake of completeness as it exhibits some non-obvious

(21)

TPi

�i ⋅ ei
= (1 −P[ni−1 = 0 ∨ li = 0])

+(1 −P[ni = Ni ∨ li = 0])

−(1 −P[li = 0]).

(22)
TPi

�i ⋅ ei
=

TP(i − 1)

�d(i − 1) ⋅ ed(i − 1)
+

TP(i)

�u(i) ⋅ eu(i)
− (1 −P[li = 0])

(23)
1

�i ⋅ ei
+

1 −P[li = 0]

TP(i)
=

1

�d(i − 1) ⋅ ed(i − 1)
+

1

�u(i) ⋅ eu(i)

(24)�u(i) =
1

K1

⋅

ru(i) + pu(i)

ru(i)

(25)

K1 =
1 − 0.5 ⋅ (P[i − 1;ld = 0] +P[i;lu = 0])

TP(i − 1)
+

1

ei ⋅ �i

−
1

ed(i − 1) ⋅ �d(i − 1)
.

(26)�d(i) =
1

K2

⋅

rd(i) + pd(i)

rd(i)

(27)

K2 =
1 − 0.5 ⋅ (P[i;ld = 0] +P[i + 1;lu = 0])

TP(i + 1)
+

1

ei+1 ⋅ �i+1

−
1

eu(i + 1) ⋅ �u(i + 1)

681

1 3

Evaluation of stochastic flow lines with provisioning of…

elements that are specific for the case of flow lines with auxiliary material. The final
ROF equations for up- and downstream machines are

with

Eventually, the IOF equations are

with

We can solve the decomposition equations (24), (28), and (32) for the desired values
of the virtual machine parameters of upstream machines

(28)ru(i) =ri + K3 ⋅
�u(i) ⋅ ru(i)

pu(i)
,

(29)rd(i) =ri+1 + K4 ⋅
�d(i) ⋅ rd(i)

pd(i)
,

(30)K3 =
P[i − 1;n = 0, �u = 0, �d = 1, lu ≥ 1, ld ≥ 0](ru(i − 1) − ri)

TP(i − 1)
,

(31)K4 =
P[i + 1;n = Ni), �u = 1, �d = 0, lu ≥ 0, ld ≥ 1](rd(i + 1) − ri+1)

TP(i + 1)
.

(32)pu(i) =pi + K5 ⋅ �u(i)

(33)pd(i) =pi+1 + K6 ⋅ �d(i)

(34)
K5 =

�d(i − 1) ⋅P[i − 1; n = 1, �u = 0, �d = 1, lu ≥ 0, ld ≥ 1]

TP(i − 1)

+
pu(i − 1) ⋅P[i − 1; n = 0, �u = 1, �d = 1, lu ≥ 1, ld ≥ 1]

TP(i − 1)

(35)
K6 =

�u(i + 1) ⋅P[i + 1; n = N(i + 1) − 1, �u = 1, �d = 0, lu ≥ 1, ld ≥ 0]

TP(i + 1)

+
pd(i + 1) ⋅P[i + 1; n = N(i + 1), �u = 1, �d = 1, lu ≥ 1, ld ≥ 1]

TP(i + 1)
.

(36)�u(i) =
pi + ri

K1ri + K3 − K5

(37)ru(i) =
K1piri + K3pi + K5ri

K1pi − K3 + K5

682	 S. Helber et al.

1 3

and (26), (29), and (33) of downstream machines:

Note that in these decomposition equations, the terms K1 , K3 and K5 connect a vir-
tual line L(i) to its neighbours L(i − 1) and K2 , K4 and K6 connect a virtual line L(i)
to its neighbours L(i + 1) , i.e. their respective parameters and performance meas-
ures. It is through this connection that iterative parameter updates in the solution
process are propagated through the line.

The standard procedure to numerically solve the decomposition equations is to
use an iterative procedure that updates the parameters of the virtual two-machine
lines ( �u(i) , ru(i) , pu(i) , and �d(i) , rd(i) , pd(i) , respectively) until the throughput of
all virtual lines is identical and taken as an estimate of the throughput of the original
line, see the pseudo-code description in Section D.

To determine the values of K1 to K6 of the virtual two-machine lines ana-
lysed in the course of this approach, the throughput as well as the eight
steady-state probabilities shown in Table 1 need to be computed. To refer to
these parameters, we introduce a shortened notation. For example, the prob-
ability P[n = 0 ∧ 𝛼u = 1 ∧ 𝛼d = 1 ∧ lu > 0 ∧ ld > 0] for system i is abbreviated as
P[i;0, (n, n), 11] . The value before the semicolon gives the number of the analysed

(38)pu(i) =
K1piri + K3pi + K5ri

K1ri + K3 − K5

(39)�d(i) =
pi+1 + ri+1

K2ri+1 + K4 − K6

(40)rd(i) =
K2pi+1ri+1 + K4pi+1 + K6ri+1

K2pi+1 − K4 + K6

(41)pd(i) =
K2pi+1ri+1 + K4pi+1 + K6ri+1

K2ri+1 + K4 − K6

Table 1   Throughput and selected state probabilities of a two-machine line needed in the decomposition
approach

Parameter Short notation Mean Min Max

TP(i) [TU−1] – 0.6771 0.5100 0.7916
P[i;lu = 0] – 0.1201 0.0013 0.3875
P[i;ld = 0] – 0.1047 0.0023 0.3104
P[i;n = 0, �u = 0, �d = 1, lu ≥ 1, ld ≥ 0] P[i;0, (n, a), 01] 0.0047 5.34×10−7 0.0189
P[i;n = 0, �u = 1, �d = 1, lu ≥ 1, ld ≥ 1] P[i;0, (n, n), 11] 0.0124 1.71×10−7 0.0780
P[i;n = 1, �u = 0, �d = 1, lu ≥ 0, ld ≥ 1] P[i;1, (a, n), 01] 0.0005 5.92×10−8 0.0017
P[i;n = N(i) − 1, �u = 1, �d = 0, lu ≥ 1, ld ≥ 0] P[i;N(i) − 1, (n, a), 10] 0.0015 2.23×10−6 0.0023
P[i;n = N(i), �u = 1, �d = 0, lu ≥ 0, ld ≥ 1] P[i;N(i), (a, n), 10] 0.0227 2.65×10−5 0.0344
P[i;n = N(i), �u = 1, �d = 1, lu ≥ 1, ld ≥ 1] P[i;N(i), (n, n), 11] 0.1218 3.33×10−5 0.2240

683

1 3

Evaluation of stochastic flow lines with provisioning of…

system. The first entry after the semicolon represents the current number of work
pieces ni in the system already processed by the virtual upstream machine of line i,
but not the virtual downstream machine. The information on the material supply of
the upstream and the downstream machine follows. No restriction on the material
is indicated by “a”, whereas “n” means that the machine is not starved of auxiliary
material, i.e. li > 0 . The last two numbers indicate whether the machines are opera-
tional (“1”) or not (“0”).

To give an idea of the scale of those parameters, Table 1 additionally shows
mean, minimal, and maximal values for the throughput and the relevant probabilities
computed with GS. The values are determined over 576 instances of unbalanced
small two-machine lines TMLsmall

unbal
 . The exact features of this data set are introduced

in Chapter 5.1.1, but the basic behaviour can be observed in general, so that we do
not go into the test design here. The throughput as well as the examined probabilities
vary remarkably. However, some states are unlikely in all cases, e.g. the probability
that the buffer is nearly full, the first machine is not starving for material and work-
ing while the second failed ( P[i;N(i) − 1, (n, a), 10] ) with a maximal probability of
less than 1%. Especially the small minimal values show that an accurate prediction
of the parameters is important, since an error of one millionth, for example, can dou-
ble the assumed probability.

4.3 � Predicting throughput and selected state probabilities via an artificial neural
network (ANN)

Especially for flow lines with large buffer sizes and high order-up-to levels, the state
space of the CTMC describing the behaviour of a two-machine line can become
huge. In this case, evaluating the two-machine systems takes a relatively long time,
even when the Gauss–Seidel (GS) method is used to determine steady-state prob-
abilities. This can make any decomposition approach impractical in which two-
machine lines need to be analysed very often and leads to the question of a surrogate
model to evaluate the two-machine systems. It is conceivable to use a discrete-event
simulation to that end. However, in order to get very precise estimates of rather
small state probabilities (see Table 1), extremely long simulations are necessary,
which renders this approach impractical. As an alternative and to get a fast and pre-
cise evaluation tool, we hence propose to use an Artificial Neural Network (ANN)
to predict the throughput and the eight state probabilities of the two-machine lines
needed for the decomposition.

Based on training data, ANNs can learn an underlying function from a data set.
As shown in Fig. 3, our data set consists of the parameters of two-machine lines as
inputs, and the corresponding throughput and the eight state probabilities as outputs.
An ANN consists of nodes that process the information, arranged in layers, cf., for
example, Goodfellow et al. (2017). In our ANN, the input information is first pro-
cessed with different nodes. In later layers, the network splits to predict the nine out-
put values separately. As shown in Table 1, the outputs have very different dimen-
sions. For this reason, we use individual nodes for each output. Another option
would be to train nine ANN instead of one that splits for the different outputs. This

684	 S. Helber et al.

1 3

would imply calling nine ANN during each iteration of the decomposition approach,
which would increase computational time.

Operating with an ANN to analyse the two-machine model is potentially attrac-
tive as the ANN needs to be trained only once and can then be a both extremely fast
and relatively accurate evaluation tool.

5 � Numerical results

5.1 � Evaluation of two‑machine lines

5.1.1 � Test design

Our analysis starts with a focus on two-machine lines to examine the accuracy of
determining the throughput and the corresponding probabilities using the three
different evaluation methods, i.e. the discrete-event simulation, the GS method to
numerically solve the CTMC, and our ANN. The simulation and the GS method are
implemented in C++ and the ANN in Python, using TensorFlow Keras and scikit-
learn. The simulation is terminated as the 95 % confidence interval of the simulated
throughput reaches a half width of 0.005. In other words, our throughput estimates
stemming from the simulation can be considered to be extremely precise. The itera-
tive GS method terminates when the maximum change over all state probabilities is
1 ×10−7 from one iteration to the next. We compute all results on an Intel Cascade
Lake Xeon Gold 6230N CPU of the Leibniz University Hannover cluster system
with a 2.3 GHz processor and 20 MB of cache. For information on the training of
the ANN, we refer to Appendix E.

...

· · ·

· · · ...
...

...

γu(i)

Su(i)

µu(i)

pu(i)

ru(i)

C(i)

γd(i)

Sd(i)

µd(i)

pd(i)

rd(i)

TP (i)TP (i)

P[lu(i) = 0]

P[i;N(i), (n, n), 11]

Fig. 3   ANN for the evaluation of two-machine lines

685

1 3

Evaluation of stochastic flow lines with provisioning of…

We define two machine types: A standard machine S with an effective processing
rate �eff

S
= 1 per time unit (TU)−1 and a bottleneck machine B with �eff

B
= 0.8 TU−1 .

Both machine types have a failure rate pi = 0.005 TU−1 and an efficiency ei = 0.95 ,
leading to a repair rate ri =

ei⋅pi

1−ei
= 0.095 TU−1 . The (raw or original) processing rate

�i =
�eff
i

ei
 is then 1.05 TU−1 for the standard machine and 0.84 TU−1 for the bottleneck

machine. For the analysis of balanced lines, two standard machines are combined.
For unbalanced lines, the order of the different machines does not influence the
structural behaviour substantially. Therefore, we only examine the case with
machine 1 as the standard machine and machine 2 as the bottleneck machine.

Both for balanced and unbalanced lines, we define test sets with a structured
variety of parameters concerning the buffers and the auxiliary material, as given in
Table 2. Thereby, we distinguish between instances with a smaller and with a larger
number of states. For both types of instances, buffer sizes C of 20, 40, 60, or 80 are
considered.

Not all combinations of material arrival rates �i and order-up-to levels Si lead
to reasonable instances. To eliminate uninteresting borderline cases in which too
low combined values of �i and Si essentially starve the entire line, we introduced
a quantity denoted as material ratio mri = �i ⋅ Si . It describes the maximum pos-
sible arrival rate of units of auxiliary material. This material ratio obviously is an
upper limit of the throughput of that station i and, via the conservation of flow,
for the entire line. The material ratio mri takes the values 1, 2, 3, and 4 TU−1 .
For a material ratio mri of 1 TU−1 , there is, on average, at most one piece of aux-
iliary material available per unit of time, making it not unlikely that material is
missing. For a material ratio of 4 TU−1 , the probability of a material shortage is
much lower. Auxiliary material arrival rates �i of 0.5, 0.65, and 0.8 TU−1 define
the instances in which auxiliary material arrives very frequently. This results in
small order-up-to levels Si between 2 and 8 and a maximal number of states of
(80 + 3) ⋅ (8 + 1) ⋅ (8 + 1) ⋅ 2 ⋅ 2 = 26, 892 for a small (!) CTMC for a two-machine
line. The larger instances (with a larger state space of the CTMC) stem from aux-
iliary material arrival rates �i assuming much smaller values of 0.05, 0.1, and
0.15 TU-1. These rather infrequent arrivals lead to substantially larger order-up-to
levels between 7 and 80. Due to these high levels of Si , the maximum number of
states increases to (80 + 3) ⋅ (80 + 1) ⋅ (80 + 1) ⋅ 2 ⋅ 2 = 2, 178, 252.

By applying a full factorial design with all combinations of material supply
parameters for both machines, we are considering 4 ⋅ 42 ⋅ 32 = 576 instances in each

Table 2   Definition of small and large test instances

686	 S. Helber et al.

1 3

of the four test cases for two-machine lines (TMLs): small balanced TMLsmall
bal

 , small

unbalanced TMLsmall
unbal

 , large balanced TMLlarge

bal
 , and large unbalanced TMLlarge

unbal
.

5.1.2 � Performance analysis

We use the GS method, our self-programmed discrete-event simulation, and our
ANN for each of the four instance classes to determine or predict the throughput
as well as the eight state probabilities presented in Table 1 that are needed in the
decomposition approach. As the iterative numerical GS method can achieve an arbi-
trary degree of accuracy, we use its results as a reference which we consider to be
exact and to validate our simulation, which will be our reference for longer lines.
As the general behaviour remains the same for all instance classes, we exemplarily
show the throughput prediction error between GS and simulation results as well as
between GS and the ANN results for the instances in TMLlarge

unbal
 in Table 3. In addi-

tion to the mean absolute error (MAE), we present the minimal and maximal errors
over all 576 instances.

The simulation and the ANN both exhibit a very high solution quality. With a
mean MAE over all nine parameters of 0.0007 and 0.0008, respectively, they are
both suitable to predict the parameters of the two-machine flow line. A closer
look shows that the simulation has a slightly better solution quality concerning the
throughput, whereas the remaining parameters are very similar for both approaches.

The scatter plots in Fig. 4 show the prediction error of the throughput obtained
with simulation and with ANN compared to GS for all instance classes. The x-axis
gives the throughput obtained with GS. Each dot represents the error for one
instance. As expected, the throughput is lower for the unbalanced lines, i.e. the
dots are shifted to the left compared to balanced lines. We can observe that sev-
eral instances have the same performance, especially for low throughputs. This is
because that one parameter, for example, a low material ratio mri = 1 TU−1 for one
machine, restricts the whole line so much that the remaining parameters do not

Table 3   Simulation and ANN error for the instance set TMLlarge

unbal

Parameter GS - simulation GS - ANN

MAE min
j∈J

erj max
j∈J

erj MAE min
j∈J

erj max
j∈J

erj

TP(i) [in TU−1] 0.0013 − 0.0060 0.0059 0.0023 − 0.0105 0.0067
P[i;lu = 0] 0.0013 − 0.0057 0.0087 0.0013 − 0.0126 0.0073
P[i;ld = 0] 0.0010 − 0.0047 0.0048 0.0011 − 0.0068 0.0047
P[i;0, (n, a), 01] 0.0003 − 0.0020 0.0017 0.0002 − 0.0009 0.0034
P[i;0, (n, n), 11] 0.0002 − 0.0015 0.0028 0.0004 − 0.0030 0.0052
P[i;1, (a, n), 01] 2.78 × 10−5 − 0.0002 0.0003 2.05 × 10−5 − 0.0001 0.0002
P[i;N(i) − 1, (n, a), 10] 4.28 × 10−5 − 0.0003 0.0003 3.68 × 10−5 − 0.0002 0.0001
P[i;N(i), (a, n), 10] 0.0008 − 0.0042 0.0036 0.0007 − 0.0025 0.0011
P[i;N(i), (n, n), 11] 0.0012 − 0.0072 0.0052 0.0010 − 0.0075 0.0068
Mean 0.0007 0.0008

687

1 3

Evaluation of stochastic flow lines with provisioning of…

influence the throughput. Overall, the small prediction errors show that the simula-
tion and the ANN are reasonable procedures for predicting the throughput of a two-
machine flow line.

Table 4 presents the computational times for all three procedures. The GS method
is relatively fast, compared to the simulation, for the instances with a relatively small
number of states, with an average computational time of only 0.1727 and 0.1338 s,
respectively. For the instances with a larger number of states, the computational time
increases to a mean value of more than 4 s and a maximal value of 76 s. Thereby,
the unbalanced systems are solved faster than the balanced systems. The generator

Fig. 4   Scatter plots of errors GS - Simulation and GS - ANN

Table 4   Computational times for the two-machine lines in seconds

GS Simulation ANN

Mean Min Max Mean Min Max Mean Min Max

TMLsmall
bal

0.1727 0.0164 1.1192 0.4705 0.1352 1.2891 0.0002 0.0000 0.0011

TMLsmall
unbal

0.1338 0.0151 0.7462 0.4613 0.1268 1.5586 0.0001 0.0000 0.0011

TMLlarge

bal
4.6914 0.0451 76.0777 0.4755 0.0952 1.3143 0.0001 0.0000 0.0011

TMLlarge

unbal
4.0153 0.0522 47.0646 0.4274 0.0899 1.2145 0.0001 0.0000 0.0012

688	 S. Helber et al.

1 3

matrix size of the CTMC is irrelevant for the simulation and the ANN, so we do
not observe significant differences between small and large instances. The range
between minimal and maximal values is comparatively narrow. However, our self-
programmed simulation is faster than the GS method for large instances. The ANN
dominates in all instances with respect to computation times by some orders of
magnitude.

For the usage within the decomposition approach and as opposed to the GS
method, the ANN seems to be extremely promising due to its short computational
times. Via the GS method, however, one can create extremely precise training data
for the ANN to “learn” the throughput and the probability functions required for
the decomposition. These state probabilities listed in Table 1 can be very small and
hence very hard to learn from simulation data, which is why the GS method has to
be used to generate training data.

5.1.3 � Flow line behaviour

Figure 5 presents results on the interaction between repair times and order-up-to lev-
els with respect to the throughput for two-machine lines that are balanced as they
operate with stochastically identical machines. The results were obtained via the GS
method. We consider two different cases. In both cases, the failure rates are
pi = 0.005 TU−1. Furthermore, the buffer size C equals 20 in both cases, and the
replenishment rate �i is chosen to be 0.1 TU−1. In the first (solid blue line) case, the
processing rates are �1 = �2 = 1.05 TU−1. Both machines have the same efficiency
of e1 = e2 = 0.95 with ei =

ri

ri+pi
 for i ∈ {1, 2} , which results in repair rates of

r1 = r2 = 0.095 TU−1. In the second (dashed red line) case, we choose the process-
ing rates �1 = �2 = 1.20 TU−1 combined with an efficiency of e1 = e2 = 0.83 and
hence repair rates of about r1 = r2 = 0.02441 TU−1. In both cases, the isolated pro-
cessing rates �iei = �i

ri

ri+pi
 are approximately 1 TU−1.

0 20 40 60 80
Order-up-to level S1 = S2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
hr
ou

gh
pu

t

µ1 = µ2 = 1.05TU-1, e1 = e2 = 0.95
µ1 = µ2 = 1.20TU-1, e1 = e2 = 0.83

Fig. 5   Throughput depending on the order-up-to level for different machine types

689

1 3

Evaluation of stochastic flow lines with provisioning of…

For both lines, the throughput initially rises with a higher order-up-to level
S1 = S2 as material shortages are avoided. For an order-up-to level of 40 units or
higher, i.e. a material ratio mri = �i ⋅ Si ≥ 0.1 ⋅ 40 TU−1 = 4 TU−1 for machines
i ∈ {1, 2} , the material availability has almost no influence on the throughput of
the line. However, we can observe that for a given order-up-to level, the solid
blue line case for machines with a higher efficiency ei has a higher throughput
than the dashed red case one, although both lines have the same effective process-
ing rate �iei . In the second (broken red line) case, the lower efficiency ei is due
to lower repair rates, i.e. longer repair times. Hence, more blocking and starving
occurs, such that a further increase of the throughput can only be achieved via
larger buffer sizes C, but not via higher order-up-to levels S1 and S2.

In Fig. 6, we analyse the impact of the auxiliary material arrival rate �i on
the throughput for different order-up-to levels. The analysis is based on a bal-
anced two-machine line with processing rates �1 = �2 = 1.05 TU−1, efficiencies
e1 = e2 = 0.95 , and failure rates p1 = p2 = 0.005 TU−1. The buffer size C equals
20. The solid blue line case in Fig. 6 equals the solid blue case line in Fig. 5 with
material arrival rates �1 = �2 = 0.1 TU−1. In the dashed and dotted green case, the
material arrival rate �1 = �2 is increased to 0.15 TU−1. In this case, the throughput
is higher for given order-up-to levels as the material arrives more frequently. In
the dashed red case with �1 = �2 = 0.05 TU−1, a remarkably lower throughput can
be observed, showing again the high relevance and interaction of the material
parameters �i and Si . In particular, the figure illustrates how a higher order-up-to
level Si can compensate for a lower material arrival rate �i . For example, to obtain
a throughput of at least 0.8 TU−1, an order-up-to level S1 = S2 = 15 is sufficient
for �1 = �2 = 0.15 TU−1. In contrast, the order-up-to level needs to be increased to
S1 = S2 = 22 for �1 = �2 = 0.1 TU−1 to obtain the same throughput.

0 20 40 60 80
Order-up-to level S1 = S2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
hr
ou

gh
pu

t

γ1 = γ2 = 0.05TU-1

γ1 = γ2 = 0.10TU-1

γ1 = γ2 = 0.15TU-1

Fig. 6   Throughput depending on the order-up-to level for different inter-arrival rates

690	 S. Helber et al.

1 3

5.2 � Evaluation of longer lines using the decomposition approach

5.2.1 � Test design

To analyse the behaviour of longer flow lines with auxiliary material and to evaluate
the decomposition approach’s performance, we analysed each line of a large numeri-
cal test bed via a discrete-event simulation to create reference values. Then we tried
to analyse each such line with two variants of our decomposition algorithm. Like
the simulation, the two variants of the decomposition approach were implemented
in C++. We distinguish the following variants of the decomposition algorithm: In
DecGS , the two-machine lines are solved practically exactly using the GS method. In
DecANN , the parameters of the two-machine lines are obtained using the ANN which
itself was implemented in Python and is called from the C++ program. Addition-
ally, it would be possible to compute the parameters of the two-machine lines using
the simulation. As our former results have shown, the simulation has an comparable
accuracy comparable to that of the ANN, but is much slower. For this reason, this
approach is not promising.

We consider flow lines with 4, 6, and 10 machines. To show the approach’s
behaviour in extreme cases and deliberately bring it to its numerical limits in terms
of computation times and accuracy, we also present results for 20 and 30 machines.
We therefore have five different cases with respect to the line length. For balanced
lines, we assume all machines to be of the standard machine type, as introduced in
Sect. 5.1.1. For the buffer sizes Ci , the replenishment rates �i , and the material ratio
mri , we again use the values in Table 2. As we now apply the same parameters for all
machines of one instance, 4 ⋅ 4 ⋅ 3 = 48 instances are considered for each of the five
different cases of the line lengths. Therefore, in total 48 ⋅ 5 = 240 instances each are
considered in the instance classes of balanced longer lines (LL) with a small num-
ber of states LLsmall

bal
 (stemming from high material arrival rates �i ∈ {0.5, 0.65, 0.8}

in Table 2) and with a large number of states LLlarge

bal
 (stemming from low material

arrival rates �i ∈ {0.05, 0.1, 0.15} in Table 2).
For the analysis of unbalanced lines, each instance contains exactly one bottle-

neck machine B, again as defined in Sect. 5.1.1. Preliminary results showed that the
position of a clear bottleneck does not influence the system’s throughput strongly,
so we do not present results for different machines being the bottleneck. Instead, the
machine in front of the middle buffer is always the bottleneck. To assure that the
bottleneck machine does not slow down the whole system too much, we increase
the buffers CB directly before and behind the bottleneck machine to CB = CS ⋅ C

factor
with Cfactor ∈ {1, 1.5, 2.0} and CS ∈ {20, 40} , i.e. we assume that some effort has
been made to mitigate the effect of the machine being relatively slow. The mate-
rial arrival rates �i ∈ {0.5, 0.65, 0.8} for small instances and �i ∈ {0.05, 0.1, 0.15}
for large instances are the same for all machines. However, the bottleneck machine
should also not starve for the auxiliary material. To assure this, the bottleneck
machine’s material ratio mrB depends on the standard machine’s material ratio mrS .
It is computed as mrB = mrS ⋅ mr

factor with mrfactor ∈ {1, 1.5, 2.0} and mrS ∈ {1, 2}.
Considering all combinations of mrS , CS , mrfactor , Cfactor , and �i , we analyse

2 ⋅ 2 ⋅ 3 ⋅ 3 ⋅ 3 = 108 instances for a given length of the flow line, i.e. 108 ⋅ 5 = 540

691

1 3

Evaluation of stochastic flow lines with provisioning of…

instances for unbalanced small (LLsmall
unbal

 ) and large (LLlarge

unbal
 ) instances for longer lines

with 4, 6, 10, 20, and 30 machines. In the following, we refer to the instance set for a
specific length of the flow line by adding the number of machines to the class’ name,
e.g. LLlarge

unbal
-30 for longer unbalanced lines with 30 machines and a large number of

states.

5.2.2 � Performance analysis

The iterative Algorithm 1 to numerically solve the decomposition equations as docu-
mented in Appendix D is essentially a variant of a fixed-point iteration, see (Dallery
et al. 1988; Burman 1995). It is supposed to terminate if the throughput differences
over the different two-machine lines are below a certain small limit � . The usually
observed behaviour of this type of flow line decomposition algorithm is that this
limit is reached within 10–20 iterations, which usually takes fractions of a second on
current computers. Further iterations then lead to smaller deviations in the through-
put results over the different two-machine lines. In our case, however, the situation is
more complex for two reasons:

1.	 Low material arrival rates �i typically require large order-up-to levels Si , which
creates CTMC of the two-machine lines with large state spaces and (if the two-
machine lines are analysed via the GS method) relatively large computation times,
as indicated in Tables 2 and 4. This effect can eliminate the entire speed advantage
of the decomposition, relative to a performance evaluation via a discrete-event
simulation.

2.	 For rather long lines (in our case, lines with 20 or 30 stations), convergence issues
of Algorithm 1 can sometimes occur as the termination criterion of extremely
close throughput estimates from the two-machine line solutions is not met.
Instead, from iteration to iteration, throughput estimates begin to oscillate. We
conjecture that this is a numerical artefact stemming from our combination of
numerical methods.

In our numerical study, we wanted to figure out under which conditions these effects
limit the applicability of the entire approach. For this reason, two additional abortion
criteria were defined in our decomposition approach, an extreme time limit (TL) of
10 h and an iteration limit (IL) of 1000 iterations. In all cases for lines with 4, 6, and
10 machines, we observed the desired abortion due to the regular abortion crite-
rion of a sufficient degree of accordance over the throughput estimates of the differ-
ent virtual two-machine lines. However, for cases with 20 or 30 lines, we observed
some cases with a termination due to the iteration limit of 1000 iterations or 10 h
of computation time. Details are reported in Table 5. The instances with 30 stations
led to more convergence issues than those with 20 stations. In addition, the lines
with infrequent deliveries, high order-up-to levels, and hence large state spaces of
the decomposition’s two-machine lines were also more difficult to solve. Finally, the
rather rare convergence issues occurred more frequently when the GS method was
uses to solve the two-machine lines.

692	 S. Helber et al.

1 3

All instances in which the iteration or time limit has been reached for at least one
approach are discarded from the further analysis, as we now turn to the results with
respect to the accuracy of the approach in the case of a normal termination.

The mean average percentage error (MAPE) of throughput estimates determined
via the approaches presented in this paper relative to the simulation results is given
in Table 6. As we can consider the GS method applied to the two-machine models to
be practically exact, as opposed to the ANN being an approximation itself which is
used within the further approximation of the decomposition approach, we expected
the DecGS to be more accurate than the DecANN. For the cases with the small state
spaces, we find the expected behaviour, but interestingly we do not seem to lose a lot
of accuracy by evaluating the two-machine lines with an ANN as opposed to using
the GS method. It is interesting that for the systems with the large state spaces, the
DecANN is even slightly more accurate than the DecGS decomposition. However, in
all cases the differences between the throughput accuracy estimations that can be
attributed to using either the GS method or the ANN seem to be negligible. This is
an important result as it indicates that a suitably trained ANN can indeed be used
within a larger decomposition approach!

To look more closely at the decomposition approach’s performance, we present
the error depending on the simulated throughput in Fig. 7. The behaviour is com-
parable for the different numbers of machines, so we exemplarily refer to results for
lines with 6 machines. Again, we can observe that the prediction error is very small
for both approaches. For instances with a small number of states, DecGS is even
nearly meeting the zero line. Both methods tend to underestimate the throughput

Table 5   Termination by
iteration limit (IL) and time
limit (TL)

|I| instances LLsmall LLlarge

DecGS DecANN DecGS DecANN

IL TL IL TL IL TL IL TL

20 bal (48) – – – – – 6 – –
unbal (108) – – – – 7 – – –

30 bal (48) – – – – – 14 – –
unbal (108) 14 – 8 – 40 7 19 –

Table 6   MAPE in per cent for longer lines

|I| LLsmall
bal LLlarge

bal
LLsmall

unbal LLlarge

unbal

DecGS DecANN DecGS DecANN DecGS DecANN DecGS DecANN

4 0.2391 0.5630 0.9917 0.8535 0.1996 0.5059 1.1081 0.9069
6 0.4836 0.9342 1.6809 1.4044 0.3456 0.7605 2.1993 1.9339

10 0.9366 1.4428 2.6352 2.2985 0.6183 1.0705 3.6537 3.3108
20 1.6150 2.1138 3.9104 3.5837 1.0846 1.5485 5.5520 5.1415
30 1.9167 2.4079 4.5339 4.2831 1.3099 1.8887 6.4476 6.0781

693

1 3

Evaluation of stochastic flow lines with provisioning of…

as they mainly lead to negative errors. This is an effect of the decomposition from
Sect. 4.2.2 being an approximation.

In Fig. 7c, two adjacent data points are distinguished. They show the throughput
estimation errors relative to the simulation result for a particular flow line. Appar-
ently, the differences between the DecGS and DecANN results are relatively small and
smaller than the differences to the “true” values stemming from the simulation. We
see similar patterns in the other graphs as well. This is also an important result as
it leads to an immediate conclusion: It does not seem to be worthwhile to first start
with the iterations using the ANN and then, in order to achieve higher accuracy,
use the GS method to obtain the final degree of accuracy. It is sufficient to use the
GS method to generate training data for the ANN and then use the ANN within the
decomposition to quickly and accurately evaluate two-machine lines!

To show the effect of different instance parameters on the performance of the
approaches, Fig. 8 gives the throughput quality depending on the buffer size and
the order-up-to level, respectively, as determined via the discrete-event simulation
and the two decomposition methods DecGS and DecANN. The analysis is based on
a balanced 4-machine line with �i = 0.1 TU-1. For the case of varying buffers, we
use an order-up-to level Si = 40 , and for the case of varying order-up-to levels,
we apply buffer sizes Ci = 40 . The results obtained with simulation, DecGS, and
DecANN are very close in all cases. The effect of varying buffer size or order-up-to
level is much higher than that of the different solution procedures. For very high

0.5 0.6 0.7 0.8 0.9 1.0
Simulated Throughput

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

P
re
di
ct
io
n
E
rr
or

DecGS

DecANN

Fig. 7   Scatter plots of errors DecGS vs. Simulation and DecANN vs. Simulation

694	 S. Helber et al.

1 3

order-up-to levels ( Si > 60 ) the performance of DecANN decreases. In these cases,
we have a material ratio of mri > 0.1 ⋅ 60 TU−1 = 6 TU−1 which is far above the
values of mri in the training data set. Therefore, we expect decreasing accuracy
of the ANN for these cases. In a practical setting, such high order-up-to levels
would not be applied. In summary, the results show an excellent performance of
the decomposition approach, independent of which method evaluates the two-
machine lines.

The computational times for all approaches are presented in Table 7. DecGS is
much faster for unbalanced lines than for balanced lines. This is in accordance with
the typical behaviour of this type of algorithm. However, even though the DecGS
appears to yield useful results, it is substantially slower than our (specifically tai-
lored and hence very fast) discrete-event simulation. The comparison between
DecANN and our discrete-event simulation with respect to speed advantages has to
be evaluated with care as the latter terminated only after it had reached a high accu-
racy with a half width of the simulated throughput confidence interval of 0.005, see
Sect. 5.1.1. A less accurate simulation would be substantially faster. The element
which eventually makes our approach useful is the combination of the decomposi-
tion for the longer lines with the ANN approach to determine results for the virtual
two-machine lines. It is this combination which yields an extremely fast and still
sufficiently accurate evaluation tool. This is particularly true for the lines with up
to 10 machines where convergence is achieved quickly and accurate results can be
determined in much less time than when using simulation.

For the example of a balanced line with 4 machines, we show in Fig. 9 the influ-
ence of the buffer size on the computational time. On the left-hand side, we present
the behaviour for small instances with auxiliary material arrival rate �i = 0.65 TU-1
and order-up-to level Si = 6 . Whereas DecANN is the fastest approach, the computa-
tional time of the simulation varies a bit but still is on quite a low level. However,
the computational time needed for DecGS shows an substantial growth depending on
the buffer size and the number of states, respectively. This gets even clearer for large
instances with auxiliary material arrival rate �i = 0.1 TU-1 and order-up-to level

Fig. 8   Throughput of a 4-machine line for the three approaches

695

1 3

Evaluation of stochastic flow lines with provisioning of…

Ta
bl

e 
7  

C
om

pu
ta

tio
na

l t
im

es
 fo

r t
he

 e
va

lu
at

io
n

of
 lo

ng
er

 li
ne

s i
n

se
co

nd
s

|I
|

LL
sm

al
l

b
al

LL
la
rg
e

b
al

LL
sm

al
l

u
n
b
al

LL
la
rg
e

u
n
b
al

Si
m

D
ec

G
S

D
ec

A
N

N
Si

m
D

ec
G

S
D

ec
A

N
N

Si
m

D
ec

G
S

D
ec

A
N

N
Si

m
D

ec
G

S
D

ec
A

N
N

4
3.

12
17

.1
6

0.
01

2.
57

57
9.

65
0.

01
3.

18
6.

10
0.

01
2.

69
16

9.
30

0.
01

6
6.

37
47

.2
7

0.
02

5.
17

15
48

.2
0

0.
03

5.
53

12
.3

3
0.

03
4.

35
55

0.
34

0.
04

10
15

.0
2

14
1.

15
0.

09
12

.5
8

44
54

.2
2

0.
11

16
.4

2
31

.3
0

0.
09

11
.9

5
14

57
.8

7
0.

15
20

59
.4

3
52

4.
02

0.
54

39
.3

3
90

74
.9

8
0.

71
49

.8
6

10
5.

86
0.

71
32

.9
7

49
29

.4
4

1.
34

30
12

3.
49

98
6.

25
1.

56
75

.9
6

11
02

2.
26

2.
16

11
7.

83
14

8.
16

1.
22

69
.0

3
59

14
.7

9
2.

41

696	 S. Helber et al.

1 3

Si = 40 on the right-hand side. For a buffer size Ci = 80 , the evaluation of the cor-
responding flow lines takes up to 20 min.

We can observe that the average number of iterations is comparable between
DecGS and DecANN, see Table 8. The number of machines, i.e. the length of the line,
has the primary effect. Compared to the small instances, the number of iterations of
large instances rises only slightly. While for small instances the number of iterations
is lower for unbalanced lines, for large instances the unbalanced lines require more
iterations, again indicating numerical difficulties if the lines become very long.

To sum up, our results show that the performance of the two variants DecGS
and DecANN of the decomposition approach presented in this paper is comparable
with respect to accuracy. However, DecANN overwhelmingly dominates DecGS with
respect to speed, without losing to much accuracy due to using the ANN.

5.2.3 � Flow line behaviour

For the analysis of the flow line behaviour, we analyse 6-machine lines. If not stated
otherwise, we use inter-arrival rates � = 0.1 TU-1, order-up-to levels Si = 40 , buffer
sizes Ci = 40 , and standard and bottleneck machines as introduced in Sect. 5.1.1.

Figure 10 presents the influence of the order-up-to level Si on the throughput
for different inter-arrival rates for a balanced line. It is evident that, especially

Fig. 9   Influence of the buffer size on the computational time

Table 8   Average number of iterations for the evaluation of longer lines

|I| LLsmall
bal LLlarge

bal
LLsmall

unbal LLlarge

unbal

DecGS DecANN DecGS DecANN DecGS DecANN DecGS DecANN

4 10.23 10.60 12.42 12.77 10.44 10.61 13.46 13.73
6 16.71 16.96 20.65 20.71 17.46 17.41 22.74 25.71

10 33.48 32.83 40.79 41.15 39.05 36.52 55.19 59.06
20 91.98 90.48 113.43 121.31 138.33 121.59 228.43 221.96
30 167.87 170.27 210.82 239.71 151.11 136.27 276.67 263.66

697

1 3

Evaluation of stochastic flow lines with provisioning of…

for low inter-arrival rates, the order-up-to level significantly influences the
throughput. For higher inter-arrival rates, the order-up-to level is less signifi-
cant. However, the figure shows that higher order-up-to levels can compensate
for lower inter-arrival rates. For example, to obtain a throughput of 0.8 TU-1
with an inter-arrival rate of 0.1 TU-1, an order-up-to level Si = 24 is needed.
With an inter-arrival rate of 0.15 TU-1, an order-up-to level Si = 16 is sufficient.
In both cases, two cases, the resulting material ratio mri = �i ⋅ Si is approxi-
mately 2.4 TU-1, which is substantially larger than the throughput of the line of
0.8 TU-1, indicating the need for relatively large auxiliary material storage facili-
ties next to the stations to cope with the numerous aspects of stochastic fluctua-
tions in such a line.

We finally turn to the case of lines with a bottleneck. In Fig. 11, we refer
to an unbalanced 6-machine line to observe the influence of the buffer factor
Cfactor , which determines the buffer size directly in front and directly behind the
bottleneck machine. Increasing the bottleneck buffers has nearly no influence
in the case of very small and very large buffers. Only in the range between 5
and 20 buffers can the throughput be perceptibly increased by higher values of
Cfactor . Still, the effect of increasing the bottleneck buffers according to Cfactor is
minor compared to the influence of increasing the standard buffer size Ci of all
machines.

The effect of varying the order-up-to levels Si for different material fac-
tors mrfactor is given in Fig. 12, again for the case of a line with a bottleneck
machine. We observe that the global order-up-to level Si has a higher effect on
the throughput than the material ratio of the bottleneck machine mrfactor . There is
nearly no difference between values of 1.5 and 2.0, whereas lowering the order-
up-to level of the bottleneck machine to that of the remaining machines, e.g. set-
ting mrfactor to 1.0, lowers the throughput.

20 40 60 80
Order-up-to level Si

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
hr
ou
gh
pu

t

γi = 0.05TU-1

γi = 0.10TU-1

γi = 0.15TU-1

Fig. 10   Throughput depending on the order-up-to level Si for balanced 6-machine lines

698	 S. Helber et al.

1 3

6 � Conclusion, managerial implications, and further research

We presented a new continuous-time Markov chain model of a flow line with
independent and stochastic provisioning of auxiliary material. A decomposi-
tion approach led to a numerical algorithm to determine the throughput of such
a line. Due to the large state space, solving the two-machine lines turned out to
be extremely time-consuming. However, we were able to show how a suitably
trained artificial neural network can be used within this decomposition algorithm
to evaluate the two-machine lines, such that the complete approach can be used
to analyse longer lines quickly and with a high degree of accuracy. The observed

0 10 20 30 40
Buffer size Ci

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
hr
ou
gh
pu

t

C factor = 1.0
C factor = 1.5
C factor = 2.0

Fig. 11   Throughput depending on the buffer size Ci for unbalanced 6-machine lines

20 40 60 80
Order-up-to level Si

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
hr
ou
gh
pu

t

mrfactor = 1.0
mrfactor = 1.5
mrfactor = 2.0

Fig. 12   Throughput depending on the order-up-to level Si for unbalanced 6-machine lines

699

1 3

Evaluation of stochastic flow lines with provisioning of…

system behaviour of these flow lines completely agrees with our theoretical
reasoning.

The managerial implications are twofold: With respect to the system design, we
observed the need to have relatively large order-up-to levels for the auxiliary mate-
rial next to the stations, as material ratios are required that are substantially larger
than the throughput of the system. This problem can only be reduced by making the
material provisioning more regular, ideally deterministic. For this reason, a deter-
ministic milk-run supply may lead to substantially lower storage requirements for
the auxiliary material.

The other managerial implication is method-oriented. Our work showed how it is
possible to combine established evaluation methods based on the two-machine flow
line decomposition approach with machine learning methods. Appropriately com-
bined, these two technologies can be used to evaluate systems quickly and precisely
that can hardly be evaluated if the state space of the two-machine lines becomes
too large. We therefore propose an evaluation method which paves the way for inte-
grated formal optimization methods to decide about buffer allocation, order-up-to
levels, and auxiliary material delivery frequencies simultaneously.

This last remark points to future research. With this new flow line model and the
evaluation method, systematic optimization can be considered as well. One practically
interesting problem would then be to optimize the above-mentioned variables of buffer
sizes, order-up-to levels, and material provisioning frequencies simultaneously and to
assess the benefit from such an integrated optimization. An alternative approach would
be to first ignore the auxiliary material altogether and optimize the buffer allocation in
isolation. In a further step, and then given the target throughput of the system, appro-
priate combinations of order-up-to levels and auxiliary material delivery frequencies
could be determined.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

Appendix

A. Definition of virtual machine states

The states �u(i) ∈ {0, 1} of virtual upstream and �d(i) ∈ {0, 1} of virtual downstream
machine are defined exactly as in Choong and Gershwin (1987). Machine Mu(i) is up
if Mi is up and not starved due to Mu(i − 1) being down and buffer i − 1 being empty:

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

700	 S. Helber et al.

1 3

The crucial element here is the recursive nature of this definition. Machine Mu(i) is
down if Mi is down or starved due to Mu(i − 1) being down and buffer i − 1 empty:

The definition of virtual downstream machine states is analogous.

B. Derivation of the resumption‑of‑flow equations

The probability of a repair of the virtual upstream machine of line L(i) is the conditional
probability of seeing its state change for “0” (i.e. “down”) at time t to “1” (i.e. “up”) at
time t + �t . It can be determined by inserting the definition of the virtual machine being
down and then decomposing on the conditioning event:

Terms A to D denote the following conditional probabilities:

Terms A and C denote repairs of machine i of the original line and virtual upstream
machine Mu(i − 1) of line L(i), respectively:

It remains to determine term D. To this end, several implications are used:

•	 Condition �u(i, t) = 0 implies conditions n(i, t) < N(i) and l(i, t) > 0 as a
machine cannot fail while being blocked or starved for main products or auxil-
iary material.

(42)

{𝛼u(i, t) = 1} iff {𝛼i(t) = 1∧

{n(i − 1, t) > 0∨

n(i − 1, t) = 0 ∧ 𝛼u(i − 1, t) = 1}}

(43){�u(i, t) = 0} iff {�i(t) = 0 ∨ n(i − 1, t) = 0 ∧ �u(i − 1, t) = 0}

ru(i)�t =P[�u(i, t + �t) = 1|�u(i, t) = 0]

=P[�u(i, t + �t) = 1|�i(t) = 0∨

�u(i − 1, t) = 0 ∧ n(i − 1, t) = 0]

=A ⋅ B + C ⋅ D = A ⋅ (1 − D) + C ⋅ D

=A + (C − A) ⋅ D

A =P[�u(i, t + �t) = 1|�i(t) = 0]

B =P[�i(t) = 0|�u(i, t) = 0]

C =P[�u(i, t + �t) = 1|�u(i − 1, t) = 0 ∧ n(i − 1, t) = 0]

D =P[�u(i − 1, t) = 0 ∧ n(i − 1, t) = 0|�u(i, t) = 0]

A = P[�u(i, t + �t) = 1|�i(t) = 0]

= ri ⋅ �t

C = P[�u(i, t + �t) = 1|�u(i − 1, t) = 0 ∧ n(i − 1, t) = 0]

= ru(i − 1) ⋅ �t

701

1 3

Evaluation of stochastic flow lines with provisioning of…

•	 Conditions �u(i − 1, t) = 0 ∧ n(i − 1, t) = 0 imply condition �u(i, t) = 0 by defi-
nition of virtual machine states.

•	 Conditions �u(i − 1, t) = 0 ∧ n(i − 1, t) = 0 imply conditions �d(i − 1, t) = 1
because the starved downstream machine cannot fail and lu(i − 1, t) > 0
because the upstream machine can only fail if it is not starving.

The definition of conditional probability and identity (15) together with the impli-
cations introduced above yield:

We use the shorthand notation for state probabilities of virtual two-machine lines
introduced in the fourth entry of Table 1 for the last equality. Bringing everything
together, we find:

Dividing by �t , using conservation of flow TP(i − 1) = TP(i) , and rearranging the
terms, we eventually have the following form

with

For the downstream machine, analogous arguments and index transformation lead to

with

D =P[𝛼u(i − 1, t) = 0 ∧ n(i − 1, t) = 0|𝛼u(i, t) = 0]

=
P[𝛼u(i − 1, t) = 0 ∧ n(i − 1, t) = 0 ∧ 𝛼u(i, t) = 0]

P[𝛼u(i, t) = 0]

=
P[𝛼u(i − 1, t) = 0 ∧ n(i − 1, t) = 0 ∧ 𝛼d(i − 1, t) = 1]

P[𝛼u(i, t) = 0 ∧ n(i, t) < N(i) ∧ lu(i, t) ≥ 1]

=
P[𝛼u(i − 1, t) = 0 ∧ lu(i − 1) > 0 ∧ n(i − 1, t) = 0 ∧ 𝛼d(i − 1, t) = 1]

P[𝛼u(i, t) = 0 ∧ n(i, t) < N(i) ∧ lu(i, t) ≥ 1]

=
P[i − 1;0, (n, a), 01]

TP(i) ⋅ pu(i)
⋅ 𝜇u(i) ⋅ ru(i)

ru(i)�t = A + (C − A) ⋅ D

= ri ⋅ �t +
(
(ru(i − 1) − ri) ⋅ �t ⋅P[i − 1;0, (n, a), 01]]

) �u(i) ⋅ ru(i)

TP(i) ⋅ pu(i)

ru(i) = ri + K3 ⋅
�u(i) ⋅ ru(i)

pu(i)

K3 =
P[i − 1;0, (n, a), 01](ru(i − 1) − ri)

TP(i − 1)
.

rd(i) = ri+1 + K4 ⋅
�d(i) ⋅ rd(i)

pd(i)

K4 =
P[i + 1;N(i + 1), (a, n), 10](rd(i + 1) − ri+1)

TP(i + 1)
.

702	 S. Helber et al.

1 3

C. Derivation of the interruption‑of‑flow equations

We present the derivation of the IOF equations for the virtual upstream machine
Mu(i) , again using the definition of virtual machine states. The first step is to
break the conditional probability of a failure apart by considering the mutu-
ally exclusive ways how at time t + �t the machine can be down and adding the
respective probabilities:

A further decomposition on the conditioning event for the second summand yields

with terms A to J to be analysed below based on a decomposition on five mutually
exclusive and collectively exhaustive events in Eq. (45).

We first note that more than one event required during an interval of length �t for
transitions A and C related to the first two conditioning events in Eq. (45):

Since A is irrelevant given lim
�t→0

o(�t)

�t
= 0 , there is no need to determine B.

In a similar way, we establish that C is of order o(�t):

pu(i)𝛿t = P[𝛼u(i, t + 𝛿t) = 0|𝛼u(i, t) = 1 ∧ n(i, t) < N(i) ∧ l(i, t) > 0]

= P[𝛼i(t + 𝛿t) = 0|𝛼u(i, t) = 1 ∧ n(i, t) < N(i) ∧ l(i, t) > 0]

+P[𝛼u(i − 1, t + 𝛿t) = 0 ∧ n(i − 1, t + 𝛿t) = 0|
𝛼u(i, t) = 1 ∧ n(i, t) < N(i) ∧ l(i, t) > 0]

= pi ⋅ 𝛿t +P[𝛼u(i − 1, t + 𝛿t) = 0 ∧ n(i − 1, t + 𝛿t) = 0|
𝛼u(i, t) = 1 ∧ n(i, t) < N(i) ∧ l(i, t) > 0]

(44)
P[𝛼u(i − 1, t + 𝛿t) = 0 ∧ n(i − 1, t + 𝛿t) = 0|

𝛼u(i, t) = 1 ∧ n(i, t) < N(i) ∧ l(i, t) > 0]

(45)

=P[𝛼u(i − 1, t + 𝛿t) = 0 ∧ n(i − 1, t + 𝛿t) = 0|
𝛼u(i, t) = 1 ∧ n(i, t) < N(i) ∧ l(i, t) > 0∧

{n(i − 1, t) > 1∨

n(i − 1, t) = 1 ∧ 𝛼u(i − 1, t) = 1∨

n(i − 1, t) = 1 ∧ 𝛼u(i − 1, t) = 0∨

n(i − 1, t) = 0 ∧ 𝛼u(i − 1, t) = 1 ∧ l(i − 1, t) > 0∨

n(i − 1, t) = 0 ∧ 𝛼u(i − 1, t) = 1 ∧ l(i − 1, t) = 0}]

=A ⋅ B + C ⋅ D + E ⋅ F + G ⋅ H + I ⋅ J

A =P[𝛼u(i − 1, t + 𝛿t) = 0 ∧ n(i − 1, t + 𝛿t) = 0|
𝛼u(i, t) = 1 ∧ n(i, t) < N(i) ∧ l(i, t) > 0 ∧ {n(i − 1, t) > 1}]

=
(
𝜇d(i − 1)𝛿t

)2
+ + o(𝛿t) = o(𝛿t)

703

1 3

Evaluation of stochastic flow lines with provisioning of…

Since C is hence also irrelevant, there is no need to determine D.
For the transition leading to the conditional probability related to the third condi-

tioning event in Eq. (45), the last work piece available at the downstream machine
Md(i − 1) needs to be completed

and likewise for the fourth conditioning event in Eq. (45), a failure of the virtual
upstream machine Mu(i − 1) is required:

For the fifth and final conditioning event in Eq. (45), as machine Mi−1 is lacking aux-
iliary material, i.e. we have l(i − 1, t) = 0 , we cannot have a failure and hence have

Note that �u(i, t) = 1 implies �i(t) = 1 , which together with n(i, t) < N(i) is the defini-
tion of �d(i − 1, t) = 1 . We furthermore postulated li(t) = lu(i, t) = ld(i − 1, t) before
and therefore find

C =P[𝛼u(i − 1, t + 𝛿t) = 0 ∧ n(i − 1, t + 𝛿t) = 0|
𝛼u(i, t) = 1 ∧ n(i, t) < N(i) ∧ l(i, t) > 0∧

{n(i − 1, t) = 1 ∧ 𝛼u(i − 1, t) = 1}]

=𝜇d(i − 1)𝛿t ⋅ pu(i − 1)𝛿t + + o(𝛿t) = o(𝛿t)

E =P[𝛼u(i − 1, t + 𝛿t) = 0 ∧ n(i − 1, t + 𝛿t) = 0|
𝛼u(i, t) = 1 ∧ n(i, t) < N(i) ∧ l(i, t) > 0∧

𝛼u(i − 1, t) = 0 ∧ n(i − 1, t) = 1]

=𝜇d(i − 1)𝛿t

G =P[𝛼u(i − 1, t + 𝛿t) = 0 ∧ n(i − 1, t + 𝛿t) = 0|
𝛼u(i, t) = 1 ∧ n(i, t) < N(i) ∧ l(i, t) > 0∧

𝛼u(i − 1, t) = 1 ∧ n(i − 1, t) = 0 ∧ l(i − 1, t) > 0]

=pu(i − 1)𝛿t

I =P[𝛼u(i − 1, t + 𝛿t) = 0 ∧ n(i − 1, t + 𝛿t) = 0|
𝛼u(i, t) = 1 ∧ n(i, t) < N(i) ∧ l(i, t) > 0∧

𝛼u(i − 1, t) = 1 ∧ n(i − 1, t) = 0 ∧ l(i − 1, t) = 0]

=0.

F =P[𝛼u(i, t) = 1 ∧ n(i, t) < N(i) ∧ l(i, t) > 0 ∧ 𝛼u(i − 1, t) = 0 ∧ n(i − 1, t) = 1|
𝛼u(i, t) = 1 ∧ n(i, t) < N(i) ∧ l(i, t) > 0]

=
P[𝛼u(i, t) = 1 ∧ n(i, t) < N(i) ∧ l(i, t) > 0 ∧ 𝛼u(i − 1, t) = 0 ∧ n(i − 1, t) = 1]

P[𝛼u(i, t) = 1 ∧ n(i, t) < N(i) ∧ l(i, t) > 0]

=
P[n(i − 1, t) = 1 ∧ 𝛼u(i − 1, t) = 0 ∧ 𝛼d(i − 1, t) = 1 ∧ ld(i − 1, t) > 0]

P[𝛼u(i, t) = 1 ∧ n(i, t) < N(i) ∧ l(i, t) > 0]

=P[i − 1;1, (a, n), 01] ⋅
𝜇u(i)

TP(i)

704	 S. Helber et al.

1 3

Note that we used the standard two-machine FRIT for which we already established
PR(i) = 𝜇u(i) ⋅P[𝛼u(i, t) = 1 ∧ n(i, t) < N(i)] to reformulate the above denominator!
In a similar way, we find

Putting everything together, we find

After dividing by �t and taking limits for �t → 0 , we find

We finally have our two IOFs

with

D. Iterative solution of the decomposition equations

Algorithm 1 is used to solve the decomposition equations numerically.

H =P[𝛼u(i, t) = 1 ∧ n(i, t) < N(i) ∧ l(i, t) > 0 ∧ 𝛼u(i − 1, t) = 1 ∧ n(i − 1, t) = 0 ∧ l(i − 1, t) > 0|

𝛼u(i, t) = 1 ∧ n(i, t) < N(i) ∧ l(i, t) > 0]

=
P[𝛼u(i, t) = 1 ∧ n(i, t) < N(i) ∧ l(i, t) > 0 ∧ 𝛼u(i − 1, t) = 1 ∧ n(i − 1, t) = 0 ∧ l(i − 1, t) > 0]

P[𝛼u(i, t) = 1 ∧ n(i, t) < N(i) ∧ l(i, t) > 0]

=
P[n(i − 1, t) = 0 ∧ 𝛼u(i − 1, t) = 1 ∧ 𝛼d(i − 1, t) = 1 ∧ lu(i − 1, t) > 0 ∧ ld(i − 1, t) > 0]

P[𝛼u(i, t) = 1 ∧ n(i, t) < N(i) ∧ l(i, t) > 0]

=P[i − 1;0, (n, n), 11]
𝜇u(i)

TP(i)

pu(i)�t = pi�t + o(�t) ⋅ B + o(�t) ⋅ D + E ⋅ F + G ⋅ H + 0 ⋅ J

pu(i) = pi + lim
�t→0

o(�t)

�t
⋅ B + lim

�t→0

o(�t)

�t
⋅ D

+ �d(i − 1) ⋅P[i − 1;1, (a, n), 01] ⋅
�u(i)

TP(i)
+ pu(i − 1) ⋅P[i − 1;0, (n, n), 11]

�u(i)

TP(i)

= pi +
(
�d(i − 1) ⋅P[i − 1;1, (a, n), 01] + pu(i − 1) ⋅P[i − 1;0, (n, n), 11]

)
⋅

�u(i)

TP(i)
.

pu(i) =pi + K5 ⋅ �u(i)

pd(i) =pi+1 + K6 ⋅ �d(i)

K5 =
�d(i − 1) ⋅P[i − 1;1, (a, n), 01] + pu(i − 1) ⋅P[i − 1;0, (n, n), 11]

TP(i − 1)

K6 =
�u(i + 1) ⋅P[i + 1;N(i + 1) − 1, (n, a), 10] + pd(i + 1) ⋅P[i + 1;N(i + 1), (n, n), 11]

TP(i + 1)
.

705

1 3

Evaluation of stochastic flow lines with provisioning of…

E. Training of the ANN for two‑machine lines

We trained one ANN for small instance sets (ANNsmall) of both balanced and unbal-
anced two-machine lines and one further ANN for large instance sets (ANNlarge),
again with balanced and unbalanced two-machine lines. To not be limited to the
specific values from our tests sets as shown in Table 2, we created training and vali-
dation data sets with broader ranges between the lower bound (LB) and the upper
bound (UB), see Table 9. The grey values are not inputs to the ANN, but are needed
for generating the data set. We drew each of the parameters �i , pi , ei , C, �i and mri
from the specified range according to a uniform distribution and calculate ri and Si .
To systematically cover the parameter space, we used orthogonal Latin hypercube
sampling, see (Owen 1992; Tang 1993).

We evaluated the flow lines with GS to compute the throughput and the state
probabilities. For each ANN, the ANNsmall and the ANNlarge, we generated about
100,000 samples for the training data set and another 10,000 samples for a valida-
tion data set. We terminated the training process after 100 epochs.

In the training process of the ANN, we minimized the mean squared error (MSE) of
the outputs compared to the values obtained by GS. The sum of the MSE of all individual
outputs defines the training error. Since the different output values have different dimen-
sions, we calibrated the inputs and outputs to values between zero and one. This way, we
assured that all outputs are equally important during the training process.

Algorithm 1   Decomposition algorithm

706	 S. Helber et al.

1 3

The results show that the training and validation errors of the calibrated data are
very close to each other. This indicates that the ANN neither over- nor underfits
the training data set. Table 10 breaks down the training and validation error for the
back-transformed prediction of each output. We observe small MSE for all output
values in training and validation for both ANN.

Table 9   Parameter ranges of the
training data sets for the small
and large instance class

Parameter Small Large

LB UB LB UB

�i 0.8 1.2 0.8 1.2
pi 0.001 0.05 0.001 0.05
ri 0.009 4.95 0.009 4.95
ei 0.9 0.99 0.9 0.99
C 0 80 0 80
�i 0.5 0.8 0.05 0.15
Si 2 8 7 80
mri 1 4 1 4

Table 10   Training and validation error for all outputs after 100 epochs

Parameter MSEsmall
Train

MSEsmall
Val MSE

large

Train
MSE

large

Val

TP(i) [TU−1] 3.76×10−6 3.98×10−6 3.81×10−6 3.92×10−6

P[i;lu = 0] 4.81×10−7 5.23×10−7 2.06×10−6 2.21×10−6

P[i;ld = 0] 7.76×10−7 8.70×10−7 7.71×10−7 8.29×10−7

P[i;0, (n, a), 01] 2.52×10−7 2.94×10−7 2.29×10−7 2.49×10−7

P[i;0, (n, n), 11] 6.36×10−7 7.74×10−7 7.62×10−7 8.27×10−7

P[i;1, (a, n), 01] 2.08×10−7 2.67×10−7 2.37×10−7 2.48×10−7

P[i;N(i) − 1, (n, a), 10] 6.46×10−7 6.81×10−7 9.21×10−7 9.79×10−7

P[i;N(i), (a, n), 10] 8.54×10−10 9.94×10−10 1.15×10−9 1.23×10−9

P[i;N(i), (n, n), 11] 1.04×10−9 1.12×10−9 1.94×10−9 1.93×10−9

Sum 6.76×10−6 7.39×10−6 8.79×10−6 9.27×10−6

707

1 3

Evaluation of stochastic flow lines with provisioning of…

References

Alnahhal M, Noche B (2015) Dynamic material flow control in mixed model assembly lines. Comput Ind
Eng 85:110–119

Baller R, Hage S, Fontaine P, Spinler S (2020) The assembly line feeding problem: an extended formula-
tion with multiple line feeding policies and a case study. Int J Prod Econ 222:107489. https://​doi.​
org/​10.​1016/j.​ijpe.​2019.​09.​010

Becker C, Scholl A (2006) A survey on problems and methods in generalized assembly line balancing.
Eur J Oper Res 168(3):694–715

Boysen N, Emde S (2014) Scheduling the part supply of mixed-model assembly lines in line-integrated
supermarkets. Eur J Oper Res 239(3):820–829

Boysen N, Schulze P, Scholl A (2022) Assembly line balancing: what happened in the last fifteen years?
Eur J Oper Res 301(3):797–814

Bukchin Y, Meller RD (2005) A space allocation algorithm for assembly line components. IIE Trans
37(1):51–61. https://​doi.​org/​10.​1080/​07408​17059​05168​54

Burman MH (1995) New results in flow line analysis. Ph. D. thesis, Massachusetts Institute of
Technology

Chang Q, Pan C, Xiao G, Biller S (2013) Integrated modeling of automotive assembly line with material
handling. J Manuf Sci Eng 135(1):011018. https://​doi.​org/​10.​1115/1.​40233​65

Choong YF, Gershwin SB (1987) A decomposition method for the approximate evaluation of capacitated
transfer lines with unreliable machines and random processing times. IIE Trans 19(2):150–159

Dallery Y, David R, Xi XL (1988) An efficient algorithm for analysis of transfer lines with unreliable
machines and finite buffers. IIE Trans 20(3):280–283. https://​doi.​org/​10.​1080/​07408​17880​89661​81

Dallery Y, Gershwin SB (1992) Manufacturing flow line systems: a review of models and analytical
results. Queueing Syst 12(1–2):3–94

Delice Y, Aydoğan EK, Himmetoğlu S, Özcan U (2023) Integrated mixed-model assembly line balancing
and parts feeding with supermarkets. CIRP J Manuf Sci Technol 41:1–18

Emde S, Boysen N (2012) Optimally routing and scheduling tow trains for JIT-supply of mixed-model
assembly lines. Eur J Oper Res 217(2):287–299

Emde S, Fliedner M, Boysen N (2012) Optimally loading tow trains for just-in-time supply of mixed-
model assembly lines. IIE Trans 44(2):121–135

Faccio M, Gamberi M, Persona A (2013) Kanban number optimisation in a supermarket warehouse feed-
ing a mixed-model assembly system. Int J Prod Res 51(10):2997–3017

Gershwin SB (1987) An efficient decomposition method for the approximate evaluation of tandem queues
with finite storage space and blocking. Oper Res 35(2):291–305

Goodfellow I, Bengio Y, Courville A (2017) Deep learning. Adaptive computation and machine learning
series. MIT Press, Cambridge

Helber S (1998) Decomposition of unreliable assembly/disassembly networks with limited buffer capac-
ity and random processing times. Eur J Oper Res 109(1):24–42. https://​doi.​org/​10.​1016/​S0377-​
2217(97)​00166-5

Helber S (1999) Performance analysis of flow lines with non-linear flow of material. Lecture notes in
economics and mathematical systems. Springer

Helber S (2005) Analysis of flow lines with cox-2-distributed processing times and limited buffer capac-
ity. OR Spectr 27:221–242

Hudson S, McNamara T, Shaaban S (2015) Unbalanced lines: where are we now? Int J Prod Res
53(6):1895–1911

Li J (2005) Overlapping decomposition: a system-theoretic method for modeling and analysis of complex
manufacturing systems. IEEE Trans Autom Sci Eng 2(1):40–53

Li J, Blumenfeld DE, Alden JM (2006) Comparisons of two-machine line models in throughput analysis.
Int J Prod Res 44(7):1375–1398

Li J, Meerkov SM (2009) Production systems engineering. Springer, Boston
Manitz M (2015) Analysis of assembly/disassembly queueing networks with blocking after service and

general service times. Ann Oper Res 226(1):417–441. https://​doi.​org/​10.​1007/​s10479-​014-​1639-x
Mindlina J, Tempelmeier H (2022) Performance analysis and optimisation of stochastic flow lines with

limited material supply. Int J Prod Res 60(17):5293–5306
Nourmohammadi A, Eskandari H, Fathi M (2019) Design of stochastic assembly lines considering line

balancing and part feeding with supermarkets. Eng Optim 51(1):63–83

https://doi.org/10.1016/j.ijpe.2019.09.010
https://doi.org/10.1016/j.ijpe.2019.09.010
https://doi.org/10.1080/07408170590516854
https://doi.org/10.1115/1.4023365
https://doi.org/10.1080/07408178808966181
https://doi.org/10.1016/S0377-2217(97)00166-5
https://doi.org/10.1016/S0377-2217(97)00166-5
https://doi.org/10.1007/s10479-014-1639-x

708	 S. Helber et al.

1 3

Owen AB (1992) Orthogonal arrays for computer experiments, integration and visualization. Stat Sin
2(2):439–452

Papadopoulos CT, Li J, O’Kelly ME (2019) A classification and review of timed Markov models of man-
ufacturing systems. Comput Ind Eng 128:219–244

Papadopoulos CT, O’Kelly ME, Vidalis MJ, Spinellis D (2009) Analysis and design of discrete part pro-
duction lines. Springer, Berlin

Papadopoulos H, Heavey C (1996) Queueing theory in manufacturing systems analysis and design: a
classification of models for production and transfer lines. Eur J Oper Res 92(1):1–27

Sachs FE, Helber S, Kiesmüller G (2022) Evaluation of unreliable flow lines with limited buffer capaci-
ties and spare part provisioning. Eur J Oper Res 302(2):544–559

Scholl A, Becker C (2006) State-of-the-art exact and heuristic solution procedures for simple assembly
line balancing. Eur J Oper Res 168(3):666–693

Südbeck I, Mindlina J, Schnabel A, Helber S (2023) Using recurrent neural networks for the performance
analysis and optimization of stochastic milkrun-supplied flow lines

Tancrez JS (2020) A decomposition method for assembly/disassembly systems with blocking and general
distributiions. Flex Serv Manuf J 32:272–296. https://​doi.​org/​10.​1007/​s10696-​019-​09332-z

Tang B (1993) Orthogonal array-based Latin hypercubes. Biometrika 88(424):1392–1397. https://​doi.​
org/​10.​2307/​22912​82

Tempelmeier H, Bürger M (2001) Performance evaluation of unbalanced flow lines with general distrib-
uted processing times, failures and imperfect production. IIE Trans 33(4):293–302

Weiss S, Matta A, Stolletz R (2017) Optimization of buffer allocations in flow lines with limited supply.
IISE Trans 50(3):191–202. https://​doi.​org/​10.​1080/​24725​854.​2017.​13287​51

Yan CB, Zhao Q, Huang N, Xiao G, Li J (2010) Formulation and a simulation-based algorithm for line-
side buffer assignment problem in systems of general assembly line with material handling. IEEE
Trans Autom Sci Eng 7(4):902–920. https://​doi.​org/​10.​1109/​TASE.​2010.​20468​92

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1007/s10696-019-09332-z
https://doi.org/10.2307/2291282
https://doi.org/10.2307/2291282
https://doi.org/10.1080/24725854.2017.1328751
https://doi.org/10.1109/TASE.2010.2046892

	Evaluation of stochastic flow lines with provisioning of auxiliary material
	Abstract
	1 Introduction
	2 Review of the literature
	3 Problem and model description
	4 Solution approaches for two-machine models and for longer lines
	4.1 Two-machine model: transitions and performance measures
	4.2 Decomposition approach for longer lines
	4.2.1 Basic idea of the decomposition approach
	4.2.2 Decomposition equations

	4.3 Predicting throughput and selected state probabilities via an artificial neural network (ANN)

	5 Numerical results
	5.1 Evaluation of two-machine lines
	5.1.1 Test design
	5.1.2 Performance analysis
	5.1.3 Flow line behaviour

	5.2 Evaluation of longer lines using the decomposition approach
	5.2.1 Test design
	5.2.2 Performance analysis
	5.2.3 Flow line behaviour

	6 Conclusion, managerial implications, and further research
	Appendix
	A. Definition of virtual machine states
	B. Derivation of the resumption-of-flow equations
	C. Derivation of the interruption-of-flow equations
	D. Iterative solution of the decomposition equations
	E. Training of the ANN for two-machine lines
	References

