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Abstract
Applying analytic approximations for computing multivariate normal cumulative dis-
tribution functions has led to a substantial improvement in the estimability of mixed
multinomial probitmodels, both in terms of accuracy and especially in terms of compu-
tation time. This paper makes a contribution by presenting a possible way to improve
the accuracy of estimating mixed multinomial probit model covariances based on
the idea of parameter selection using cross-validation. Comparisons to the MACML
approach indicate that the proposed parameter selection approach is able to recover
covariance parameters more accurately, even when there is a moderate degree of inde-
pendence between the random coefficients. The approach also estimates parameters
efficiently, with standard errors tending to be smaller than those of the MACML
approach, which can be observed by means of a real data case.

Keywords Analytic approximation · Cross-validation · Discrete choice models ·
Mixed multinomial probit · Parameter selection

1 Introduction

Statistical discrete choice methods are an effective way to describe, understand and
predict individual choice behavior. The decision makers may be individuals, house-
holds, firms, or any other decision-making entity, and the alternatives may represent
competing products, courses of action, or other options or elements aboutwhich a deci-
sion must be made. These methods are used in empirical social research and beyond,
for example in the transport sector (Train 2009; Savolainen et al. 2011).

Many different approaches can be considered to explain the role of individual
features and to predict choice probabilities when individuals choose from a finite set of
discrete alternatives. A widely used model in applied econometrics of discrete choice
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412 D. Rodenburger

analysis is the multinomial logit model introduced by Luce (1965) and McFadden
(1973). Although this approach has a simple and elegant structure, it also requires the
assumption of independence from irrelevant alternatives, which means that the ratio
of the choice probabilities of two alternatives is independent of the characteristics of
the other alternatives in the choice set. As a result, extensions to the multinomial logit
model were introduced that relaxed the assumption of independently and identically
distributed errors across alternatives. Common extensions are the class of generalized
extreme value models proposed by McFadden (1978) and the multinomial probit
model, which allow for comparatively flexible error covariance structures up to certain
limits of identifiability (Train 2009). In mixed multinomial probit modeling, random
coefficients can be considered which are able to reflect random taste variation across
decision makers.

However, in the absence of a closed form likelihood due to resulting multidimen-
sional normal integrals within the process of model building, this essential advantage
was usually counterbalanced by computationally burdensome simulation-based esti-
mation approaches for mixed multinomial probit models in the past, especially when
considering large choice set and many choice occasions. A way to overcome this
drawback is to apply analytic approximations for multidimensional normal integrals.
Instead of the actual likelihood in its non-closed form, an analytic approximation of
this likelihood is used, which can be maximized efficiently over a given parameter
space using gradient-based standard optimization methods. This is proposed by Joe
(1995), who refines the analytic approximation method of Solow (1990), but without
testing it in the context of estimating probit models. Bhat (2011) takes up this idea
with the introduction of his marginal approximate composite maximum likelihood
(MACML) approach for mixed multinomial probit models, which is based on the
analytic approximation method of Solow (1990) and Joe (1995) (SJ).

In a companion simulation study Bhat and Sidharthan (2011) examine the perfor-
mance of the MACML approach in the context of estimating parameters of mixed
multinomial probit models for cross-sectional and panel data. The results indicate that
the analytic approximation based estimators provide parameter estimates, which are
very close to the true parameter values. The reported estimation errors are smaller than
those of the applied maximum simulated likelihood approach (MSL). Furthermore,
theMACML approach provides smaller standard errors and is noted to bemuch faster1

than the considered MSL approach.
Patil et al. (2017) provide a simulation evaluation where different estimation tech-

niques for amixedmultinomial probit model with five alternatives are compared. They
consider cross-sectional and panel data sets for scenarios with and without correla-
tion among the random coefficients and compare a range of different approaches: the
MACML approach; the Geweke–Hajivassiliou–Keane (GHK) simulator with Halton
sequences and full informationmaximum likelihood; the GHK approach implemented
in conjunction with the composite marginal likelihood estimation approach; the GHK
approach with sparse grid nodes and weights, implemented in conjunction with the
composite marginal likelihood estimation approach; and a Bayesian Markov Chain

1 Bhat and Sidharthan (2011) report that, for the case of five random coefficients, the MACML approach
is about 50 times faster than the considered maximum simulated likelihood approach.
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Monte Carlo approach (MCMC). The results suggest that the MACML approach pro-
vides the best performance in terms of estimation accuracy and estimation time for all
data-generating settings among the considered approaches. Batram and Bauer (2019)
provide similar results compared to the MSL approach as part of a simulation eval-
uation for a cross-sectional mixed multinomial probit model with six alternatives. In
addition, they consider different analytic approximation methods for the MACML
approach: the SJ approximation method; the method of Mendell and Elston (1974)
(ME) together with a modification of this method by Trinh and Genz (2015) (BME);
and a selected method of Bhat (2018) (TVBS), who presents four new algorithms.

A closer look at the MACML results shows that there are differences between the
parameters in terms of estimation errors: the estimation of the covariances between
the random coefficients results in higher estimation errors than the estimation of their
mean values (Bhat and Sidharthan 2011; Patil et al. 2017; Batram and Bauer 2019).
To avoid singularities during optimization, the correlations between the random coef-
ficients are not estimated directly, but via the corresponding Cholesky decomposition.
Here again differences in the estimation errors become apparent. While the results of
Bhat and Sidharthan (2011) and Batram and Bauer (2019) suggest that the estimation
errors are smaller when there is no correlation between two random coefficients than
when they are correlated, on closer examination the opposite seems to be the case.
This apparent contradiction results from the fact that Bhat and Sidharthan (2011) and
Batram and Bauer (2019) report an absolute percentage bias for each parameter, where
the estimated absolute bias is adjusted by the true parameter value. Although this pro-
cedure may be justified with regard to the comparability of estimation errors, it is
not applicable in the case of no correlation between two random coefficients. In these
cases Bhat and Sidharthan (2011) and Batram and Bauer (2019) waive the adjustment2

and report the difference in absolute value between mean estimate and the true value.
As a result, for Bhat and Sidharthan (2011) it appears at first that the reported mean

estimation errors in the case of no correlation between two random coefficients are
smaller thanwhen they are correlated, 0.029 versus 0.076.However, if onlymean abso-
lute estimation errors are considered for all parameters to be estimated, this impression
seems to be reversed, 0.029 versus 0.023. The absolute errors in the case of the true zero
Cholesky parameters are thus on average over 25% higher than those of the non-zero
entries. This observation is confirmed by Batram and Bauer (2019), where those errors
are on average more than 30% larger. For ME, BME, and TVBS the absolute errors
for the true zero Cholesky parameters are even higher: 35%, 45%, and almost 50%,
respectively. Batram and Bauer (2019) provide standard and normalized MACML
estimation results, where in the latter case choice proportions are normalized to sum
to one. This approach results in a substantial increase in computation time. However,
it also leads to significantly more accurate estimation results for ME and BME. The
performance of SJ and TVBS are more or less unaffected by the normalization. The
reported values refer to standard MACML estimation results for SJ and TVBS and
normalized MACML estimation results for ME and BME.

2 Since Patil et al. (2017) choose the same presentation of estimation errors, this probably applies to their
study as well.
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414 D. Rodenburger

This paper introduces a refined method for estimating the covariances between the
random coefficients of the mixed multinomial probit model for cross-sectional data.
In particular, the estimation of the zero entries of the Cholesky decomposition shall
be improved by parameter selection, where the selection mechanism is based on the
idea of cross-validation.

The remainder of this study is structured as follows: Sect. 2 presents the mixed
multinomial probit model for cross-sectional data. Section3 introduces the proposed
parameter selection approach. The theoretical part of this study is followed by an
application part in Sect. 4, in which the effectiveness of the previously introduced
parameter selection approach is examined by means of its ability to recover parame-
ters from finite samples. Section4.1 presents the experimental design. The estimation
results are provided in Sect. 4.2 and allow for comparisons to the MACML approach.
Other estimation approaches are not considered based on the results of Patil et al.
(2017). The application part is closed with a real data case, which is located in an
online appendix.3 Sect. 5 concludes.

2 Mixedmultinomial probit model

In the following the mixed multinomial probit model for cross-sectional data is pre-
sented. The notation refers to Bhat (2011).

If individuals {1, . . . , Q} are considered who are choosing from a set of alternatives
{1, . . . , I }, then the utility that individualq associateswith alternative i can bemodeled
as uqi = β

ᵀ
q xqi + εqi , where xqi denotes a K -dimensional vector of exogenous

characteristics of alternative i and βq is its individually specific valuation. For each
individual q ∈ {1, . . . , Q} the coefficient vector βq is assumed to be drawn from a
multivariate normal distribution, i.e. βq ∼ N (b,�). Thus, the mixed multinomial
probit model overcomes limitations of the ordinary probit model by allowing for
random taste variation. Furthermore, εqi is assumed to be independent and identically
distributed with εqi ∼ N (0, 1

2 ) for model identification purpose, since the decision on
one particular alternative is scale invariant. The variance is set to one-half to normalize
the variances of the latent utility differences errors, which are typically not identified.
This can be seen in the following.

In the case where individual q decides to choose alternative m, the corresponding
utility differences are given by yqim := uqi − uqm = β

ᵀ
q (xqi − xqm) + εqi − εqm ,

where i = 1, . . . , I and i �= m. Note that individual q chooses alternative m, if
and only if yqim < 0 holds for all i �= m. In practice, yqim can not be observed
and y∗

qim := 1{yqim<0} has to be examined instead. The likelihood contribution of
individual q for choosing alternative m depends upon the proportion of K to I . If
K < I − 2, it is convenient to state the likelihood as

3 The online appendix can be found at the following https://doi.org/10.5281/zenodo.8104188.
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Lq(b,�) =
∫
R
K

⎛
⎝

∫
R

⎡
⎣∏
i �=m

[
�

([
−√

2(βᵀzqim))
]

+ λ
)]⎤⎦φ(λ)dλ

⎞
⎠

φK (β | b,�)dβ,

where zqim := xqi − xqm , λ := √
2εqm , and φK (β | b,�) denotes the

K -variate normal density function at β with mean b and positive definite covari-
ance matrix �. The standard univariate normal density and cumulative distribution
function are denoted by φ(·) and �(·), respectively. In case of K > I −
2, let yqm := (

yqm1, . . . , yqm(m−1), yqm(m+1), . . . , yqmI
)ᵀ ∈ R

I−1, Zqm :=(
xq1 − xqm, . . . , xq(m−1) − xqm, xq(m+1) − xqm, . . . , xq I − xqm

) ∈ R
K×(I−1), and

the error differences εqm := (
εq1 − εqm, . . . , εq(m−1) − εqm, εq(m+1) − εqm, . . . , εq I

− εqm
)ᵀ ∈ R

I−1. The vector of utility differences can then be expressed as yqm =
Zᵀ
qmβq + εqm . Since βq and εqm are assumed to be normally distributed, yqm is also

normally distributed with expectation E(yqm) = Zᵀ
qmb and covariance matrix

V(yqm) = Zᵀ
qm�Zqm +

⎛
⎜⎜⎜⎜⎝

1 0.5 . . . 0.5

0.5 1
. . .

...
...

. . .
. . . 0.5

0.5 . . . 0.5 1

⎞
⎟⎟⎟⎟⎠ =: �q .

Then the likelihood contribution of individual q for choosing alternative m is given
by Lq (b,�) = �I−1

(−Zᵀ
qmb | 0, �q

)
, where �I−1

(−Zᵀ
qmb | 0, �q

)
denotes the

(I − 1)-variate normal cumulative distribution function at −Zᵀ
qmb with zero mean

and covariance matrix �q , whose invertibility is guaranteed by K > I − 2. However,
due to singularity problems during the estimation process, a direct estimation of the
entries of� is usually avoided. Instead, the entries of L , the lower triangular matrix of
the Cholesky decomposition � = LLᵀ, are estimated (Bhat and Sidharthan 2011;
Patil et al. 2017; Batram and Bauer 2019). These can be merged into the vector
l := (

L11 L21 L22 L31 . . . LKK
)
. Thus, Lq (b,�) becomes Lq (b, l).

Given the likelihood contribution for individual q who chooses alternative m,
the log-likelihood can be stated as L (b, l) = ∑Q

q=1 Lq (b, l), where Lq (b, l) :=
log

(
Lq (b, l)

)
and alternative m now represents the chosen alternative for every indi-

vidual. These alternatives may of course vary across individuals. Since the normal
cumulative distribution function cannot be expressed in closed form, the estimation of
b and l is usually based on simulation approaches, which typically suffer from compu-
tational loads. This shortcoming can be addressed by the use of analytic approximation
methods (Joe 1995; Bhat 2011). While Bhat and Sidharthan (2011) and Patil et al.
(2017) rely on the SJ approach, Batram and Bauer (2019) additionally consider ME,
BME, and TVBS. Among these approaches, SJ provides a very good ratio between
computation time and accuracy. Hence, SJ is also applied in this paper.
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416 D. Rodenburger

3 Parameter selection approach

The estimationmethod proposed in the following is intended to improve the estimation
of true zero Cholesky parameters of the mixed multinomial probit model outlined in
Sect. 2. The approach is based on the idea of parameter selection and cross-validation.

Consider again the case K > I − 2 from Sect. 2, where K denotes the number
of exogenous characteristics for each alternative i ∈ {1, . . . , I } together with the
corresponding log-likelihood

L (b, l) =
Q∑

q=1

Lq (b, l) =
Q∑

q=1

log
(
Lq (b, l)

)
,

where Lq (b, l) = �I−1
(−Zᵀ

qmb | 0, �q
)
as described in Sect. 2. Now let |l| denote

the length of l and consider p ∈ {0, 1}|l|. The set of individuals {1, . . . , Q} is randomly

divided into c subsets Q1, . . . , Qc. Then for j = 1, . . . , c one can obtain
(
b j , l jp

)
=

argmax
∑

q /∈Q j
Lq(b, l) s.t. li = 0 if and only if pi = 0 for i = 1, . . . , |l|. This

maximization problem can be handled by quasi-newton procedures using SJ and yields
estimations b̂ j and l̂ jp for j = 1, . . . , c. Finally, a c-fold cross-validation score can be
obtained by

F (p) = 1

c

c∑
j=1

∑
q∈Q j

Lq

(
b̂ j , l̂ jp

)
.

Maximizing F (p) with respect to p yields a suitable binary representation p∗ =
argmax F (p) of the Cholesky parameters to be selected before maximizing the log-
likelihoodL (b, l), where the i-th Cholesky parameter is selected if and only if p∗

i = 1.
In order to solve this non-linear binary maximization problem, an appropriate

optimization method has to be chosen. Arora et al. (1994) and Alves and Climaco
(2007) provide reviews of methods for discrete-integer-continuous variable optimiza-
tion. However, the very nature of the optimization problem does neither allow for
sequential linearization nor any relaxation approaches. It is apparently not possible
to provide any gradient information. Hence, a stochastic search method is applied,
namely a binary genetic algorithm (Holland 1992; Goldberg 1989).

This optimization procedure is a metaheuristic over a given parameter space. It is
motivated by genetics and the natural process of selection and evolution. A binary
genetic algorithm provides some advantages: it does not require convexity of the opti-
mization problem and is, at least in theory, capable of finding a global optimum.On the
other hand, it can be computationally quite burdensome, especially if the evaluation of
the objective function is costly. Furtunately, due to the SJ approximation approach, the
c-fold cross-validation score can be evaluated quite efficiently for reasonable values4

4 The hyperparameter c does not require optimization and can be based on the available computational
capacity. Larger values lead to a better adaptation, which is marginally decreasing. In the extreme case, the
stochastic component can be eliminated completely by leave-one-out cross-validation.
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of c. In this paper, c = 5 is chosen because this value fits the available computational
capacity and corresponds to the widely used ratio of training and test data splitting in
machine learning, which means that 80% of the data is used for training and 20% for
testing. The reason for this split is based on the well-known Pareto principle. However,
this is only a widely used rule of thumb. Research on the optimality of the data splitting
ratio has not yet led to a consensus (Picard and Berk 1990; Dobbin and Simon 2011;
Afendras and Markatou 2019).

Regarding genetic optimization, the objective function is usually denoted as fitness.
In the present case, the parameter space is given by {0, 1}|l| and the fitness corresponds
to the c-fold cross-validation score F (p). The entire optimization procedure is based
on the bio-inspired operators: selection, crossover, and mutation.

At each step of the optimization procedure there is a current population consist-
ing of m different binary-valued vectors p1, . . . , pm ∈ {0, 1}|l|. The selection of a
member p

′ ∈ {
p1, . . . , pm

}
is made with a certain probability according to its fitness

regarding the current population. The selection operator copies vectors from the cur-
rent population to the next, with numerous different strategies for implementing this
selection process, cf. Haupt and Haupt (2004) for a review.

In a second step, the crossover operator splits and merges two selected vectors of
the current population to exchange characteristics. This entails randomly selecting a
start and end position on a pair of mating vectors and exchanging the sub-vector of
0’s and 1’s between these positions on one vector with that from the mating vector.

Finally, the mutation operator completes the genetic refinement process. It corre-
sponds to selecting a few members of the population, randomly determining positions
on the selected vectors, and switching the 0 or 1 at these positions. This step safeguards
the process from locking into a local optimum during selection and crossover.

The outlined steps are repeated for successive populations until no further improve-
ment of the fitness is attainable. The member with the highest level of fitness in the last
population is the optimum vector p∗, cf. Haupt and Haupt (2004) for a more detailed
discussion.

4 Accuracy comparison between the proposed parameter selection
approach and the original estimationmethod

Within the following subsections, the ability of the proposed parameter selection
approach to recover parameters from finite samples in cross-sectional mixed multi-
nomial probit models is evaluated. The results are compared to those of the original
MACML estimation approach by Bhat (2011).

4.1 Experimental design

The underlying utility function of the multinomial mixed probit model outlined in
Sect. 2 is given by uqi = β

ᵀ
q xqi +εqi . According to the simulation studies of Bhat and

Sidharthan (2011) and Patil et al. (2017), two 5-dimensional cross-sectional designs
are taken into account. Thus a set of 5 alternatives is considered together with 5 inde-
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418 D. Rodenburger

pendent exogeneous variables. For each choice occasion q and each alternative i the
realizations of these exogeneous variables are given by xqi . They are drawn from a
standard univariate normal distribution. Likewise, the error terms εqi are drawn from
a univariate normal distribution with variance of one-half to normalize the variances
of the latent utility error differences. The random coefficient vector βq follows a mul-
tivariate normal distribution with mean b and covariance matrix � = LLᵀ, where L
denotes the lower Cholesky matrix of the corresponding decomposition. The covari-
ance parameters are not estimated directly, but using the corresponding lowerCholesky
matrix, cf. Section 2.

The covariance matrix design �Bhat is considered first, since it has already been
well-discussed in the literature and therefore serves as a benchmark case (Bhat and
Sidharthan 2011; Patil et al. 2017). In this example, 15 Cholesky parameters have to
be estimated, of which 4 have a true value of zero, corresponding to a proportion of
more than 25%:

�Bhat =

⎛
⎜⎜⎜⎜⎝

1.00 −0.50 0.25 0.75 0.00
−0.50 1.00 0.25 −0.50 0.00
0.25 0.25 1.00 0.33 0.00
0.75 −0.50 0.33 1.00 0.00
0.00 0.00 0.00 0.00 1.00

⎞
⎟⎟⎟⎟⎠ .

The corresponding lower Cholesky matrix LBhat has a similar structure due to the
arrangement of the variables in �Bhat. The block-diagonal structure is preserved by
the Cholesky decomposition:

LBhat =

⎛
⎜⎜⎜⎜⎝

1.00 0.00 0.00 0.00 0.00
−0.50 0.87 0.00 0.00 0.00
0.25 0.43 0.87 0.00 0.00
0.75 −0.14 0.24 0.60 0.00
0.00 0.00 0.00 0.00 1.00

⎞
⎟⎟⎟⎟⎠ .

Block-diagonal covariance matrix designs are natural restrictions of the general
unstructured covariance matrix design in mixed multinomial probit modeling (Bara-
gatti 2011). In some cases of seemingly unstructered covariance matrices, reordering
of the underlying variables can be considered to impose a block-diagonal structure. In
addition to�Bhat , another more taylor-made block-diagonal covariance matrix design
is considered to test the parameter selection procedure:

�Block =

⎛
⎜⎜⎜⎜⎝

1.00 075 0.00 0.00 0.00
0.75 1.00 −0.50 0.00 0.00
0.00 −0.50 1.00 0.00 0.00
0.00 0.00 0.00 1.00 0.50
0.00 0.00 0.00 0.50 1.00

⎞
⎟⎟⎟⎟⎠ .

In this case, also 15 Cholesky parameters have to be estimated, of which now 7 have
a true value of zero, corresponding to a proportion of almost 50%. The corresponding
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lower Cholesky matrix is given by:

LBlock =

⎛
⎜⎜⎜⎜⎝

1.00 0.00 0.00 0.00 0.00
0.75 0.66 0.00 0.00 0.00
0.00 −0.76 0.65 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.50 0.87

⎞
⎟⎟⎟⎟⎠ .

For every covariance matrix design considered the corresponding random coeffi-
cient mean values are the same and chosen to be b = (

1.5 −1.0 2.0 1.0 −2.0
)ᵀ due

to Bhat and Sidharthan (2011) and Patil et al. (2017).
In each case, 20 random data sets of size 2500 are generated, corresponding to 2500

individual choice occasions.
For the considered experimental designs MACML benchmark estimates are pro-

vided using SJ. In addition, the analytic approximation based estimator using the SJ
approximation method together with the genetic algorithm parameter selection proce-
dure outlined in Sect. 3 is applied. Here the cross-validation parameter is set to c = 5,
which corresponds to a widely used ratio of training and test data splitting in machine
learning as discussed in Sect. 3.

Bhat and Sidharthan (2011), Patil et al. (2017) and Batram and Bauer (2019) pro-
vide relative estimation errors by computingmean parameter estimates across data sets
and reporting an absolute percentage bias for each parameter, i.e. |(mean estimate −
true value)/true value| · 100. In doing so, they weight the deviation of the mean esti-
mated value from the true value by its size which, from a theoretical point of view,
facilitates comparisons between different parameter values. However, from a more
technical perspective, it is not immediately clearwhynormalization should be required,
since larger parameter values are not necessarily accompanied by increased biases.
The results of Bhat and Sidharthan (2011) and Batram and Bauer (2019) show that
this is not the case and that they are not even accompanied by increased standard
errors. Moreover, it is not possible to compute an absolute percentage bias for true
zero parameters, which prevents the opportunity for appropriate comparisons in these
cases.

In contrast, this study does not only provide average estimation results, but also
focuses on the empirical cumulative distributions of the absolute errors, i.e. |estimate−
true value|, aggregated in pairs according the two estimation methods considered.
Aggregation is performed over parameters and data sets for each covariance matrix
design, where zero and non-zero parameters are considered separately to examine the
effects of the parameter selection procedure. Wilcoxon–Mann–Whitney paired tests
with large sample normal approximation are used to test for differences in the results
(Wilcoxon 1945; Mann and Whitney 1947).

Furthermore, mean absolute estimation errors (MAE) are reported for each param-
eter, i.e. |estimate − true value| averaged across data sets. These errors are easily
traceable and yield properly comparable results also for zero parameters. The result is
likely to be a higher reported MAE for each parameter compared to an absolute bias
due to Bhat and Sidharthan (2011) and Patil et al. (2017), since the triangle inequality
applies. In addition, MAE standard deviations are reported. Sensitivity and specificity
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420 D. Rodenburger

Table 1 Estimation results for LBhat for SJwithout andwith parameter selection (cross-validation parameter
c = 5), including mean absolute errors (MAE) and standard deviations based on 20 data sets and 2500
observations per data set

Parameter True value SJ without parameter selection SJ with parameter selection

Mean MAE MAE Mean MAE MAE
Estimate SD Estimate SD

b1 1.500 1.546 0.081 (0.084) 1.544 0.093 (0.094)

b2 − 1.000 −1.071 0.097 (0.054) −1.055 0.061 (0.049)

b3 2.000 2.164 0.194 (0.139) 2.149 0.189 (0.121)

b4 1.000 1.012 0.057 (0.047) 1.006 0.064 (0.053)

b5 − 2.000 −2.151 0.173 (0.136) −2.134 0.162 (0.131)

l11 1.000 0.924 0.119 (0.060) 0.917 0.121 (0.075)

l21 − 0.500 −0.499 0.114 (0.101) −0.504 0.094 (0.067)

l22 0.866 0.863 0.138 (0.128) 0.856 0.126 (0.095)

l31 0.250 0.215 0.109 (0.071) 0.192 0.143 (0.087)

l32 0.433 0.332 0.138 (0.070) 0.331 0.133 (0.080)

l33 0.866 0.928 0.112 (0.068) 0.938 0.135 (0.094)

l41 0.750 0.674 0.116 (0.088) 0.683 0.115 (0.072)

l42 − 0.144 −0.361 0.217 (0.106) −0.234 0.190 (0.090)

l43 0.237 0.250 0.101 (0.077) 0.221 0.140 (0.091)

l44 0.601 0.752 0.199 (0.108) 0.776 0.199 (0.119)

l51 0.000 0.105 0.142 (0.100) 0.072 0.073 (0.139)

l52 0.000 0.018 0.106 (0.066) 0.028 0.029 (0.101)

l53 0.000 −0.020 0.097 (0.068) −0.002 0.019 (0.043)

l54 0.000 0.040 0.109 (0.075) 0.007 0.024 (0.062)

l55 1.000 0.956 0.107 (0.080) 0.952 0.114 (0.078)

Mean across – 0.135 (0.100) – 0.126 (0.103)

Parameters

Mean time 0.117 – – 40.393 – –

(SD) (0.039) (10.489)

Sensitivity – – – 0.825 – –

Specificity 0.858

values are provided to give information about the proportion of correctly neglected
and selected parameters, respectively.5

4.2 Results

Table 1 provides the estimation results for the covariance matrix design due to Bhat
and Sidharthan (2011) and Patil et al. (2017).

5 All computations are performed on a laptop computer with 6 CPU cores with a clock speed between 600
and 3220 MHz and 16 GB of RAM.
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Fig. 1 Empirical cumulative distribution functions of the absolute error differences between SJ estimates
without and with parameter selection for LBhat, estimated by trust region with cross-validation parameter
c = 5 for 20 data sets and 2500 observations per data set split up according to mean values (l.) and Cholesky
parameters (r.)

The difference in the accuracy of the estimation results in terms of absolute errors
across all parameters is just over 7% in favor of the parameter selection procedure.
However, a closer look at the true zero Cholesky entries shows that there are consid-
erable differences. In the case of the SJ approximation without parameter selection,
the mean absolute error here is 0.113, whereas in the case of the parameter selection
procedure, the mean absolute error is only 0.036, which is less than one third. Small
differences in favor of the parameter selection procedure are also apparent in the esti-
mated mean values. Figure1 shows the empirical cumulative distribution functions of
the absolute error differences between SJ without and with parameter selection.

The differences in estimated mean values are significant (s = 3129, z = 2.075,
p-value = 0.019). This also applies to the Cholesky parameters (s = 28520, z =
3.953, p − value = 0.000). However, this observation is solely due to the differences
in the true zero Cholesky values (s = 3036, z = 6.789, p-value = 0.000). There is
little difference in the true non-zero entries (s = 3635, z = 0.013, p-value = 0.990).
The mean absolute errors are almost the same here.

The more accurate estimation results of the parameter selection procedure are
accompanied by a significant increase in computation time, which is given in min-
utes and shows the main shortcoming of the approach. The values for sensitivity
and specificity are well above 80% even with this comparatively small scaling of the
experimental design.

Table 2 provides the estimation results for the covariance matrix �Block. As before,
the difference in the accuracy of the estimation results in terms of absolute errors
across all parameters is in favor of the parameter selection approach. However, the
difference is now over 20%. Again, the greatest differences can be seen in the true zero
Cholesky parameters. In the case of the SJ approximation without parameter selection,
the mean absolute error here is now 0.097, whereas in the case of the parameter
selection procedure, themean absolute error is now only 0.017, which is less than 20%.
Figure2 shows again the empirical cumulative distribution functions of the absolute
error differences between SJ without and with parameter selection.

The significant differences in the estimatedCholesky values (s = 33709, z = 7.404,
p-value = 0.000) are now again due to the fact that the differences in the true zero
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Table 2 Estimation results for LBlock for SJ without and with parameter selection (cross-validation param-
eter c = 5), including mean absolute errors (MAE) and standard deviations based on 20 data sets and 2500
observations per data set

Parameter True value SJ without parameter selection SJ with parameter selection

Mean MAE MAE Mean MAE MAE
Estimate SD Estimate SD

b1 1.500 1.651 0.158 (0.145) 1.662 0.176 (0.152)

b2 − 1.000 −1.082 0.106 (0.106) −1.091 0.117 (0.105)

b3 2.000 2.148 0.169 (0.148) 2.1688 0.206 (0.190)

b4 1.000 1.136 0.138 (0.125) 1.142 0.145 (0.111)

b5 − 2.000 −2.177 0.194 (0.207) −2.204 0.221 (0.213)

l11 1.000 0.960 0.148 (0.093) 0.966 0.148 (0.087)

l21 0.750 0.813 0.127 (0.094) 0.843 0.122 (0.102)

l22 0.661 0.833 0.185 (0.131) 0.821 0.179 (0.092)

l31 0.000 0.076 0.098 (0.058) 0.000 0.000 (0.000)

l32 − 0.756 −0.522 0.243 (0.088) −0.530 0.229 (0.129)

l33 0.655 0.837 0.183 (0.152) 0.841 0.199 (0.157)

l41 0.000 0.046 0.076 (0.066) 0.000 0.000 (0.000)

l42 0.000 −0.100 0.124 (0.076) −0.042 0.042 (0.091)

l43 0.000 0.025 0.109 (0.068) 0.009 0.029 (0.072)

l44 1.000 1.062 0.129 (0.107) 1.081 0.136 (0.153)

l51 0.000 −0.023 0.074 (0.052) −0.002 0.016 (0.050)

l52 0.000 0.022 0.114 (0.081) −0.007 0.022 (0.059)

l53 0.000 0.014 0.087 (0.066) 0.014 0.014 (0.043)

l54 0.500 0.482 0.131 (0.085) 0.500 0.131 (0.082)

l55 0.866 0.946 0.123 (0.103) 0.958 0.126 (0.098)

Mean across – 0.136 (0.103) – 0.113 (0.099)

Parameters

Mean time 0.147 – – 39.220 – –

(SD) (0.031) (17.654)

Sensitivity – – – 0.900 – –

Specificity 1.000

parameters are significant (s = 9681, z = 9.871, p-value = 0.000). This does not
apply to the non-zero entries (s = 1049, z = 0.987, p-value = 0.324). The mean
absolute errors are almost the same here, 0.167 and 0.161 for SJ without and with
parameter selection, respectively. No significant differences can be observed in the
mean values either (s = 2936, z = 1.413, p-value = 0.158).

The values for sensitivity and specificity are increased compared to before even
reach one in case of specificity, which means that no true non-zero parameter has been
incorrectly neglected.

Even though the proposed parameter selection approach is computationally inten-
sive compared to the original estimationmethod, the results presented here show that it
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Fig. 2 Empirical cumulative distribution functions of the absolute error differences between SJ estimates
without and with parameter selection for LBlock, estimated by trust region with cross-validation parameter
c = 5 for 20 data sets and 2500 observations per data set split up according to mean values (l.) and Cholesky
parameters (r.)

seems towork, at leastwith respect to the intended improved accuracy of the estimation
results.

5 Conclusion

Applying analytic approximations for multivariate normal cumulative distribution
functions to estimatemixedmultinomial probitmodels has led to a significant improve-
ment in both accuracy of the estimation results and computation time (Bhat and
Sidharthan 2011; Patil et al. 2017). The proposed estimation approach of this paper
can help to further reduce estimation errors in the estimation of the covariances of the
random coefficients of the model.

However, the achieved improvements in the accuracy of the estimation results are
accompanied by considerable increases of the computational load, which is mainly
due to the underlying discrete optimization problem of the proposed parameter selec-
tion approach and the applied meta-heuristic optimization method. Therefore, the
proposed procedure is unsuitable for fast repeated calculations, which are necessary
in some application areas. Using a different parameter selection approach or another
discrete optimization method could possibly reduce computation times and facilitate
an extension of the parameter selection procedure to mixedmultinomial probit models
for panel data. In this regard, it would maybe be beneficial to investigate the impact
of memetic algorithms on the computation time in future research.

The enclosed simulation results indicate that more accurate estimation results can
already be obtained by the proposed parameter selection approach than with con-
ventional estimation via an analytic approximation, if only a moderate degree of
independence between the random coefficients is present. With greater independence,
even more accurate estimation results are possible. The online appendix of this study
contains an application to a conjoint analysis study of preferences between alternative
vehicles, which shows that the proposed parameter selection approach can provide
plausible and efficient estimation results. In particular, with respect to real data, a
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question for future research may be whether the proposed method is able to reduce
parameter identification fragility.
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