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Abstract

When modelling unbounded counts, their marginals are often assumed to follow either
Poisson (Poi) or negative binomial (NB) distributions. To test such null hypotheses,
we propose goodness-of-fit (GoF) tests based on statistics relying on certain moment
properties. By contrast to most approaches proposed in the count-data literature so
far, we do not restrict ourselves to specific low-order moments, but consider a flexible
class of functions of generalized moments to construct model-diagnostic tests. These
cover GoF-tests based on higher-order factorial moments, which are particularly suit-
able for the Poi- or NB-distribution where simple closed-form expressions for factorial
moments of any order exist, but also GoF-tests relying on the respective Stein’s iden-
tity for the Poi- or NB-distribution. In the time-dependent case, under mild mixing
conditions, we derive the asymptotic theory for GoF tests based on higher-order facto-
rial moments for a wide family of stationary processes having Poi- or NB-marginals,
respectively. This family also includes a type of NB-autoregressive model, where we
provide clarification of some confusion caused in the literature. Additionally, for the
case of independent and identically distributed counts, we prove asymptotic normal-
ity results for GoF-tests relying on a Stein identity, and we briefly discuss how its
statistic might be used to define an omnibus GoF-test. The performance of the tests
is investigated with simulations for both asymptotic and bootstrap implementations,
also considering various alternative scenarios for power analyses. A data example of
daily counts of downloads of a TeX editor is used to illustrate the application of the
proposed GoF-tests.
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1 Introduction

There is a huge literature on goodness-of-fit (GoF) tests for count distributions, i.e.,
which refer to a quantitative random variable (rv) with range being contained in the
set of non-negative integers, No = {0, 1, ...}. More precisely, if the counts might
become arbitrarily large (range Ny), they are referred to as unbounded counts, whereas
bounded counts can never exceed a specified upper bound N € N = {1, 2, ...} (range
{0, 1,..., N} C Np). The large majority of papers refer to independent and identically
distributed (i.1.d.) counts, and most often, the GoF-tests are designed with respect to
the null hypothesis of a Poisson (Poi) distribution, which constitutes the most well-
known model for unbounded counts, see Giirtler and Henze (2000) for a comprehensive
comparison. Some authors also allow for non-Poisson null hypotheses such as the
negative-binomial (NB) distribution (also unbounded counts) or the binomial (Bin)
distribution (bounded counts), see Kyriakoussis et al. (1998), Rueda and O’Reilly
(1999), Meintanis (2005), Beltran-Beltran and O’Reilly (2019), and GoF-tests for
bivariate count distributions have been developed as well, see Novoa-Mufioz and
Jiménez-Gamero (2014) and Hudecovd et al. (2021) as examples. The proposed GoF-
tests can be roughly classified into three groups. Some try to use as much information
as possible by defining test statistics relying on, e.g., the cumulative distribution
function (cdf) or the probability generating function (pgf), see Giirtler and Henze
(2000) and Luong (2020); Puig and Weil} (2020) for examples. These may lead to
broadly applicable tests that are, however, difficult to use in practice (bootstrap- or
simulation-based implementations). Also the GoF-test by Betsch et al. (2022) based
on a Stein characterization of the Poi-distribution belongs to this class; see Anastasiou
et al. (2023) for related references. Others consider statistics relying on frequency
distributions such as the famous Pearson statistic, further members of the power-
divergence family, or statistics from the family of scaled Bregman divergences (Cressie
and Read 1984; KiBlinger and Stummer 2016). These statistics commonly lead to
simple x2-asymptotics under the i.i.d.-assumption and are thus easily applied by
practitioners. Even more facile are statistics relying on moment properties, such as
Fisher’s index of dispersion or related statistics (Kyriakoussis et al. 1998), which are
easy to compute and have simple normal asymptotics. While GoF-tests from the first
two groups are often consistent against large classes of alternatives (omnibus tests),
they are not necessarily particularly powerful for any such alternative. Furthermore,
it is not possible to conclude from a rejection on the type of violation of the null
hypothesis. Therefore, the moment-based GoF-tests from the third group are valuable
complements as they may allow for a kind of “targeted diagnosis”. For example, if
Fisher’s index of dispersion exceeds the upper critical value and thus rejects the Poi-
null, we diagnose an overdispersed alternative distribution. Certainly, such moment-
based GoF-tests lack broad consistency by construction. They also cannot be expected
to be perfectly selective as, for example, features like skewness and excess are not fully
separated, see Horswell and Looney (1992) for such results. Nevertheless, the pattern
of rejections might give valuable insights into the type of violation(s) of the null model.
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The situation gets more complex if the data generating process (DGP) is not i.1.d.
but exhibits serial dependence, i.e., if the GoF-test is applied to a count time series; see
Weil3 (2018a) for acomprehensive discussion. Then, pgf-based GoF-tests such as those
of Meintanis and Karlis (2014), Schweer (2016) still require bootstrap implementa-
tions, now certainly an adequate type of time-series bootstrap such as those discussed
by Jentsch and Weil3 (2019). But for non-i.i.d. count time series, also Pearson-type
GoF tests are more demanding, because although closed-form asymptotics might still
be available, these are typically given by sophisticated quadratic-form distributions
rather than just simple y2-distributions (Weif 2018b). Only for the third group of
GoF-tests, there is still a chance for ending up with simple normal asymptotics, see
the dispersion and skewness tests analyzed by Schweer and Weifl (2014), Schweer
and Weil} (2016) as an example.

In what follows, we focus on this third group of GoF-tests, i. e., on test statistics rely-
ing on moment properties, and these are applied to time series consisting of unbounded
counts having Poi- or NB-marginals. However, we do not restrict ourselves to specific
(low-order) moments like in Schweer and Weif3 (2014), Schweer and Weil} (2016),
but we consider quite general moment statistics and their asymptotics instead. More
precisely, we discuss marginal GoF-statistics of the form T = ‘C(% Zthl g(X t))
for a vector-valued function g and some smooth function t (“functions of gen-
eralized means”), and these are compared to Top = r(E [g(X )]) computed under
some null hypothesis. As an example, for specific cases of Poisson null hypotheses,
Aleksandrov et al. (2022) defined statistics utilizing the Stein—Chen identity. Setting
T(u, v, w) = # and g(x) = (x,x fx), f(x + 1))T for some bounded function
f :No — R, such as f(x) = exp(—x), the resulting statistic falls within the afore-
mentioned class of marginal GoF-statistics. In a similar spirit, one may generalize the
idea of Kyriakoussis et al. (1998), who consider second-order factorial moments for
defining T. The use of factorial moments instead of, e. g., raw or central moments is
motivated by the fact that for many common count distributions, such as the aforemen-
tioned Poi- or NB-distribution, there exist simple closed-form formulae for factorial
moments of any order. These can even be extended to the bivariate case, see Sect.2
for a concise summary. While Kyriakoussis et al. (1998) only discussed the second-
order case, we shall consider quite general statistics defined by 7 (u, v, w) = ﬁ and
gx) = (x(r), X(r—s) x(x))T forsomel <s <r.Here,xg) =x---(x—k+1),k e N,
denotes the kth falling factorial (with x(g) := 1). S0 E[g(X)] = (i) hr—s)s () T»
where 11y = E[X )] is the kth factorial moment. It should be noted that several alter-
native notations for falling factorials and factorial moments exist in the literature, see
Johnson et al. (2005, pp. 2, 53). We also emphasize that throughout this article, x )
always denotes a falling factorial and should not be confused with an order statistic.

Our GoF-tests for unbounded counts are developed for the following null scenar-
ios: either a marginal Poi-distribution, or a marginal NB-distribution. The motivation
for considering the Poi-distribution is obvious, as it plays the role of the “normal
distribution” for unbounded counts. From a practical point of view, however, the
Poi-distribution is often not realistic, as it requires the variance being equal to the
mean (equidispersion). Instead, one is commonly confronted with a variance larger
than the mean (overdispersion), and in this case, the NB-distribution serves as the
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default choice. There is a large literature on GoF-tests that distinguish between dis-
tributions with different dispersion characteristics (such as the Poi-null against an
NB-alternative), see the aforementioned references. But it is also relevant (and actually
more demanding) to test between distributions having identical first- and second-order
properties. For example, the Poi-distribution is not the only one being equidispersed,
also the Good distribution may share this property (Wei3 2018a). Similarly, several
further distributions exist for overdispersed unbounded counts (Johnson et al. 2005),
such as the Poisson-Inverse Gaussian (PIG), Consul’s generalized Poisson (GPoi), the
Conway—Maxwell (COM) Poisson, or the zero-inflated Poisson (ZIP) distribution.
Thus, for being able to identify an appropriate model for the given count data, it could
be relevant to test a Poi-null against a Good-alternative, or an NB-null against a PIG-
or ZIP-alternative.

When turning to the time-series case and when looking at the asymptotics of
the GoF-statistics, also the respective bivariate extensions turn out to be important.
Therefore, we start our discussion with a concise survey of bivariate Poi- and NB-
distributions, see Sect.2. Then, we turn to corresponding count time series models in
Sect. 3. Later, closed-form asymptotics for the GoF-statistics can be derived if the lag-A
bivariate distributions are sufficiently “well-behaved,” in the sense that these are equal
to either a bivariate Poi- or bivariate NB-distribution (BPoi or BNB, respectively).
Therefore, the survey in Sect.3 concentrates on such types of count time series mod-
els where lagged pairs are BPoi- or BNB-distributed (note the analogy to the common
requirement for Gaussian processes in the real-valued case, where joint distributions
are multivariate normal).

During our research, we realized that there is a lot of confusion in the literature
regarding the most relevant NB-model in the aforementioned class; this is carefully
clarified in Sect. 3 and Appendix A. In Sect. 4, we present the general approach for con-
structing moment-based statistics, and we propose and analyze several novel GoF-tests
relying on factorial moments or Stein-type identities. In addition, Sect.4.4 sketches
how the Stein approach might be extended to develop omnibus GoF-tests for counts.
The performance of the novel GoF-tests is investigated with simulations in Sect.5,
and an illustrative data example is discussed in Sect. 6. Finally, Sect.7 concludes the
article and discusses several directions for future research. Proofs are provided in the
Supplementary Materials to this article.

2 On bivariate Poisson and negative-binomial distributions

The three most well-known distributions for a univariate count rv X are the Bin-,
Poi-, and NB-one, see Chapters 3-5 in Johnson et al. (2005) for a detailed survey.
A compact summary of definition and relevant properties is provided by Table 1.
Recall that the special case Y ~ NB(1, 7) leads to the geometric distribution, while
the variable Z := 1 + Y is said to follow the shifted geometric distribution with

pefz(2) = zpgfy (2).
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Table 1 Basic univariate count distributions: probability generating function pgf(z) = E [ZX ] and kth
factorial moment, p(x) = E[X )] withk € N

Distribution pef(z) (k)
Bin(N, ) with N € N, 7 € (0, 1) A—m+m)N Ny ¥
Poi(%) with 2 > 0 exp (AM(z — 1)) Ak

: -7 - 1—m\k
NB(n, 7) withn > 0, 7 € (0, 1) (1+15=a-2) (n+k— D (1=Z)

2.1 The bivariate Poisson distribution

The bivariate Poisson distribution BPoi(A1, A3, Ag) with parameters A1, A2, Ag > 0 is
defined as the distribution of the vector X := (¢1 +&9, &2 +£0) | with range N2, where
1, €2, €o are independent rv’s with &; ~ Poi(};) fori = 0, 1, 2. Thus, by the additivity
of the Poi-distribution, the marginals satisfy X; ~ Poi(lg + X;) for i = 1,2, with
marginal factorial moments w; ) = E[(X;)k)] given by u; x) = (ho + Ai)k . The
following properties of the BPoi-distribution are taken from Section 4 in Kocherlakota
and Kocherlakota (2014). BPoi(A1, A2, Ag) is determined by the bivariate pgf

pefy, x,(z1,22) == E[zf(1 zfz] = exp (M 21+ A2z2+ Ao 2122 — )».), ()

where Ao 1= Z,’zzo Xi. The conditional distribution of X{|X»> = x5, in turn, has the

pef N
2 02\™*2
pefy, |, (2) = (m) exp (M (z— 1)), 2

i.e., it is a convolution of Bin(x, )Q)‘T"AO) and Poi(X). The joint factorial moments
o) = E[(X1)@) (X2) )], 7, s € No, are

min {r,s}

Mr,s)y — H1,(r) M2,(s) = MI1,(r) H2,(s) . L) ’
= i) \i (Ao + A1) (Ao + A2)

1
3)
also see Supplement S.1. An expression for the probability mass function (pmf) of
BPoi(A1, A2, Ag) is provided in Section 4 of Kocherlakota and Kocherlakota (2014).

2.2 The bivariate negative-binomial distribution

A bivariate extension of the NB-distribution was introduced by Edwards and Gur-
land (1961), Subrahmaniam (1966), see Kocherlakota and Kocherlakota (2014) for
a detailed survey. With n > 0, my, m € (0,1), and myp € (—my o, 1) such that
e = 21'2:0 m; < 1 holds, the distribution BNB(n, 1, 2, o) is defined by the
bivariate pgf
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848 B. Aleksandrov et al.

pef ( )= < : - — )n
<1,%2) =
&lx,, x, (21, 22 1l—mz1—mz—m0z122

—n
TTe T T TT|
= (1 T T TR U T Tn 2 T o leZ) : 4

We have a Poi-limit for n — oo (Subrahmaniam 1966), namely BPoi(X1{, A2, Ag) if
nmi /(1 —me) — A; forn — oo.

Remark 1 Note that the original definition of BNB(n, 71, 72, 79) in Edwards and
Gurland (1961), Subrahmaniam (1966) requires a truly positive o, i.e., 79 € (0, 1).
But as shown in Proposition 3.1 (c) of Bar-Lev et al. (1994), we get a valid pgf (4) even
if we allow for 7y € (—mm2, 1). This can be seen by applying the (negative-)binomial
series to (4):

—n
pefy, x, (21, 22) = (1 — m)" ((1 —myz1)(1 — w2 22) — (w0 + 1 772) 11z2>

Z <n +k— ) (1 — )" (o + mim2)* 2K 24

(1 =7y z2)" 5 (1 — 7y zp)

has positive series coefficients as long as w9 + w172 > 0 (note that the negative-
binomial series (1 — ; z,')*"’k ,1 =1, 2, have positive series coefficients as well).

Inserting z; = 1 or zo = 1, respectively, into (4), it is clear that the compo-
nents of X ~ BNB(n, 7, 13, m)) are univariately NB-distributed, namely X; ~

NB(n, 1_2) and X, ~ NB(n, *”') Thus, the marginal factorial moments are

Uiy = (m+r — D (M) for i = 1,2. The joint factorial moments (- 1y
satisfy

Hrs) — K1,y M2, [ 1ex]

min{r,s} (n+r+s i— 1)(?) 70 (1= 74) i -
—He© Z ("Hh (((m + 7o) (772 +no)> - ) ’

(&)

see the proof in Supplement S.1. Finally, if 7o > 0, then the pgf of the conditional
distribution of X{|X> = x; can be decomposed as

T + 702 *2 1—m a2
f = , 6
Pelyir, (@) <n2+710 ) l—mz ©
i.e., the distribution of X |x7 is a convolution of the distributions Bin(x;, m’fm) and

NB(n+x3, 1 —m1). These and further properties of the BNB-distribution are provided
by Kocherlakota and Kocherlakota (2014).
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3 On Poisson and negative-binomial count processes

In Sect.3.1, we briefly survey important members of the Poisson integer-valued
autoregressive moving-average (Poi-INARMA) family, namely such having a BPoi-
distribution for any pair (X;, X;—,) with time lag 7 € N. Analogously, Sect.3.2
discusses a model, where we have BNB-distributions for any pair (X;, X;—j). This
model has been proposed for (at least) five times in the literature until now. We show
the agreement of these five proposals and discuss further relevant properties.

3.1 Poi-INARMA models

The first thinning-based models for count time series have been proposed by McKenzie
(1985), among others the first-order Poisson integer-valued autoregressive (Poi-
INAR(1)) model for unbounded counts. It uses the random operator “6 o of binomial
thinning (Bin-thinning) with thinning parameter 6 € (0, 1), see Steutel and van Harn
(1979), as a discrete-valued counterpart to the arithmetic operation “6 - (multipli-
cation). With X being a count rv, Bin-thinning is defined by requiring a conditional
Bin-distribution, namely 8 o X|X ~ Bin(X, 0). The additivity of the Bin-distribution
implies that we can rewrite 0 o X = ZiX:] Q;, where the counting series (Q;) com-
prises i.i.d. Bin(1, #)-variates being independent of X.

Definition 1 LetA > Oand p € (0, 1), and let the innovations (¢;)z be i.1i. d. according
to Poi()). Assume that all thinnings are performed independently of each other, inde-
pendent of (¢;)n, and that the thinnings at time ¢ and ¢; are independent of (Xs)g;.
Then, the process (X;)z defined by

Xy = poXi—1 + & @)

is said to be a Poi-INAR(1) process.

The Bin-thinning operator in Definition 1 might be interpreted as determining the num-
ber of survivors from the previous population X;_1, see Section 2 in Weif} (2018a) for
a detailed discussion. The Poi-INAR(1) process constitutes an ergodic Markov chain
with limiting marginal distribution Poi(u) with i = A /(1 — ). Thus, if initialized by
Xo ~ Poi(w), the process is stationary with = o2 = A/(1 — o) (equidispersion),
and its autocorrelation function (acf) equals p(h) = Corr[X,, X;,_p] = " h e N.
In particular, the pairs (X;, X;_j) are BPoi-distributed, namely as

(X2, Ximn) ~ BPoi( (1= p(n) . (1= p(0) . p(h) p): ®
see Alzaid and Al-Osh (1988), Weil3 (2018a) for these and further properties. There-

fore, properties of (X;, X;_j) can be deduced from Sect.2.1. In particular, we can
compute the factorial moments (i 5 (h) := E[(X,)(,) (thh)(s)] via (3):

min {r,s} - s p(h) i
Wiy (W) = gy gy = w0y <l> (l) i! (T) , )
i=1
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see Supplement S.2. Also note that (2) implies the decomposition Bin(x;_1, p)+Poi(})
for X;|x;—1, in agreement with Definition 1. Finally, the bivariate distribution (8) for
lag h = 1 agrees with the distribution in Section 2(c) of Phatarfod and Mardia (1973),
i.e., the Poi-INAR(1) model was already considered by these authors.

The BPoi-property (8) holds in exactly the same way also for different types of
Poi-INARMA processes (plugging-in the respective acf), namely for higher-order
autoregressions in the sense of Alzaid and Al-Osh (1990), see Weil3 (2018b) for details,
as well as for the moving-average-type Poi-INMA models (Al-Osh and Alzaid 1988;
Weil3 2008a). Because of this universal relevance of (8), when later discussing the Poi-
GoF-tests in Sect.4, we derive the asymptotics not for a specific time series model,
but for any time series model satisfying the BPoi-property (8).

Example 1 As a further illustrative example from the Poi-INARMA family, consider
the Poi-INMA (1) model defined by

X, = € + Boe_ with g € (0, 1), (10)

where Poi(A)-innovations lead to Poi(u)-observations with i = X (1 4+ 8). Here, the
acf satisfies p(1) = /(1 4+ B) and p(h) = 0 for h > 2 (Al-Osh and Alzaid 1988).

3.2 NB-IINAR(1) model

If being concerned with counts exhibiting overdispersion, i.e., where the marginal
variance o2 exceeds the mean W, the NB-distribution is the default model, recall
Sect.2.2. The Poi-INAR(1) model discussed in Sect. 3.1 can be modified in such a way
that the observations’ marginal distribution is NB, but the innovations’ distribution
as well as joint distributions are non-standard in this case (Weill 2008b). Since the
asymptotics for marginal GoF-statistics rely on the joint bivariate distribution of the
pairs (X;, X;_p), a sufficiently simple bivariate model for (X;, X;_j) (in analogy to
the BPoi-distribution (8) for several types of Poi-INARMA processes) is required for
being able to derive closed-form asymptotic expressions. Such a model for AR(1)-like
NB-counts is the iterated-thinning INAR(1) (IINAR(1)) model proposed by Al-Osh
and Aly (1992, Section 2); also see Wolpert and Brown (2011), Leisen et al. (2019),
Guerrero et al. (2022) as well as Phatarfod and Mardia (1973). The IINAR(1) model
recursion is similar to the INAR(1) recursion in Definition 1, but it uses a different
thinning operator, namely the iterated-thinning operator “®”. It can be understood

ITPRL]

as two nested thinnings (Weil 2008b), where first a Bin-thinning “o” with parameter
01 € (0, 1) is applied, and then another operator “x” with parameter 6, such that
016> € (0, 1) holds (the last condition is later required for achieving stationarity).

More precisely,

f1oX
01,0)®X = brx(010X) = Y Vi, (11)
i=1
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where the i.1.d. counting series (Y;) of the second operator has the mean 6,. Condi-
tioned on X = x, we have

X

Pl o@x (@) = PElyjon (pgfy (z)) = (1 — 01+ Oipefy (z)) . (12

and the conditional mean equals E [(01, 6r) ® x] = 01 0 x. Again, the relevance of
the requirement 61 6, € (0, 1) becomes clear, because for 6; 6, > 1, the operator
“@®” would not act as a “thinning” in the literal sense. It is possible, however, that the
second operator “6%” has 6, > 1 (as long as 61 6, < 1), whereas the Bin-thinning
“f10” is well-defined only for 67 € (0, 1).

In Al-Osh and Aly (1992) and Weil3 (2008b), the special case of iterated thin-
ning together with a geometric counting series is considered, while Wolpert and
Brown (2011), Leisen et al. (2019) use the shifted geometric distribution (recall
Sect.2) for this purpose. In Appendix A, it is shown that both constructions of the
iterated-thinning operator are equal in distribution, but the second approach has
a less restrictive parametrization. Thus, in what follows, we define the geomet-
ric iterated-thinning operator with a shifted-geometric counting series (Y;), namely
Y; ~ 1+ NB(, 1%{) with pgty (z) = az/(e + 1 — z), and by setting 61 = ﬁ 0
I4a

[04

and 6, = . Furthermore, to keep the notations simple, we shall use the shorthand

symbol p ®q x 1= (755 P> %) @ x for this operator. Altogether, see Appendix A,

1 _ X
R (13)

holds, with conditional mean E[(#La 0, %) ® x] =px.

Remark 2 Note that for @ > 1/p, we can decompose the pgf (13) as

* Dy _ (1+%ten\
f = (1 -l — (oflep=D) (z=1) — «
PElp@qx at+l—z a+1-z 1+é (1-2) ’

which is the product of the pgfs of Bin(x, O‘pa_l ) and NB(x, 1_%1). Sofora > 1/p, we

can represent the operator p ®, x as the sum of two independent operators, namely a
Bin- and NB-thinning applied to x. This is analogous to the convolution (6), also see
the discussion of (A.3) below.

The geometric iterated-thinning operator was first used by Al-Osh and Aly (1992) to
define the NB-IINAR (1) model.

Definition2 Letn,« > Oand p € (0, 1). Let the innovations (¢;)z be i.i.d. according
to NB(n, ﬁ) with mean . = n/a and variance ‘752 = %T“ We. Assume that all
thinnings are performed independently of each other, independent of (¢;)n, and that
the thinnings at time ¢ and ¢; are independent of (X;)s<;. Then, the process (X;)z
defined by

X = p®y Xi—1 + & (14)

is said to be an NB-IINAR(1) process.
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As shown in Appendix A, the NB-IINAR(1) process according to Definition 2 agrees
with the models in Wolpert and Brown, (2011, Theorem 1(4)), Leisen et al. (2019,
Eq. (3)) and Guerrero et al. (2022, Section 2.3) except a different parametrization, and
there is also a relation to the model in Gouriéroux and Lu (2019, Section 2). It also
agrees with a proposal by Phatarfod and Mardia (1973), although these authors do
not provide the data-generating mechanism in Definition 2 but define the model by its
bivariate pgf, see Appendix A for details.

Remark 3 Note that the DGP of Definition 2 has a quite intuitive interpretation as a
branching process with immigration. From the previous population X;_1, the fraction
(ﬁ p) o X;—1 survives until time ¢ and, in addition, may also reproduce itself, as
controlled by the count Z; ; ~ 1 + NB(l, ﬁ) for the ith survivor at time f. So
altogether, the part p ®, X;_ origins from the previous population X;_1, and it is
complemented by an independent immigration ¢; at time 7. For « — o0, the repro-
duction mechanism degenerates to just preserving the survivors p o X;_1, i.e., the
IINAR(1) recursion (14) reduces to the INAR (1) recursion (7) in this case. If, in addi-
tion, n/oc — A for a fixed A > 0, then the innovations ¢, get Poi(A)-distributed, i.e.,
altogether, the NB-IINAR(1) process converges to a Poi-INAR(1) process.

Al-Osh and Aly (1992) showed that the NB-IINAR(1) process according to Def-
inition 2 constitutes an ergodic Markov chain with limiting marginal distribution
NBm-ﬁQ——)ﬂwﬁ&wmwNBHNMMmew%h%ﬂwmwnM—nMaﬂ—

 Tra(l
p)), variance 02 = %lpf) w, and acf p(h) = p". As shown in Supplement S.3, we

obtain the joint bivariate pgf of (X;, X;_j) as

71,2 -
PEly, x, (21, 22 l—mz1—mz— 72122

withr = mp = 1227/ (@+ 1221) € (0. 1) and g = (ot/ (1 +or —op) = Z2) /(e +

h
%). So comparing to (4), we recognize that (15) is the pgf of the BNB-distribution.
In view of Remark 1, it is worth pointing out that 7y > —mjm is always satisfied,
h
and that o > 0 iff o > =5 .
Properties of (X;, X;—;) can be deduced from Sect.2.2. In particular, we can com-

pute the factorial moments (- 5) (1) via (5), see Supplement S.2:

Kr.s)(h) — iy sy [—lex]
min{r,s} (n+r+v i— 1

= () K(s) Z (nﬂ — Z( )pfh 1+a(1—p)) (1),

i=1 j=1
(16)

where pr) (o) = (141 — Dy (n+5 = Dy /(1 = p)) ™.
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4 GoF-tests for time series of Poi- or NB-counts

In what follows, we develop different types of GoF-tests for count time series
X1, ..., X7, which test the null hypothesis of either a Poi(x)- or NB(n, 7 )-marginal
distribution. To derive asymptotic normality based on the central limit theorem (CLT)
by Ibragimov (1962), we impose the following condition throughout this section:

Assumption A: (X;)z is «-mixing with geometrically decreasing weights.

Assumption A commonly holds for INAR-type models like those in Sect.3 (see
Doukhan and Fokianos 2012), and certainly for i.i.d. and M-dependent processes.
Furthermore, for being able to derive feasible closed-form asymptotics, we later also
require that lagged pairs of observations, (X;, X;_;), are BPoi-distributed in the case
of a Poi-null, and BNB-distributed for a NB-null (as satisfied by the models in Sect. 3);
these assumptions (which also imply the existence of moments) are detailed in Sect. 4.2
below.

4.1 General approach

As outlined in Sect.1, we focus on marginal GoF-statistics of the form T =
r(% ZLI g(Xt)), i.e., being functions of generalized means, where the function
g : Ng — R* and the smooth function 7 : R — R with some k € N have to be spec-
ified, and where the test decision relies on deviations of T from Ty = ‘L’(E [g(X )]).
The asymptotic distribution as well as a bias correction for T are derived in two steps
(assuming that all involved moments exist). First, the CLT in Ibragimov (1962) is used
to conclude that under the null hypothesis, g(X) = % Z,T: 1 8(X;) is asymptotically
normally distributed with (exact) mean u, = E[g(X)], i.e.,

ﬁ(g(X)—ug> S N(0.3,). where Ty = (0g:ij)i j—1... x

Og;ij = E[gi(Xt) 8j (Xt)] — Mg;i Mg;j
o0
+ 3 (Elei (X0 &5 (Xi-n)] + E[2;(X0) 8 (Xe-)] = 2 1gii 1 ).
h=1
(17
If, in addition, the bivariate distributions of (X,, X,_;) are symmetric, in the sense

that pgfy, x, ,(z1,22) = pgfy, x, , (22, z1) (“time reversibility”, as it holds for the
models in Sect. 3), then we even get

o0
og:ij = E[gi(Xs) gj(X)]—tgii g:j + 2 h; (E[gi (X)) g (Xi—n)] — 1gsi Mg;j>-

(18)
In the second step, we use the first-order Taylor expansion 7 (y) &~ t(g g) +D(y—n g)
where 7(p,) = To and D = grad 7(u,), to conclude that (“Delta method™)
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ﬁ(T—To) L N(0.62) witho?=D¥,D'. (19)

Finally, while g (X) is an exactly unbiased estimator of g ¢ the final statistic T usually
has a finite-sample bias with respect to T¢. Thus, a bias correction is useful, which
follows from the second-order Taylor expansion t(y) ~ T([Lg) +D(y— u,g) + % (y—
ig) T H(y — pg), where H is the Hessian of 7 in pug:

5 | — —
E[T] ~ T0+§E[(g(X)—ug)TH(g(X)—ug)][zex]

k
1 1
~ Tot+ o ;_1 hii og:ii + T E hijog.ij = ur. (20)

i<j

Using (19) and (20), the asymptotic implementation of the (two-sided) GoF-test at
level y looks as follows. With z,, denoting the (1 — y/2)-quantile of the standard
normal distribution, N(0, 1), the null hypothesis is rejected if T violates the critical
values ur¥z, T~ 172 g1 Here, the parameter values required for computing the critical
values are obtained by plugging-in the respective parameter estimates (see the details
below).

4.2 GoF-tests using factorial moments

The first class of tests is inspired by the dispersion test of Kyriakoussis et al. (1998).
But instead of considering only second-order factorial moments, we use factorial
moments up to order » € N for arbitrary » > 2 by defining 7(u, v, w) = ;- and
g(x) = (X(r), X(r—s). X(s)) | for some 1 <'s < r. So the test statistic becomes

with Ty, = — 10O @1

X5y Xor—s) [hGs) Gr—s)

where the values of r, s are selected by the user. This choice can be guided by com-
mon interpretations of rth-order moments: "I"(,,S) with » = 2 is a kind of dispersion
statistic, while » = 3 and r = 4 might be interpreted as skewness and excess statistics,
respectively. If, for example, the relevant alternative scenario has similar dispersion
properties like the null model but differs in terms of skewness, the choice r = 3
appears reasonable.

Adapting (18) to (21), we get

o0
Og; k) = Mik,)0) =y by + 2 h; (e ) — pgy k@) =2 own. (22)

Applying (22) to (19) and (20), we achieve the following result.

Theorem 1 Let the DGP (X,)7 satisfy the a-mixing assumption of Sect. 4, and define
A1 = o)/ (@) q)). Then, the distribution of the statistic T 5 according to
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(21) can be approximated by the normal distribution N(/LT( g % GTZ ), where the
r.s r,s)

s
bias-corrected mean is given by

/JL"I“(H) = T(r,s) (1 + % (Ar—s,r—s + As,s - Ar,r—s - Ar,s + Ar—s,s))v
and the variance by

Ug = T2r s Ar,r + Ar—s,r—s + As,s - 2Ar,r—s - 2Ar,s + 2Ar—s,s .
T (r,s)

The proof of Theorem 1 is provided by Supplement S.4. Note that in the special case
r = 2s (“symmetric statistic”), sor —s = s and To55) = W25/ ,u%s), Theorem 1
simplifies to

MT(ZSJ) - T(ZS’S) (1 + % € AS»S -2 AZS,S)),
2 2
O‘T(sz) = T(2s,s) (AZS,2S + 4 (As,s — Azs’s)).

As outlined in the beginning of Sect. 4, we now consider two null scenarios, namely

Poi-null: (X;, X;—p) ~ BPoi(A(h), A(h), Ao(h)) with A(h) = (1 — ,o(h))u and
Ao(h) = p(h) u like in Sect. 3.1, then

T = 1; or (23)
NB-null: (X, X;—p) ~ BNB(n, w(h), m(h), rro(h)) with

1 p) Cnf4 ) — 1+ p(h)
= = M = T o

like in Sect. 3.2, then
—1
(n+r =D _ (")
n+s— l)(‘v) n+r—s— 1)(,’_‘?) (”JFS*]) ’

N

T(r,s) = (24)

(Note that for the NB-IINAR(1) model according to Definition 2, we get

_ 1-p" _ a(l—p)/(+a—ap)—(1—p")
7(h) = Zamp i and o) = a(l—p)+1-ph )

Here, (23) or (24) serve as the null value T according to Sect. 4.1 if testing the Poi-
null or NB-null, respectively. The factorial moments i, 5) (%) required for (22) have
already been computed in (9) and (16). In Supplement S.5, we derive the following
result.
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Corollary 1 The Ay required for Theorem 1 compute as follows:
(i) For the Poi-null, it holds that
min{k,l} .
k\ (1 i! ® ;
A= Y ()()—(1 2y p(h)’).
= \i/\i/u =1
Moreover, in the case of the Poi-INAR(1) process, we get
min{k,l}

R\ (1 i) 1+ pt
A=Y ()()_ .
P i)\i)u1—p

(i) For the NB-null, it holds that

min{k,/} (n+k+l i— l) =) X
A= Y R Z( )l <o (142 5 007).

i=1 j=1 h=1

Moreover, in the case of the NB-IINAR(1) process, we get

min{k,l} (n+k+l—i—1)(k) i

) . i L4 p/ J
= B )22

i=1 ! j=1

Example2 In Kyriakoussis et al. (1998), only the case of the second-order statis-
tic T(z 1y is considered. For the AR(1)-like acf p(h) = , see Supplement S.6,
Theorem 1 together with Corollary 1 then yields for the

(i) Poi-null:

1+p 2 2 142,
N = 1 - 1 I+4p fo s = =
Hta Tu T- Tan W2 T-p?
(ii) NB-null:
2
e = nEl(] 2 Malop) 1) g2 20D (lred=p) g4
T(Z,l) n T n lfp ’ T(Z,l) n3 1—,02 .

In fact, Kyriakoussis et al. (1998) restrict to the special case of i.i.d. counts, and they
do not consider the above bias correction Plugging-in p = 0 into the expressions

for O'T , and using the notation 6 = 17— + for the NB-null, we confirm the results in
@1

Sections 3.1 and 3.3 of Kyriakoussis et al. (1998).

Corollary 1 can be used for testing the null hypothesis of a Poi-INAR(1) or NB-
IINAR(1) model, respectively (or of i.i.d. Poi- or NB-counts), as outlined in the end
of Sect.4.1. In particular, if we take the alternative from the same model families,
Corollary 1 also allows to do an asymptotic power analysis. While comprehensive
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Fig. 1 Asymptotic power curves of T(,,X)-tests (5 %-level) for null hypotheses a Poi-INAR(1) (so ng =
o00) and b NB-IINAR(1) with ng = 10 (see dotted lines). NB-IINAR(1) alternatives with n # ng and
0'2/,u =1+ p/n,where u =5, p = 0.3, and T = 250 are kept fixed

simulation-based analyses are later presented in Sect.5, let us now have a first look
at some asymptotic power curves. Figure 1 considers the null hypothesis of a Poi-
INAR(1) model in (a), and of an NB-IINAR (1) model in (b). Here, the alternatives are
taken from the NB-IINAR(1) family in such a way that mean p and acf parameter p
remain fixed, and only the dispersion structure changes (as controlled by 7 or 6 /11 =
1 + u/n, respectively). We consider the “dispersion statistic” T(zﬁl), the “skewness
statistic” "i"(g,l), and the “excess statistics” T(4,1), T(4,2). Among these test statistics,
always T(z,l) shows the best power in Fig. 1 (followed by ’i“(3,1)). Note that in (b), we
have better power properties regarding increases of dispersion (decreasing n), i.e., for
detecting relative overdispersion. The dominance of the dispersion statistics in Fig. 1
is not surprising as the alternatives primarily differ from the null in terms of dispersion;
this also agrees with the findings in earlier studies such as Schweer and Weil} (2016);
Puig and Wei3 (2020); Aleksandrov et al. (2022). Thus, later in Sect.5, we shall
focus on such alternative scenarios where the dispersion does not differ from the null
scenario, but the remaining shape properties do. Then, the higher-order "I"(,,s) -statistics
shall turn out to be more useful than T(z, -

We conclude this section with a note on how to apply Corollary 1 in practice.
In the case of AR(1)-like counts, the Ax; depend on p and p = p(1), the true
values of which we do not know in real applications. Thus, it is necessary to plug-in
parameter estimates instead, where we use the sample mean  := x and the lag-
1 sample acf p = p(1) (if the tests are applied to i.i.d. counts, only p and X are
required). These moment estimators of 1, p are /T -consistent, so Slutsky’s theorem

implies that /7 (’1"(”) — i, X))/O'T( 5 4 N(0, 1) still holds if s, p are replaced by

[, p in the formulae for K, 0 O,

4.3 GoF-tests using Stein’s identity

Stein (1972, 1986) developed the idea to characterize (discrete or continuous) distri-
butions by types of moment identities. Such Stein identities are available for several
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common discrete distributions, see Sudheesh and Tibiletti (2012) and Betsch et al.
(2022), including the Poi-case (then it is referred to as the Stein—Chen identity) and
the NB-case. In Aleksandrov et al. (2022), the Stein—Chen identity

E[XfX)] = pE[f(X + D] (25)

of the Poi(u)-distribution is utilized to develop moment-based GoF-tests for Poi-count
time series. Among others, they considered the statistic (referred to as “7>” in their
article)

froi _ X0 (26)
X f(X+1)
where
Jlf"i = E[X7X0] equals 1 under the Poi-null. (27)
E[XIE[f(X + 1]

As discussed by Aleksandrov et al. (2022), f can be interpreted as a weight function
and should be chosen by the user with respect to the anticipated alternative scenario. For
overdispersed alternatives, for example, it is reasonable to assign increasing weight
to increasing counts — note that (26) with f(x) = x is closely related to Fisher’s
dispersion index. For equi- and underdispersed as well as zero-inflated alternatives,
by contrast, the choice f(x) = exp(—x) showed a promising power performance in
the simulations of (Aleksandrov et al. 2022), where now most weight concentrates on
low counts. Later, we focus on this special case for asymptotic calculations, but our
general approach is applicable to different choices of f as well.

In the sequel, we complement the approach of Aleksandrov et al. (2022) by devel-
oping Stein-type GoF-tests for NB-count time series. According to Sudheesh and
Tibiletti (2012), the Stein identity for the NB-distribution with mean . > 0 and param-
eter n > 0 (recall from Table 1 that an NB-distribution parametrized in n, & > 0 has

"_) can be denoted as

n:n-ﬁ-/t

(n+w E[X f(X)] = nE[(n+X) f(X+ 1], (28)

which (after having divided both sides of (28) by n) converges to (25) forn — oo. In
analogy to (26)—(27), using the hypothetical value n = ng, we now define

T?B _ _(no+X) Xf(X) ’ (29)
X (no+X) f(X+1)
where
NE (no + E[X]) E[X f(X)]

o= equals 1 under the NB-null. (30)
E[X]E[(no+ X) f(X + 1]

In Aleksandrov et al. (2022), it was shown for statistic T}’-Oi under the Poi-null that it
is possible to find a general closed-form expression for the asymptotic distribution
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Table 2 Examples of mgf (1) = E[e" X7 and its derivatives

v (u) ¥’ () ¥ (u)

Poi(p) with i > 0:
exp(u(e’ — 1)) V) et ) e (1 + ey
NB(n, ) with

n,u=>0

and

T = ﬁ:

n n nuet nue“(n-i—/L-i—n,ue”)

(n+u(1—e”)> lM)nﬂi(l—e“) v (l’l+li(lfe”))2

of such a Stein-type statistic. The asymptotic implementation of the correspond-
ing tests in practice, however, is often demanding such that a parametric-bootstrap
implementation is clearly preferable (see Sect.5 for further details). Thus, in the
sequel, we present asymptotic derivations only for the illustrative case of i.i.d.
counts using the particular choice f(x) = exp(—x). Note that Stein-type statistics
using f(x) = exp(—x) are closely related to the rv’s moment generating function
(mgf) ¥ (u) := E[e"*] = pgf(e"), because then E[ f(X + 1)] = e~ y(—1) and
E [X f(X )] = ¢'(—1). Relevant examples are summarized in Table 2; also see Egs.
(S.8)—(S.10) in Supplement S.7.

Let us begin with the Stein—Chen statistic (26). Then, the following asymptotics
hold for the case of i.i.d. Poi-counts and i.i.d. NB-counts (for the parametrization
used in Sect. 3.2, this implies p = 0 and o = n/u), respectively.

Theorem 2 Let (X;)z be i.i.d. with existing moments, set f(x) = exp(—x). The

asymptotic distribution of T&(g from (26) is N(4poi s % U%Poi), where:
exXp exp

(i) If (Xy)z isi.i.d. according to Poi(w), then
wigg =1+ 7 exp(u (1 —e™H?) (1 =),

szeljg = exp(pu (1 — e’l)z) (% +- e’l)z) B %

(ii) If (Xt)z isi.i.d. according to NB (n, an-lL) with mgf V¥ (u), see the second row in
Table 2, then

.. . _ TPoi 1 e
Hige = Texp + 7 5D

(w’(—1>02 _YEh e 9D w’<—1>w<—2))

+
w? w u (=)  P(=1D Y (—1)?
2 / 2 2 / " ’ 3
2 _ e V(D202 5 y(=DyY" (=D " Y/ (=1)°
T T (l“/fH)) ( 2 2 n +V=2) + 2 5
A Y DY (D) YD Y (D)
2 Y(=1) + Y(—1)2 )
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Poi _ —1y\~!
where T, (1~|—%(1—e )) .

exp

The proof of Theorem 2 is provided by Supplement S.7. Note that the results of part (ii)
converge to those of (i) for n — oo. Next, we consider the NB’s Stein statistic (29)
and derive its asymptotics for the same scenarios as in Theorem 2.

Theorem 3 Let (X,)y be lAl d. with existing moments, set f(x) = exp(—x). The
asymptotic distribution of Tg(g Sfrom (29) is N(pt4np » % U%NB), where:
exp exp

(i) If (Xy)z isi.i.d. according to Poi(w), then

~1 -2 —1
. _ NB 1 M(l—e*])z ) ng (no+u) ((]—e ) (no+e “p)—e ) eno
Higg = Top T 7 (e (no+e~Tp)? + Gengtn? )

O’AZNB — it (l—e™hH? 1 () (i + 1 - 8_1)2) N "‘23(n0+u (27671))

™G (no+e~p)* wlnote=lp)d
no +
where Tg(g = O—/f.
no+e 'pn
(ii) If (X;)z isi.i.d. according to NB(n, niﬂ) with mgf ¥ (u), see the second row in

Table 2, and if A(u) := ' (u) + ng ¥ (u), then

re_ _ 2
ILTEI;I(E — ’TeI\)I(IS + % MAE(’E)I)z (]//( l);;( Do 4 %(w/(_l)z _ w(_l)w//(_l))

+4E (- AG2) — Y (=D (-2) + no‘/f’<—2>)))’

20 (=12 02 /
P ¥ (=D 200+ Y’ (=1) 2
i = (i) (LGH + 25D (/12 =y 9

§ e (w(—l)%p“(—z) — 2y (=Y (=D (=2) + w/(—1)2¢(—2))),

TNB _ € (no + ) ¥'(=1)

where Ty, = LACD

The proof of Theorem 3 is again provided by Supplement S.7. The results of Theorem 3
converge to those of Theorem 2 for n9p — oo. Note that the DGP’s parameter value n
in part (ii) might differ from the null value n¢ used form computing the Stein statistic
(29). Also note that for applications in practice, the sample mean X is plugged-in
instead of u in the asymptotics of Theorems 2 and 3, recall the analogous discussion
in the last paragraph of Sect.4.2.

Like in Sect. 4.2, Theorems 2 and 3 can now be used for asymptotic power analyses:
using Theorem 2, we can test the Poi-null against an NB-alternative, while Theorem 3
allows to test an NB-null against Poi- and NB-alternatives. This is illustrated by Fig. 2.
In part (a), the Poi-null is violated in favour of increasing dispersion, and as expected
from Sect. 4.2, the dispersion test T(z, 1y performs best. But it is interesting to note that
the Stein—Chen test T;Oi performs similarly well for strong overdispersion, where the

p
NB-distribution also exhibits considerable zero inflation. Part (b) refers to the opposite
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Fig. 2 Asymptotic power curves of Stein tests and some 'i“(r,_y)-tests (5 %-level) against NB-alternatives
Poi

with n # ng and 02/,u =1+ pu/n, where u = 2.5. a Poi-null with 7" = 100 using Texp,
null (ng = 1) with 7' € {100, 250} using ng

and b geometric

situation, where T(z, 1y and TSNXIS are applied to a geometric null (i.e., NB withng = 1),
and where increasing n causes decreasing dispersion (i.e., underdispersion w.r.t. a
geometric distribution). Now, the Stein test is superior, which agrees with analogous

findings for a Poi-null in Aleksandrov et al. (2022).

4.4 Omnibus GoF-tests using Stein’s identity

As outlined in Sect. 1, the main aim of this article is to present a variety of moment-
based GoF-tests for Poi- and NB-counts that can be used for a kind of targeted
diagnosis. But especially the flexible Stein approach described in Sect.4.3 could also
be used to construct omnibus GoF-tests being powerful against a large class of alter-
natives. This shall be briefly demonstrated in this section for the special case of testing
the null hypothesis of i.1i.d. Poi-counts, and for a particular class of weight functions
(see the details below), while a more comprehensive analysis is recommended for
future research, see Sect.7.

While the construction of the GoF-tests in Sect.4.3 is based on a single weight
function f (where we focused on f(x) = exp(—x) for illustration), we extend this
approach and equip the functions g and f, respectively, with an additional index s €
[a, b], wherea, b € Rwitha < b.Thatis,weconsiderT(s) = t(% Zszl g, (X[)) for
aclass of vector-valued function g, with s € [a, b] and some smooth function t. Then,

to construct a marginal GoF-statistic, we compare the whole function (T(s))s cla.b] with

(To (s))se[a p» Where To(s) = 7 (Elg,(X)]) is computed under some null hypothesis.
There are different ways to do this comparison, see Giirtler and Henze (2000) for an
overview. For instance, one could consider the maximum distance

. &1V

T(s) =T
max | T(s) — To(s)
the (integrated) L2-distance

? (46) - To(o))” ds. (32)
[ )
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or the weighted L>-distance

b, 2
/ (T(s)—To(s)) w(s) ds (33)

for some weight function w : R — [0, 00). As mentioned above, we shall focus on the
null of i.1. d. Poi-counts for illustration, i.e., on GoF-test statistics utilizing the Stein—
Chen identity (25). Like in Sect.4.3, we set t(u, v, w) = ﬁ but allow for a whole
class of vector-valued functions (gs)selu’b] with g, (x) = (x, x fy(x), fy(x+1)T for

afamily of bounded functions ( fS)s cla.b] with f; : No — R. For example, considering
the function f(x) = exp(—x) discussed before, a natural class of functions could be
defined by setting f,(x) = exp(u x), which would lead to mgf-based GoF-tests. But
other choices leading to well-known quantities are also possible, such as pgf-based
GoF-tests based on f;(x) = s*, which are related to the mgf-based ones by setting

u = Ins. In this regard, the Stein—Chen identity (25) can be extended to read
E[X f((X)] = pE[fs(X+D]. s€la.bl, (34)
which can be accordingly utilized to construct a whole class of moment-based GoF-

test statistics for i.i.d. Poi-rv’s. For instance, adopting the approach from Sect.4.3
with 7 defined above, (26) leads to the statistic

~Poi Xfs(X)
TPOl = =—, . b , 35
o (s) XX 1D s €[a, D] (35)
and
. ElX fi(X
Tl;m(s) = [ /s )] equals 1 under the Poi-null (36)

E[X]E[f;(X + D]

for all s € [a, b]. In what follows, we focus on the special case of f;(x) = s* for
asymptotic calculations, but our general approach is applicable to different choices
of f; as well. Then, the following asymptotics of the Stein—Chen statistic (35) hold
for the case of i.1.d. Poi-counts.

Theorem 4 Let (X;)z be i. L. d. with existing moments, set f;(x) = s~ fors € [a, b],
where a > 0. Then, ~/T (Tvlio‘(s) — Tvlio‘(s)) converges weakly to a centered

Gaussian process (G (s))

s€la,b]

with mean function (Mrfpoi (s)) and covariance
KRd

s€la,b] s€la,b]

kernel (aﬁoi (s1, SZ))sl,xze[a,b]‘

In particular, if (X;)z is i.i.d. according to Poi(w), then ’l;li"i(s) =1, and we get

1
Hra () = — (1 =) exp(pu(s = ?),

1 1
Ogroi (51, 52) = (; +(s1 — D(s2 — 1)) exp(u(si — D(s2 — 1) — o
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The proof of Theorem 4 is provided by Supplement S.8. Note that Theorem 4 implies
Theorem 2 (i) by setting s = 51 = 52 = e 1.

Now, we can make use of Theorem 4 for testing the null hypothesis of (X;)7 being
1.1.d. according to Poi(u). In analogy to Rueda and O’Reilly (1999) and Meintanis
(2005), we consider the integrated L2-distance (32), where the integration runs from 0
to 1. To avoid division by zero in (35), however, the lower integration bound is chosen
as some & > 0, where ¢ is close to zero (for our simulations in Sect.5.3, we used

e = 1073). Then, by the continuous mapping theorem, we immediately get
! ~Poi 2 ' 2
T / (Tsxm(s) — 1) ds = / G (s)ds under the Poi-null. 37
& &

For the practical implementation of the omnibus GoF-test (37), we follow Meintanis
(2005) and use a parametric bootstrap scheme, see Sect. 5 for details.

5 Simulation experiments

In Sects.5.1-5.2, we analyze the finite-sample performance of the GoF-tests devel-
oped in Sects. 4.2 and 4.3 by simulations. We consider both asymptotic and bootstrap
implementations, where the reported rejection rates rely on 10* replications. We always
use two-sided critical values with level 5 %, which are computed as the 2.5 %- and
97.5 %-quantiles from either the asymptotic normal distribution according to Sects. 4.2
and 4.3 (plugging-in parameter estimates instead of the population values), or from
the generated bootstrap sample (with 500 bootstrap replicates). The used bootstrap
scheme depends on the type of DGP: If the tests are applied to i.i.d. counts as dis-
cussed in Sect. 5.1, the parametric i. i. d.-bootstrap is considered (where u is estimated
by the sample mean), while for the AR(1)-like counts of Sect.5.2, the parametric
INAR bootstrap of Jentsch and Weif3 (2019) is used (with parameters estimated based
on sample mean and lag-1 sample acf), which has been proven to be consistent for
statistics belonging to the class of functions of generalized means (as they are consid-
ered here). Note that for the bootstrap implementations of the GoF-tests developed in
Sects. 4.2 and 4.3, 10* replications are still possible as only sample moments have to
be computed for executing the tests, but neither numerical optimization nor integration
are necessary.

For the power scenarios (recall the discussions in Sects.4.2 and 4.3), we restrict to
alternative scenarios of “relative equidispersion”, i.e., the dispersion (as well as mean
and acf) agree with the respective null model, but further shape properties (such as
higher-order moments or zero probability) differ. Here, our main focus is on the NB-
case, as tests for a Poisson null (against equidispersed alternatives) have already been
investigated to some part by Schweer and Weif3 (2016), Aleksandrov et al. (2022). For
the NB-null, where suitable, we use the NB-index (NBI) test by Aleksandrov (2019)
as a further moment-based benchmark. Additional competitor tests are considered in
Sect. 5.3, where we also provide some simulation experiments regarding the omnibus
Stein GoF-test of Sect.4.4. The subsequent discussion refers to the rejection rates
being tabulated in Appendix B.
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5.1 Size and power for i.i.d. counts

Table 5 shows simulated sizes for the null hypothesis of i.1. d. Poi(xt) counts, where the
low mean scenarios, i € {0.5, 1, 2, 4}, are the same as in Schweer and Weif3 (2016),
and these are supplemented by the larger means i € {10, 15}. For the very low means
n € {0.5, 1}, the T(r, s)-testwithr = 3 and especially r = 4 tends to strong undersizing
if implemented asymptotically, and at least for » = 4, we still have undersizing if using
a bootstrap implementation. This can be explained by the fact that the factorial x4,
becomes zero if x < 3, which often happens for u € {0.5, 1}. Therefore, rejections
are essentially only possible if the upper critical value is violated.! Furthermore,
the true distribution of the higher-order T(r, 5)-statistics is somewhat skewed for low
sample sizes T, which implies a deviation from the asymptotic normal distribution,
but which is captured well by the bootstrap implementation. With increasing n and T,
however, the sizes of the T(,,S)-test clearly improve for both implementations. For the
Stein—Chen test Tg(‘g, the opposite pattern is observed, namely a deterioration of the
asymptotic implementation’s size for the large means v € {10, 15}. This is caused by
the fact that the weighting function f(x) = exp(—x) puts most weight on low counts
(close to zero), but these are hardly observed for u € {10, 15}. It should be noted
that the bootstrap implementation of the "i"ggj—test leads to reliable sizes throughout.
Table 6 shows corresponding sizes for the null of i.i.d. NB (n niu ) -counts. Generally,
we observe the same pattern as in the Poisson case, i. e., the asymptotic implementation
of the T(,,S)—test shows undersizing for low ., while this happens for the Tg(g—test for
large . The bootstrap implementation guarantees good size properties throughout.
For means y < 5, we also considered the NBI-test of Aleksandrov (2019) as a further
competitor (for larger p, the NBI is not computed as it relies on the frequency of
zeros, which are hardly ever observed in such a case). However, the sizes of the
NBTI’s asymptotic implementation are often much larger than 5%, i.e., we have a
severely increased rate of false rejections. Again, a bootstrap implementation leads to
reliable sizes (but not for the large means skipped in Table 6). Altogether, the newly
proposed T(r) $) Tei‘g-, and 'i"eNXE -tests have rather reliable sizes, and if deteriorations
are observed, these are mainly lower deviations, leading to a conservative test.

Let us now turn to a power analysis of the proposed tests. Table 7 shows power
values for the i.1. d. Poi(u)-null, but where the i. 1. d. counts follow a Good distribution
(Weill 2018a, p. 219) with mean and variance being equal to . Such an alternative
scenario was also investigated by Schweer and Wei3 (2016), who demonstrated that
the equidispersed Good distribution has larger skewness and excess than a Poisson
distribution. For the very low means p € {0.5, 1}, the skewness test T(l 1y performs
best, although the power is generally rather low. For the medium means u € {2, 4},
the Tgf;,i-test is the best choice, in accordance with Aleksandrov et al. (2022), whereas
we have an ambivalent picture with the large means v € {10, 15} if using asymptotic

implementations, the T4 2)-test is preferable, whereas the Tg(opf-test succeeds again

under bootstrap implementation. For the T(,,S)—tests with r > 3, the results of Table 7
indicate that the use of the bootstrap implementation is even detrimental: the power

1 Also note that sometimes (mainly © = 0.5, T = 100, and (r, s) = (4, 1)) we got a zero in both the
numerator and denominator; such an ambiguous result was not counted as a rejection.
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values are usually somewhat lower than for the asymptotic implementation, whereas
the sizes are larger, recall Table 5.

For the null of the NB (n, ﬁ)—distribution, we consider two types of alternative
with “relative equidispersion” (1.e., having the same mean and variance as the NB-
null): the Poisson-Inverse Gaussian (PIG) distribution exhibiting strong skewness to
the right (Willmot 1987), and the ZIP distribution with its additional point mass in zero
(Weil3 2018a, p. 220). The power values for the PIG-alternative in Table 8 show that the

TeNXE—test has superior performance for low mean and strong overdispersion, (i, n) €

{(1.5, 1), (5.3.3)}; recall that the power values of the NBI are well interpretable only
for the bootstrap implementation because of the size distortions in the asymptotic case.
With increasing n and decreasing overdispersion (i. ., increasing n), we generally have
lower power values, and now T(4,2) often has the best power. However, in analogy to
the Poi-case of Table 7, the asymptotic implementation of the "I"(r,s)—tests appears
preferable in practice, as we get a larger power together with lower sizes (although
leading to a conservative test).

The power values in Table 9 refer to the ZIP-alternative. As already noted above,
the statistics T(m) with 7 > 3 can hardly violate their lower critical value for low 1,
which explains their bad power in this case. With increasing p, however, their power
improves and reaches rather high values. By contrast to our previous power analyses,
the use of the bootstrap implementation clearly improves the power of the T(r,s)-tests
regarding the ZIP-alternative. Nevertheless, the clearly best choice for uncovering the
apparent zero inflation is the Stein statistic Tg(B, which agrees with the analogous
findings of Aleksandrov et al. (2022) for the Stein—Chen test in the Poisson case. For
u < 5 and if using a bootstrap implementation, the NBI performs similarly well, but
the Stein statistic TeNX]S is more widely applicable and performs very well also if using
the more simple asymptotic implementation.

5.2 Size and power for AR(1)-like counts

As the next step, we analyze the additional effect of serial dependence on size and
power of the proposed tests. For this purpose, we extend our simulations to AR(1)-like
counts with dependence parameter p, namely to the null hypotheses of either Poi(u)-
counts generated by an INAR(1)-DGP, or NB (n #)-counts by an IINAR(1)-DGP,
recall Sect. 3. As computations are more demanding in the dependent case (especially
the bootstrap implementations are much more time consuming now), we restrict our
simulations to selected scenarios from Sect. 5.1. While the choice of the null models is
obvious, the selection of alternative scenarios is more demanding. The common way
of causing non-Poisson counts X; within the INAR (1) model is to choose non-Poisson
innovations €, according to a specific model. For example, if ¢; has the equidispersed
Good distribution like in Sect. 5.1, then the X, are also equidispersed and non-Poisson
(but not following a Good distribution anymore, i.e., only the Poisson distribution is
preserved by the INAR (1) DGP). Special features of the innovations ¢, (beyond mere
dispersion) reach the observations X; more and more dampened with increasing p.
For example, zero inflation fades out with increasing p, see Weil et al. (2019). In
numerical experiments with the IINAR (1) model, however, where even two thinnings
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are executed one after the other, this dampening effect was further intensified. While
we can easily choose ZIP-distributed €; such that mean and variance of the IINAR(1)
model are preserved, the resulting X, hardly exhibit any zero inflation. For this reason,
we decided to use again the INAR(1) DGP for defining alternative scenarios. More
precisely, we define the NB-, PIG-, and ZIP-INAR(1) alternatives (all having a non-
NB marginal distribution) such that they have the same mean, variance, and acf as
the null NB-IINAR (1) model. Just to avoid confusion: even the NB-INAR(1) process
(with its NB-distributed innovations) has a non-NB marginal, although the difference
to the null’s NB (n, - _’if )—distribution is quite small.

Let us start with the null of Poi-INAR(1) counts and the alternative of INAR(1)
counts having equidispersed-Good innovations ¢;, for p = 0.25. Comparing the sizes
in the upper block of Table 10 to the corresponding i.i.d.-sizes in Table 5, we recog-
nize a rather similar pattern: The asymptotic implementations of the T(r,s)—tests tend
to undersizing for low p and T, whereas the bootstrap implementations of all tests
are uniquely close to the nominal 5%-level, but with a slight tendency to oversizing.
Altogether, the effect of serial dependence on the sizes appears negligible. This is
different for the power values in the lower block of Table 10 compared to Table 7: in
accordance with analogous findings in previous studies (e. g., Schweer and Weil3 2014
and Schweer and Weil} (2016)), an increase in serial dependence causes a decrease
in power. Besides this general loss in performance, the other conclusions of Sect.5.1

remain valid: the bootstrap implementation of the Telj&)i-test usually leads to the best

power, and the T(,,S)—tests have a higher power and lower size under asymptotic imple-
mentation.

Next, let us turn to the NB-case. For the sizes in the upper part of Table 11 (to
be compared to the i.i.d.-sizes in Table 6), we draw an analogous conclusion as in
the Poi-case, namely that there is hardly any effect of the apparent serial dependence.
The asymptotic implementations of the T(r,s)-tests tend to undersizing for low u
and T, whereas the bootstrap implementations of all tests are close to (but somewhat
larger than) the nominal 5%-level. For the power simulations, we get a more complex
picture. The power values in the lower part of Table 11 are more of theoretical rather
than practical interest, as the NB-INAR(1)’s marginal distribution is very similar to the
NB-null. Nevertheless, the T, ,-tests with r > 3 and especially the T5-test exhibit
mild power, caused by the different data-generating mechanism.

The practically relevant alternative scenarios, namely PIG- and ZIP-INAR(1), are
summarized in Table 12 (to be compared to Tables 8 and 9, respectively). The power
values for the PIG-alternative generally show the same pattern as in the i.i.d.-case,

i.e., a superior performance of Tg(g-test for low mean and strong overdispersion,

while T(4,2) makes up with increasing p and decreasing overdispersion (i. e., increas-
ing n). But interestingly, the power values for p = 0.25 are usually larger than in
the i.1.d.-case, which can be explained by the combined effect of the change in the
marginal distribution and that in the data-generating mechanism (for the latter, recall
the power values in the lower part of Table 11). This is different from the ZIP-case,
where we have worse power in the presence of serial dependence (caused by the

aforementioned dampening effect of the thinnings). Nevertheless, the ng-test is very
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powerful in detecting zero inflation, and also the bootstrap implementation of the
T 4,2)-test does rather well.

5.3 Power analysis of competitor tests

In Sects.5.1 and 5.2, we recognized that the novel GoF-tests have attractive power
properties, where, by design of the GoF-statistics, the individual performance depends
on the type of violation of the null hypothesis. To be able to judge their performance
with respect to existing GoF-tests, this section discusses simulated power values for
some well-established competitors (if available at all for the considered null hypoth-
esis). As most competitors are computationally much more demanding, we restrict
our analyses to selected competitors and alternative scenarios, but we still use 10*
replications per scenario (and 500 bootstrap replications where necessary). All tests
of this section are equipped with an upper critical value only.

For testing the Poi-null under i.i.d. assumptions, many possible competitors are
surveyed by Giirtler and Henze (2000). In what follows, we focus on the pgf-based
tests presented there, as these are among the most powerful tests, and as the Stein-type
GoF-tests "i"eljgj, Tg,ﬁ‘; are related to the pgf as well, recall Sect. 4.4. While the pgf under
the null, pgf(u| ), depends on the mean p, estimated by i := X as before, the sample
pef p/g\f(u) is itself computed as a type of sample mean, namely p/g\f(u) = uX. The
two types of pgf-based GoF-tests in Section 2.3 of Giirtler and Henze (2000) are

L, 2
R, = T/ (pgf(u)—pgf(ulﬂ)) u du,
0 (38)

1 . P 2
By =T f (& pef) — pet () du.
0

Here, a = 0 corresponds to not using any weight, whereas a > 0 puts more weight
near the end of the integration interval; if weights are useful at all, Giirtler and Henze
(2000) recommend the choice a = 5. Besides (38), we also consider the traditional
Pearson statistic x2 (see WeiBl 2018b) as well as the GoF-test in Section 5 of Betsch
et al. (2022). The latter test has been selected as a further competitor as it also utilizes
the Stein—Chen identity (25) in some way:

> N2
s=Y (l-A/xX+D)1Ixzh - TX=5) ", (39)
k=0

Here, 1(-) denotes the indicator function.

For testing the NB-null under i.i. d. assumptions, again the Pearson statistic x> (see
Weif3 2018b) is considered, as well as the modified versions of (38) proposed by Rueda
and O’Reilly (1999) and Meintanis (2005). While R, looks like in (38) but using the
NB’s pgf, the NB-counterpart to B, in (38) is

1 - - 2
B, = T/O (,&pgf(u)—(l—i-,ll/l(l—u))pg{(u)) u® du. (40)
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While we are not aware of any GoF-test for the null of an NB-IINAR(1) model,
two competitors for the Poi-INAR(1) null are considered: on the one hand again the
Pearson statistic X2 (see Weil3 2018b), on the other hand the test by Meintanis and
Karlis (2014), which is defined in analogy to B, in (38) but using the bivariate pgf of
the pairs (X;, X;—1):

. 2
/ / A (u — v) pef(u, v) — (u 6pgf(” v _ dpgg(v”’v))) u®v® du dv.
(41)

Meintanis and Karlis (2014) recommend to use a = 2 as the weight parameter.

The simulated power values are summarized in Table 13. The upper left block in
Table 13 has to be compared to the row ;1 = 4 in Table 7, the upper right block to the
correspondmg row in Table 10, both corresponding to a Poi-null. It becomes clear that
our novel Tgf;)‘ ~test has the best power without exception, and also the T 4 »)-test shows
competitive performance. Analogous conclusions hold for the NB-null in the lower
block of Table 13, which has to be compared to (u, n) = (5, 3.333) in Tables 8 and 9.
Now the Tg(g -test dominates all competitors, which again demonstrates the appealing
performance of our moment-based approach for defining GoF-tests.

As a final comparison, we consider the omnibus Stein-GoF test discussed in
Sect.4.4. While we restricted our derivations to the case of the unweighted L,-distance
and the null of i.1. d. Poi-counts with fi(x) = s¥, see (37), we explore the power of
such integrated Stein-pgf tests more comprehensively, namely by allowing for addi-
tional weights and by also considering the null of i.i.d. NB-counts. In the latter case,

the integration is done with respect to (29), i.e.,

(”O +Y) Xfs(X)

e = = :
X 0+ X) (X +1)

Altogether, we use the GoF-test statistics

L, 2
T / (TSE;OI(S) - 1) s*ds for testing the Poi-null, (42)
&
and
L, 2
T / (Tg’B(s)—l) s*ds for testing the NB-null, (43)
&

where we set ¢ = 1073 in both cases. In view of the above experiences, we tried
a € {0, 2,5}, and we used the parametric i.1.d.-bootstrap sketched in the beginning
of Sect.5 for implementation.

The simulated power values are summarized in Table 14. Comparing to the com-
petitor tests of Table 13, we recognize a superior power for the integrated Stein-pgf
tests, where highest power is achieved for the medium weights a = 2. In fact, the
corresponding power values are often slightly larger than those of the Tg{g—test in
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Table 7 or Tg(g-test in Tables 8-9, respectively. This clearly shows that such integrated

Stein-pgf tests constitute a promising direction for future research.

6 lllustrative data example

In what follows, we analyze a time series of daily counts of downloads of a TgX-editor
(period June 2006 to February 2007, thus T = 267), see Fig.3. These data have been
introduced by Weill (2008b) and further analyzed by Weifl (2018a). They have an
AR(1)-like sample partial acf (pacf), and the sample dispersion index sf( /x ~ 3.138
is much larger than the Poisson value 1, but close to the geometric value 1 4+x ~ 3.401.
Similarly, the zero frequency & 0.277 is much larger than the corresponding Poisson’s
zero probability of & 0.091, but again close to the geometric value ~ 0.319. Therefore,
it is very natural to test the null hypothesis Hy of an NB-IINAR(1) process with
geometric marginal distribution (i.e., with n = 1, abbreviated as Geom-IINAR(1)
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Fig.3 Time series plot and sample pacf of download counts
Table 3 Download counts: statistics T(,, 5) and their critical regions
(r,s) T(,,x) Critical regions R \ (¢, ¢, ), where
Asymptotic (¢, ¢;) = Bootstrap (¢;, cy) =
Ho Ho Ho Hoy
(2,1) 1.886 (1.622,2.343) (0.922, 1.072) (1.676, 2.380) (0.924, 1.081)
3,1 2.608 (1.651,4.142) (0.822, 1.162) (2.131, 4.275) (0.841, 1.171)
4, 1) 3.003 (0.040, 6.877) (0.629, 1.319) (2.273, 6.356) (0.708, 1.344)
4,2) 4.152 (0.000, 10.969) (0.526, 1.427) (2.806, 12.053) (0.638, 1.465)

Table4 Download counts: ML estimates (standard errors) and values of AIC and BIC for different models

Model Aora 0 norn AIC BIC

Poi-INAR(1) 1.991 (0.110) 0.174 (0.033) 00 (by design) 1292.8 1300.0
Geom-IINAR(1) 0.616 (0.067) 0.331 (0.069) 1 (by design) 1083.8 1090.9
NB-IINAR(1) 0.653 (0.101) 0.316 (0.073) 1.082 (0.164) 1085.5 1096.3
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process) for these data. For the sake of completeness, we also report the results if
testing the null Hy of a Poi-INAR(1) process, although Hy seems rather inappropriate
in view of the aforementioned sample properties. All tests are done on the 5 %-level.

Let us begin with the factorial-moment-based statistics T(r, s)» Which are uniquely
defined for both Hy and I:Io, but with different critical values. Here, an asymptotic
implementation is possible, recall Example 2, where we have to plug-in the moment
estimates for (u, p), namely (X, 5(1)) ~ (2.401,0.245), instead of the unknown
population values. We obtain the statistics and critical regions shown in columns 1-4
of Table 3. The values T(,, s) clearly differ from the hypothetical Poisson value 1, but
they are fairly close to the geometric values 2, 3, 4, and 6, respectively. Indeed, I:Io
is rejected for each of these statistics, whereas we do not get any rejection for Hy.
For comparison, we also considered a bootstrap implementation (with 500 bootstrap
replicates) in columns 5—6 of Table 3, but the test decisions are identical. Note that
the bootstrap’s lower critical values ¢; for r > 3 under Hy differ notably from the
asymptotic ones, which is plausible in view of Sect.5, where we noted problems
with ¢; for low means p.

Next, we consider both types of Stein test. The Stein—Chen statistic "i"gf; takes the

value & 0.427 being much smaller than the ﬁo-value 1, whereas ng ~ 1.055 is very
close to the Hop-value 1. In fact, the respective critical regions (obtained via bootstrap)
are R\(0.851, 1.191) for TP, leading to a rejection of Hp, and R\(0.846, 1.144)

exp?
for ng, which does not contradict Hy. So altogether, our diagnostic tests lead to unique
conclusions, namely to reject Hy of a Poi-INAR(1) process, but not contradicting H
of a Geom-IINAR(1) process.

In view of these diagnostic results, let us conclude this section with a final model
fitting. Table 4 shows the results of maximum likelihood (ML) estimation for the
Poi-INAR(1) model (Hy, rejected), the Geom-IINAR(1) model (Hp, not rejected),
and, in addition, also for the general NB-IINAR (1) model with variable n. The values
in parentheses are the respective approximate standard errors (computed from the
numerical Hessian of the log-likelihood function), and Akaike’s and the Bayesian
information criterion (AIC and BIC, respectively) are shown for model selection.
Both criteria prefer the Geom-IINAR(1) model, and it should be noted that the NB-
IINAR(1) model’s estimate for n is not significantly different from 1. Finally, we
computed the standardized Pearson residuals for checking the adequacy of the fitted
Geom-IINAR(1) model. The residuals have the mean ~ —0.009 close to zero, the
variance ~ 0.969 close to one, and they are serially uncorrelated. So altogether, the
Geom-IINAR(1) model seems to be an appropriate choice for the download-counts
time series. According to Remark 3, a possible interpretation might be as follows:
In the first step of iterated thinning, the fraction @ p/(1 + &) ~ 0.126 of persons
downloading the TgX-editor at day # — 1 decide to give a recommendation to other
persons for day 7. Here, the mean number of recommendations (caused by the second
step of iterated thinning) is equal to (1 + &) /& ~ 2.623. In addition, the innovation ¢,
causes 1/& ~ 1.623 further downloads in the mean, now by the users’ own initiative
(without recommendation).
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7 Conclusions and future research

Unbounded-counts data are often modelled by using the Poi- or NB-distribution. In this
paper, we proposed GoF-tests for testing the null hypothesis of Poi- or NB-marginals
in a time-series context. The considered classes of time series are defined in analogy
to the class of Gaussian processes, by requiring bivariate Poi- or NB-distributions,
respectively, for the lagged pairs (X;, X;—j). In this context, we also clarified some
confusion in the literature regarding the NB-IINAR(1) model. In our research, we
focused on two types of moment-based GoF-tests: tests relying on factorial moments,
and tests using the so-called Stein’s identity. We considered both asymptotic and
bootstrap implementations, and we studied i.i.d. counts as well as count data with
serial dependence. In Monte—Carlo simulations, we illustrated the performance of
the different tests under the null and under various alternatives. Under the null, the
newly proposed tests showed rather reliable sizes, and if deteriorations were observed,
these were mainly lower deviations leading to a conservative test. Most tests also
showed a decent power (although decreasing for increasing dependence in the data),
where the different GoF-statistics are sensitive to different features of the alternative
distribution. If the GoF-statistic is chosen appropriately in view of the considered
alternative scenario, the achieved power exceeds that of existing competitor tests.
This sensitivity towards the considered alternative also implies that using a set of our
GoF-statistics allows for a targeted diagnosis regarding the type of violation of the
respective null hypothesis. Finally, we successfully applied our novel GoF-tests to a
time series of download counts, where a geometric IINAR(1) model was identified as
the best choice for these data.

This article opens up several opportunities for future research. One of these direc-
tions was already briefly investigated in Sects. 4.4 and 5.3, namely the use of Stein-type
GoF-statistics for constructing an omnibus GoF-test. While we restricted our deriva-
tions to the null of i. i. d. Poi-counts and to one particular GoF-statistic (using the weight
function f(x) = s* such that the test statistic is related to the pgf), the appealing sim-
ulation results of Sect. 5.3 indicate that such GoF-tests should also be considered more
generally, including the case of i.1i.d. NB-counts. It would also be relevant to analyze
if an extension to serially dependent counts is possible. At this point, a second research
direction becomes clear. In the Poi-case studied by Aleksandrov et al. (2022), it was
shown that multiple Stein statistics can be combined into a single, asymptotically
x 2-distributed statistic. This would allow to create a pgf-based Stein GoF-test, where
the pgf is jointly evaluated at only finitely many points 0 < 51 < ... < s < L.
The exact asymptotics and performance of such a test, also for the NB-null, deserves
further investigation in future research. Finally, the presented GoF-tests are designed
for count time series having a marginal Poi- or NB-distribution and are, thus, relevant
for INARMA-type processes. Another large class of models for count time series are
integer-valued generalized autoregressive conditional heteroscedasticity (INGARCH)
models, which are defined based on a conditional Poi- or NB-distribution (or other
parametric distributions, see Weil (2018a) for a survey). In this case, neither the pro-
posed test statistics nor their asymptotics are applicable. Hence, it would be relevant
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for future research to develop conditional Stein-type GoF-tests for such INGARCH
count processes.

Supplementary Information  The online version contains supplementary material available at https://doi.
org/10.1007/s00184-023-00934-0.
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Appendix A: On alternative formulations of the NB-IINAR(1) model

In Al-Osh and Aly (1992) and Weil (2008b), the special case of iterated thinning
together with a geometric counting series is considered, i.e., “®” corresponds to the
sequential execution of Bin-thinning “o” and the NB-operator “x” of Risti¢ et al.
(2009). More precisely, using p, «p € (0, 1) and setting 0 = «p and 6, = 1/, so
Y; ~ NB(1 ) and pgfy (z) = a/(o + 1 — z) according to Table 1, we get from
(12) that

o
> 4o

X 1— x
PEf(p 1/m@x (2) = (1+ap (pgfy(z)—l)) - <1_—(le—:l_zz)> . (A

with conditional mean E [(ap, /o) ® x] = p x. Note that the boundary case cp = 1
was also considered by Gouriéroux and Lu (2019, Section 2).

In Wolpert and Brown (2011), Leisen et al. (2019), by contrast, another i.i.d.
counting series for “x” is assumed, say (Z;), which follows the shifted geometric
distribution (recall Sect. 2). Setting 6 = 1_%0[ pandf = 1er‘)‘,so Z; ~ 1+NB(1, 1_%“
with pgf,(z) = @ z/(e + 1 — z), Eq. (12) implies that

x ap (1 —2)\*
pef(u, ira)g, (2) = (H—%p(pgfz(z)—l)) = (1 - m) , (A2)
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again with conditional mean E [(1%{ 0, %) ® x] = p x. So both approaches lead
to the same pgf, i.e., both constructions of the iterated-thinning operator are equal
in distribution. However, the second approach (A.2) has a practical advantage: 61 =
Q—La p € (0,1) holds for any p € (0,1) and @ > O, i.e., the parameter space of
(p, @) is less restricted. Therefore, we always use the second version (A.2) of the
geometric iterated-thinning operator, together with the shorthand notation p ®¢ x :=
(14 P %) ® x, see (13).

In Wolpert and Brown (2011), Leisen et al. (2019), two different ways of defining an
NB-IINAR(1) model are provided. But as we shall see, after appropriate reparametriza-
tions, they lead to the same model as given in Definition 2.

InLeisenetal. (2019), the NB-IINAR (1) model recursion uses the shifted geometric
counting series Z; ~ 1 +NB(1, 1 — ¢(1 — ©)) and the innovations ¢, ~ NB(n 1-
q(1— @)), together with the Bin-thinning “®oc”. Substituting 1 —¢(1—-0) + = and
(CN=s 1-%0; p, it becomes clear that their thinning operator is equivalent to (A. 2) Slnce
also the innovations are distributed the same as in Definition 2, the model (3) of Leisen
etal. (2019) agrees with the model in Definition 2. Note that (1 —¢)(1 — ®) = %
andg(1-0) = +a ,soa(l —p) = (1—¢q)/q. Consequently, the stationary marginal
distribution NB( , %) is expressed as NB(n, 1 — ¢) in agreement with Leisen
et al. (2019).

Also in Wolpert and Brown (2011), the NB-IINAR(1) model is defined based on
a shifted geometric counting series, so using again (A.2). This time, the parameter
of the Bin-thinning operator is pp/(1 — p + pp) (corresponding to % p in our
parametrization), and counting series as well as innovations use the geometric param-
eter p/(1 — p 4+ pp) (corresponding to lera in Definition 2). So p plays the same

role in both model definitions, while ¢! = lfT"‘ —1=(—p)(1 — p)/p and, thus,

a(1—p) = p/(1—p). Therefore, the stationary marginal distribution NB (n, %)
is expressed as NB(n, p) in agreement with Wolpert and Brown (2011).

Note that Wolpert and Brown (2011), Leisen et al. (2019) do not explicitly point
out the iterated-thinning operator in Definition 2, but they define their model by the
recursion X; = B;_; + N,_q with B,_| ~ Bin(X,_l, 1%{ p) and N;_; ~ NB(n +
B;_1, ﬁ) Utilizing the additivity of the NB-distribution, the equivalence to the
iterated-thinning formulation becomes clear.

Forlagh = 1, we have 1 S p = 1. Thus, the bivariate pgf (15) reduces to (2.6) in
Al-Osh and Aly (1992), namely to

fy, x, (1. 72) = «(1_p) ' (A3)
P&lx, x,(21.22) = (I+a—ap) (I+a—z1—22)—(@p—1)z1z2 ) * :

Note that (A.3) leads to the formula given in Theorem 1(4) of Wolpert and Brown
(2011) by using the aforementioned parameter substitution.

Another thinning-based characterization of the NB-IINAR(1) model (but which
avoids the step of nesting two thinnings) was recently given in Section 2.3 of Guerrero
et al. (2022). Their parametrization is translated into the one used here by mapping
their r — n, u — a(l L and u(1 — ) +— Z. This can be seen by comparing the
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expression for pgf g (z) in (13) with the one for Wg(2)* in Section 2.3 of Guerrero
et al. (2022).

Comparing (A.3)to (4), we have (X;, X;—1) ~ BNB(n, 1-|+a7 ﬁ, %)'
Note that 770/ (172) = (15— — 1) (1 +@) > —1 holds, and 7y > Oif & > 1/p.
The latter condition is also necessary for the decomposition discussed in Remark 2,
recall (6). From (A.3), it also becomes clear that the NB-IINAR (1) model was con-
sidered in a further article, namely in Section 2(a) of Phatarfod and Mardia (1973).
These authors define the model by the bivariate pgf in (A.3) with the parametrization
panda™' = a(l — p).

Appendix B: Tabulated simulation results of Sect. 5

See Tables 5, 6,7, 8,9, 10, 11, 12, 13 and 14.

Table 5 Simulated sizes for i.i.d. Poi(u)-null, where two-sided tests with nominal level 0.05; see Sect. 5.1

" T Asymptotic implementation Bootstrap implementation

Ten Tan Tan Tey Ty Ten Ten Tan Tay Tap

0.5 100 0.043  0.024 0.001 0.010 0.051 0.045 0.023 0.023 0.024 0.054
250 0.046 0.032 0.004 0.021 0.047 0.047 0.034 0.026 0.027 0.051
500 0.047  0.035 0.009 0.027 0.050 0.052 0.049 0.026 0.024 0.053
1000 0.051 0.043 0.017 0.029 0.051 0.054 0054 0.026 0.028 0.054
1 100 0.047 0.033 0.011 0.024 0.052 0.048 0.046 0.028 0.028 0.056
250 0.047 0.037 0.020 0.029 0.051 0.052 0.051 0.049 0.050 0.054
500 0.053 0.048 0.032 0.042 0.051 0.053 0.053 0.054 0.054 0.053
1000 0.046 0.047 0.033 0.040 0.049 0.052 0.052 0.053 0.054 0.055
2 100 0.047 0.041 0.026 0.033 0.052 0.054 0.052 0.048 0.049 0.052
250 0.056 0.047 0.031 0.037 0.055 0.054 0.054 0.053 0.055 0.054
500 0.049 0.047 0.035 0.040 0.050 0.051 0.053 0.055 0.055 0.055
1000 0.050 0.049 0.042 0.044 0.050 0.055 0055 0.055 0.055 0.054
4 100 0.050 0.047 0.037 0.042 0.053 0.049 0.052 0.050 0.051 0.049
250 0.044 0.047 0.040 0.043 0.050 0.054 0.054 0.053 0.053 0.056
500 0.045 0.046 0.044 0.045 0.051 0.056 0.054 0.052 0.053 0.054
1000 0.049 0.051 0.047 0.049 0.048 0.051 0.056 0.054 0.056 0.050
10 100 0.047 0.046 0.040 0.040 0.005 0.053 0.050 0.052 0.052 0.056
250 0.053 0.052 0.048 0.050 0.010 0.055 0.054 0.054 0.054 0.051
500 0.049 0.052 0.049 0.049 0.022 0.054 0.053 0.054 0.053 0.056
1000 0.051 0.053 0.052 0.053 0.042 0.053 0054 0.049 0.049 0.055
15 100 0.045 0.043 0.039 0.040 0.093 0.051 0.052 0.055 0.055 0.053
250 0.046 0.047 0.049 0.049 0.002 0.049 0.051 0.051 0.051 0.055
500 0.049 0.047 0.046 0.046 0.003 0.052 0.052 0.053 0.053 0.055
1000 0.049 0.049 0.046 0.046 0.005 0.053 0.055 0.054 0.054 0.051
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Table 7 Simulated power for i.i.d. Poi(x)-null and equidispersed Good-alternative with mean p, where

two-sided tests with nominal level 0.05; see Sect. 5.1

w T Asymptotic implementation Bootstrap implementation
Teny Ten Tan Tay By Ten Ten Tan Tay Ty
0.5 100 0.053 0.035 0.003 0.015 0.053 0.052 0.035 0.033 0.038 0.058
250 0.054  0.057 0.010 0.039 0.050 0.063 0.058 0.046 0.049 0.059
500 0.059 0.069 0.022 0.060 0.057 0.068 0.077 0.047 0.056 0.066
1000  0.060 0.089 0.039 0.067 0.058 0.067 0.089 0.054 0.062 0.063
1 100 0.068 0.067 0.026 0.049 0.067 0.066 0.077 0.056 0.057 0.065
250 0.063 0.096 0.055 0.082 0.073 0.069 0.098 0.081 0.088 0.068
500 0.068 0.129 0.094 0.126 0.086 0.075 0.111 0.094 0.104 0.089
1000 0.071 0.164 0.116 0.166 0.125 0.075 0.153 0.114 0.135 0.118
2 100 0.073 0.110 0.079 0.108 0.122 0.077 0.098 0.095 0.101 0.105
250 0.074 0.156 0.138 0.173  0.196 0.079 0.146  0.135 0.152 0.182
500 0.076 0219 0210 0.259 0.331 0.078 0.199 0.185 0.218 0.322
1000 0.078 0.333  0.338 0.408 0.582 0.083 0.307 0.294 0.350 0.565
4 100 0.069 0.123  0.129 0.147 0202 0.074 0.110 0.121 0.127  0.155
250 0.076  0.170 0209 0.232 0466 0.076 0.161 0.189 0.203 0.434
500 0.072 0237 0321 0356 0.776 0.081 0.221 0290 0.312 0.756
1000 0.074 0.349 0498 0.544 0977 0.077 0336 0460 0499 0975
10 100 0.061 0.092 0.116 0.120 0.000 0.063 0.087 0.113 0.115 0.104
250 0.062 0.111 0.164 0.169 0.000 0.066 0.111 0.147 0.150 0.235
500 0.063 0.134 0224 0.230 0.016 0.067 0.129 0.210 0.215 0.464
1000 0.064 0.181 0.340 0.350 0.284 0.067 0.177 0.331 0.341 0.745
15 100 0.056  0.078 0.097 0.099 0.030 0.065 0.083 0.096 0.097 0.084
250 0.061 0.092 0.129 0.131 0.000 0.063 0.092 0.123 0.124 0.170
500 0.060 0.109 0.175 0.176  0.000 0.062 0.097 0.156 0.157 0.287
1000 0.057 0.120 0.238 0.243  0.000 0.061 0.119 0231 0233 0.466
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Table 10 Simulated size and power for INAR(1) DGP with p = 0.25, for Poi(u)-null and equidispersed
Good-alternative with mean p, where two-sided tests with nominal level 0.05; see Sect.5.2

n T Asymptotic implementation Bootstrap implementation
Ton Taen Tan  Tao Ton Ten Tan Tay Top

Size

2 100 0.047  0.038  0.022  0.029 0.048  0.047 0.048 0.048  0.049
250 0.052  0.047  0.031 0.037 0.051 0.051 0.050  0.051 0.051
500 0.051 0.046  0.033  0.037 0.054 0.055 0.054 0.054 0.053
1000 0.048  0.047  0.041 0.043 0.054  0.055 0.054 0.055 0.056

4 100 0.046  0.040  0.031 0.034 0.052  0.054 0.055 0.056 0.053
250 0.048  0.044 0.038  0.041 0.056  0.053  0.051 0.051 0.053
500 0.049  0.048  0.041 0.041 0.052  0.054 0.053 0.053 0.056
1000 0.052  0.052 0.049  0.049 0.052  0.056 0.056 0.056  0.057

10 100 0.045  0.043  0.040 0.041 0.056  0.054 0.056 0.056  0.057
250 0.051 0.049  0.046  0.047 0.053  0.051 0.053  0.053  0.045
500 0.049  0.048 0.045 0.046 0.055  0.057 0.054 0.055  0.050
1000 0.053  0.051 0.050  0.050 0.057  0.055 0.055 0.054 0.053

Power

2 100 0.056  0.068  0.048  0.062 0.066  0.080  0.077  0.079  0.068
250 0.058  0.087  0.078  0.094 0.067 0.082 0.083 0.088  0.079
500 0.063  0.109  0.109  0.130 0.069  0.107 0.109 0.116  0.099
1000  0.068  0.137  0.154  0.177 0.069  0.133  0.138  0.150  0.162

4 100 0.059  0.086 0.084  0.093 0.067  0.082  0.091 0.092  0.081
250 0.061 0.105  0.127  0.142 0.070  0.103  0.117  0.123  0.157
500 0.064  0.136  0.181 0.196 0.067  0.129  0.161 0.169  0.285
1000 0.063  0.184  0.271 0.295 0.070  0.173 0245 0265  0.526

10 100 0.059  0.075  0.085  0.087 0.062  0.074 0.088  0.088  0.077
250 0.053 0.080 0.110 0.114 0.065 0.084 0.110 0.110  0.127
500 0.057 0.093  0.148  0.150 0.065  0.098  0.141 0.143  0.219
1000 0.061 0.117 0210  0.216 0.063  0.114  0.194  0.199  0.377
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Table 11 Simulated size for NB-IINAR(1) DGP with mean p and p = 0.25, and power for corresponding
NB-INAR(1) alternative, where two-sided tests with nominal level 0.05; see Sect. 5.2

noon T Asymptotic implementation Bootstrap implementation
Ton Ten Tan Taz Ton Ten Tan Taz Té‘i{?

Size

5 33 100 0.044 0.034 0.020 0.025 0.053 0.054 0.054 0.055 0.052
250 0.049 0.035 0.024 0.029 0.054 0.054 0.054 0.055 0.053
500 0.048 0.041 0.030 0.035 0.055 0.053 0.049 0.049 0.049
1000 0.047 0.044 0.036 0.038 0.051 0.052 0.055 0.055 0.053

10 5 100 0.046 0.037 0.028 0.032 0.050 0.051 0.053 0.053 0.055
250 0.048 0.043 0.034 0.037 0.053 0.056 0.057 0.057 0.054
500 0.047 0.043 0.036  0.039 0.050 0.051 0.052 0.052 0.057
1000  0.052 0.049 0.044 0.045 0.058 0.058 0.056 0.055 0.050

10 10 100  0.047 0.039 0.031 0.034 0.055 0.057 0.057 0.056 0.055
250 0.051 0.049 0.041 0.042 0.054 0.056 0.057 0.057 0.053
500 0.048 0.043 0.039 0.040 0.049 0.050 0.052 0.053 0.051
1000 0.050 0.050 0.047 0.048 0.047 0.049 0.049 0.050 0.055

Power w.r.t. NB-INAR(1) alternative

5 3.3 100 0.046 0.048 0.032 0.041 0.064 0.067 0.067 0.066 0.075
250 0.055 0.060 0.050 0.058 0.063  0.062 0.066 0.067 0.092
500 0.059 0.070 0.062 0.072 0.063  0.065 0.066 0.068 0.117
1000 0.061 0.082 0.078  0.089 0.062 0.074 0.073 0.076  0.178

10 5 100 0.049 0.048 0.038 0.044 0.062 0.066 0.065 0.066 0.069
250 0.051 0.057 0.052 0.057 0.061 0.063 0.062 0.063 0.083
500 0.057 0.068 0.067 0.072 0.061 0.065 0.070 0.070  0.093
1000 0.057 0.081 0.089 0.097 0.064 0.076 0.080 0.083 0.120

10 10 100  0.044 0.042 0.037 0.039 0.060 0.059 0.057 0.056 0.057
250 0.051 0.051 0.048 0.050 0.061  0.060 0.063 0.063 0.057
500 0.054 0.057 0.058 0.060 0.055 0.056 0.058 0.057 0.059
1000  0.049 0.057 0.063 0.065 0.059 0.062 0.064 0.063 0.063
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Table 12 Simulated power for PIG- and ZIP-INAR(1) alternative with mean u and p = 0.25, where
NB-IINAR(1) null and two-sided tests with nominal level 0.05; see Sect.5.2

noon T Asymptotic implementation Bootstrap implementation
Ton Ten Tan Taz Ton Ten Tan Taz Té‘i{?

Power w.r.t. PIG-INAR(1) alternative

5 33 100  0.081 0.102 0.081 0.098 0.109  0.123  0.125 0.129  0.150
250 0.092 0.159 0.153 0.182 0.112  0.158 0.165 0.173  0.294
500 0.101  0.222 0.242  0.280 0.108 0203 0.230 0.249  0.505
1000  0.106 0315 0.383 0.433 0.117 0291 0.339 0.374 0.787

10 5 100 0.082 0.110 0.103 0.117 0.101  0.124 0.129 0.131 0.142
250  0.093 0.160 0.182  0.200 0.099 0.150 0.173 0.180 0.235
500  0.097 0207 0.268 0.291 0.100  0.192 0.245 0.258 0.339
1000 0.105 0300 0.418 0452 0.100 0277 0378 0.403  0.530

10 10 100 0.065 0.077 0.076  0.082 0.072 0.080 0.087 0.087 0.079
250  0.064 0.090 0.105 0.113 0.081 0.100 0.113 0.113  0.095
500 0.069 0.106 0.147  0.151 0.077 0.111  0.135 0.137  0.121
1000 0.072 0.142 0.210 0.217 0.074 0.130 0.185 0.191 0.164

Power w.r.t. ZIP-INAR(1) alternative

5 3.3 100 0.039 0.008 0.000 0.000 0.045 0.159 0.292 0.390 0.891
250  0.036 0.151 0.019 0.024 0.040 0439 0.729 0.859 0.997
500 0.036 0.583 0.558 0.748 0.041  0.797 0969 0.994  1.000
1000 0.034 0966 0.994  1.000 0.037 0987 1.000 1.000 1.000

10 5 100 0.070 0.063 0.008 0.006 0.074 0265 0510 0.646 0.729
250  0.064 0.400 0.488 0.653 0.078 0.637 0929 0980 0.981
500  0.069 0.848 0.983  0.999 0.074 0923 0999 1.000 1.000
1000 0.069 0998 1.000 1.000 0.069 0999 1.000 1.000 1.000

10 10 100  0.073 0.069 0.033 0.036 0.085 0.189 0.326 0.400 0.554
250 0.077 0.286 0.404 0.513 0.083 0412 0.715 0.812 0.945
500  0.072 0.631 0.890 0.953 0.084 0.718 0.959 0.988  0.999
1000 0.076 0940 0.999  1.000 0.081 0960 1.000 1.000 1.000
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Table 13 Simulated power for diverse competitor tests with nominal level 0.05; see Sect. 5.3

Poi-null against Good alternative; u = 4
T ii.d. INAR(1), p = 0.25
x? Ro Rs Bo Bs S X W2

100 0.081 0.070 0.066 0.058 0.067 0.092 0.058 0.047
250 0.167 0.236 0.110 0.258 0.111 0.231 0.085 0.084
500 0.440 0.553 0.199 0.615 0.204 0.537 0.153 0.155
1000 0.846 0.893 0.378 0.932 0.400 0.907 0.338 0.278

NB-null, i.i.d. with u = 5, n = 3.333
T PIG alternative ZIP alternative
x? Ro Rs By Bs x* Rg Rs By Bs

100 0.065  0.078  0.075 0.070  0.074  0.766 1.000 0913 1.000  0.978
250 0.093 0.146  0.105 0.138  0.108 1.000 1.000 1.000 1.000 1.000
500 0.131 0.275 0.173 0.271 0.183 1.000 1.000 1.000 1.000 1.000
1000 0269  0.507 0289 0506  0.319 1.000 1.000 1.000 1.000 1.000

Table 14 Simulated power for integrated Stein-pgf tests with nominal level 0.05; see Sect.5.3

T\ a i.i.d. Poi vs. Good i.i.d. NB vs. PIG i.i.d. NB vs. ZIP

n=4 n=>5n=3.333 n=>5n=3.333

0 2 5 0 2 5 0 2 5
100 0.236 0.273 0.134 0.120 0.138 0.110 0.602 1.000 1.000
250 0.484 0.532 0.295 0.181 0.211 0.190 1.000 1.000 1.000
500 0.780 0.815 0.570 0.277 0.346 0.322 1.000 1.000 1.000

1000 0.966 0.981 0.876 0.426 0.575 0.563 1.000 1.000 1.000
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