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Abstract
Whenmodelling unbounded counts, their marginals are often assumed to follow either
Poisson (Poi) or negative binomial (NB) distributions. To test such null hypotheses,
we propose goodness-of-fit (GoF) tests based on statistics relying on certain moment
properties. By contrast to most approaches proposed in the count-data literature so
far, we do not restrict ourselves to specific low-order moments, but consider a flexible
class of functions of generalized moments to construct model-diagnostic tests. These
cover GoF-tests based on higher-order factorial moments, which are particularly suit-
able for the Poi- or NB-distributionwhere simple closed-form expressions for factorial
moments of any order exist, but also GoF-tests relying on the respective Stein’s iden-
tity for the Poi- or NB-distribution. In the time-dependent case, under mild mixing
conditions, we derive the asymptotic theory for GoF tests based on higher-order facto-
rial moments for a wide family of stationary processes having Poi- or NB-marginals,
respectively. This family also includes a type of NB-autoregressive model, where we
provide clarification of some confusion caused in the literature. Additionally, for the
case of independent and identically distributed counts, we prove asymptotic normal-
ity results for GoF-tests relying on a Stein identity, and we briefly discuss how its
statistic might be used to define an omnibus GoF-test. The performance of the tests
is investigated with simulations for both asymptotic and bootstrap implementations,
also considering various alternative scenarios for power analyses. A data example of
daily counts of downloads of a TeX editor is used to illustrate the application of the
proposed GoF-tests.
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1 Introduction

There is a huge literature on goodness-of-fit (GoF) tests for count distributions, i. e.,
which refer to a quantitative random variable (rv) with range being contained in the
set of non-negative integers, N0 = {0, 1, . . .}. More precisely, if the counts might
become arbitrarily large (rangeN0), they are referred to as unbounded counts, whereas
bounded counts can never exceed a specified upper bound N ∈ N = {1, 2, . . .} (range
{0, 1, . . . , N } ⊂ N0). The largemajority of papers refer to independent and identically
distributed (i. i. d.) counts, and most often, the GoF-tests are designed with respect to
the null hypothesis of a Poisson (Poi) distribution, which constitutes the most well-
knownmodel for unbounded counts, seeGürtler andHenze (2000) for a comprehensive
comparison. Some authors also allow for non-Poisson null hypotheses such as the
negative-binomial (NB) distribution (also unbounded counts) or the binomial (Bin)
distribution (bounded counts), see Kyriakoussis et al. (1998), Rueda and O’Reilly
(1999), Meintanis (2005), Beltrán-Beltrán and O’Reilly (2019), and GoF-tests for
bivariate count distributions have been developed as well, see Novoa-Muñoz and
Jiménez-Gamero (2014) and Hudecová et al. (2021) as examples. The proposed GoF-
tests can be roughly classified into three groups. Some try to use as much information
as possible by defining test statistics relying on, e. g., the cumulative distribution
function (cdf) or the probability generating function (pgf), see Gürtler and Henze
(2000) and Luong (2020); Puig and Weiß (2020) for examples. These may lead to
broadly applicable tests that are, however, difficult to use in practice (bootstrap- or
simulation-based implementations). Also the GoF-test by Betsch et al. (2022) based
on a Stein characterization of the Poi-distribution belongs to this class; see Anastasiou
et al. (2023) for related references. Others consider statistics relying on frequency
distributions such as the famous Pearson statistic, further members of the power-
divergence family, or statistics from the family of scaledBregman divergences (Cressie
and Read 1984; Kißlinger and Stummer 2016). These statistics commonly lead to
simple χ2-asymptotics under the i. i. d.-assumption and are thus easily applied by
practitioners. Even more facile are statistics relying on moment properties, such as
Fisher’s index of dispersion or related statistics (Kyriakoussis et al. 1998), which are
easy to compute and have simple normal asymptotics. While GoF-tests from the first
two groups are often consistent against large classes of alternatives (omnibus tests),
they are not necessarily particularly powerful for any such alternative. Furthermore,
it is not possible to conclude from a rejection on the type of violation of the null
hypothesis. Therefore, the moment-based GoF-tests from the third group are valuable
complements as they may allow for a kind of “targeted diagnosis”. For example, if
Fisher’s index of dispersion exceeds the upper critical value and thus rejects the Poi-
null, we diagnose an overdispersed alternative distribution. Certainly, such moment-
based GoF-tests lack broad consistency by construction. They also cannot be expected
to be perfectly selective as, for example, features like skewness and excess are not fully
separated, see Horswell and Looney (1992) for such results. Nevertheless, the pattern
of rejectionsmight give valuable insights into the type of violation(s) of the null model.
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The situation gets more complex if the data generating process (DGP) is not i. i. d.
but exhibits serial dependence, i. e., if the GoF-test is applied to a count time series; see
Weiß (2018a) for a comprehensive discussion. Then, pgf-basedGoF-tests such as those
of Meintanis and Karlis (2014), Schweer (2016) still require bootstrap implementa-
tions, now certainly an adequate type of time-series bootstrap such as those discussed
by Jentsch and Weiß (2019). But for non-i. i. d. count time series, also Pearson-type
GoF tests are more demanding, because although closed-form asymptotics might still
be available, these are typically given by sophisticated quadratic-form distributions
rather than just simple χ2-distributions (Weiß 2018b). Only for the third group of
GoF-tests, there is still a chance for ending up with simple normal asymptotics, see
the dispersion and skewness tests analyzed by Schweer and Weiß (2014), Schweer
and Weiß (2016) as an example.

Inwhat follows,we focus on this third group ofGoF-tests, i. e., on test statistics rely-
ing onmoment properties, and these are applied to time series consisting of unbounded
counts having Poi- or NB-marginals. However, we do not restrict ourselves to specific
(low-order) moments like in Schweer and Weiß (2014), Schweer and Weiß (2016),
but we consider quite general moment statistics and their asymptotics instead. More
precisely, we discuss marginal GoF-statistics of the form T̂ = τ

( 1
T

∑T
t=1 g(Xt )

)

for a vector-valued function g and some smooth function τ (“functions of gen-
eralized means”), and these are compared to T0 = τ

(
E[g(X)]) computed under

some null hypothesis. As an example, for specific cases of Poisson null hypotheses,
Aleksandrov et al. (2022) defined statistics utilizing the Stein–Chen identity. Setting
τ(u, v, w) = v

u w
and g(x) = (

x, x f (x), f (x + 1)
)� for some bounded function

f : N0 → R, such as f (x) = exp(−x), the resulting statistic falls within the afore-
mentioned class of marginal GoF-statistics. In a similar spirit, one may generalize the
idea of Kyriakoussis et al. (1998), who consider second-order factorial moments for
defining T. The use of factorial moments instead of, e. g., raw or central moments is
motivated by the fact that for many common count distributions, such as the aforemen-
tioned Poi- or NB-distribution, there exist simple closed-form formulae for factorial
moments of any order. These can even be extended to the bivariate case, see Sect. 2
for a concise summary. While Kyriakoussis et al. (1998) only discussed the second-
order case, we shall consider quite general statistics defined by τ(u, v, w) = u

v w
and

g(x) = (
x(r), x(r−s), x(s)

)� for some 1 ≤ s < r . Here, x(k) = x · · · (x−k+1), k ∈ N,
denotes the kth falling factorial (with x(0) := 1). So E[g(X)] = (

μ(r), μ(r−s), μ(s)
)�,

whereμ(k) = E[X(k)] is the kth factorial moment. It should be noted that several alter-
native notations for falling factorials and factorial moments exist in the literature, see
Johnson et al. (2005, pp. 2, 53). We also emphasize that throughout this article, x(k)

always denotes a falling factorial and should not be confused with an order statistic.
Our GoF-tests for unbounded counts are developed for the following null scenar-

ios: either a marginal Poi-distribution, or a marginal NB-distribution. The motivation
for considering the Poi-distribution is obvious, as it plays the role of the “normal
distribution” for unbounded counts. From a practical point of view, however, the
Poi-distribution is often not realistic, as it requires the variance being equal to the
mean (equidispersion). Instead, one is commonly confronted with a variance larger
than the mean (overdispersion), and in this case, the NB-distribution serves as the
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default choice. There is a large literature on GoF-tests that distinguish between dis-
tributions with different dispersion characteristics (such as the Poi-null against an
NB-alternative), see the aforementioned references. But it is also relevant (and actually
more demanding) to test between distributions having identical first- and second-order
properties. For example, the Poi-distribution is not the only one being equidispersed,
also the Good distribution may share this property (Weiß 2018a). Similarly, several
further distributions exist for overdispersed unbounded counts (Johnson et al. 2005),
such as the Poisson-Inverse Gaussian (PIG), Consul’s generalized Poisson (GPoi), the
Conway–Maxwell (COM) Poisson, or the zero-inflated Poisson (ZIP) distribution.
Thus, for being able to identify an appropriate model for the given count data, it could
be relevant to test a Poi-null against a Good-alternative, or an NB-null against a PIG-
or ZIP-alternative.

When turning to the time-series case and when looking at the asymptotics of
the GoF-statistics, also the respective bivariate extensions turn out to be important.
Therefore, we start our discussion with a concise survey of bivariate Poi- and NB-
distributions, see Sect. 2. Then, we turn to corresponding count time series models in
Sect. 3. Later, closed-form asymptotics for theGoF-statistics can be derived if the lag-h
bivariate distributions are sufficiently “well-behaved,” in the sense that these are equal
to either a bivariate Poi- or bivariate NB-distribution (BPoi or BNB, respectively).
Therefore, the survey in Sect. 3 concentrates on such types of count time series mod-
els where lagged pairs are BPoi- or BNB-distributed (note the analogy to the common
requirement for Gaussian processes in the real-valued case, where joint distributions
are multivariate normal).

During our research, we realized that there is a lot of confusion in the literature
regarding the most relevant NB-model in the aforementioned class; this is carefully
clarified in Sect. 3 andAppendixA. In Sect. 4, we present the general approach for con-
structingmoment-based statistics, andwe propose and analyze several novelGoF-tests
relying on factorial moments or Stein-type identities. In addition, Sect. 4.4 sketches
how the Stein approach might be extended to develop omnibus GoF-tests for counts.
The performance of the novel GoF-tests is investigated with simulations in Sect. 5,
and an illustrative data example is discussed in Sect. 6. Finally, Sect. 7 concludes the
article and discusses several directions for future research. Proofs are provided in the
Supplementary Materials to this article.

2 On bivariate Poisson and negative-binomial distributions

The three most well-known distributions for a univariate count rv X are the Bin-,
Poi-, and NB-one, see Chapters 3–5 in Johnson et al. (2005) for a detailed survey.
A compact summary of definition and relevant properties is provided by Table 1.
Recall that the special case Y ∼ NB(1, π) leads to the geometric distribution, while
the variable Z := 1 + Y is said to follow the shifted geometric distribution with
pgfZ (z) = z pgfY (z).
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Table 1 Basic univariate count distributions: probability generating function pgf(z) = E
[
zX

]
and kth

factorial moment, μ(k) = E[X(k)] with k ∈ N

Distribution pgf(z) μ(k)

Bin(N , π) with N ∈ N, π ∈ (0, 1) (1 − π + π z)N N(k) πk

Poi(λ) with λ > 0 exp
(
λ(z − 1)

)
λk

NB(n, π) with n > 0, π ∈ (0, 1)
(
1 + 1−π

π (1 − z)
)−n

(n + k − 1)(k)
( 1−π

π

)k

2.1 The bivariate Poisson distribution

The bivariate Poisson distribution BPoi(λ1, λ2, λ0) with parameters λ1, λ2, λ0 > 0 is
defined as the distribution of the vector X := (ε1+ε0, ε2+ε0)

� with rangeN2
0, where

ε1, ε2, ε0 are independent rv’s with εi ∼ Poi(λi ) for i = 0, 1, 2. Thus, by the additivity
of the Poi-distribution, the marginals satisfy Xi ∼ Poi(λ0 + λi ) for i = 1, 2, with
marginal factorial moments μi,(k) = E[(Xi )(k)] given by μi,(k) = (λ0 + λi )

k . The
following properties of the BPoi-distribution are taken from Section 4 in Kocherlakota
and Kocherlakota (2014). BPoi(λ1, λ2, λ0) is determined by the bivariate pgf

pgfX1,X2
(z1, z2) := E

[
zX1
1 zX2

2

] = exp
(
λ1 z1 + λ2 z2 + λ0 z1z2 − λ•

)
, (1)

where λ• := ∑2
i=0 λi . The conditional distribution of X1|X2 = x2, in turn, has the

pgf

pgfX1|x2(z) =
(λ2 + λ0 z

λ2 + λ0

)x2
exp

(
λ1 (z − 1)

)
, (2)

i. e., it is a convolution of Bin(x2,
λ0

λ2+λ0
) and Poi(λ1). The joint factorial moments

μ(r ,s) = E
[
(X1)(r) (X2)(s)

]
, r , s ∈ N0, are

μ(r ,s) − μ1,(r) μ2,(s) = μ1,(r) μ2,(s)

min {r ,s}∑

i=1

(
r

i

) (
s

i

)
i !

(
λ0

(λ0 + λ1)(λ0 + λ2)

)i

,

(3)
also see Supplement S.1. An expression for the probability mass function (pmf) of
BPoi(λ1, λ2, λ0) is provided in Section 4 of Kocherlakota and Kocherlakota (2014).

2.2 The bivariate negative-binomial distribution

A bivariate extension of the NB-distribution was introduced by Edwards and Gur-
land (1961), Subrahmaniam (1966), see Kocherlakota and Kocherlakota (2014) for
a detailed survey. With n > 0, π1, π2 ∈ (0, 1), and π0 ∈ (−π1 π2, 1) such that
π• := ∑2

i=0 πi < 1 holds, the distribution BNB(n, π1, π2, π0) is defined by the
bivariate pgf
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848 B. Aleksandrov et al.

pgfX1,X2
(z1, z2) =

(
1 − π•

1 − π1 z1 − π2 z2 − π0 z1z2

)n

=
(
1 + π•

1−π• − π1
1−π• z1 − π2

1−π• z2 − π0
1−π• z1z2

)−n
. (4)

We have a Poi-limit for n → ∞ (Subrahmaniam 1966), namely BPoi(λ1, λ2, λ0) if
n πi/(1 − π•) → λi for n → ∞.

Remark 1 Note that the original definition of BNB(n, π1, π2, π0) in Edwards and
Gurland (1961), Subrahmaniam (1966) requires a truly positive π0, i. e., π0 ∈ (0, 1).
But as shown in Proposition 3.1 (c) of Bar-Lev et al. (1994), we get a valid pgf (4) even
if we allow for π0 ∈ (−π1π2, 1). This can be seen by applying the (negative-)binomial
series to (4):

pgfX1,X2
(z1, z2) = (1 − π•)n

(
(1 − π1 z1)(1 − π2 z2) − (π0 + π1π2) z1z2

)−n

=
∞∑

k=0

(
n + k − 1

k

)
(1 − π•)n (π0 + π1π2)

k zk1z
k
2

(1 − π1 z1)n+k(1 − π2 z2)n+k

has positive series coefficients as long as π0 + π1π2 > 0 (note that the negative-
binomial series (1 − πi zi )−n−k , i = 1, 2, have positive series coefficients as well).

Inserting z1 = 1 or z2 = 1, respectively, into (4), it is clear that the compo-
nents of X ∼ BNB(n, π1, π2, π0) are univariately NB-distributed, namely X1 ∼
NB

(
n, 1−π•

1−π2

)
and X2 ∼ NB

(
n, 1−π•

1−π1

)
. Thus, the marginal factorial moments are

μi,(r) = (n + r − 1)(r)
(

πi+π0
1−π•

)r for i = 1, 2. The joint factorial moments μ(r ,l)

satisfy

μ(r ,s) − μ1,(r) μ2,(s)[1ex]

= μ1,(r) μ2,(s)

min{r ,s}∑

i=1

(n+r+s−i−1
s−i

)(r
i

)

(n+s−1
s

)

((
π0 (1 − π•)

(π1 + π0)(π2 + π0)

)i

− (−1)i
)

,

(5)

see the proof in Supplement S.1. Finally, if π0 > 0, then the pgf of the conditional
distribution of X1|X2 = x2 can be decomposed as

pgfX1|x2(z) =
(

π2 + π0 z

π2 + π0

)x2 (
1 − π1

1 − π1 z

)n+x2
, (6)

i. e., the distribution of X1|x2 is a convolution of the distributions Bin(x2, π0
π2+π0

) and
NB(n+x2, 1−π1). These and further properties of the BNB-distribution are provided
by Kocherlakota and Kocherlakota (2014).
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3 On Poisson and negative-binomial count processes

In Sect. 3.1, we briefly survey important members of the Poisson integer-valued
autoregressive moving-average (Poi-INARMA) family, namely such having a BPoi-
distribution for any pair (Xt , Xt−h) with time lag h ∈ N. Analogously, Sect. 3.2
discusses a model, where we have BNB-distributions for any pair (Xt , Xt−h). This
model has been proposed for (at least) five times in the literature until now. We show
the agreement of these five proposals and discuss further relevant properties.

3.1 Poi-INARMAmodels

The first thinning-basedmodels for count time series have been proposed byMcKenzie
(1985), among others the first-order Poisson integer-valued autoregressive (Poi-
INAR(1)) model for unbounded counts. It uses the random operator “θ ◦” of binomial
thinning (Bin-thinning) with thinning parameter θ ∈ (0, 1), see Steutel and van Harn
(1979), as a discrete-valued counterpart to the arithmetic operation “θ ·” (multipli-
cation). With X being a count rv, Bin-thinning is defined by requiring a conditional
Bin-distribution, namely θ ◦ X |X ∼ Bin(X , θ). The additivity of the Bin-distribution
implies that we can rewrite θ ◦ X = ∑X

i=1 Qi , where the counting series (Qi ) com-
prises i. i. d. Bin(1, θ)-variates being independent of X .

Definition 1 Let λ > 0 and ρ ∈ (0, 1), and let the innovations (εt )Z be i. i. d. according
to Poi(λ). Assume that all thinnings are performed independently of each other, inde-
pendent of (εt )N, and that the thinnings at time t and εt are independent of (Xs)s<t .
Then, the process (Xt )Z defined by

Xt = ρ ◦ Xt−1 + εt (7)

is said to be a Poi-INAR(1) process.

TheBin-thinning operator inDefinition 1might be interpreted as determining the num-
ber of survivors from the previous population Xt−1, see Section 2 in Weiß (2018a) for
a detailed discussion. The Poi-INAR(1) process constitutes an ergodic Markov chain
with limiting marginal distribution Poi(μ) with μ = λ/(1−α). Thus, if initialized by
X0 ∼ Poi(μ), the process is stationary with μ = σ 2 = λ/(1 − α) (equidispersion),
and its autocorrelation function (acf) equals ρ(h) = Corr [Xt , Xt−h] = ρh , h ∈ N.
In particular, the pairs (Xt , Xt−h) are BPoi-distributed, namely as

(Xt , Xt−h) ∼ BPoi
((
1 − ρ(h)

)
μ,

(
1 − ρ(h)

)
μ, ρ(h) μ

)
; (8)

see Alzaid and Al-Osh (1988), Weiß (2018a) for these and further properties. There-
fore, properties of (Xt , Xt−h) can be deduced from Sect. 2.1. In particular, we can
compute the factorial moments μ(r ,s)(h) := E

[
(Xt )(r) (Xt−h)(s)

]
via (3):

μ(r ,s)(h) − μ(r) μ(s) = μr+s
min {r ,s}∑

i=1

(
r

i

) (
s

i

)
i !

(
ρ(h)

μ

)i

, (9)
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seeSupplementS.2.Alsonote that (2) implies the decompositionBin(xt−1, ρ)+Poi(λ)

for Xt |xt−1, in agreement with Definition 1. Finally, the bivariate distribution (8) for
lag h = 1 agrees with the distribution in Section 2(c) of Phatarfod and Mardia (1973),
i. e., the Poi-INAR(1) model was already considered by these authors.

The BPoi-property (8) holds in exactly the same way also for different types of
Poi-INARMA processes (plugging-in the respective acf), namely for higher-order
autoregressions in the sense ofAlzaid andAl-Osh (1990), seeWeiß (2018b) for details,
as well as for the moving-average-type Poi-INMA models (Al-Osh and Alzaid 1988;
Weiß 2008a). Because of this universal relevance of (8), when later discussing the Poi-
GoF-tests in Sect. 4, we derive the asymptotics not for a specific time series model,
but for any time series model satisfying the BPoi-property (8).

Example 1 As a further illustrative example from the Poi-INARMA family, consider
the Poi-INMA(1) model defined by

Xt = εt + β ◦ εt−1 with β ∈ (0, 1), (10)

where Poi(λ)-innovations lead to Poi(μ)-observations with μ = λ (1 + β). Here, the
acf satisfies ρ(1) = β/(1 + β) and ρ(h) = 0 for h ≥ 2 (Al-Osh and Alzaid 1988).

3.2 NB-IINAR(1) model

If being concerned with counts exhibiting overdispersion, i. e., where the marginal
variance σ 2 exceeds the mean μ, the NB-distribution is the default model, recall
Sect. 2.2. The Poi-INAR(1)model discussed in Sect. 3.1 can bemodified in such a way
that the observations’ marginal distribution is NB, but the innovations’ distribution
as well as joint distributions are non-standard in this case (Weiß 2008b). Since the
asymptotics for marginal GoF-statistics rely on the joint bivariate distribution of the
pairs (Xt , Xt−h), a sufficiently simple bivariate model for (Xt , Xt−h) (in analogy to
the BPoi-distribution (8) for several types of Poi-INARMA processes) is required for
being able to derive closed-form asymptotic expressions. Such amodel for AR(1)-like
NB-counts is the iterated-thinning INAR(1) (IINAR(1)) model proposed by Al-Osh
and Aly (1992, Section 2); also see Wolpert and Brown (2011), Leisen et al. (2019),
Guerrero et al. (2022) as well as Phatarfod and Mardia (1973). The IINAR(1) model
recursion is similar to the INAR(1) recursion in Definition 1, but it uses a different
thinning operator, namely the iterated-thinning operator “�”. It can be understood
as two nested thinnings (Weiß 2008b), where first a Bin-thinning “◦” with parameter
θ1 ∈ (0, 1) is applied, and then another operator “∗” with parameter θ2 such that
θ1 θ2 ∈ (0, 1) holds (the last condition is later required for achieving stationarity).
More precisely,

(θ1, θ2) � X := θ2 ∗ (
θ1 ◦ X

) :=
θ1◦X∑

i=1
Yi , (11)
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where the i. i. d. counting series (Yi ) of the second operator has the mean θ2. Condi-
tioned on X = x , we have

pgf(θ1,θ2)�x (z) = pgfθ1◦x
(
pgfY (z)

)
=

(
1 − θ1 + θ1 pgfY (z)

)x
, (12)

and the conditional mean equals E
[
(θ1, θ2) � x

] = θ1 θ2 x . Again, the relevance of
the requirement θ1 θ2 ∈ (0, 1) becomes clear, because for θ1 θ2 ≥ 1, the operator
“�” would not act as a “thinning” in the literal sense. It is possible, however, that the
second operator “θ2∗” has θ2 ≥ 1 (as long as θ1 θ2 < 1), whereas the Bin-thinning
“θ1◦” is well-defined only for θ1 ∈ (0, 1).

In Al-Osh and Aly (1992) and Weiß (2008b), the special case of iterated thin-
ning together with a geometric counting series is considered, while Wolpert and
Brown (2011), Leisen et al. (2019) use the shifted geometric distribution (recall
Sect. 2) for this purpose. In Appendix A, it is shown that both constructions of the
iterated-thinning operator are equal in distribution, but the second approach has
a less restrictive parametrization. Thus, in what follows, we define the geomet-
ric iterated-thinning operator with a shifted-geometric counting series (Yi ), namely
Yi ∼ 1 + NB(1, α

1+α
) with pgfY (z) = α z/(α + 1 − z), and by setting θ1 = α

1+α
ρ

and θ2 = 1+α
α

. Furthermore, to keep the notations simple, we shall use the shorthand
symbol ρ �α x := ( α

1+α
ρ, 1+α

α
) � x for this operator. Altogether, see Appendix A,

pgfρ�αx (z) =
(
1 − αρ (1 − z)

α + 1 − z

)x

(13)

holds, with conditional mean E
[
( α
1+α

ρ, 1+α
α

) � x
] = ρ x .

Remark 2 Note that for α > 1/ρ, we can decompose the pgf (13) as

pgfρ�αx =
(
1 − αρ (1−z)

α+1−z

)x =
(

α+(αρ−1) (z−1)
α+1−z

)x =
(

1+ αρ−1
α

(z−1)

1+ 1
α

(1−z)

)x

,

which is the product of the pgfs of Bin(x, αρ−1
α

) and NB(x, α
1+α

). So for α > 1/ρ, we
can represent the operator ρ �α x as the sum of two independent operators, namely a
Bin- and NB-thinning applied to x . This is analogous to the convolution (6), also see
the discussion of (A.3) below.

The geometric iterated-thinning operator was first used by Al-Osh and Aly (1992) to
define the NB-IINAR(1) model.

Definition 2 Let n, α > 0 and ρ ∈ (0, 1). Let the innovations (εt )Z be i. i. d. according
to NB(n, α

1+α
) with mean με = n/α and variance σ 2

ε = 1+α
α

με . Assume that all
thinnings are performed independently of each other, independent of (εt )N, and that
the thinnings at time t and εt are independent of (Xs)s<t . Then, the process (Xt )Z
defined by

Xt = ρ �α Xt−1 + εt (14)

is said to be an NB-IINAR(1) process.
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As shown in Appendix A, the NB-IINAR(1) process according to Definition 2 agrees
with the models in Wolpert and Brown, (2011, Theorem 1(4)), Leisen et al. (2019,
Eq. (3)) and Guerrero et al. (2022, Section 2.3) except a different parametrization, and
there is also a relation to the model in Gouriéroux and Lu (2019, Section 2). It also
agrees with a proposal by Phatarfod and Mardia (1973), although these authors do
not provide the data-generating mechanism in Definition 2 but define the model by its
bivariate pgf, see Appendix A for details.

Remark 3 Note that the DGP of Definition 2 has a quite intuitive interpretation as a
branching process with immigration. From the previous population Xt−1, the fraction
( α
1+α

ρ) ◦ Xt−1 survives until time t and, in addition, may also reproduce itself, as
controlled by the count Zt,i ∼ 1 + NB(1, α

1+α
) for the i th survivor at time t . So

altogether, the part ρ �α Xt−1 origins from the previous population Xt−1, and it is
complemented by an independent immigration εt at time t . For α → ∞, the repro-
duction mechanism degenerates to just preserving the survivors ρ ◦ Xt−1, i. e., the
IINAR(1) recursion (14) reduces to the INAR(1) recursion (7) in this case. If, in addi-
tion, n/α → λ for a fixed λ > 0, then the innovations εt get Poi(λ)-distributed, i. e.,
altogether, the NB-IINAR(1) process converges to a Poi-INAR(1) process.

Al-Osh and Aly (1992) showed that the NB-IINAR(1) process according to Def-
inition 2 constitutes an ergodic Markov chain with limiting marginal distribution
NB(n,

α(1−ρ)
1+α(1−ρ)

). The stationary NB-IINAR(1) process has the mean μ = n/
(
α(1−

ρ)
)
, variance σ 2 = 1+α(1−ρ)

α(1−ρ)
μ, and acf ρ(h) = ρh . As shown in Supplement S.3, we

obtain the joint bivariate pgf of (Xt , Xt−h) as

pgfXh ,X0
(z1, z2) =

(
1 − π•

1 − π1 z1 − π2 z2 − π0 z1z2

)n

(15)

with π1 = π2 = 1−ρh

1−ρ
/
(
α + 1−ρh

1−ρ

) ∈ (0, 1) and π0 = (
α/(1+α −αρ)− 1−ρh

1−ρ

)
/
(
α +

1−ρh

1−ρ

)
. So comparing to (4), we recognize that (15) is the pgf of the BNB-distribution.

In view of Remark 1, it is worth pointing out that π0 > −π1π2 is always satisfied,

and that π0 > 0 iff α >
1−ρh

1−ρ
1
ρh .

Properties of (Xt , Xt−h) can be deduced from Sect. 2.2. In particular, we can com-
pute the factorial moments μ(r ,s)(h) via (5), see Supplement S.2:

μ(r ,s)(h) − μ(r) μ(s) [−1ex]

= μ(r) μ(s)

min{r ,s}∑

i=1

(n+r+s−i−1
s−i

)(r
i

)

(n+s−1
s

)
i∑

j=1

(
i

j

)
ρ jh (

1 + α(1 − ρ)
) j

(−1)i− j ,

(16)

where μ(r) μ(s) = (n + r − 1)(r)(n + s − 1)(s)
/(

α(1 − ρ)
)r+s .
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4 GoF-tests for time series of Poi- or NB-counts

In what follows, we develop different types of GoF-tests for count time series
X1, . . . , XT , which test the null hypothesis of either a Poi(μ)- or NB(n, π)-marginal
distribution. To derive asymptotic normality based on the central limit theorem (CLT)
by Ibragimov (1962), we impose the following condition throughout this section:

Assumption A: (Xt )Z is α-mixing with geometrically decreasing weights.

Assumption A commonly holds for INAR-type models like those in Sect. 3 (see
Doukhan and Fokianos 2012), and certainly for i. i. d. and M-dependent processes.
Furthermore, for being able to derive feasible closed-form asymptotics, we later also
require that lagged pairs of observations, (Xt , Xt−h), are BPoi-distributed in the case
of a Poi-null, and BNB-distributed for a NB-null (as satisfied by the models in Sect. 3);
these assumptions (which also imply the existence ofmoments) are detailed in Sect. 4.2
below.

4.1 General approach

As outlined in Sect. 1, we focus on marginal GoF-statistics of the form T̂ =
τ
( 1
T

∑T
t=1 g(Xt )

)
, i. e., being functions of generalized means, where the function

g : N0 → R
k and the smooth function τ : Rk → Rwith some k ∈ N have to be spec-

ified, and where the test decision relies on deviations of T̂ from T0 = τ
(
E[g(X)]).

The asymptotic distribution as well as a bias correction for T̂ are derived in two steps
(assuming that all involved moments exist). First, the CLT in Ibragimov (1962) is used
to conclude that under the null hypothesis, g(X) = 1

T

∑T
t=1 g(Xt ) is asymptotically

normally distributed with (exact) mean μg = E[g(X)], i. e.,

√
T

(
g(X) − μg

)
d→ N

(
0,�g

)
, where �g = (

σg;i j
)
i, j=1,...,k has

σg;i j = E
[
gi (Xt ) g j (Xt )

] − μg;i μg; j

+
∞∑

h=1

(
E

[
gi (Xt ) g j (Xt−h)

] + E
[
g j (Xt ) gi (Xt−h)

] − 2μg;i μg; j
)
.

(17)

If, in addition, the bivariate distributions of (Xt , Xt−h) are symmetric, in the sense
that pgfXt ,Xt−h

(z1, z2) = pgfXt ,Xt−h
(z2, z1) (“time reversibility”, as it holds for the

models in Sect. 3), then we even get

σg;i j = E
[
gi (Xt ) g j (Xt )

]−μg;i μg; j + 2
∞∑
h=1

(
E

[
gi (Xt ) g j (Xt−h)

]−μg;i μg; j
)
.

(18)
In the second step, we use the first-order Taylor expansion τ( y) ≈ τ(μg)+D ( y−μg),
where τ(μg) = T0 and D = grad τ(μg), to conclude that (“Delta method”)
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√
T

(
T̂ − T0

)
d→ N

(
0, σ 2

T

)
with σ 2

T = D�g D�. (19)

Finally, while g(X) is an exactly unbiased estimator ofμg , the final statistic T̂ usually
has a finite-sample bias with respect to T0. Thus, a bias correction is useful, which
follows from the second-order Taylor expansion τ( y) ≈ τ(μg)+D ( y−μg)+ 1

2 ( y−
μg)

� H ( y − μg), where H is the Hessian of τ in μg :

E
[
T̂
] ≈ T0 + 1

2
E

[(
g(X) − μg

)� H
(
g(X) − μg

)][2ex]

≈ T0 + 1

2 T

k∑

i=1

hii σg;i i + 1

T

∑

i< j

hi j σg;i j =: μT. (20)

Using (19) and (20), the asymptotic implementation of the (two-sided) GoF-test at
level γ looks as follows. With zγ denoting the (1 − γ /2)-quantile of the standard
normal distribution, N(0, 1), the null hypothesis is rejected if T̂ violates the critical
valuesμT∓zγ T−1/2 σT.Here, the parameter values required for computing the critical
values are obtained by plugging-in the respective parameter estimates (see the details
below).

4.2 GoF-tests using factorial moments

The first class of tests is inspired by the dispersion test of Kyriakoussis et al. (1998).
But instead of considering only second-order factorial moments, we use factorial
moments up to order r ∈ N for arbitrary r ≥ 2 by defining τ(u, v, w) = u

v w
and

g(x) = (
x(r), x(r−s), x(s)

)� for some 1 ≤ s < r . So the test statistic becomes

T̂(r ,s) = X(r)

X(s) X(r−s)
with T(r ,s) = μ(r)

μ(s) μ(r−s)
, (21)

where the values of r , s are selected by the user. This choice can be guided by com-
mon interpretations of r th-order moments: T̂(r ,s) with r = 2 is a kind of dispersion
statistic, while r = 3 and r = 4 might be interpreted as skewness and excess statistics,
respectively. If, for example, the relevant alternative scenario has similar dispersion
properties like the null model but differs in terms of skewness, the choice r = 3
appears reasonable.

Adapting (18) to (21), we get

σg;(k,l) = μ(k,l)(0) − μ(k) μ(l) + 2
∞∑
h=1

(
μ(k,l)(h) − μ(k) μ(l)

) =: σ(k,l). (22)

Applying (22) to (19) and (20), we achieve the following result.

Theorem 1 Let the DGP (Xt )Z satisfy the α-mixing assumption of Sect.4, and define
Ak,l = σ(k,l)/(μ(k) μ(l)). Then, the distribution of the statistic T̂(r ,s) according to
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(21) can be approximated by the normal distribution N(μT̂(r ,s)
, 1

T σ 2
T̂(r ,s)

), where the

bias-corrected mean is given by

μT̂(r ,s)
= T(r ,s)

(
1 + 1

T

(
Ar−s,r−s + As,s − Ar ,r−s − Ar ,s + Ar−s,s

))
,

and the variance by

σ 2
T̂(r ,s)

= T2
(r ,s)

(
Ar ,r + Ar−s,r−s + As,s − 2Ar ,r−s − 2Ar ,s + 2Ar−s,s

)
.

The proof of Theorem 1 is provided by Supplement S.4. Note that in the special case
r = 2 s (“symmetric statistic”), so r − s = s and T(2s,s) = μ(2s)/μ

2
(s), Theorem 1

simplifies to

μT̂(2s,s)
= T(2s,s)

(
1 + 1

T (3 As,s − 2 A2s,s)
)
,

σ 2
T̂(2s,s)

= T2
(2s,s)

(
A2s,2s + 4 (As,s − A2s,s)

)
.

As outlined in the beginning of Sect. 4, we now consider two null scenarios, namely

Poi-null: (Xt , Xt−h) ∼ BPoi
(
λ(h), λ(h), λ0(h)

)
with λ(h) = (

1 − ρ(h)
)
μ and

λ0(h) = ρ(h) μ like in Sect. 3.1, then

T(r ,s) = 1; or (23)

NB-null: (Xt , Xt−h) ∼ BNB
(
n, π(h), π(h), π0(h)

)
with

π(h) = 1 − ρ(h)

n/μ + 1 − ρ(h)
and π0(h) = n/(n + μ) − 1 + ρ(h)

n/μ + 1 − ρ(h)

like in Sect. 3.2, then

T(r ,s) = (n + r − 1)(r)
(n + s − 1)(s) (n + r − s − 1)(r−s)

=
(n+r−1

s

)

(n+s−1
s

) . (24)

(Note that for the NB-IINAR(1) model according to Definition 2, we get

π(h) = 1−ρh

α(1−ρ)+1−ρh and π0(h) = α(1−ρ)/(1+α−αρ)−(1−ρh)

α(1−ρ)+1−ρh .)

Here, (23) or (24) serve as the null value T0 according to Sect. 4.1 if testing the Poi-
null or NB-null, respectively. The factorial moments μ(r ,s)(h) required for (22) have
already been computed in (9) and (16). In Supplement S.5, we derive the following
result.
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Corollary 1 The Ak,l required for Theorem 1 compute as follows:

(i) For the Poi-null, it holds that

Ak,l =
min{k,l}∑

i=1

(
k

i

)(
l

i

)
i !
μi

(
1 + 2

∞∑
h=1

ρ(h)i
)
.

Moreover, in the case of the Poi-INAR(1) process, we get

Ak,l =
min{k,l}∑

i=1

(
k

i

)(
l

i

)
i !
μi

1 + ρi

1 − ρi
.

(ii) For the NB-null, it holds that

Ak,l =
min{k,l}∑

i=1

(n+k+l−i−1
l−i

)(k
i

)

(n+l−1
l

)
i∑

j=1

(
i

j

)
(1 + n/μ) j (−1)i− j

(
1 + 2

∞∑
h=1

ρ(h) j
)
.

Moreover, in the case of the NB-IINAR(1) process, we get

Ak,l =
min{k,l}∑

i=1

(n+k+l−i−1
l−i

)(k
i

)

(n+l−1
l

)
i∑

j=1

(
i

j

) (
1 + α(1 − ρ)

) j
(−1)i− j 1 + ρ j

1 − ρ j
.

Example 2 In Kyriakoussis et al. (1998), only the case of the second-order statis-
tic T̂(2,1) is considered. For the AR(1)-like acf ρ(h) = ρh , see Supplement S.6,
Theorem 1 together with Corollary 1 then yields for the

(i) Poi-null:

μT̂(2,1)
= 1 − 1

Tμ
1+ρ
1−ρ

, σ 2
T̂(2,1)

= 2
μ2

1+ρ2

1−ρ2 ;

(ii) NB-null:

μT̂(2,1)
= n+1

n

(
1 − 2

T
1+α(1−ρ)

n
1+ρ
1−ρ

)
, σ 2

T̂(2,1)
= 2(n+1)

(
1+α(1−ρ)

)2

n3
1+ρ2

1−ρ2 .

In fact, Kyriakoussis et al. (1998) restrict to the special case of i. i. d. counts, and they
do not consider the above bias correction. Plugging-in ρ = 0 into the expressions
for σ 2

T̂(2,1)
, and using the notation θ = α

1+α
for the NB-null, we confirm the results in

Sections 3.1 and 3.3 of Kyriakoussis et al. (1998).

Corollary 1 can be used for testing the null hypothesis of a Poi-INAR(1) or NB-
IINAR(1) model, respectively (or of i. i. d. Poi- or NB-counts), as outlined in the end
of Sect. 4.1. In particular, if we take the alternative from the same model families,
Corollary 1 also allows to do an asymptotic power analysis. While comprehensive
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Fig. 1 Asymptotic power curves of T̂(r ,s)-tests (5%-level) for null hypotheses a Poi-INAR(1) (so n0 =
∞) and b NB-IINAR(1) with n0 = 10 (see dotted lines). NB-IINAR(1) alternatives with n �= n0 and
σ 2/μ = 1 + μ/n, where μ = 5, ρ = 0.3, and T = 250 are kept fixed

simulation-based analyses are later presented in Sect. 5, let us now have a first look
at some asymptotic power curves. Figure1 considers the null hypothesis of a Poi-
INAR(1)model in (a), and of an NB-IINAR(1)model in (b). Here, the alternatives are
taken from the NB-IINAR(1) family in such a way that mean μ and acf parameter ρ

remain fixed, and only the dispersion structure changes (as controlled by n or σ 2/μ =
1 + μ/n, respectively). We consider the “dispersion statistic” T̂(2,1), the “skewness
statistic” T̂(3,1), and the “excess statistics” T̂(4,1), T̂(4,2). Among these test statistics,
always T̂(2,1) shows the best power in Fig. 1 (followed by T̂(3,1)). Note that in (b), we
have better power properties regarding increases of dispersion (decreasing n), i. e., for
detecting relative overdispersion. The dominance of the dispersion statistics in Fig. 1
is not surprising as the alternatives primarily differ from the null in terms of dispersion;
this also agrees with the findings in earlier studies such as Schweer and Weiß (2016);
Puig and Weiß (2020); Aleksandrov et al. (2022). Thus, later in Sect. 5, we shall
focus on such alternative scenarios where the dispersion does not differ from the null
scenario, but the remaining shape properties do. Then, the higher-order T̂(r ,s)-statistics
shall turn out to be more useful than T̂(2,1).

We conclude this section with a note on how to apply Corollary 1 in practice.
In the case of AR(1)-like counts, the Ak,l depend on μ and ρ = ρ(1), the true
values of which we do not know in real applications. Thus, it is necessary to plug-in
parameter estimates instead, where we use the sample mean μ̂ := x and the lag-
1 sample acf ρ̂ = ρ̂(1) (if the tests are applied to i. i. d. counts, only μ and x are
required). These moment estimators of μ, ρ are

√
T -consistent, so Slutsky’s theorem

implies that
√
T

(
T̂(r ,s) − μT̂(r ,s)

)
/σT̂(r ,s)

d→ N(0, 1) still holds if μ, ρ are replaced by

μ̂, ρ̂ in the formulae for μT̂(r ,s)
, σT̂(r ,s)

.

4.3 GoF-tests using Stein’s identity

Stein (1972, 1986) developed the idea to characterize (discrete or continuous) distri-
butions by types of moment identities. Such Stein identities are available for several
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common discrete distributions, see Sudheesh and Tibiletti (2012) and Betsch et al.
(2022), including the Poi-case (then it is referred to as the Stein–Chen identity) and
the NB-case. In Aleksandrov et al. (2022), the Stein–Chen identity

E
[
X f (X)

] = μ E
[
f (X + 1)

]
(25)

of the Poi(μ)-distribution is utilized to developmoment-basedGoF-tests for Poi-count
time series. Among others, they considered the statistic (referred to as “ T̂2 ” in their
article)

T̂Poif = X f (X)

X f (X + 1)
, (26)

where

TPoif = E
[
X f (X)

]

E[X ] E[
f (X + 1)

] equals 1 under the Poi-null. (27)

As discussed by Aleksandrov et al. (2022), f can be interpreted as a weight function
and should be chosenby the userwith respect to the anticipated alternative scenario. For
overdispersed alternatives, for example, it is reasonable to assign increasing weight
to increasing counts – note that (26) with f (x) = x is closely related to Fisher’s
dispersion index. For equi- and underdispersed as well as zero-inflated alternatives,
by contrast, the choice f (x) = exp(−x) showed a promising power performance in
the simulations of (Aleksandrov et al. 2022), where now most weight concentrates on
low counts. Later, we focus on this special case for asymptotic calculations, but our
general approach is applicable to different choices of f as well.

In the sequel, we complement the approach of Aleksandrov et al. (2022) by devel-
oping Stein-type GoF-tests for NB-count time series. According to Sudheesh and
Tibiletti (2012), the Stein identity for theNB-distributionwithmeanμ > 0 and param-
eter n > 0 (recall from Table 1 that an NB-distribution parametrized in n, μ > 0 has
π = n

n+μ
) can be denoted as

(n + μ) E
[
X f (X)

] = μ E
[
(n + X) f (X + 1)

]
, (28)

which (after having divided both sides of (28) by n) converges to (25) for n → ∞. In
analogy to (26)–(27), using the hypothetical value n = n0, we now define

T̂NBf =
(
n0 + X

)
X f (X)

X (n0 + X) f (X + 1)
, (29)

where

TNBf =
(
n0 + E[X ]) E[

X f (X)
]

E[X ] E[
(n0 + X) f (X + 1)

] equals 1 under the NB-null. (30)

In Aleksandrov et al. (2022), it was shown for statistic T̂Poif under the Poi-null that it
is possible to find a general closed-form expression for the asymptotic distribution
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Table 2 Examples of mgf ψ(u) = E[eu X ] and its derivatives
ψ(u) ψ ′(u) ψ ′′(u)

Poi(μ) with μ > 0:

exp
(
μ(eu − 1)

)
ψ(u) μ eu ψ(u) μ eu (1 + μ eu)

NB(n, π) with
n, μ > 0
and
π = n

n+μ :

( n

n + μ (1 − eu)

)n
ψ(u)

nμ eu

n + μ (1 − eu)
ψ(u)

n μ eu
(
n + μ + nμ eu

)

(
n + μ (1 − eu)

)2

of such a Stein-type statistic. The asymptotic implementation of the correspond-
ing tests in practice, however, is often demanding such that a parametric-bootstrap
implementation is clearly preferable (see Sect. 5 for further details). Thus, in the
sequel, we present asymptotic derivations only for the illustrative case of i. i. d.
counts using the particular choice f (x) = exp(−x). Note that Stein-type statistics
using f (x) = exp(−x) are closely related to the rv’s moment generating function
(mgf) ψ(u) := E[eu X ] = pgf(eu), because then E

[
f (X + 1)

] = e−1 ψ(−1) and
E

[
X f (X)

] = ψ ′(−1). Relevant examples are summarized in Table 2; also see Eqs.
(S.8)–(S.10) in Supplement S.7.

Let us begin with the Stein–Chen statistic (26). Then, the following asymptotics
hold for the case of i. i. d. Poi-counts and i. i. d. NB-counts (for the parametrization
used in Sect. 3.2, this implies ρ = 0 and α = n/μ), respectively.

Theorem 2 Let (Xt )Z be i. i. d. with existing moments, set f (x) = exp(−x). The
asymptotic distribution of T̂Poiexp from (26) is N(μT̂Poiexp

, 1
T σ 2

T̂Poiexp
), where:

(i) If (Xt )Z is i. i. d. according to Poi(μ), then

μT̂Poiexp
= 1 + 1

T exp
(
μ (1 − e−1)2

)
(1 − e−1),

σ 2
T̂Poiexp

= exp
(
μ (1 − e−1)2

) (
1
μ

+ (1 − e−1)2
)

− 1
μ
.

(ii) If (Xt )Z is i. i. d. according to NB
(
n, n

n+μ

)
with mgf ψ(u), see the second row in

Table 2, then

μT̂Poiexp
= TPoiexp + 1

T
e

μψ(−1)

(ψ ′(−1) σ 2

μ2 − ψ ′′(−1)

μ
+ ψ ′(−1)2

μψ(−1)
− ψ ′(−2)

ψ(−1)
+ ψ ′(−1)ψ(−2)

ψ(−1)2

)
,

σ 2
T̂Poiexp

=
(

e
μψ(−1)

)2(
ψ ′(−1)2 σ 2

μ2 − 2 ψ ′(−1) ψ ′′(−1)
μ

+ ψ ′′(−2) + 2 ψ ′(−1)3

ψ(−1)μ

−2 ψ ′(−1) ψ ′(−2)
ψ(−1) + ψ ′(−1)2 ψ(−2)

ψ(−1)2

)
,
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where TPoiexp = (
1 + μ

n (1 − e−1)
)−1

.

The proof of Theorem 2 is provided by Supplement S.7. Note that the results of part (ii)
converge to those of (i) for n → ∞. Next, we consider the NB’s Stein statistic (29)
and derive its asymptotics for the same scenarios as in Theorem 2.

Theorem 3 Let (Xt )Z be i. i. d. with existing moments, set f (x) = exp(−x). The
asymptotic distribution of T̂NBexp from (29) is N(μT̂NBexp

, 1
T σ 2

T̂NBexp
), where:

(i) If (Xt )Z is i. i. d. according to Poi(μ), then

μT̂NBexp
= TNBexp + 1

T

(
eμ (1−e−1)2 · n0 (n0+μ)

(
(1−e−1) (n0+e−2μ)−e−1

)

(n0+e−1μ)3
+ e n0

(e n0+μ)2

)
,

σ 2
T̂NBexp

= eμ (1−e−1)2 · n20 (n0+μ)2

(n0+e−1μ)4

(
1
μ

+ (1 − e−1)2
)

− n20

(
n0+μ (2−e−1)

)

μ(n0+e−1μ)3
,

where TNBexp = n0 + μ

n0 + e−1μ
.

(ii) If (Xt )Z is i. i. d. according to NB
(
n, n

n+μ

)
with mgf ψ(u), see the second row in

Table 2, and if A(u) := ψ ′(u) + n0 ψ(u), then

μT̂NBexp
= TNBexp + 1

T
e n0

μA(−1)2

(
ψ ′(−1)A(−1) σ 2

μ2 + n0
μ

(
ψ ′(−1)2 − ψ(−1)ψ ′′(−1)

)

+ (n0+μ)
A(−1)

(
ψ ′(−1)A(−2) − ψ(−1)

(
ψ ′′(−2) + n0ψ ′(−2)

))
)

,

σ 2
T̂NBexp

=
(

e n0
μA(−1)

)2(
ψ ′(−1)2 σ 2

μ2 + 2(n0+μ)ψ ′(−1)
μA(−1)

(
ψ ′(−1)2 − ψ(−1)ψ ′′(−1)

)

+ (n0+μ)2

A(−1)2

(
ψ(−1)2ψ ′′(−2) − 2ψ(−1)ψ ′(−1)ψ ′(−2) + ψ ′(−1)2ψ(−2)

))
,

where TNBexp = e (n0 + μ)ψ ′(−1)

μA(−1)
.

The proof of Theorem3 is again provided by Supplement S.7. The results of Theorem3
converge to those of Theorem 2 for n0 → ∞. Note that the DGP’s parameter value n
in part (ii) might differ from the null value n0 used form computing the Stein statistic
(29). Also note that for applications in practice, the sample mean x is plugged-in
instead of μ in the asymptotics of Theorems 2 and 3, recall the analogous discussion
in the last paragraph of Sect. 4.2.

Like in Sect. 4.2, Theorems 2 and 3 can now be used for asymptotic power analyses:
using Theorem 2, we can test the Poi-null against an NB-alternative, while Theorem 3
allows to test an NB-null against Poi- and NB-alternatives. This is illustrated by Fig.2.
In part (a), the Poi-null is violated in favour of increasing dispersion, and as expected
from Sect. 4.2, the dispersion test T̂(2,1) performs best. But it is interesting to note that
the Stein–Chen test T̂Poiexp performs similarly well for strong overdispersion, where the
NB-distribution also exhibits considerable zero inflation. Part (b) refers to the opposite
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Fig. 2 Asymptotic power curves of Stein tests and some T̂(r ,s)-tests (5%-level) against NB-alternatives

with n �= n0 and σ 2/μ = 1 + μ/n, where μ = 2.5. a Poi-null with T = 100 using T̂Poiexp , and b geometric

null (n0 = 1) with T ∈ {100, 250} using T̂NBexp

situation, where T̂(2,1) and T̂NBexp are applied to a geometric null (i. e., NB with n0 = 1),
and where increasing n causes decreasing dispersion (i. e., underdispersion w. r. t. a
geometric distribution). Now, the Stein test is superior, which agrees with analogous
findings for a Poi-null in Aleksandrov et al. (2022).

4.4 Omnibus GoF-tests using Stein’s identity

As outlined in Sect. 1, the main aim of this article is to present a variety of moment-
based GoF-tests for Poi- and NB-counts that can be used for a kind of targeted
diagnosis. But especially the flexible Stein approach described in Sect. 4.3 could also
be used to construct omnibus GoF-tests being powerful against a large class of alter-
natives. This shall be briefly demonstrated in this section for the special case of testing
the null hypothesis of i. i. d. Poi-counts, and for a particular class of weight functions
(see the details below), while a more comprehensive analysis is recommended for
future research, see Sect. 7.

While the construction of the GoF-tests in Sect. 4.3 is based on a single weight
function f (where we focused on f (x) = exp(−x) for illustration), we extend this
approach and equip the functions g and f , respectively, with an additional index s ∈
[a, b], where a, b ∈ Rwith a < b. That is, we consider T̂(s) = τ

( 1
T

∑T
t=1 gs(Xt )

)
for

a class of vector-valued function gs with s ∈ [a, b] and some smooth function τ . Then,
to construct amarginalGoF-statistic,we compare thewhole function

(
T̂(s)

)
s∈[a,b] with(

T0(s)
)
s∈[a,b], where T0(s) = τ

(
E[gs(X)]) is computed under some null hypothesis.

There are different ways to do this comparison, see Gürtler and Henze (2000) for an
overview. For instance, one could consider the maximum distance

max
s∈[a,b]

∣∣T̂(s) − T0(s)
∣∣, (31)

the (integrated) L2-distance
∫ b

a

(
T̂(s) − T0(s)

)2
ds, (32)
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or the weighted L2-distance

∫ b

a

(
T̂(s) − T0(s)

)2
w(s) ds (33)

for someweight functionw : R → [0,∞). Asmentioned above, we shall focus on the
null of i. i. d. Poi-counts for illustration, i. e., on GoF-test statistics utilizing the Stein–
Chen identity (25). Like in Sect. 4.3, we set τ(u, v, w) = v

u w
, but allow for a whole

class of vector-valued functions
(
gs

)
s∈[a,b] with gs(x) = (

x, x fs(x), fs(x+1)
)� for

a family of bounded functions
(
fs

)
s∈[a,b] with fs : N0 → R. For example, considering

the function f (x) = exp(−x) discussed before, a natural class of functions could be
defined by setting fu(x) = exp(u x), which would lead to mgf-based GoF-tests. But
other choices leading to well-known quantities are also possible, such as pgf-based
GoF-tests based on fs(x) = sx , which are related to the mgf-based ones by setting
u = ln s. In this regard, the Stein–Chen identity (25) can be extended to read

E
[
X fs(X)

] = μ E
[
fs(X + 1)

]
, s ∈ [a, b], (34)

which can be accordingly utilized to construct a whole class of moment-based GoF-
test statistics for i. i. d. Poi-rv’s. For instance, adopting the approach from Sect. 4.3
with τ defined above, (26) leads to the statistic

T̂Poif (s) = X fs(X)

X fs(X + 1)
, s ∈ [a, b], (35)

and

TPoif (s) = E
[
X fs(X)

]

E[X ] E[
fs(X + 1)

] equals 1 under the Poi-null (36)

for all s ∈ [a, b]. In what follows, we focus on the special case of fs(x) = sx for
asymptotic calculations, but our general approach is applicable to different choices
of fs as well. Then, the following asymptotics of the Stein–Chen statistic (35) hold
for the case of i. i. d. Poi-counts.

Theorem 4 Let (Xt )Z be i. i. d. with existing moments, set fs(x) = sx for s ∈ [a, b],
where a > 0. Then,

√
T

(
T̂Poisx (s) − TPoisx (s)

)
s∈[a,b] converges weakly to a centered

Gaussian process
(
Gsx (s)

)
s∈[a,b] with mean function

(
μT̂Poisx

(s)
)
s∈[a,b] and covariance

kernel
(
σT̂Poisx

(s1, s2)
)
s1,s2∈[a,b].

In particular, if (Xt )Z is i. i. d. according to Poi(μ), then TPoisx (s) = 1, and we get

μT̂Poisx
(s) = 1

T
(1 − s) exp

(
μ(s − 1)2

)
,

σT̂Poisx
(s1, s2) =

(
1

μ
+ (s1 − 1)(s2 − 1)

)
exp

(
μ(s1 − 1)(s2 − 1)

) − 1

μ
.
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The proof of Theorem 4 is provided by Supplement S.8. Note that Theorem 4 implies
Theorem 2(i) by setting s = s1 = s2 = e−1.

Now, we can make use of Theorem 4 for testing the null hypothesis of (Xt )Z being
i. i. d. according to Poi(μ). In analogy to Rueda and O’Reilly (1999) and Meintanis
(2005), we consider the integrated L2-distance (32), where the integration runs from 0
to 1. To avoid division by zero in (35), however, the lower integration bound is chosen
as some ε > 0, where ε is close to zero (for our simulations in Sect. 5.3, we used
ε = 10−3). Then, by the continuous mapping theorem, we immediately get

T
∫ 1

ε

(
T̂Poisx (s) − 1

)2
ds ⇒

∫ 1

ε

G2
sx (s) ds under the Poi-null. (37)

For the practical implementation of the omnibus GoF-test (37), we follow Meintanis
(2005) and use a parametric bootstrap scheme, see Sect. 5 for details.

5 Simulation experiments

In Sects. 5.1–5.2, we analyze the finite-sample performance of the GoF-tests devel-
oped in Sects. 4.2 and 4.3 by simulations. We consider both asymptotic and bootstrap
implementations,where the reported rejection rates rely on104 replications.Wealways
use two-sided critical values with level 5%, which are computed as the 2.5%- and
97.5%-quantiles from either the asymptotic normal distribution according to Sects. 4.2
and 4.3 (plugging-in parameter estimates instead of the population values), or from
the generated bootstrap sample (with 500 bootstrap replicates). The used bootstrap
scheme depends on the type of DGP: If the tests are applied to i. i. d. counts as dis-
cussed in Sect. 5.1, the parametric i. i. d.-bootstrap is considered (whereμ is estimated
by the sample mean), while for the AR(1)-like counts of Sect. 5.2, the parametric
INAR bootstrap of Jentsch and Weiß (2019) is used (with parameters estimated based
on sample mean and lag-1 sample acf), which has been proven to be consistent for
statistics belonging to the class of functions of generalized means (as they are consid-
ered here). Note that for the bootstrap implementations of the GoF-tests developed in
Sects. 4.2 and 4.3, 104 replications are still possible as only sample moments have to
be computed for executing the tests, but neither numerical optimization nor integration
are necessary.

For the power scenarios (recall the discussions in Sects. 4.2 and 4.3), we restrict to
alternative scenarios of “relative equidispersion”, i. e., the dispersion (as well as mean
and acf) agree with the respective null model, but further shape properties (such as
higher-order moments or zero probability) differ. Here, our main focus is on the NB-
case, as tests for a Poisson null (against equidispersed alternatives) have already been
investigated to some part by Schweer andWeiß (2016), Aleksandrov et al. (2022). For
the NB-null, where suitable, we use the NB-index (NBI) test by Aleksandrov (2019)
as a further moment-based benchmark. Additional competitor tests are considered in
Sect. 5.3, where we also provide some simulation experiments regarding the omnibus
Stein GoF-test of Sect. 4.4. The subsequent discussion refers to the rejection rates
being tabulated in Appendix B.
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5.1 Size and power for i.i.d. counts

Table 5 shows simulated sizes for the null hypothesis of i. i. d. Poi(μ) counts, where the
low mean scenarios, μ ∈ {0.5, 1, 2, 4}, are the same as in Schweer and Weiß (2016),
and these are supplemented by the larger means μ ∈ {10, 15}. For the very low means
μ ∈ {0.5, 1}, the T̂(r ,s)-testwith r = 3 and especially r = 4 tends to strong undersizing
if implemented asymptotically, and at least for r = 4, we still have undersizing if using
a bootstrap implementation. This can be explained by the fact that the factorial x(4)
becomes zero if x ≤ 3, which often happens for μ ∈ {0.5, 1}. Therefore, rejections
are essentially only possible if the upper critical value is violated.1 Furthermore,
the true distribution of the higher-order T̂(r ,s)-statistics is somewhat skewed for low
sample sizes T , which implies a deviation from the asymptotic normal distribution,
but which is captured well by the bootstrap implementation. With increasingμ and T ,
however, the sizes of the T̂(r ,s)-test clearly improve for both implementations. For the
Stein–Chen test T̂Poiexp , the opposite pattern is observed, namely a deterioration of the
asymptotic implementation’s size for the large means μ ∈ {10, 15}. This is caused by
the fact that the weighting function f (x) = exp(−x) puts most weight on low counts
(close to zero), but these are hardly observed for μ ∈ {10, 15}. It should be noted
that the bootstrap implementation of the T̂Poiexp-test leads to reliable sizes throughout.
Table 6 shows corresponding sizes for the null of i. i. d. NB

(
n, n

n+μ

)
-counts. Generally,

we observe the same pattern as in the Poisson case, i. e., the asymptotic implementation
of the T̂(r ,s)-test shows undersizing for low μ, while this happens for the T̂NBexp -test for
large μ. The bootstrap implementation guarantees good size properties throughout.
For means μ ≤ 5, we also considered the NBI-test of Aleksandrov (2019) as a further
competitor (for larger μ, the NBI is not computed as it relies on the frequency of
zeros, which are hardly ever observed in such a case). However, the sizes of the
NBI’s asymptotic implementation are often much larger than 5%, i. e., we have a
severely increased rate of false rejections. Again, a bootstrap implementation leads to
reliable sizes (but not for the large means skipped in Table 6). Altogether, the newly
proposed T̂(r ,s)-, T̂Poiexp-, and T̂NBexp -tests have rather reliable sizes, and if deteriorations
are observed, these are mainly lower deviations, leading to a conservative test.

Let us now turn to a power analysis of the proposed tests. Table 7 shows power
values for the i. i. d. Poi(μ)-null, but where the i. i. d. counts follow a Good distribution
(Weiß 2018a, p. 219) with mean and variance being equal to μ. Such an alternative
scenario was also investigated by Schweer and Weiß (2016), who demonstrated that
the equidispersed Good distribution has larger skewness and excess than a Poisson
distribution. For the very low means μ ∈ {0.5, 1}, the skewness test T̂(3,1) performs
best, although the power is generally rather low. For the medium means μ ∈ {2, 4},
the T̂Poiexp-test is the best choice, in accordance with Aleksandrov et al. (2022), whereas
we have an ambivalent picture with the large means μ ∈ {10, 15}: if using asymptotic
implementations, the T̂(4,2)-test is preferable, whereas the T̂Poiexp-test succeeds again

under bootstrap implementation. For the T̂(r ,s)-tests with r ≥ 3, the results of Table 7
indicate that the use of the bootstrap implementation is even detrimental: the power

1 Also note that sometimes (mainly μ = 0.5, T = 100, and (r , s) = (4, 1)) we got a zero in both the
numerator and denominator; such an ambiguous result was not counted as a rejection.
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values are usually somewhat lower than for the asymptotic implementation, whereas
the sizes are larger, recall Table 5.

For the null of the NB
(
n, n

n+μ

)
-distribution, we consider two types of alternative

with “relative equidispersion” (i. e., having the same mean and variance as the NB-
null): the Poisson-Inverse Gaussian (PIG) distribution exhibiting strong skewness to
the right (Willmot 1987), and the ZIP distribution with its additional point mass in zero
(Weiß 2018a, p. 220). The power values for the PIG-alternative in Table 8 show that the
T̂NBexp -test has superior performance for low mean and strong overdispersion, (μ, n) ∈
{
(1.5, 1), (5, 3.3)

}
; recall that the power values of the NBI are well interpretable only

for the bootstrap implementation because of the size distortions in the asymptotic case.
With increasingμ anddecreasing overdispersion (i. e., increasingn),wegenerally have
lower power values, and now T̂(4,2) often has the best power. However, in analogy to
the Poi-case of Table 7, the asymptotic implementation of the T̂(r ,s)-tests appears
preferable in practice, as we get a larger power together with lower sizes (although
leading to a conservative test).

The power values in Table 9 refer to the ZIP-alternative. As already noted above,
the statistics T̂(r ,s) with r ≥ 3 can hardly violate their lower critical value for low μ,
which explains their bad power in this case. With increasing μ, however, their power
improves and reaches rather high values. By contrast to our previous power analyses,
the use of the bootstrap implementation clearly improves the power of the T̂(r ,s)-tests
regarding the ZIP-alternative. Nevertheless, the clearly best choice for uncovering the
apparent zero inflation is the Stein statistic T̂NBexp , which agrees with the analogous
findings of Aleksandrov et al. (2022) for the Stein–Chen test in the Poisson case. For
μ ≤ 5 and if using a bootstrap implementation, the NBI performs similarly well, but
the Stein statistic T̂NBexp is more widely applicable and performs very well also if using
the more simple asymptotic implementation.

5.2 Size and power for AR(1)-like counts

As the next step, we analyze the additional effect of serial dependence on size and
power of the proposed tests. For this purpose, we extend our simulations to AR(1)-like
counts with dependence parameter ρ, namely to the null hypotheses of either Poi(μ)-
counts generated by an INAR(1)-DGP, or NB

(
n, n

n+μ

)
-counts by an IINAR(1)-DGP,

recall Sect. 3. As computations are more demanding in the dependent case (especially
the bootstrap implementations are much more time consuming now), we restrict our
simulations to selected scenarios from Sect. 5.1. While the choice of the null models is
obvious, the selection of alternative scenarios is more demanding. The common way
of causing non-Poisson counts Xt within the INAR(1)model is to choose non-Poisson
innovations εt according to a specific model. For example, if εt has the equidispersed
Good distribution like in Sect. 5.1, then the Xt are also equidispersed and non-Poisson
(but not following a Good distribution anymore, i. e., only the Poisson distribution is
preserved by the INAR(1) DGP). Special features of the innovations εt (beyond mere
dispersion) reach the observations Xt more and more dampened with increasing ρ.
For example, zero inflation fades out with increasing ρ, see Weiß et al. (2019). In
numerical experiments with the IINAR(1) model, however, where even two thinnings
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are executed one after the other, this dampening effect was further intensified. While
we can easily choose ZIP-distributed εt such that mean and variance of the IINAR(1)
model are preserved, the resulting Xt hardly exhibit any zero inflation. For this reason,
we decided to use again the INAR(1) DGP for defining alternative scenarios. More
precisely, we define the NB-, PIG-, and ZIP-INAR(1) alternatives (all having a non-
NB marginal distribution) such that they have the same mean, variance, and acf as
the null NB-IINAR(1) model. Just to avoid confusion: even the NB-INAR(1) process
(with its NB-distributed innovations) has a non-NB marginal, although the difference
to the null’s NB

(
n, n

n+μ

)
-distribution is quite small.

Let us start with the null of Poi-INAR(1) counts and the alternative of INAR(1)
counts having equidispersed-Good innovations εt , for ρ = 0.25. Comparing the sizes
in the upper block of Table 10 to the corresponding i. i. d.-sizes in Table 5, we recog-
nize a rather similar pattern: The asymptotic implementations of the T̂(r ,s)-tests tend
to undersizing for low μ and T , whereas the bootstrap implementations of all tests
are uniquely close to the nominal 5%-level, but with a slight tendency to oversizing.
Altogether, the effect of serial dependence on the sizes appears negligible. This is
different for the power values in the lower block of Table 10 compared to Table 7: in
accordance with analogous findings in previous studies (e. g., Schweer andWeiß 2014
and Schweer and Weiß (2016)), an increase in serial dependence causes a decrease
in power. Besides this general loss in performance, the other conclusions of Sect. 5.1
remain valid: the bootstrap implementation of the T̂Poiexp-test usually leads to the best

power, and the T̂(r ,s)-tests have a higher power and lower size under asymptotic imple-
mentation.

Next, let us turn to the NB-case. For the sizes in the upper part of Table 11 (to
be compared to the i. i. d.-sizes in Table 6), we draw an analogous conclusion as in
the Poi-case, namely that there is hardly any effect of the apparent serial dependence.
The asymptotic implementations of the T̂(r ,s)-tests tend to undersizing for low μ

and T , whereas the bootstrap implementations of all tests are close to (but somewhat
larger than) the nominal 5%-level. For the power simulations, we get a more complex
picture. The power values in the lower part of Table 11 are more of theoretical rather
than practical interest, as theNB-INAR(1)’s marginal distribution is very similar to the
NB-null. Nevertheless, the T̂(r ,s)-tests with r ≥ 3 and especially the T̂NBexp -test exhibit
mild power, caused by the different data-generating mechanism.

The practically relevant alternative scenarios, namely PIG- and ZIP-INAR(1), are
summarized in Table 12 (to be compared to Tables 8 and 9, respectively). The power
values for the PIG-alternative generally show the same pattern as in the i. i. d.-case,
i. e., a superior performance of T̂NBexp -test for low mean and strong overdispersion,

while T̂(4,2) makes up with increasing μ and decreasing overdispersion (i. e., increas-
ing n). But interestingly, the power values for ρ = 0.25 are usually larger than in
the i. i. d.-case, which can be explained by the combined effect of the change in the
marginal distribution and that in the data-generating mechanism (for the latter, recall
the power values in the lower part of Table 11). This is different from the ZIP-case,
where we have worse power in the presence of serial dependence (caused by the
aforementioned dampening effect of the thinnings). Nevertheless, the T̂NBexp -test is very
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powerful in detecting zero inflation, and also the bootstrap implementation of the
T̂(4,2)-test does rather well.

5.3 Power analysis of competitor tests

In Sects. 5.1 and 5.2, we recognized that the novel GoF-tests have attractive power
properties, where, by design of the GoF-statistics, the individual performance depends
on the type of violation of the null hypothesis. To be able to judge their performance
with respect to existing GoF-tests, this section discusses simulated power values for
some well-established competitors (if available at all for the considered null hypoth-
esis). As most competitors are computationally much more demanding, we restrict
our analyses to selected competitors and alternative scenarios, but we still use 104

replications per scenario (and 500 bootstrap replications where necessary). All tests
of this section are equipped with an upper critical value only.

For testing the Poi-null under i. i. d. assumptions, many possible competitors are
surveyed by Gürtler and Henze (2000). In what follows, we focus on the pgf-based
tests presented there, as these are among the most powerful tests, and as the Stein-type
GoF-tests T̂Poiexp , T̂

NB
exp are related to the pgf as well, recall Sect. 4.4. While the pgf under

the null, pgf(u|μ), depends on the mean μ, estimated by μ̂ := x as before, the sample
pgf p̂gf(u) is itself computed as a type of sample mean, namely p̂gf(u) = uX . The
two types of pgf-based GoF-tests in Section 2.3 of Gürtler and Henze (2000) are

Ra = T
∫ 1

0

(
p̂gf(u) − pgf(u|μ̂)

)2
ua du,

Ba = T
∫ 1

0

(
μ̂ p̂gf(u) − p̂gf

′
(u)

)2
ua du.

(38)

Here, a = 0 corresponds to not using any weight, whereas a > 0 puts more weight
near the end of the integration interval; if weights are useful at all, Gürtler and Henze
(2000) recommend the choice a = 5. Besides (38), we also consider the traditional
Pearson statistic χ2 (see Weiß 2018b) as well as the GoF-test in Section 5 of Betsch
et al. (2022). The latter test has been selected as a further competitor as it also utilizes
the Stein–Chen identity (25) in some way:

S =
∞∑

k=0

((
1 − μ̂/(X + 1)

)
1(X ≥ k) − 1(X = k)

)2
, (39)

Here, 1(·) denotes the indicator function.
For testing the NB-null under i. i. d. assumptions, again the Pearson statistic χ2 (see

Weiß 2018b) is considered, as well as themodified versions of (38) proposed by Rueda
and O’Reilly (1999) and Meintanis (2005). While Ra looks like in (38) but using the
NB’s pgf, the NB-counterpart to Ba in (38) is

Ba = T
∫ 1

0

(
μ̂ p̂gf(u) − (

1 + 1
n μ̂ (1 − u)

)
p̂gf

′
(u)

)2
ua du. (40)
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While we are not aware of any GoF-test for the null of an NB-IINAR(1) model,
two competitors for the Poi-INAR(1) null are considered: on the one hand again the
Pearson statistic χ2 (see Weiß 2018b), on the other hand the test by Meintanis and
Karlis (2014), which is defined in analogy to Ba in (38) but using the bivariate pgf of
the pairs (Xt , Xt−1):

Wa = T
∫ 1

0

∫ 1

0

(
λ̂ (u − v) p̂gf(u, v) − (

u ∂ p̂gf(u,v)
∂u − v

∂ p̂gf(u,v)
∂v

))2
uava du dv.

(41)

Meintanis and Karlis (2014) recommend to use a = 2 as the weight parameter.
The simulated power values are summarized in Table 13. The upper left block in

Table 13 has to be compared to the row μ = 4 in Table 7, the upper right block to the
corresponding row in Table 10, both corresponding to a Poi-null. It becomes clear that
our novel T̂Poiexp-test has the best power without exception, and also the T̂(4,2)-test shows
competitive performance. Analogous conclusions hold for the NB-null in the lower
block of Table 13, which has to be compared to (μ, n) = (5, 3.333) in Tables 8 and 9.
Now the T̂NBexp -test dominates all competitors, which again demonstrates the appealing
performance of our moment-based approach for defining GoF-tests.

As a final comparison, we consider the omnibus Stein-GoF test discussed in
Sect. 4.4.While we restricted our derivations to the case of the unweighted L2-distance
and the null of i. i. d. Poi-counts with fs(x) = sx , see (37), we explore the power of
such integrated Stein-pgf tests more comprehensively, namely by allowing for addi-
tional weights and by also considering the null of i. i. d. NB-counts. In the latter case,
the integration is done with respect to (29), i. e.,

T̂NBsx (s) =
(
n0 + X

)
X fs(X)

X (n0 + X) fs(X + 1)
.

Altogether, we use the GoF-test statistics

T
∫ 1

ε

(
T̂Poisx (s) − 1

)2
sa ds for testing the Poi-null, (42)

and

T
∫ 1

ε

(
T̂NBsx (s) − 1

)2
sa ds for testing the NB-null, (43)

where we set ε = 10−3 in both cases. In view of the above experiences, we tried
a ∈ {0, 2, 5}, and we used the parametric i. i. d.-bootstrap sketched in the beginning
of Sect. 5 for implementation.

The simulated power values are summarized in Table 14. Comparing to the com-
petitor tests of Table 13, we recognize a superior power for the integrated Stein-pgf
tests, where highest power is achieved for the medium weights a = 2. In fact, the
corresponding power values are often slightly larger than those of the T̂Poiexp-test in

123



Modelling and diagnostic tests for Poisson and... 869

Table 7 or T̂NBexp -test in Tables 8–9, respectively. This clearly shows that such integrated
Stein-pgf tests constitute a promising direction for future research.

6 Illustrative data example

In what follows, we analyze a time series of daily counts of downloads of a TEX-editor
(period June 2006 to February 2007, thus T = 267), see Fig. 3. These data have been
introduced by Weiß (2008b) and further analyzed by Weiß (2018a). They have an
AR(1)-like sample partial acf (pacf), and the sample dispersion index s2X/x ≈ 3.138
ismuch larger than the Poisson value 1, but close to the geometric value 1+x ≈ 3.401.
Similarly, the zero frequency≈ 0.277 is much larger than the corresponding Poisson’s
zero probability of≈ 0.091, but again close to the geometric value≈ 0.319. Therefore,
it is very natural to test the null hypothesis H0 of an NB-IINAR(1) process with
geometric marginal distribution (i. e., with n = 1, abbreviated as Geom-IINAR(1)
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Fig. 3 Time series plot and sample pacf of download counts

Table 3 Download counts: statistics T̂(r ,s) and their critical regions

(r , s) T̂(r ,s) Critical regions R \ (cl , cu), where

Asymptotic (cl , cu) = Bootstrap (cl , cu) =
H0 H̃0 H0 H̃0

(2, 1) 1.886 (1.622, 2.343) (0.922, 1.072) (1.676, 2.380) (0.924, 1.081)

(3, 1) 2.608 (1.651, 4.142) (0.822, 1.162) (2.131, 4.275) (0.841, 1.171)

(4, 1) 3.003 (0.040, 6.877) (0.629, 1.319) (2.273, 6.356) (0.708, 1.344)

(4, 2) 4.152 (0.000, 10.969) (0.526, 1.427) (2.806, 12.053) (0.638, 1.465)

Table 4 Download counts: ML estimates (standard errors) and values of AIC and BIC for different models

Model λ̂ or α̂ ρ̂ n or n̂ AIC BIC

Poi-INAR(1) 1.991 (0.110) 0.174 (0.033) ∞ (by design) 1292.8 1300.0

Geom-IINAR(1) 0.616 (0.067) 0.331 (0.069) 1 (by design) 1083.8 1090.9

NB-IINAR(1) 0.653 (0.101) 0.316 (0.073) 1.082 (0.164) 1085.5 1096.3
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process) for these data. For the sake of completeness, we also report the results if
testing the null H̃0 of a Poi-INAR(1) process, although H̃0 seems rather inappropriate
in view of the aforementioned sample properties. All tests are done on the 5%-level.

Let us begin with the factorial-moment-based statistics T̂(r ,s), which are uniquely
defined for both H0 and H̃0, but with different critical values. Here, an asymptotic
implementation is possible, recall Example 2, where we have to plug-in the moment
estimates for (μ, ρ), namely

(
x, ρ̂(1)

) ≈ (2.401, 0.245), instead of the unknown
population values. We obtain the statistics and critical regions shown in columns 1–4
of Table 3. The values T̂(r ,s) clearly differ from the hypothetical Poisson value 1, but
they are fairly close to the geometric values 2, 3, 4, and 6, respectively. Indeed, H̃0
is rejected for each of these statistics, whereas we do not get any rejection for H0.
For comparison, we also considered a bootstrap implementation (with 500 bootstrap
replicates) in columns 5–6 of Table 3, but the test decisions are identical. Note that
the bootstrap’s lower critical values cl for r ≥ 3 under H0 differ notably from the
asymptotic ones, which is plausible in view of Sect. 5, where we noted problems
with cl for low means μ.

Next, we consider both types of Stein test. The Stein–Chen statistic T̂Poiexp takes the

value ≈ 0.427 being much smaller than the H̃0-value 1, whereas T̂NBexp ≈ 1.055 is very
close to the H0-value 1. In fact, the respective critical regions (obtained via bootstrap)
are R\(0.851, 1.191) for T̂Poiexp , leading to a rejection of H̃0, and R\(0.846, 1.144)
for T̂NBexp ,which does not contradict H0. So altogether, our diagnostic tests lead to unique

conclusions, namely to reject H̃0 of a Poi-INAR(1) process, but not contradicting H0
of a Geom-IINAR(1) process.

In view of these diagnostic results, let us conclude this section with a final model
fitting. Table 4 shows the results of maximum likelihood (ML) estimation for the
Poi-INAR(1) model (H̃0, rejected), the Geom-IINAR(1) model (H0, not rejected),
and, in addition, also for the general NB-IINAR(1) model with variable n. The values
in parentheses are the respective approximate standard errors (computed from the
numerical Hessian of the log-likelihood function), and Akaike’s and the Bayesian
information criterion (AIC and BIC, respectively) are shown for model selection.
Both criteria prefer the Geom-IINAR(1) model, and it should be noted that the NB-
IINAR(1) model’s estimate for n is not significantly different from 1. Finally, we
computed the standardized Pearson residuals for checking the adequacy of the fitted
Geom-IINAR(1) model. The residuals have the mean ≈ −0.009 close to zero, the
variance ≈ 0.969 close to one, and they are serially uncorrelated. So altogether, the
Geom-IINAR(1) model seems to be an appropriate choice for the download-counts
time series. According to Remark 3, a possible interpretation might be as follows:
In the first step of iterated thinning, the fraction α̂ ρ̂/(1 + α̂) ≈ 0.126 of persons
downloading the TEX-editor at day t − 1 decide to give a recommendation to other
persons for day t . Here, the mean number of recommendations (caused by the second
step of iterated thinning) is equal to (1+ α̂)/α̂ ≈ 2.623. In addition, the innovation εt
causes 1/α̂ ≈ 1.623 further downloads in the mean, now by the users’ own initiative
(without recommendation).
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7 Conclusions and future research

Unbounded-counts data are oftenmodelled by using the Poi- orNB-distribution. In this
paper, we proposed GoF-tests for testing the null hypothesis of Poi- or NB-marginals
in a time-series context. The considered classes of time series are defined in analogy
to the class of Gaussian processes, by requiring bivariate Poi- or NB-distributions,
respectively, for the lagged pairs (Xt , Xt−h). In this context, we also clarified some
confusion in the literature regarding the NB-IINAR(1) model. In our research, we
focused on two types of moment-based GoF-tests: tests relying on factorial moments,
and tests using the so-called Stein’s identity. We considered both asymptotic and
bootstrap implementations, and we studied i. i. d. counts as well as count data with
serial dependence. In Monte–Carlo simulations, we illustrated the performance of
the different tests under the null and under various alternatives. Under the null, the
newly proposed tests showed rather reliable sizes, and if deteriorations were observed,
these were mainly lower deviations leading to a conservative test. Most tests also
showed a decent power (although decreasing for increasing dependence in the data),
where the different GoF-statistics are sensitive to different features of the alternative
distribution. If the GoF-statistic is chosen appropriately in view of the considered
alternative scenario, the achieved power exceeds that of existing competitor tests.
This sensitivity towards the considered alternative also implies that using a set of our
GoF-statistics allows for a targeted diagnosis regarding the type of violation of the
respective null hypothesis. Finally, we successfully applied our novel GoF-tests to a
time series of download counts, where a geometric IINAR(1) model was identified as
the best choice for these data.

This article opens up several opportunities for future research. One of these direc-
tionswas already briefly investigated in Sects. 4.4 and 5.3, namely the use of Stein-type
GoF-statistics for constructing an omnibus GoF-test. While we restricted our deriva-
tions to the null of i. i. d. Poi-counts and to one particularGoF-statistic (using theweight
function f (x) = sx such that the test statistic is related to the pgf), the appealing sim-
ulation results of Sect. 5.3 indicate that such GoF-tests should also be considered more
generally, including the case of i. i. d. NB-counts. It would also be relevant to analyze
if an extension to serially dependent counts is possible. At this point, a second research
direction becomes clear. In the Poi-case studied by Aleksandrov et al. (2022), it was
shown that multiple Stein statistics can be combined into a single, asymptotically
χ2-distributed statistic. This would allow to create a pgf-based Stein GoF-test, where
the pgf is jointly evaluated at only finitely many points 0 < s1 < . . . < sk < 1.
The exact asymptotics and performance of such a test, also for the NB-null, deserves
further investigation in future research. Finally, the presented GoF-tests are designed
for count time series having amarginal Poi- or NB-distribution and are, thus, relevant
for INARMA-type processes. Another large class of models for count time series are
integer-valued generalized autoregressive conditional heteroscedasticity (INGARCH)
models, which are defined based on a conditional Poi- or NB-distribution (or other
parametric distributions, see Weiß (2018a) for a survey). In this case, neither the pro-
posed test statistics nor their asymptotics are applicable. Hence, it would be relevant
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for future research to develop conditional Stein-type GoF-tests for such INGARCH
count processes.
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Appendix A: On alternative formulations of the NB-IINAR(1) model

In Al-Osh and Aly (1992) and Weiß (2008b), the special case of iterated thinning
together with a geometric counting series is considered, i. e., “�” corresponds to the
sequential execution of Bin-thinning “◦” and the NB-operator “∗” of Ristić et al.
(2009). More precisely, using ρ, αρ ∈ (0, 1) and setting θ1 = αρ and θ2 = 1/α, so
Yi ∼ NB(1, α

1+α
) and pgfY (z) = α/(α + 1 − z) according to Table 1, we get from

(12) that

pgf(αρ,1/α)�x (z) =
(
1 + αρ

(
pgfY (z) − 1

))x =
(
1 − αρ (1 − z)

α + 1 − z

)x

, (A.1)

with conditional mean E
[
(αρ, 1/α) � x

] = ρ x . Note that the boundary case αρ = 1
was also considered by Gouriéroux and Lu (2019, Section 2).

In Wolpert and Brown (2011), Leisen et al. (2019), by contrast, another i. i. d.
counting series for “∗” is assumed, say (Zi ), which follows the shifted geometric
distribution (recall Sect. 2). Setting θ1 = α

1+α
ρ and θ2 = 1+α

α
, so Zi ∼ 1+NB(1, α

1+α
)

with pgfZ (z) = α z/(α + 1 − z), Eq. (12) implies that

pgf( α
1+α

ρ, 1+α
α

)�x (z) =
(
1+ α

1+α
ρ

(
pgfZ (z)−1

))x =
(
1 − αρ (1 − z)

α + 1 − z

)x

, (A.2)
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again with conditional mean E
[
( α
1+α

ρ, 1+α
α

) � x
] = ρ x . So both approaches lead

to the same pgf, i. e., both constructions of the iterated-thinning operator are equal
in distribution. However, the second approach (A.2) has a practical advantage: θ1 =

α
1+α

ρ ∈ (0, 1) holds for any ρ ∈ (0, 1) and α > 0, i. e., the parameter space of
(ρ, α) is less restricted. Therefore, we always use the second version (A.2) of the
geometric iterated-thinning operator, together with the shorthand notation ρ �α x :=
( α
1+α

ρ, 1+α
α

) � x , see (13).
InWolpert andBrown (2011), Leisen et al. (2019), two different ways of defining an

NB-IINAR(1)model are provided.But aswe shall see, after appropriate reparametriza-
tions, they lead to the same model as given in Definition 2.

InLeisen et al. (2019), theNB-IINAR(1)model recursion uses the shifted geometric
counting series Zi ∼ 1 + NB

(
1, 1 − q(1 − �)

)
and the innovations εt ∼ NB

(
n, 1 −

q(1−�)
)
, together with the Bin-thinning “�◦”. Substituting 1−q(1−�) �→ α

1+α
and

� �→ α
1+α

ρ, it becomes clear that their thinning operator is equivalent to (A.2). Since
also the innovations are distributed the same as in Definition 2, the model (3) of Leisen
et al. (2019) agrees with the model in Definition 2. Note that (1−q)(1−�) = α(1−ρ)

1+α

and q(1−�) = 1
1+α

, so α(1−ρ) = (1−q)/q. Consequently, the stationary marginal

distribution NB
(
n,

α(1−ρ)
1+α(1−ρ)

)
is expressed as NB(n, 1− q) in agreement with Leisen

et al. (2019).
Also in Wolpert and Brown (2011), the NB-IINAR(1) model is defined based on

a shifted geometric counting series, so using again (A.2). This time, the parameter
of the Bin-thinning operator is ρ p/(1 − ρ + ρ p) (corresponding to α

1+α
ρ in our

parametrization), and counting series as well as innovations use the geometric param-
eter p/(1 − ρ + ρ p) (corresponding to α

1+α
in Definition 2). So ρ plays the same

role in both model definitions, while α−1 = 1+α
α

− 1 = (1 − ρ)(1 − p)/p and, thus,

α(1−ρ) = p/(1−p). Therefore, the stationarymarginal distributionNB
(
n,

α(1−ρ)
1+α(1−ρ)

)

is expressed as NB(n, p) in agreement with Wolpert and Brown (2011).
Note that Wolpert and Brown (2011), Leisen et al. (2019) do not explicitly point

out the iterated-thinning operator in Definition 2, but they define their model by the
recursion Xt = Bt−1 + Nt−1 with Bt−1 ∼ Bin

(
Xt−1,

α
1+α

ρ
)
and Nt−1 ∼ NB

(
n +

Bt−1,
α

1+α

)
. Utilizing the additivity of the NB-distribution, the equivalence to the

iterated-thinning formulation becomes clear.

For lag h = 1, we have 1−ρh

1−ρ
= 1. Thus, the bivariate pgf (15) reduces to (2.6) in

Al-Osh and Aly (1992), namely to

pgfX1,X0
(z1, z2) =

(
α2(1−ρ)

(1+α−αρ) (1+α−z1−z2)−(αρ−1) z1z2

)n
. (A.3)

Note that (A.3) leads to the formula given in Theorem 1(4) of Wolpert and Brown
(2011) by using the aforementioned parameter substitution.

Another thinning-based characterization of the NB-IINAR(1) model (but which
avoids the step of nesting two thinnings) was recently given in Section 2.3 of Guerrero
et al. (2022). Their parametrization is translated into the one used here by mapping
their r �→ n, μ �→ n

α(1−ρ)
, and μ(1 − α) �→ n

α
. This can be seen by comparing the
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expression for pgfρ�αx (z) in (13) with the one for �G(z)x in Section 2.3 of Guerrero
et al. (2022).

Comparing (A.3) to (4),wehave (Xt , Xt−1) ∼ BNB
(
n, 1

1+α
, 1
1+α

,
αρ−1

(1+α−αρ) (1+α)

)
.

Note that π0/(π1π2) = (
α

1+α(1−ρ)
− 1

)
(1+ α) > −1 holds, and π0 > 0 if α > 1/ρ.

The latter condition is also necessary for the decomposition discussed in Remark 2,
recall (6). From (A.3), it also becomes clear that the NB-IINAR(1) model was con-
sidered in a further article, namely in Section 2(a) of Phatarfod and Mardia (1973).
These authors define the model by the bivariate pgf in (A.3) with the parametrization
ρ and a−1 = α(1 − ρ).

Appendix B: Tabulated simulation results of Sect. 5

See Tables 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14.

Table 5 Simulated sizes for i. i. d. Poi(μ)-null, where two-sided tests with nominal level 0.05; see Sect. 5.1

μ T Asymptotic implementation Bootstrap implementation

T(2,1) T(3,1) T(4,1) T(4,2) TPoiexp T(2,1) T(3,1) T(4,1) T(4,2) TPoiexp

0.5 100 0.043 0.024 0.001 0.010 0.051 0.045 0.023 0.023 0.024 0.054

250 0.046 0.032 0.004 0.021 0.047 0.047 0.034 0.026 0.027 0.051

500 0.047 0.035 0.009 0.027 0.050 0.052 0.049 0.026 0.024 0.053

1000 0.051 0.043 0.017 0.029 0.051 0.054 0.054 0.026 0.028 0.054

1 100 0.047 0.033 0.011 0.024 0.052 0.048 0.046 0.028 0.028 0.056

250 0.047 0.037 0.020 0.029 0.051 0.052 0.051 0.049 0.050 0.054

500 0.053 0.048 0.032 0.042 0.051 0.053 0.053 0.054 0.054 0.053

1000 0.046 0.047 0.033 0.040 0.049 0.052 0.052 0.053 0.054 0.055

2 100 0.047 0.041 0.026 0.033 0.052 0.054 0.052 0.048 0.049 0.052

250 0.056 0.047 0.031 0.037 0.055 0.054 0.054 0.053 0.055 0.054

500 0.049 0.047 0.035 0.040 0.050 0.051 0.053 0.055 0.055 0.055

1000 0.050 0.049 0.042 0.044 0.050 0.055 0.055 0.055 0.055 0.054

4 100 0.050 0.047 0.037 0.042 0.053 0.049 0.052 0.050 0.051 0.049

250 0.044 0.047 0.040 0.043 0.050 0.054 0.054 0.053 0.053 0.056

500 0.045 0.046 0.044 0.045 0.051 0.056 0.054 0.052 0.053 0.054

1000 0.049 0.051 0.047 0.049 0.048 0.051 0.056 0.054 0.056 0.050

10 100 0.047 0.046 0.040 0.040 0.005 0.053 0.050 0.052 0.052 0.056

250 0.053 0.052 0.048 0.050 0.010 0.055 0.054 0.054 0.054 0.051

500 0.049 0.052 0.049 0.049 0.022 0.054 0.053 0.054 0.053 0.056

1000 0.051 0.053 0.052 0.053 0.042 0.053 0.054 0.049 0.049 0.055

15 100 0.045 0.043 0.039 0.040 0.093 0.051 0.052 0.055 0.055 0.053

250 0.046 0.047 0.049 0.049 0.002 0.049 0.051 0.051 0.051 0.055

500 0.049 0.047 0.046 0.046 0.003 0.052 0.052 0.053 0.053 0.055

1000 0.049 0.049 0.046 0.046 0.005 0.053 0.055 0.054 0.054 0.051
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Table 7 Simulated power for i. i. d. Poi(μ)-null and equidispersed Good-alternative with mean μ, where
two-sided tests with nominal level 0.05; see Sect. 5.1

μ T Asymptotic implementation Bootstrap implementation

T(2,1) T(3,1) T(4,1) T(4,2) TPoiexp T(2,1) T(3,1) T(4,1) T(4,2) TPoiexp

0.5 100 0.053 0.035 0.003 0.015 0.053 0.052 0.035 0.033 0.038 0.058

250 0.054 0.057 0.010 0.039 0.050 0.063 0.058 0.046 0.049 0.059

500 0.059 0.069 0.022 0.060 0.057 0.068 0.077 0.047 0.056 0.066

1000 0.060 0.089 0.039 0.067 0.058 0.067 0.089 0.054 0.062 0.063

1 100 0.068 0.067 0.026 0.049 0.067 0.066 0.077 0.056 0.057 0.065

250 0.063 0.096 0.055 0.082 0.073 0.069 0.098 0.081 0.088 0.068

500 0.068 0.129 0.094 0.126 0.086 0.075 0.111 0.094 0.104 0.089

1000 0.071 0.164 0.116 0.166 0.125 0.075 0.153 0.114 0.135 0.118

2 100 0.073 0.110 0.079 0.108 0.122 0.077 0.098 0.095 0.101 0.105

250 0.074 0.156 0.138 0.173 0.196 0.079 0.146 0.135 0.152 0.182

500 0.076 0.219 0.210 0.259 0.331 0.078 0.199 0.185 0.218 0.322

1000 0.078 0.333 0.338 0.408 0.582 0.083 0.307 0.294 0.350 0.565

4 100 0.069 0.123 0.129 0.147 0.202 0.074 0.110 0.121 0.127 0.155

250 0.076 0.170 0.209 0.232 0.466 0.076 0.161 0.189 0.203 0.434

500 0.072 0.237 0.321 0.356 0.776 0.081 0.221 0.290 0.312 0.756

1000 0.074 0.349 0.498 0.544 0.977 0.077 0.336 0.460 0.499 0.975

10 100 0.061 0.092 0.116 0.120 0.000 0.063 0.087 0.113 0.115 0.104

250 0.062 0.111 0.164 0.169 0.000 0.066 0.111 0.147 0.150 0.235

500 0.063 0.134 0.224 0.230 0.016 0.067 0.129 0.210 0.215 0.464

1000 0.064 0.181 0.340 0.350 0.284 0.067 0.177 0.331 0.341 0.745

15 100 0.056 0.078 0.097 0.099 0.030 0.065 0.083 0.096 0.097 0.084

250 0.061 0.092 0.129 0.131 0.000 0.063 0.092 0.123 0.124 0.170

500 0.060 0.109 0.175 0.176 0.000 0.062 0.097 0.156 0.157 0.287

1000 0.057 0.120 0.238 0.243 0.000 0.061 0.119 0.231 0.233 0.466
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Table 10 Simulated size and power for INAR(1) DGP with ρ = 0.25, for Poi(μ)-null and equidispersed
Good-alternative with mean μ, where two-sided tests with nominal level 0.05; see Sect. 5.2

μ T Asymptotic implementation Bootstrap implementation

T(2,1) T(3,1) T(4,1) T(4,2) T(2,1) T(3,1) T(4,1) T(4,2) TPoiexp

Size

2 100 0.047 0.038 0.022 0.029 0.048 0.047 0.048 0.048 0.049

250 0.052 0.047 0.031 0.037 0.051 0.051 0.050 0.051 0.051

500 0.051 0.046 0.033 0.037 0.054 0.055 0.054 0.054 0.053

1000 0.048 0.047 0.041 0.043 0.054 0.055 0.054 0.055 0.056

4 100 0.046 0.040 0.031 0.034 0.052 0.054 0.055 0.056 0.053

250 0.048 0.044 0.038 0.041 0.056 0.053 0.051 0.051 0.053

500 0.049 0.048 0.041 0.041 0.052 0.054 0.053 0.053 0.056

1000 0.052 0.052 0.049 0.049 0.052 0.056 0.056 0.056 0.057

10 100 0.045 0.043 0.040 0.041 0.056 0.054 0.056 0.056 0.057

250 0.051 0.049 0.046 0.047 0.053 0.051 0.053 0.053 0.045

500 0.049 0.048 0.045 0.046 0.055 0.057 0.054 0.055 0.050

1000 0.053 0.051 0.050 0.050 0.057 0.055 0.055 0.054 0.053

Power

2 100 0.056 0.068 0.048 0.062 0.066 0.080 0.077 0.079 0.068

250 0.058 0.087 0.078 0.094 0.067 0.082 0.083 0.088 0.079

500 0.063 0.109 0.109 0.130 0.069 0.107 0.109 0.116 0.099

1000 0.068 0.137 0.154 0.177 0.069 0.133 0.138 0.150 0.162

4 100 0.059 0.086 0.084 0.093 0.067 0.082 0.091 0.092 0.081

250 0.061 0.105 0.127 0.142 0.070 0.103 0.117 0.123 0.157

500 0.064 0.136 0.181 0.196 0.067 0.129 0.161 0.169 0.285

1000 0.063 0.184 0.271 0.295 0.070 0.173 0.245 0.265 0.526

10 100 0.059 0.075 0.085 0.087 0.062 0.074 0.088 0.088 0.077

250 0.053 0.080 0.110 0.114 0.065 0.084 0.110 0.110 0.127

500 0.057 0.093 0.148 0.150 0.065 0.098 0.141 0.143 0.219

1000 0.061 0.117 0.210 0.216 0.063 0.114 0.194 0.199 0.377
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Table 11 Simulated size for NB-IINAR(1) DGP with mean μ and ρ = 0.25, and power for corresponding
NB-INAR(1) alternative, where two-sided tests with nominal level 0.05; see Sect. 5.2

μ n T Asymptotic implementation Bootstrap implementation

T(2,1) T(3,1) T(4,1) T(4,2) T(2,1) T(3,1) T(4,1) T(4,2) TNBexp

Size

5 3.3 100 0.044 0.034 0.020 0.025 0.053 0.054 0.054 0.055 0.052

250 0.049 0.035 0.024 0.029 0.054 0.054 0.054 0.055 0.053

500 0.048 0.041 0.030 0.035 0.055 0.053 0.049 0.049 0.049

1000 0.047 0.044 0.036 0.038 0.051 0.052 0.055 0.055 0.053

10 5 100 0.046 0.037 0.028 0.032 0.050 0.051 0.053 0.053 0.055

250 0.048 0.043 0.034 0.037 0.053 0.056 0.057 0.057 0.054

500 0.047 0.043 0.036 0.039 0.050 0.051 0.052 0.052 0.057

1000 0.052 0.049 0.044 0.045 0.058 0.058 0.056 0.055 0.050

10 10 100 0.047 0.039 0.031 0.034 0.055 0.057 0.057 0.056 0.055

250 0.051 0.049 0.041 0.042 0.054 0.056 0.057 0.057 0.053

500 0.048 0.043 0.039 0.040 0.049 0.050 0.052 0.053 0.051

1000 0.050 0.050 0.047 0.048 0.047 0.049 0.049 0.050 0.055

Power w.r.t. NB-INAR(1) alternative

5 3.3 100 0.046 0.048 0.032 0.041 0.064 0.067 0.067 0.066 0.075

250 0.055 0.060 0.050 0.058 0.063 0.062 0.066 0.067 0.092

500 0.059 0.070 0.062 0.072 0.063 0.065 0.066 0.068 0.117

1000 0.061 0.082 0.078 0.089 0.062 0.074 0.073 0.076 0.178

10 5 100 0.049 0.048 0.038 0.044 0.062 0.066 0.065 0.066 0.069

250 0.051 0.057 0.052 0.057 0.061 0.063 0.062 0.063 0.083

500 0.057 0.068 0.067 0.072 0.061 0.065 0.070 0.070 0.093

1000 0.057 0.081 0.089 0.097 0.064 0.076 0.080 0.083 0.120

10 10 100 0.044 0.042 0.037 0.039 0.060 0.059 0.057 0.056 0.057

250 0.051 0.051 0.048 0.050 0.061 0.060 0.063 0.063 0.057

500 0.054 0.057 0.058 0.060 0.055 0.056 0.058 0.057 0.059

1000 0.049 0.057 0.063 0.065 0.059 0.062 0.064 0.063 0.063
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Table 12 Simulated power for PIG- and ZIP-INAR(1) alternative with mean μ and ρ = 0.25, where
NB-IINAR(1) null and two-sided tests with nominal level 0.05; see Sect. 5.2

μ n T Asymptotic implementation Bootstrap implementation

T(2,1) T(3,1) T(4,1) T(4,2) T(2,1) T(3,1) T(4,1) T(4,2) TNBexp

Power w.r.t. PIG-INAR(1) alternative

5 3.3 100 0.081 0.102 0.081 0.098 0.109 0.123 0.125 0.129 0.150

250 0.092 0.159 0.153 0.182 0.112 0.158 0.165 0.173 0.294

500 0.101 0.222 0.242 0.280 0.108 0.203 0.230 0.249 0.505

1000 0.106 0.315 0.383 0.433 0.117 0.291 0.339 0.374 0.787

10 5 100 0.082 0.110 0.103 0.117 0.101 0.124 0.129 0.131 0.142

250 0.093 0.160 0.182 0.200 0.099 0.150 0.173 0.180 0.235

500 0.097 0.207 0.268 0.291 0.100 0.192 0.245 0.258 0.339

1000 0.105 0.300 0.418 0.452 0.100 0.277 0.378 0.403 0.530

10 10 100 0.065 0.077 0.076 0.082 0.072 0.080 0.087 0.087 0.079

250 0.064 0.090 0.105 0.113 0.081 0.100 0.113 0.113 0.095

500 0.069 0.106 0.147 0.151 0.077 0.111 0.135 0.137 0.121

1000 0.072 0.142 0.210 0.217 0.074 0.130 0.185 0.191 0.164

Power w.r.t. ZIP-INAR(1) alternative

5 3.3 100 0.039 0.008 0.000 0.000 0.045 0.159 0.292 0.390 0.891

250 0.036 0.151 0.019 0.024 0.040 0.439 0.729 0.859 0.997

500 0.036 0.583 0.558 0.748 0.041 0.797 0.969 0.994 1.000

1000 0.034 0.966 0.994 1.000 0.037 0.987 1.000 1.000 1.000

10 5 100 0.070 0.063 0.008 0.006 0.074 0.265 0.510 0.646 0.729

250 0.064 0.400 0.488 0.653 0.078 0.637 0.929 0.980 0.981

500 0.069 0.848 0.983 0.999 0.074 0.923 0.999 1.000 1.000

1000 0.069 0.998 1.000 1.000 0.069 0.999 1.000 1.000 1.000

10 10 100 0.073 0.069 0.033 0.036 0.085 0.189 0.326 0.400 0.554

250 0.077 0.286 0.404 0.513 0.083 0.412 0.715 0.812 0.945

500 0.072 0.631 0.890 0.953 0.084 0.718 0.959 0.988 0.999

1000 0.076 0.940 0.999 1.000 0.081 0.960 1.000 1.000 1.000
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Table 13 Simulated power for diverse competitor tests with nominal level 0.05; see Sect. 5.3

Poi-null against Good alternative; μ = 4

T i. i. d. INAR(1), ρ = 0.25

χ2 R0 R5 B0 B5 S χ2 W2

100 0.081 0.070 0.066 0.058 0.067 0.092 0.058 0.047

250 0.167 0.236 0.110 0.258 0.111 0.231 0.085 0.084

500 0.440 0.553 0.199 0.615 0.204 0.537 0.153 0.155

1000 0.846 0.893 0.378 0.932 0.400 0.907 0.338 0.278

NB-null, i. i. d. with μ = 5, n = 3.333

T PIG alternative ZIP alternative

χ2 R0 R5 B0 B5 χ2 R0 R5 B0 B5

100 0.065 0.078 0.075 0.070 0.074 0.766 1.000 0.913 1.000 0.978

250 0.093 0.146 0.105 0.138 0.108 1.000 1.000 1.000 1.000 1.000

500 0.131 0.275 0.173 0.271 0.183 1.000 1.000 1.000 1.000 1.000

1000 0.269 0.507 0.289 0.506 0.319 1.000 1.000 1.000 1.000 1.000

Table 14 Simulated power for integrated Stein-pgf tests with nominal level 0.05; see Sect. 5.3

T \ a i. i. d. Poi vs. Good i. i. d. NB vs. PIG i. i. d. NB vs. ZIP

μ = 4 μ = 5, n = 3.333 μ = 5, n = 3.333

0 2 5 0 2 5 0 2 5

100 0.236 0.273 0.134 0.120 0.138 0.110 0.602 1.000 1.000

250 0.484 0.532 0.295 0.181 0.211 0.190 1.000 1.000 1.000

500 0.780 0.815 0.570 0.277 0.346 0.322 1.000 1.000 1.000

1000 0.966 0.981 0.876 0.426 0.575 0.563 1.000 1.000 1.000
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