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Abstract
Home delivery services require the attendance of the customer during deliv-
ery. Hence, retailers and customers mutually agree on a delivery time window in 
the booking process. However, when a customer requests a time window, it is not 
clear how much accepting the ongoing request significantly reduces the availabil-
ity of time windows for future customers. In this paper, we explore using historical 
order data to manage scarce delivery capacities efficiently. We propose a sampling-
based customer acceptance approach that is fed with different combinations of these 
data to assess the impact of the current request on route efficiency and the ability 
to accept future requests. We propose a data-science process to investigate the best 
use of historical order data in terms of recency and amount of sampling data. We 
identify features that help to improve the acceptance decision as well as the retailer’s 
revenue. We demonstrate our approach with large amounts of real historical order 
data from two cities served by an online grocery in Germany.

Keywords  Historical data · Sampling · Data-driven customer acceptance · Attended 
home delivery · Vehicle routing with time windows

1  Introduction

During recent years, there has been a rapid growth in home delivery services, 
including during the ongoing COVID-19 pandemic. These services require sophis-
ticated decision support, as delivery operations are costly, and customer expecta-
tions for these services are high. Recent technological improvements allow online 
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retailers to collect a vast amount of order data, and there is a growing interest in how 
to use this data in making decisions. However, research for home delivery to date 
has rarely used this historical order data [see e.g., Chu et al. (2021)] although data-
driven models have shown their benefit for other application areas [see e.g., Zeng 
et al. (2021)]. We are interested specifically in how to best use this real data to man-
age scarce delivery capacities efficiently.

Home delivery services require the attendance of the customer during delivery, 
so retailers and customers mutually agree on a delivery time window in the book-
ing process. Thus, capacity management includes decisions about the time win-
dow offerings for customers who are in the process of ordering as well as properly 
reserving capacity for those customers that have not yet ordered, but may signifi-
cantly contribute to the retailer’s revenue. This is especially important for retailers 
where the demand in many time windows exceeds the capacity of their limited fleet 
of delivery vehicles. Since online booking processes require immediate replies to 
customers requesting a delivery, the amount of historical data to consider is also 
an important decision. We will follow the example of an online supermarket that 
offers time windows to customers requesting delivery during an online booking pro-
cess. Since most online supermarkets are still struggling to create a viable business 
model, accepting customers in a way that maximizes the retailer’s revenue is very 
important.

Several ideas on how to support decision making for customer acceptance have 
been presented in the literature. Some ideas focus on myopic cost optimization. For 
these, a retailer would estimate the costs of accepting a request for a specific time 
window and would either apply static acceptance rules (Ehmke and Campbell 2014) 
or dynamic mechanisms based on evolving route plans (Campbell and Savelsbergh 
2005) to efficiently distribute delivery capacity. Extending this, retailers could also 
try to influence the time window choice of a customer, e.g., through adjusting deliv-
ery fees (Campbell and Savelsbergh 2006, Klein et al. 2019) or lengths of offered 
delivery time windows (Köhler et al. (2020)). However, instead of simply reacting 
to new information, retailers can make acceptance decisions by anticipating future 
demand through considering patterns of historical demand (Cleophas and Ehmke 
2014).

Even though all of the above work represents established customer acceptance 
mechanisms for attended home delivery, none of the approaches are tested solely 
with real data: The delivery network is often approximated (based on a mathemati-
cal formula or an exemplary road network), customer locations are drawn randomly 
(often based on a grid with probabilities for customer requests within each square), 
arrival time rates in the booking process are ignored, time window choices are 
assumed to be uniformly distributed or based on a simple probability function, and/
or the revenue associated with an order is not considered. To the best of our knowl-
edge, the decision on how much historical order data to consider and how to best 
represent features of historical order data to anticipate future demand has not been 
investigated in the context of customer acceptance in any of the existing academic 
literature. In dynamic routing, as discussed in Sect. 2.2, there are several papers that 
propose the use of sampling to make routing decisions. While the use of sampling is 
promising for use in customer acceptance decisions for attended home delivery, the 
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work in this area also has not investigated the proper use of historical data in sam-
pling design.

In this paper, we propose a data-science process for determining the best use of 
historical order data in making more informed customer acceptance decisions for 
a setting with a limited delivery capacity. Being the foundation of any data-driven 
analysis, we provide a detailed process for understanding this data before using the 
resulting information to inform our choices. We will focus on a sampling-based 
approach for making customer acceptance decisions for home delivery problems, as 
this is a promising solution method that is clearly heavily reliant on data. Whenever 
a new request arrives, routes are created that consist of already accepted custom-
ers and potential future customers based on samples derived from historical order 
data. These routes can support automated decision-making on whether the present 
request should be accepted or not, and the final routes can help us determine which 
of the sampling choices is most effective for a particular problem or company. Com-
putational time available during the booking process limits the number of routing 
problems that can be solved, and hence the selected input data to create the samples 
should be chosen carefully in terms of recency and amount of data.

We demonstrate our approach with a case study of two cities served by an online 
supermarket in Germany. We show that working with real data adds many chal-
lenging and insightful facets to the problem of customer acceptance. For example, 
although sampling approaches are known to achieve close-to-optimality results with 
increasing sample size (Hvattum et al. 2006), we find that using more historical data 
to increase sample size beyond a certain point can have a negative effect on solu-
tion quality. We will discuss how we can reduce the number of samples needed to 
maximize revenue through more informed order acceptance based on a systematic 
analysis of the data input and a problem-specific combination of booking features 
within the samples. We compare the results from different sampling designs with 
results from a simple myopic approach, as commonly used by many online super-
markets. In this way, our results can demonstrate the value of using historical data 
via samples.

This paper is structured as follows. In the next section, we give an overview of the 
literature in terms of current approaches for customer acceptance for attended home 
deliveries and dynamic vehicle routing. In Sect. 3, we present our problem defini-
tion. Section 4 describes the creation and evaluation of samples through a sampling-
based acceptance mechanism. In Sect. 5, we present a detailed data analysis for our 
case study. We summarize managerial insights in Sect. 6 and conclude in Sect. 7.

2 � Related literature

We consider a booking process in which customer requests arrive dynamically and 
are accepted until a specific cut-off time before a final route plan is created and 
executed. The challenge is that when making these acceptance decisions, future 
requests are unknown, and the retailer wants to use the limited fleet capacity wisely. 
Thus, it is hard to know which subset of customers will yield the highest profits. 
Customer acceptance mechanisms help the retailer with this decision. We present 
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and distinguish these according to how they explore the information available dur-
ing the booking process within Sect. 2.1. In addition, in Sect. 2.2, we will consider 
dynamic routing approaches that do not focus on customer acceptance but are simi-
lar to our approach in terms of the use of sampling.

2.1 � Customer acceptance

First, a large part of customer-acceptance literature considers only real-time avail-
able demand information in the course of the booking process. With this approach, 
a set of tentative route plans is maintained during the booking process, which are 
used to decide if a current request can be accommodated or not with given deliv-
ery capacities. This allows decisions to be made very accurately based on actual 
demand. However, these approaches do not take any information about future 
requests into account. Thus, no capacity is reserved, decision making is greedy and 
often far from optimal. Corresponding approaches can be found in Campbell and 
Savelsbergh (2006), Hungerländer et al. (2017), Cwioro et al. (2019), Köhler et al. 
(2020), Köhler et al. (2019), and Yang et al. (2016).

In contrast, some literature presents static acceptance rules parameterized from 
aggregated historical demand information. As a counterpart to dynamic accept-
ance, static acceptance rules, such as how many orders to accept in a particular time 
window, can better account for the total expected demand. To ensure feasibility in 
delivery routing, the resulting estimates are often conservative, so there is a risk 
that capacity will not be utilized. In Ehmke and Campbell (2014), the number of 
customers to accept for each time window is predefined based on historical capacity 
utilization and demand. In Cleophas and Ehmke (2014), expected demand is used to 
estimate capacities per time window and delivery area in conjunction with expected 
revenues. Köhler and Haferkamp (2019) investigate static acceptance for varying 
demand settings and show that for imbalanced demand and density of customer 
locations, static acceptance is inferior compared to dynamic acceptance.

Lastly, there is a line of literature that links real-time demand information with 
historical demand information. Klein et al. (2017) estimate the delivery costs of a 
request based on already accepted requests and expected future demand. The authors 
do not create estimates of future demand, but assume that a sufficient forecast is 
available and focus on the impact of pricing decisions for delivery options for future 
customers.

With sampling, potential realizations of future demand (e.g., future customer 
requests) are created using historical data to evaluate possible solutions (Ghiani 
et al. 2009). Because sampling links current and historical information, it is seem-
ingly “better” at profitably allocating capacity. For sampling to work, the assump-
tions used to create these samples must be accurate. A robust solution is often 
sought by solving for as many different demand scenarios as possible. However, this 
can be quite difficult to accomplish due to the limited computation time available 
during the booking process. As a result, only few customer acceptance mechanisms 
use sampling. In Campbell and Savelsbergh (2005), whenever a new request arrives, 
a single profit-maximizing team orienteering problem is solved for the set of all 
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accepted customers, the current request and potential future requests. If the current 
request is included in the found solution, it is accepted, reflecting that this customer 
is likely to be more profitable than future customers. Azi et al. (2012) test the perfor-
mance of a sampling approach for an increasing number of scenarios. The authors 
show that increasing the number of sample problems to be solved initially increases 
the improvements compared to myopic solutions, but after a certain number they 
plateau. Both approaches are very similar to our evaluation sampling approach, in 
which we also create routes for a set of known and expected future requests. How-
ever, Campbell and Savelsbergh (2005) and Azi et  al. (2012) both assume exoge-
nous probabilities of future requests, while we investigate what data is suitable for 
creating instances that best reflect expected requests.

Although some of the presented customer acceptance mechanisms include histor-
ical demand data, very few test their approaches with real data. Ehmke and Camp-
bell (2014) and Cleophas and Ehmke (2014) use a fictitious delivery setting inspired 
by the real-world road network of Stuttgart, Germany. Köhler and Haferkamp (2019) 
use a subset of the dataset that we use. In Campbell and Savelsbergh (2005) and 
Klein et al. (2017), customer requests are drawn uniformly from a grid that serves as 
the delivery area. Among the few to consider large amounts of historical order data 
are Yang et al. (2016), who also have access to a large data set from an online super-
market. However, they use the data to estimate a customer choice model, whereas 
we investigate the data for customer acceptance decisions. In contrast to Yang et al. 
(2016), we do not estimate demand but use the actual time window and delivery 
location combinations as they occurred in the historical order data of an online 
grocery.

2.2 � Dynamic routing

Unlike with customer acceptance, sampling is often investigated for dynamic rout-
ing applications in which customers arrive dynamically and are assigned to vehi-
cles en route. Here, customer acceptance and delivery overlap (at least partially), 
which is often the case for service scheduling or pickups (and not applicable for 
the delivery of goods that first need to be picked and collected on the truck before 
departure). In contrast to customer time window offering decisions, the focus is not 
only if a request should be accepted or rejected, but also how delivery routes should 
be changed (i.e., if a new customer should be visited now or later). An overview of 
dynamic routing literature can be found in Ulmer (2020). Bent and Van Hentenryck 
(2004) were one of the first to present a sampling approach for customer accept-
ance in dynamic routing. We will use their idea as an input on how to translate sam-
pling results into acceptance decisions in Sect.  4.3. Van Hentenryck et  al. (2010) 
discuss the ratio of known and unknown customers during a booking process, which 
is known as “degree of dynamism.” In our problem, none of the requests are known 
at the beginning of the booking process, so based on the findings of Van Hentenryck 
et al. (2010), we expect sampling to outperform greedy customer acceptance. Ghiani 
et al. (2009) try to find the most promising problem solutions for a subset of sample 
scenarios to save computational time. This leads us to believe that some historical 
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booking days can represent current order patterns better than other days. Although 
the literature mentioned in the above paragraph is important in the context of sam-
pling procedures, all are again based on artificial data.

Next, we will present insights from sampling in dynamic routing literature that 
are related to the ideas of including real data. Hvattum et al. (2006) use sampling 
to decide on which customer to service next with the objective to minimize rout-
ing costs. They include real-world data about arrival patterns of bookings and deliv-
ery locations from a logistics company. Based on this data set they show that with 
an increasing number of samples tested, solution quality increases and approaches 
the optimal solution. Although Hvattum et al. (2006) are one of the few approaches 
that are very similar to us in the way that they include a large real-world data set in 
their sampling approach, there are many differences. First, their problem does not 
contain any time windows, whereas we consider time window choices of custom-
ers. Time windows are known to increase the complexity of routing problems and 
also make it much harder to assess what the future impact of accepting a customer 
is. Second, they separate the customer location and booking behavior information 
in the creation of their samples. Instead, we will explore the value of linking this 
information about customers in the samples. Third, Hvattum et al. (2006) increase 
the number of solutions created based on samples, but they do not change the input 
data from which the samples are created. In contrast, we will consider the interplay 
between the number of samples and the recency of historical order data reflected in 
the samples.

Lochem et  al. (2020) are one of the few to investigate in detail which histori-
cal requests should be included in samples to most accurately represent upcoming 
demand. In a same-day setting based on a large real-world data set from a flower 
delivery company in the Netherlands, they first cluster historical requests to identify 
emerging groups of requests. In the next step, they predict the frequency for each 
of the groups of requests that is then used to create future requests within the sam-
ples. They do not take into account customer revenues, and the time windows are 
very long and hence rarely limiting (mostly 14 hours). Similar to us, the authors also 
consider how data can be best represented in the samples. The authors show that the 
greater the match between historical requests with new customer requests, the better 
their approach works. We address this by considering the amount of historical data 
that needs to be included in sampling-based customer acceptance.

3 � Problem description

We motivate our problem by the practice of many online retailers that manage 
customer requests during an online booking process. Within the booking process, 
customer requests arrive at booking time t > 0 and ask for a time window offer 
for delivery service. We assume that the retailer knows the revenue associated 
with accepting that request (based on the filled shopping basket) and the delivery 
location (for most online supermarkets, this has to be revealed before booking a 
delivery). The retailer’s objective is to maximize the overall revenue R, and the 
retailer has to decide which time windows to offer to achieve this goal. For each 
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request, the retailer offers a set of time windows with identical delivery fees and 
length that are feasible (i.e., in which the request can be serviced and no delivery 
promises of already accepted customers are violated). If the revenue is the same 
for each customer, this objective becomes making deliveries to as many custom-
ers as possible each day.

The retailer has a limited fleet V. Each vehicle v ∈ V  can provide delivery ser-
vice for a total duration that corresponds with the time span of the offered time 
windows. The total number of accepted customers is therefore limited by the 
availability of the vehicles within the time windows. Accepted requests and the 
promised delivery time windows cannot be withdrawn or changed. Thus, the offer 
of a particular time window to new customer request i is only allowed if already 
accepted customers can still be guaranteed delivery within their time windows. 
Whenever a new request i arrives during the booking process at booking time t, 
immediate feedback is required as to whether this request should be accepted or 
rejected.

Each customer has a single time window preference. If the customer’s pre-
ferred time window is included in the time windows the retailer offers, the deliv-
ery is confirmed. If not, the customer cancels the booking process. (A customer 
could also choose a different time window, but we initially only consider a cus-
tomer’s single time window preference.) Requests are considered for acceptance 
until a specific cut-off time T that is before the day of order delivery, i.e., on-
demand deliveries are not considered within this paper.

The retailer saves records of all historical requests. For each of these requests, 
the retailer knows the following features:

•	 The booking time t during the booking process at which a customer requested 
the delivery,

•	 The delivery location for the order,
•	 The delivery date associated with the particular booking process,
•	 The time window that was confirmed for delivery,
•	 The revenue r that is associated with accepting the order, which can either 

represent a monetary value (e.g., the basket value) or a non-monetary value 
(e.g., the customer status).

One of the well-known challenges associated with this problem is the impact of 
the acceptance of early requests on the ability to accept later requests. This is 
important if later requests cause fewer detours in the route plan or have higher 
revenues associated with them. The approach adopted by other authors such as 
Campbell and Savelsbergh (2005) is to make acceptance decisions using sam-
pling. If accepting request i at time t for delivery during a particular set of time 
windows is generally considered to be beneficial given a set of samples of future 
requests, then the time window is offered (the customer is only offered feasible 
and beneficial time windows). To create the required samples, we consider the 
available historical data and investigate how to best use the data to represent 
potential future bookings in the current booking process.
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4 � Methodology

We present our methodology to determine the use of historical order data to create 
samples for data-driven customer acceptance. We divide our procedure into three 
steps: understanding the data, sample creation, and sample evaluation. In Sect. 4.1, 
we detail the methodology required to examine large amounts of historical order 
data. In Sect.  4.2, we present our sampling approach for different representations 
of historical order data and describe how we identify the best configuration through 
sample evaluation in Sect. 4.3. While a data-driven approach needs to be tied to the 
data set at hand, our methodology is quite generic and allows for transferring of our 
findings to any online retailer that stores historical order data.

4.1 � Understanding the data

To gain a general understanding of historical order data, we follow a data-science 
approach as proposed in Provost and Fawcett (2013). The core assumption is that 
based on this data, we can extract meaningful information for future booking pro-
cesses. To investigate the value of historical order data in customer acceptance, we 
first conduct an exploratory analysis of the data set. The goal of exploratory data 
analysis is a profound understanding of the data (Hand et al. 2001).

For our visual exploratory data analysis, we apply the process proposed by Keim 
(2002). This involves understanding how much data is available and how the data 
is structured. Thus, we will discuss the type of data typically available in historical 
order data for attended home delivery. Each order consists of variables that contain 
information about the five features as described in Sect. 3. Each of these variables 
is of a particular data type: categorical variables have a limited set of possible out-
comes that do not necessarily correspond to an ordering, whereas numerical vari-
ables are not limited and can be ordered (Van Der Aalst 2012). For the five features 
considered, we expect categorical data on the set of time window options and pre-
ferred time windows; however, we assume that most variables in the data set are 
numerical, such as delivery date, booking time, revenue, and location data. As his-
torical order data has usually been collected over some time in terms of sequential 
observations, they belong to the group of time series data (Esling and Agon 2012). 
Therefore, to describe our data set, we will use an index for each order correspond-
ing to a particular delivery date. All orders associated with a particular delivery date 
represent an instance.

We can use visualization techniques to learn more about the characteristics of the 
historical order data.

•	 We can investigate if there are differences in the amount and types of orders cor-
responding to delivery on different days of the week. This can guide whether the 
historical order data used to help to make decisions on a particular day should 
come more from recent orders from any day or should be restricted to the same 
day of the week.
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•	 Similarly, we can understand the distribution of time window choices among the 
different delivery time windows.

•	 Last, it is also helpful to analyze locations of the orders in a particular data set, 
which helps to create an understanding of the layout of the delivery area and the 
order density in different parts of the city.

These efforts are important because time windows and days with the largest num-
bers of orders and areas with high-order density are the most critical ones for capac-
ity management and hence acceptance decisions.

4.2 � Creating data samples

Once we have a good understanding of the historical order data, we need to inves-
tigate which of the available data best generalizes previous booking behavior so we 
can properly generate samples for our sampling-based prediction of potential future 
requests. To this end, we consider how much historical data should be included and 
derive information on the historical booking processes from the combination of fea-
tures as well as from different ways of aggregating historical data.

First, historical order data may have changed over time and may not reflect cur-
rent customer behavior appropriately, so that older data no longer gives an up-to-
date picture (recency of the data). For example, in the case of online supermarkets, 
initial order data may contain many customers who have tried the service once 
but are not returning. Furthermore, the online supermarket’s offering could have 
changed over time by adjusting the offered delivery time windows. Seasonal shop-
ping behavior may be another reason for varying ordering behavior captured in the 
data, e.g., more expensive purchases in the winter season. The more change we see 
in the historical data over time, the more carefully we need to define the horizon D 
of historical order data to consider in the creation of our samples.

Second, for a given horizon D of historical order data, we need to decide how 
the data should be represented in the samples to support decision making for previ-
ously unseen booking processes. Different ways of aggregating historical order data 
may be used. In the following, we describe the different ideas on using the historical 
order features:

•	 When assessing a new request in the light of historical order data, we can use 
exact instances of booking processes from a day in the booking history. We will 
call this approach instance-based sampling. This would be the most accurate 
representation of historical order data, but may not generalize well to predict 
future orders for this reason. This would also mean that the retailer would have 
to store all of the data for the D past booking processes in order to use them for 
the samples.

•	 It is possible to consider historical orders by sampling from different booking 
days. We will call this approach order-based sampling. With this approach, we 
would need to determine the number of orders for each sample based on the 
distribution of the number of orders over the specified horizon D. This can be 
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advantageous if the historical data contains exceptions of significantly more or 
significantly fewer orders, e.g., due to a holiday. However, we would possibly 
lose booking process-specific information by combining the orders, as custom-
ers might always order on a regular basis and thus the same customers may be 
included multiple times in the same booking process.

•	 Third, following the standard of related sampling literature, we could derive sam-
ples from distributions of individual features or consider the most correlated ones 
in joint distributions of historical order data. We will refer to this as distribution-
based sampling. These might be continuous distributions, such as for booking 
time, or discrete ones, such as for time windows. We will investigate which of the 
features are correlated to decide where individual distributions or joint distribu-
tions of the features are needed.

The way we create our information also affects how many samples we can generate. 
For instance-based sampling, the number of samples that can be considered is lim-
ited, but we can create a large number of samples for order-based and distribution-
based sampling. Again, understanding the data is an important first step to decide 
whether we should include the historical order data in as much detail as possible in 
the samples or whether aggregating or combining the data will provide a better pre-
diction of potential future requests.

4.3 � Sample evaluation

We propose a sampling-based acceptance mechanism for delivery routing that 
dynamically builds route plans to determine the feasibility of a new request based 
on the current booking process. This mechanism will be used to evaluate different 
choices in the use of historical order data to create samples.

For a given horizon D, we generate S samples for each request i derived from 
the historical data that we use to decide if we want to accept or reject the current 
request. Each sample contains information about all previously observed first-choice 
requests, the current request i, and a set of potential future requests created accord-
ing to instance-based, order-based, or distribution-based representation to reflect 
potentially upcoming customers.

For each sample, we create route plans. In particular, we solve a team-orienteer-
ing routing problem with the objective to maximize the overall revenue given the 
available fleet capacity. Contrasting standard routing problems, team orienteering 
identifies the most beneficial subset of customers in terms of total revenue R in the 
route plan (Vansteenwegen et al. 2009). This results in a route plan P

s
 containing a 

route for each of the vehicles in which all already accepted requests as well as the 
most valuable potential future requests (from the sample) and/or the current request 
are included.

Having created a set of routes based on samples, we need to make a deci-
sion on whether to accept the current request or not. For dynamic routing prob-
lems, it is very common to apply a consensus function that seeks similarities in 
obtained solutions (Pillac et  al. 2013). In the context of dynamic routing, this 
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simply means that the request that appears most frequently in the sampled solu-
tions will be visited next. In the context of customer acceptance, we will be able 
to change the order of customer visits and vehicle assignments in the course 
of the booking process, though. Hence, it can be an advantage to consider not 
only the frequency, but also the robustness of an acceptance decision (Bent and 
Van Hentenryck 2004), which corresponds to the desired level of generalization 
from historical bookings. We apply the consensus idea and measure how often a 
request i is included within all route plans created from samples and solved with 
an acceptance limit � . This acceptance limit indicates the minimum number of 
route plans a new request has to be included for it to be accepted.

For applying this acceptance criterion, we need to decide on the value of � 
as well as how many samples S we want to consider. In the related sampling lit-
erature, the guiding principle is often “the more the better” (as shown by Hvat-
tum et al. (2006)). However, since solving more samples takes more time (which 
is hardly available in an online booking process) as well as more data storage 
and processing efforts, the number of samples for an online retailer should be as 
small as possible. For both cities in our case study, we will therefore analyze the 
appropriate time horizon as well as the number of samples needed in Sect. 5.4.

The retailer needs to identify the best configuration for the sampling proce-
dure. Hence, in the following, we will systematically test and compare differ-
ent configurations. The best configuration will be identified following common 
data-science standards. To this end, we will divide the historical order data 
into training and test data. The training data is used to form the input data for 
the three sampling variants as described above and will hence guide customer 
acceptance decisions. The test data will be used to create “actual” (simulated) 
booking processes of requests not used for training and will serve to evaluate 
the performance of a sampling procedure. Depending on the nature of the data, 
we expect some configurations to work better for some of the simulated booking 
processes than for others. However, our goal is to find a configuration that gen-
eralizes well, i.e., that is suitable for new, previously unseen requests. Therefore, 
we will determine the best configuration for the sampling procedure based on 
the average of the results of all simulated booking processes for two cities.

We compare the results of sampling-based prediction of customer accept-
ance with two benchmarks that we call hindsight and myopic. For the hindsight 
benchmark, we assume that we know all requests at the beginning of the book-
ing process and can therefore choose the most profitable subset of requests to be 
served, i.e., we have perfect information on future customers at all times. This 
obviously would not be possible in reality but represents an upper bound for the 
total revenue in our experiments. For the myopic approach, we accept customers 
in a greedy manner without considering any information on future customers. 
This means that every customer is accepted as long as capacity is available. This 
strategy has been implemented by many online supermarkets.
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5 � Case study

In this chapter, we investigate data-driven customer acceptance based on a large data 
set of historical order data provided by the German online grocery AllyouneedFresh. 
We will first investigate data understanding and exploratory data analysis of our data 
set (Sect. 5.1). Then, we will examine how we create the different sampling vari-
ants from historical data (Sect. 5.2). Finally, we will demonstrate how the different 
sampling approaches are evaluated (Sect. 5.3) and analyze which representation of 
historical order data is best for data-driven customer acceptance in our case study of 
two German cities (Sect. 5.4).

5.1 � Understanding the data

AllyouneedFresh provided historical order data for the period from September 2016 
to May 2017. At the time of data collection, AllyouneedFresh was a subsidiary of 
DHL and could therefore rely on the large DHL fleet for order delivery. Therefore, 
customers’ preferred time windows could always be accepted. For this study, we 
use this data but consider a fleet of two delivery vehicles. This allows us to accept 
all requests on days with very few orders, but we have to reject customers on most 
days, especially in high demand time windows and assume that customers whose 
preferred time window is not available will leave the booking process.

Customers could choose from a variety of groceries on the AllyouneedFresh 
website and had them delivered to their homes. All over Germany, customers could 
pick a delivery on the day of their choice. In addition, customers in 14 metropoli-
tan regions could choose from a selection of two-hour delivery time windows. Ally-
ouneedFresh offered six consecutive time windows, with the first time window start-
ing at 10:00 in the morning and the last time window ending at 22:00. In addition, 
there was another overlapping two-hour time window from 19:00-21:00. Each order 
is described through the time of booking, the selected delivery day as well as the 
selected time window, the delivery address, and the value of the shopping basket 
that we will use as estimation of the retailer’s revenue.

We analyze the historical order data first concerning distribution over weekdays. 
Some weekdays are more popular than others, with about a fifth of all orders deliv-
ered on Fridays. Tuesday, Wednesday, and Thursday have a share of 18% of deliver-
ies each. The number of deliveries is generally lower on Saturdays (14%) and the 
lowest on Mondays (11%). Since there is such variability among weekdays, we focus 
on those bookings that were delivered on Fridays for our study.

In our case study, the first Friday will be September 30, 2016, and will be indexed 
as Friday 30. The latest Friday will be June 30, 2017, and will be indexed as Fri-
day 1. All Fridays in between will be indexed accordingly. Note that in some weeks 
no deliveries were made because of a public holiday. Since most online supermar-
kets are offering their service in metropolitan areas, we will choose two cities out of 
the data set from different regions in Germany with a comparable number of orders 
but no overlapping customers.
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The first city is Munich, which is located in southern Germany, and the second 
city is Hamburg, which is located in the northern part of Germany. In Fig. 1, we pro-
vide visualizations of the order data characteristics for Hamburg (blue) and Munich 
(red) for all bookings with deliveries on Fridays. In Fig. 1a, the number of deliveries 
on these Fridays is shown. For Hamburg, we have about 54 orders for each Friday, 
booked an average of 29 hours before cut-off, with an average revenue of about €65. 
For Munich, we have about 64 orders for each Friday, booked an average of 28 hours 
before cut-off, with average revenue of about €68. Table 10 in the Appendix 8.1 pre-
sents detailed statistics for each of the Fridays. While the total number of deliveries 
is comparable between Hamburg and Munich, there are some Fridays which show a 
large difference, e.g., Fridays 4 and 8. For both cities, Friday 24 stands out because 
of a significantly lower number of deliveries. It will be interesting to see how sam-
pling performs for this day or for other days using orders from this low demand day. 
In the following, we investigate how historical order data collected on past Fridays 
can help to improve customer acceptance on future Fridays.

In Fig. 1b, we focus on when bookings were made relative to the cut-off time. To 
this end, we plot the number of orders per hour prior to delivery. The y-axis reflects 
the number of orders per hour and the x-axis represents a timeline with the cut-off 
time T = 0 being on the very far right. The booking behavior seems to be surpris-
ingly similar for Hamburg and Munich. We can see that there are fewer bookings 
during the night hours and more bookings during the day. Furthermore, only a few 
customers order early, i.e., five to three days before delivery. Instead, many custom-
ers order within 48 hours before delivery, and most customers order within 24 hours 
before delivery, which underlines the importance of taking the time of booking into 
account within sampling during this time period.

Next, we characterize the preferred time window choice observed in our histori-
cal order data (see Fig. 1c). On the y-axis, we depict the eight available time window 
options. In general, demand for time windows in both cities is very similar with a 
slightly higher demand for the very late time window from 20:00-22:00 in Munich 
than in Hamburg. Two time windows are in high demand: 10:00-12:00 as well as 
18:00-20:00. Following the same line of visualization, Fig. 1d indicates the distribu-
tions of basket values in the different time windows, indicating the chance for higher 
revenues in the most popular time windows.

Finally, in Fig. 1e, the spatial distributions of all delivery locations of all Friday 
bookings are plotted on a map. Each dot represents a customer address; darker dots 
represent multiple deliveries to the same address. For both cities, we can see a more 
dense distribution of deliveries made in the inner city than in the outskirts. However, 
the city of Hamburg is characterized by many canals and a large port, leaving a gap 
in delivery addresses in the southern part of Hamburg. Such a graph highlights the 
importance of using real data in sampling rather than uniform distributions over a 
rectangle, for example. This suggests the use of sampling from actual locations even 
for distribution-based sampling. This should keep the geographical spread of loca-
tions consistent with city-specific patterns.

We noticed that (1) the number of orders per delivery day varies greatly, (2) most 
of the customers request as early as one day before cut-off, (3) demand for time 
windows is high, especially for early morning time window TW1 and early evening 
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Fig. 1   Visualization of historical order data for deliveries on Fridays in Hamburg and Munich, Septem-
ber 2016–May 2017
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time window TW5, and (4) customers with a high revenue request these time win-
dows. Demand is also distributed with city-specific patterns and should be sampled 
to reflect these.

5.2 � Creating data samples

Given our understanding of the order data from the two cities, we now discuss the 
details of instance-based, order-based, and distribution-based sampling.

To this end, we must define the horizon D for the source of the historical order 
data. The horizon is determined as in Sect. 5.3, but is used to define the set of sam-
ples for evaluation as follows. A visual description of these ideas is included in 
Table 1. Note that all orders considered below are first-choice orders.

•	 For instance-based sampling, we preserve all historical orders as seen in an 
instance from a historical booking day within the horizon. Each sample repre-
sents an exact mapping of a historical booking day from the horizon, including 
all orders and their features.

•	 For order-based sampling, we again preserve all features that belong to a his-
torical order, but we combine the orders across historical booking days from the 
horizon. To this end, we average the number of orders across the horizon and 
compute the variance. Based on this, we randomly pick the number of orders for 
a new sample and sort the orders according to the time of booking.

•	 For distribution-based sampling, we need first to learn if there are dependencies 
between historical bookings and their features. In Tables 2 and 3, we show the 
calculated correlations for the order features for Munich and Hamburg, respec-
tively. Latitude and longitude are derived from the location feature. Recall, fur-
ther features include time window, revenue, and booking time.

	   For both cities, there is a correlation between the selected time window and 
booking time, which could imply that a combined consideration of these two 
features in the samples is important. Surprisingly, there is no strong correlation 
between the location feature and the remaining features. However, there is a cor-
relation between latitude and longitude, which can be explained by the nature 
of the city network. There is very little correlation between location and time 
window or value, indicating that there are no significant differences in residential 
areas and booking behavior. Another surprising result is that the revenue can-
not be derived from the delivery location, time window choice, or booking time. 
This means that it is probably more difficult to anticipate whether requests with 

Table 1   Creating data samples from the historical data

Sample generation Booking time Revenue Time window Delivery location #Orders

Instance-based Historical orders from one instance in horizon
Order-based Historical orders from different instances in horizon Distribution
Distribution-based Distribution Distribution Distribution Distribution Distribution
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high revenues are still to be expected and how much capacity should be reserved 
for them. Following the results from the correlation analysis, we will explore two 
variants for distribution-based sampling:

–	 Distribution-based
C
: With the first variant, we consider the correlation 

between time window and booking time and preserve these features in the 
samples. In particular, we pick a random number (based on the distribution 
over the horizon) to determine the number of potential requests in the samples 
as in order-based sampling. For each request, we pull a combination of the 
features of time window and booking time from the historical order data from 
the horizon to reflect their correlation but choose the location and value fea-
tures from discrete distributions based on data over the horizon.

–	 Distribution-based
R
: Since the correlation between time window and booking 

time was not particularly strong (under 0.5), we use randomly sampled fea-
tures based on distributions with this variant. In particular, we create samples 
as in distribution-based

C
 , but determine time window choice and booking 

time based on an empirical distribution derived from the historical order data.

5.3 � Evaluating the samples

Our evaluation of historical order data is based on the simulation of order processes 
and the solution of the involved routing problems. To this end, we use Google OR 
tools (Perron and Furnon 2019) and embed them in a customer-acceptance simu-
lation. To create a routing solution, Google OR tools perform a construction and 
improvement heuristic. For the construction step, we let Google OR tools automati-
cally choose a solution strategy (e.g., savings or sweep); the improvement step is a 
guided local search. We set the solution time for each run of the routing algorithm 
to 10 seconds. To increase the quality of the solution, we save the best routing solu-
tion found after a customer has been accepted and use it as the initial solution for the 
next customer.

Table 2   Feature correlation for 
Munich Lat −0.11 −0.06 +0.01 +0.01

Lon −0.04 −0.03 −0.04
TW −0.03 −0.25

Revenue −0.02
Time

Table 3   Feature correlation for 
Hamburg Lat +0.17 +0.10 +0.09 +0.04

Lon −0.02 +0.09 −0.02
TW −0.04 −0.22

Revenue +0.01
Time
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We assume a service time of 12 minutes which includes parking and handing 
over the order at each customer (as in Köhler et al. (2020)). We use a fleet of two 
delivery vehicles. This allows us to accept all requests on days with very few orders, 
but we have to reject customers on most days especially in high demand time win-
dows. We use travel time data provided by GraphHopper Directions API1 to com-
pute routes. The mean travel time between all possible delivery locations is 17.0 
minutes for Hamburg and 11.6 minutes for Munich. We assume a working day of 12 
hours, parallel to the beginning and end of the first and last time windows at 10:00 
and 22:00. We are neglecting working time regulations.

To identify the best sampling procedure, we consider all booking processes with 
deliveries on Fridays, indexed from a past Friday (30) to the most recent Friday (1). 
For easier reading, we will simply call them “Fridays” from now on. For both cities, 
we select the ten most recent Fridays (Fridays 1–10) as test data for our simulation. 
Each request is considered at the time it actually arrived with exactly the same char-
acteristics (revenue, delivery location, and time window, 8-hour or one of the 2-hour 
time windows). Then, for each of these ten test Fridays, we perform sampling-based 
customer acceptance based on the preceding 20 training Fridays derived accord-
ing to the particular procedure (instance-based, order-based, or distribution-based 
sampling). We analyze the performance of the sampling procedures and vary the 
amount of historical data used as input for sample creation, i.e., the number of Fri-
days considered.

We will vary the length of the horizon for instance-based sampling to assess the 
recency of the historical order data between D = 4 to D = 20 weeks. With the most 
effective horizon, for the different sampling procedures, we will vary the number of 
samples that will be used to create the required acceptance information. We begin 
with a few samples, S = 4 , and will increase the number of samples up to S = 20 . 
Note that in an online booking process, there may not be sufficient time to process a 
large number of samples. Based on preliminary experiments, we set the acceptance 
rule ensuring that a request must be included in at least half of the sampled solu-
tions to be accepted, i.e., � =

|S|

2
 . These experiments demonstrated that a very high 

limit results in a lack of customer acceptance. Lower acceptance limits enable us to 
accept more consumers, but we were unable to produce better outcomes than with 
� =

|S|

2
 . Appendix 8.3 contains the corresponding experiments.

5.4 � Computational results

We will discuss the most effective horizon for sampling-based customer acceptance 
in Sect.  5.4.1. We will identify the best sampling procedure given different num-
bers of samples in Sect. 5.4.2. All results in Sects. 5.4.1 and 5.4.2 will be evaluated 
relative to myopic and hindsight benchmarks. We present the benchmark results in 
Tables  4 and 5 for the ten test Fridays. For Munich, on eight out of ten Fridays, 
the myopic strategy collects less revenue than hindsight. For Hamburg, the collected 

1  www.​graph​hopper.​com.

http://www.graphhopper.com
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revenue is generally smaller due to the slightly lower number of orders. With very 
few exceptions, for both cities, requests that were rejected in solutions were those 
that requested the highly demanded time windows TW1 or TW5. An illustrative 
example detailing how the booking processes evolves when applying myopic or 
hindsight can be found in the Appendix (see Sect. 8.2).

5.4.1 � Recency of data

We first investigate the most-effective order horizon using instance-based sam-
pling. In Table 6 and Table 7, we present the results of instance-based sampling for 
Munich and Hamburg. For each table, the results are compared to the revenue of 
the myopic (M) and the hindsight (H) solution in percentages, computed as (Sam-
pling−M)/M and (Sampling−H)/H, respectively. Each column indicates for which 
Friday the result was obtained, and each row represents a different value for D. Note 
that for instance-based sampling, using more Fridays also means considering more 
samples in the acceptance decision. The rightmost column shows the average of 
sampling results for all tested Fridays in each table.

Overall, it can be seen that regardless of how long the horizon is, on average, 
instance-based sampling always generates a higher revenue for the retailer than a 
myopic strategy. There are only two Fridays where this does not apply: Fridays 2 
and 3 in Munich, which do not require sampling because of low demand. Even 
though sampling generally generates higher revenues, the results vary greatly. We 
are mainly interested in how extending the horizon influences the quality of the 
results. In Table  7, we can see that by considering data from |D| = 4 Fridays, an 
average of 5.5% higher revenue can be collected than with myopic, and 6.3% if data 
from |D| = 8 Fridays is considered. We can also see that with an increasing number 
of Fridays, the consideration of more input data seems to have a negative effect. This 

Table 4   Results for hindsight and myopic for Hamburg (total revenue)

Friday

10 9 8 7 6 5 4 3 2 1

Hindsight 3280 3180 3330 3370 2900 2920 3350 3260 3600 3010
Myopic 2990 3020 2870 2480 2470 2740 3170 2990 3300 2470
Gap 8.8% 5.0% 13.8% 26.4% 14.8% 6.2% 5.4% 8.3% 8.3% 17.9%

Table 5   Results for hindsight and myopic for Munich (total revenue)

Friday

10 9 8 7 6 5 4 3 2 1

Hindsight 4300 4400 4200 4320 5120 4850 4530 3920 2570 3970
Myopic 3860 4050 3410 3790 4580 4190 3970 3920 2570 3620
Gap 10.2% 8.0% 18.8% 12.3% 10.5% 13.6% 12.4% 0.0% 0.0% 8.8%
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is particularly evident for Friday 4: If we consider historical data of the past month, 
we can increase the revenue by 10.3%. However, extending this to the previous five 
months, i.e., the last 20 Fridays, reduces generalization capabilities reflected by a 
smaller revenue increase of only 6.5%.

Results follow similar patterns for the Hamburg data. In Table  6, we see that 
using data from |D| = 8 Fridays increases the revenue by 9.0% relative to myopic. 
Again, with further increasing number of Fridays, less revenue is collected. Notice-
able in the results is Friday 4. We have learned from Munich data that sampling is 
not beneficial on Fridays with significantly lower demand. However, Friday 4 has 
even more bookings than Friday 5, for which sampling achieves good results. If we 
look at the booking process of Friday 4 in detail, we can see that many customers 
ask for delivery in TW1 and TW5 as expected. However, no customers arrive in the 
last 12 hours before cut-off, whereas we had assumed that most customers order in 
the last hours before cut-off (see Fig. 1b). Hence, Friday 4 is special in the sense that 
customers booked earlier than usual. Consequently, sampling reserves capacity for 
the late customers observed in the historical order data. The results show surpris-
ingly similar patterns. Generally, instance-based sampling works well for Munich 
and Hamburg, and it works best with data from eight historical Fridays.

To understand why shorter time horizons lead to better results, we want to inves-
tigate the changes of customers’ shopping behavior within the considered data. 
To this end, we perform a change point analysis using the cpt2 package in R and 
binary segmentation as a detection method for the order numbers in Hamburg and 
Munich. The idea of a change point analysis is to find states in which data can be 
grouped to the same trend and change points that describe transition into another 
state (Aminikhanghahi and Cook 2017). In Fig. 3, we depict the number of orders 
on the y-axis and the considered delivery Fridays on the x-axis (with Friday 1-10 
the ones we use to make acceptance decisions). For both cities the analysis results 
in five detected change points (Friday 25, 24, 12, 8, and 6 for Hamburg, Fridays 25, 
23, 14, 13, and 4 for Munich). Hence, five states are detected which we depict with 
horizontal lines in the figures. In addition, we mark the seasons with vertical lines, 
and we see that our data includes some fall weeks, the entire winter, and spring. 
This gives us the following insights. First, demand at AllyouneedFresh over the 30 
weeks has many different states and changes quickly. Second, the changes in the 
states go almost perfectly with the change in the seasons. Thus, a trade-off has to be 
found between considering more data (as this usually improves the variability and 
thus the robustness of the decisions) and timeliness (as the data changes quickly). 
In our example, this trade-off is best found at |D| = 8 on average. Please note that in 
our case not only the number of orders is of interest but also when customer requests 
arrive in the booking process, how much customers order, which time window is 
promised, and finally a routing decision about whether to include the customer in a 
delivery tour. Hence, full explainability based on analyzing data is hard to achieve, 
but we derive some intuition about why using samples from longer time periods 
might not be advantageous here.

2  https://​cran.r-​proje​ct.​org/​web/​packa​ges/​cpt/​cpt.​pdf.

https://cran.r-project.org/web/packages/cpt/cpt.pdf
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Insights of data recency assessment:  We have used historical order data in a sam-
pling-based customer acceptance approach. Consistent with results in the literature, 
we have shown the superiority of instance-based sampling over a myopic approach. 
For the historical order data of Hamburg and Munich, on average, sampling is most 
effective with a horizon of |D| = 8.

5.4.2 � Choosing the best sampling procedure

In the previous section, with instance-based sampling, we showed that less data 
resulted in the best average results for increasing the provider’s revenue compared 
to myopic. With instance-based sampling, we achieved an improvement of 6.3% and 
9.0% for Munich and Hamburg when choosing a horizon of eight weeks of most 
recent booking data. In this section, we want to investigate how the results change 
if we keep the horizon constant, but use more or less samples and also combine the 
features of historical orders in our samples with order-based and distribution-based 
sampling. Following the best results from the previous section, we fix the amount of 
historical data to eight weeks and create either eight or 20 samples out of this data. 
Since order-based and distribution-based sampling include random elements, we 
repeat this process 10 times and present the average results of 10 runs. In Tables 8 
and 9 , we present the results of order-based and distribution-based sampling for 
the 10 test Fridays for Munich and Hamburg for a given horizon of |D| = 8 . Again, 
for each table, we present the relative result of sampling-based customer acceptance 
compared to the revenue of the myopic (M) and the hindsight (H) solution in per-
centages. Each column indicates for which Friday the result was obtained, and each 
row indicates how many samples |S| per request were considered for the given result.

Let us have a look at the results for order-based sampling and eight considered 
samples in comparison with instance-based sampling. For Munich, we achieve supe-
rior results for Friday 9, 6, 5 and 1. However, for all other Fridays—both for Munich 
and Hamburg—less revenue is created. Overall, an increase in revenue of 5.6% and 
7.6% can be achieved for Munich and Hamburg, respectively. Compared to the use 
of instance-based sampling, there is a revenue reduction of 0.7% for Munich and 
1.4% for Hamburg. Interestingly, solving more samples hardly changes the results. 
Even if a higher revenue can be achieved for Munich for some Fridays than when 
solving fewer samples (Friday 8, Friday 5, Friday 3), a similar or slightly lower rev-
enue is created for most Fridays when solving 20 samples. Overall, the average rev-
enue is 5.5%. For Hamburg, we can also observe individual Fridays where solving 
20 samples yields an advantage (Friday 10, Friday 9). For most Fridays, however, 
there is no advantage of solving more samples.

When we analyze the results of distribution-based sampling, we can see for 
both Munich and Hamburg that even less revenue can be created (for Munich 
between 5.0% and 5.2% and for Hamburg between 6.6% and 7.1%). Even if we 
assume a correlation between the features time window and booking time as 
observed in the correlation analysis, no noticeable gain can be drawn from this 
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knowledge in the generation of the samples as in distribution-based
C
 sampling. 

Only slight differences between solving eight or 20 samples can be found. A com-
bination of the features even leads to worse results here than provided by order-
based and instance-based sampling. In Fig. 2, we summarize the results relative 
to the revenue achieved by myopic. Each figure depicts the revenue collected 
through sampling relative to myopic on the y-axis and the number of samples 
considered on the x-axis as presented in Tables 8 and 9.

In addition to revenue, an important selling point for retailers is whether a cus-
tomer’s time window preference can be fulfilled. Since sampling leads to some 
customers not being offered certain time windows, we examine how many of the 
seven total windows are offered to each customer and break these numbers down 
by customer revenue. We refer to the number of windows offered to customers as 
service quality.

In Fig. 4a and b, we compare the service quality between the myopic approach 
and instance-based sampling. The y-axis shows the service quality by means 

Fig. 2   Sampling results for different number of samples in relation to myopic and 8 weeks of data

Fig. 3   Change point detection in order numbers for all 30 Fridays considered
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of number of offered time windows with seven being the maximum. Along the 
x-axis, the corresponding revenue of the customer is plotted to investigate if the 
value of the customer has an influence here. In each figure, a colored bar shows 
the results with D = S = |8| , and a gray bar shows the results for the myopic 
approach. For both cities, it can be seen that the service quality is lower with 
myopic than with the sampling approach. Furthermore, for both cities, we can 
see that there is a positive correlation between the service quality and the amount 
of the revenue—but there is no correlation between revenue and service quality 
with myopic customer acceptance. Customer requests with a revenue over 149 
€ have the highest service quality and can choose almost any time window for 
being accepted. In contrast, for revenues below 30 €, the retailer offers a lower 
service quality.

Insights of choosing the best procedure: We show that it is important to 
carefully select the features being reflected in the samples. We can discover a 
clear advantage of order-based and distribution-based sampling over myopic 
approaches. In contrast to the literature, when considering historical order data, 
we found that solving more samples does not always lead to better results. This is 
important because the use of fewer samples may make a sampling-based approach 
more tractable for online grocers to use in real time.

Next, the more we combine information from the historical order data, the 
worse the potential requests in the samples seem to represent actually incoming 
requests. Accordingly, the revenue is lower for order-based and distribution-based 
sampling than for instance-based sampling. Since order-based and distribution-
based require less detailed historical data—namely, only a derivation based on 
probabilities—they could be of interest for retailers who do not have detailed data 
or for which a detailed collection of the data is too costly. Also, instance-based 
sampling can be used to obtain a particularly good fulfillment of first-choice pref-
erences for valuable customers—customers with less value, on the other hand, 
might perceive a lower quality of service.

Fig. 4   Number of time window options for which a customer’s first-choice can be fulfilled
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6 � Managerial insights

Our results suggest that data-driven customer acceptance can improve the profit-
ability of retailers significantly by incorporating historical order data. More spe-
cifically, our managerial insights are as follows:

•	 Considering historical order data generally pays off and adds value in a book-
ing process with uncertain demand to identify when capacity should be reserved 
for potential future requests. Using two different metropolitan regions as case 
studies, we have shown that we can significantly increase the retailer’s revenue 
compared to myopic customer acceptance—that has often been implemented by 
online retailers – by taking historical order data into account.

•	 It is interesting that considering more historical order data does not necessar-
ily increase the revenue. In our evaluation, in both cities, the highest revenue 
improvement on average was collected when we considered about two months of 
historical booking data.

•	 We have also shown that considering booking data from our case study in the 
samples as accurately as possible instead of drawing feature values from empiri-
cal distributions results in the most additional revenue.

•	 The previous two findings demonstrate that it is important for online retailers 
to decide how much and what kind of booking data they collect. Based on our 
findings, only recent historical data needs to be stored. However, retailers should 
keep as much detail as possible about their previous booking processes including 
the first-choice preferences of each customer to know which time windows are 
most preferred.

7 � Outlook

Within this work, we presented a data-science procedure to assess the value of histori-
cal order data for customer acceptance in attended home deliveries. Our approach is 
based on a detailed exploratory data analysis, and we believe that by analyzing the 
data to gain a profound understanding of the problem in a first step, this approach can 
be applied to any data set of online retailers for attended home deliveries. When con-
sidering customer behavior, seasonal or weekday-dependent fluctuations are typical, 
but have not been included in our analysis. We have based our analysis on the example 
of Friday deliveries, as in our data and settings, capacity turned out to be particularly 
tight here. The procedure can be easily transferred to other days or other time windows 
for capacity management. For practical implementations, computational effort needs 
to be reasonable, especially when acceptance decisions are made online during the 
booking process. Although this was not our foremost goal in this study, it turned out 
that without any further preprocessing of the data, already solving only four samples 
per request results in higher revenue than greedy acceptance strategies. Furthermore, 
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we have shown that the choice of how much and which historical data to consider has 
a greater impact on the collected revenue than the number of samples considered.

In the future, we expect that considering historical data will become more impor-
tant in the area of attended home deliveries. Especially with the ongoing competi-
tion in e-commerce and rising customer expectations, considering and anticipating 
customer behavior from historical data will open new avenues for dynamic pricing 
and capacity management. Thus, in this context, our work is only a first step toward 
more systematic evaluation of the value that is added to customer acceptance with 
historical data. Representing one of the few sampling approaches with real-world 
data, exploring the value of data for customer acceptance could also be beneficial to 
the effectiveness of other solution approaches in general.

There is also potential to do more research with the application of order accept-
ance for grocery deliveries. For example, it would be interesting to see how the tech-
niques presented here would handle data that includes the shift from pre- to post- 
COVID-19 customer ordering practices. There could be other big shifts, such as a 
competitor joining or leaving the market, that may require additional pieces to be 
added to our data understanding or feature combination. However, an unsolved issue 
is how big shifts in data can be handled. Even without big shifts, it might be useful 
to examine the value for using real-world data to create additional samples based on 
historical patterns to use in the sampling-based prediction process. To avoid issues 
of censored data in sampling and to create a true time-window choice distribution, it 
is important to store also rejected requests in the retailer database. This could even 
allow more complex demand management approaches that require detailed choice 
distributions neglected in this paper.

Appendix

Booking fridays

In the following table, we present the characteristics of the 30 booking Fridays taken 
into account for Hamburg and Munich. The first column indicates how far in the 
past the Friday is (with a maximum of 30 previous weeks). In column #Orders we 
show how many orders in total were received by AllyouneedFresh on each book-
ing Friday. Booking time indicates the average hour before cut-off at which orders 
were received (hence, the smaller the number the closer orders arrive before cut-
off). In TW, we show the average TW preferences (with 0 being the first time win-
dow option and 7 being the last time window option). Basket (€) reflects the average 
basket value of customers on the respective day. With Lat., Lon., we describe the 
average coordinates of customers on that day.

See Table 10.
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Benchmark results

We show an illustrative example of how hindsight and myopic handle requests 
during the booking process, see Fig. 5. Figure 5a visualizes the booking process 
exactly as observed in historical order data for Friday 7 in Munich. The x-axis 
denotes the arrival time of a request t in hours before cut-off. The y-axis repre-
sents the observed revenue and the chosen time window, indicated with numbers 
from 0 − 7 . The first bar on the left represents the first request. Generally, many 
requests have a revenue of around €50. However, there are three more valuable 
requests with a revenue of more than €150. In Fig. 5b, we have highlighted the 
time windows as requested by each customer for the same booking process (TW1 
in red, TW5 in pink, and the remaining ones in blue). This demonstrates that most 

Fig. 5   Illustrative example for Friday 7 in Munich
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customers within the booking process ask for TW1 and TW5, and that capacity 
for these two time window is likely to become scarce.

In Fig. 5c and d, the results of hindsight and myopic are shown. Accepted cus-
tomers are marked in green and rejected customers in gray color. First, hindsight 
is able to accept 62 customers in total with a total revenue of €4320. Only those 
customers were rejected that requested TW5 and whose revenue was lower com-
pared to other customers asking for delivery within TW5. Myopic only accepts 60 
customers returning an overall revenue of only €3790. Here, all customers were 
accepted until about t = 12 hours before the end of the booking process. Then, 
capacity is becoming too scarce for many of the following requests including one 
asking for TW5 with a revenue above average.

In summary, first, with very few exceptions, requests that were rejected in hind-
sight solutions were those that requested the highly demanded time windows TW1 
or TW5. This is consistent with the exploratory data analysis and the observed 
demand for time windows in Fig.  1c and shows that our data set mainly requires 
capacity management for these two time windows. Second, comparing the solution 
quality of hindsight and myopic helps us to understand how the booking behav-
ior within each of the Fridays affects the achieved solution quality; it particularly 
shows the gap in which considering historical order data can have an impact. For the 
Munich data, on Friday 2 and 3, no capacity management is required, because there 
is no gap between hindsight and myopic. In contrast, for Hamburg data, on Friday 1 
and 7, the gap between myopic and hindsight is particularly large.

Sampling results with � = 1

To investigate the influence of the chosen acceptance criterion on our results, we 
additionally investigated a less restrictive criterion in which customers only need to 
be included in at least one of the sample solutions, i.e., � = 1 . Although we can find 
for all Fridays better results compared to myopic, we could not obtain better results 
compared to the acceptance limit we use in Sect. 5.3.

See Tables 11 and 12.
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