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Abstract
In this paper we develop a new machine learning estimator for ordered choice models
based on the Random Forest. The proposed Ordered Forest flexibly estimates the
conditional choice probabilities while taking the ordering information explicitly into
account. In addition to commonmachine learning estimators, it enables the estimation
of marginal effects as well as conducting inference and thus provides the same output
as classical econometric estimators. An extensive simulation study reveals a good
predictive performance, particularly in settingswith nonlinearities and high correlation
among covariates.An empirical application contrasts the estimation ofmarginal effects
and their standard errors with an Ordered Logit model. A software implementation of
the Ordered Forest is provided both in R and Python in the package orf available on
CRAN and PyPI, respectively.
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2 M. Lechner, G. Okasa

1 Introduction

Many empiricalmodels dealwith categorical dependent variableswhich have an inher-
ent ordering. In such cases the outcome variable is measured on an ordered scale such
as level of education defined by primary, secondary and tertiary education or income
coded into low, middle and high income level. Further examples include survey out-
comes on self-assessed health status (bad, good, very good, see, for example, Case
et al. 2002; or Murasko 2008), level of life satisfaction and happiness (Boes et al.
2010; and Boes and Winkelmann 2010) or political opinions (do not agree, agree,
strongly agree, see, for example, Jackson and Darrow 2005; or Jackman 2009) as well
as grades, scores and various ratings and valuations (see Butler et al. 1998; Hamer-
mesh and Parker 2005; Afonso et al. 2009; or Gogas et al. 2014, for some further
examples). Moreover, even sports outcomes resulting in loss, draw and win are part
of such modelling framework (e.g. Goller et al. 2021). So far, the Ordered Probit or
Ordered Logit model represent workhorse models in such cases. The main advantage
of these models is the ease of estimation, usually done by maximum likelihood. How-
ever, the major disadvantage are the strong parametric assumptions which are imposed
for convenience rather than derived from any substantive knowledge about the appli-
cation. Unfortunately, the desired marginal effects are sensitive to these assumptions.
Although there is a large literature on how to generalize these assumptions in case
of binary choice models (Matzkin 1992; Ichimura 1993; Klein and Spady 1993), or
multinomial (unordered) choice models (Lee 1995; Fox 2007), limited work has been
done for ordered choice models (Lewbel 2000; Klein and Sherman 2002; also see
Stewart 2005, for an overview).

In this paper, we exploit recent advances in the machine learning literature to
develop an estimator for conditional choice probabilities as well as marginal effects
together with inference procedures when the outcome variable has an ordered cat-
egorical nature. The proposed Ordered Forest estimator is based on the Regression
Random Forest algorithm as introduced by Breiman (2001) and makes use of cumula-
tive probability predictions based on binary indicators of respective ordered categories
to flexibly estimate the single choice probabilities of the particular ordered category,
conditional on covariates. Furthermore, to analyse the relationship of the ordered
choice probabilities with the covariates, theOrdered Forest exploits numerical deriva-
tive approximations for estimation of the mean marginal effects and marginal effects
at mean as the typical quantities of interest in the field of discrete choice models (see,
for example, Greene and Hensher 2010). Finally, in order to quantify the estimation
uncertainty of the above parameters, the Ordered Forest estimated with honesty, i.e.
with sample splitting, adapts the weight-based inference proposed by Lechner (2018)
using the asymptotic results of Wager and Athey (2018) for the consistency and nor-
mality of Random Forest predictions for the case of ordered categorical outcomes.
Thus, Ordered Forest estimator provides not only the point estimate for the condi-
tional choice probabilities and the corresponding marginal effects, but in its honest
version also an estimate for the respective standard errors.We investigate the predictive
performance of the estimator by comparing it to classical and other competing meth-
ods via a large-scale Monte Carlo simulation study as well as using real datasets. The
results from the synthetic simulation reveal good performance of theOrdered Forest in

123



Random Forest estimation of the ordered choice model 3

finite samples throughout all simulation designs, including high-dimensional settings.
In particular, the superior performance of the estimator over the parametric Ordered
Logit becomes apparent when dealing with nonlinear functional forms and high cor-
relation among covariates. Furthermore, the Ordered Forest in its non-honest version,
i.e. without sample splitting, outperforms the competing forest-based estimators in the
most complex simulation designs. Additionally, the results from the empirical evalua-
tion further confirm the good predictive performance of the estimator in real datasets.
Lastly, an empirical application demonstrates the estimation of the marginal effects
and the associated inference procedure based on the honest version of the Ordered
Forest. The empirical results highlight the value of the additional flexibility in the
effect estimation of relevant economic parameters. Moreover, to enable the usage of
the method by applied researchers a free software implementation of theOrdered For-
est estimator has been developed in R (R Core Team 2021) as well as in Python (Van
Rossum and Drake 2009) and is provided in the package orf available on the official
CRAN (Lechner and Okasa 2019) and PyPI (Lechner et al. 2022) repositories.1

This paper contributes to the econometric as well as machine learning literature in
several ways. In terms of econometrics, this paper develops a new estimator of the
ordered choice models based on a machine learning algorithm. The proposedOrdered
Forest estimator improves on the classical parametric models such as Ordered Logit
and Ordered Probit models by allowing ex-ante flexible functional forms as well
as allowing for a larger covariate space. The latter is a feature of many machine
learning methods, but is typically absent from standard econometrics. In terms of
machine learning, this paper develops a new type of Random Forest estimator adapted
to ordered categorical outcomes. As such, the proposed Ordered Forest extends the
classical regression forests as developed by Breiman (2001) and Wager and Athey
(2018) specifically for estimation of ordered choice models and thus expands the
forest-based estimators for particular econometric models such as, for example, the
survival forest (Hothorn et al. 2004) designed for estimation of survival models or the
quantile regression forest (Meinshausen 2006) for estimation of conditional quantiles.
Additionally to the above forest-based estimators, theOrdered Forest further advances
machine learning methods with the estimation of marginal effects and the inference
thereof, a feature of many parametric models, but generally missing in the machine
learning literature. Hence, our contribution is twofold. First, with respect to the lit-
erature on parametric estimation of the ordered choice models, the Ordered Forest
represents a flexible estimator without any parametric assumptions, while providing
essentially the same information as an ordered parametric model. Second, with respect
to the machine learning literature, the Ordered Forest achieves precise estimation of
ordered choice probabilities, while adding estimation of marginal effects as well as
statistical inference thereof.

This paper is organized as follows. Section2 discusses the related literature con-
cerning parametric andmachine learning methods for the estimation of ordered choice
models. Section3 reviews the Random Forest algorithm and its theoretical properties.
In Sect. 4 the Ordered Forest estimator is introduced including the estimation of the

1 Source codes of both R and Python versions of the estimator are available on GitHub. Additionally, an
implementation of the estimator in GAUSS is available online and on ResearchGate.
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4 M. Lechner, G. Okasa

conditional choice probabilities, marginal effects and the inference procedure. The
Monte Carlo simulation is presented in Sect. 5. Section6 shows an empirical applica-
tion. Section7 concludes. Further details regarding estimationmethods, the simulation
study and the empirical application are provided in Appendices A, B and C, respec-
tively.

2 Literature

In econometrics, the Ordered Probit and Ordered Logit models are widely used when
there are ordered response variables (McCullagh 1980). These models build on the
latent regression model assuming an underlying continuous outcome Y ∗

i as a linear
function of regressors Xi with unknown coefficients β, while assuming that the latent
error term ui follows a particular distribution, i.e. the standard normal or the logistic
distribution in the case ofOrderedProbit andOrderedLogit, respectively. Furthermore,
the ordered discrete outcome Yi represents categories that cover a certain range of
the latent continuous Y ∗

i and is determined by unknown threshold parameters αm .
Formally, in the case of the Ordered Logit the latent model is defined as:

Y ∗
i = X ′

iβ + ui , ui ∼ Logistic(0, π2/3) (2.1)

with unknown threshold parameters α0 < α1 < ... < αM such that:

Yi = m if αm−1 < Y ∗
i ≤ αm for m = 1, ..., M, (2.2)

where the coefficients and the thresholds are commonly estimated via maximum like-
lihood with the delta method or bootstrapping used for inference. The above latent
model is also often motivated by the quantity of interest, i.e. the conditional ordered
choice probabilities P[Yi = m | Xi = x].

Although suchmodels are relatively easy to estimate, they impose strong parametric
assumptions which hinder the flexibility of these models. Apart from the assumptions
about the distribution of the error term, further functional form assumptions are being
imposed. As is clear from (2.1), the coefficients β are constant across the outcome
classes which is often labelled as the parallel regression assumption (Williams 2016).
This inflexibility affects both the estimation of the choice probabilities as well as the
estimation of marginal effects. For these reasons, generalizations of these models have
been proposed in the literature in order to relax some of the assumptions. An exam-
ple of such models is the Generalized Ordered Logit model (McCullagh and Nelder
1989), where the parallel regression assumption is abandoned. Boes and Winkelmann
(2006) provide an excellent overview of several other generalized parametric models.
However, all of these models retain some of the distributional assumptions which limit
their modelling flexibility.

Besides the standard econometric literature on parametric specifications of ordered
choice models (for an overview see Agresti 2002; or Boes and Winkelmann 2006),
a new strand of literature devoted to relaxing the parametric assumptions by using
novel machine learning methods is emerging. Particularly, the tree-based methods
have gained considerable attention. Trees (Breiman et al. 1984) and Random Forests
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Random Forest estimation of the ordered choice model 5

(Breiman2001) are highlyflexible, local nonparametric predictionmethods,which can
effectively deal with large-dimensional settings (Biau and Scornet 2016). In particular,
trees recursively split the sample into smaller, non-overlapping strata, the so-called
leaves of the tree, with the goal of grouping homogeneous observations within the
leaves, but heterogeneous ones across the leaves. The splits are placed by choosing
a specific value of a covariate that leads to the largest reduction of the pre-specified
loss, e.g. mean-squared error. The prediction rule of the tree is then based on aver-
aging the outcomes in the leaves of the tree. While single trees have a high degree
of interpretability, they suffer from unstable splits and a lack of smoothness, due to
the recursive path-dependent structure (Hastie et al. 2009). An improvement in this
respect is achieved by the so-called bagging of trees, i.e. bootstrap aggregation (Efron
and Tibshirani 1994; Bühlmann and Yu 2002). In this case, for each bootstrap sam-
ple a single tree is estimated, and the predictions of each tree are averaged over all
trees, thus, stabilizing the predictions and reducing the variance (Hastie et al. 2009). In
addition to randomly choosing observations via bootstrapping, randomly choosing a
subset of covariates used for the splitting has led to the development of RandomForests
(Breiman 2001), which have demonstrated even better prediction performance. Fur-
thermore, the theoretical properties of Random Forests have been extensively studied
which make them amenable to econometric application, where statistical inference is
of importance (see Meinshausen 2006; Biau 2012; Wager et al. 2014; Wager 2014;
Scornet et al. 2015; Mentch and Hooker 2016; Tibshirani et al. 2018, for a discussion
of statistical properties of different types of Random Forests). As a result, variations
of Random Forests adapted towards treatment effect estimation, the so-called Causal
Forests, have been developed (Wager and Athey 2018; Lechner 2018; Athey et al.
2019) and successfully applied in several empirical studies (Athey and Wager 2019;
Cockx et al. 2023; Hodler et al. 2023).

In a similar vein, we leverage the benefits of Random Forests for a flexible esti-
mation of ordered choice models. Although the classical Random Forest algorithms
introduced by Breiman (2001) are very powerful in both regression as well as in clas-
sification (see Loh 2011, for a review), there is a need for adjustment when predicting
ordered response. In the case of regression, the discrete nature of the outcome is not
being taken into account and in the case of classification, the ordered nature of the
outcome is not being taken into account. As such, appropriate modifications of the
standard Random Forest algorithm are desired in order to predict conditional probabil-
ities of discrete ordered outcomes.2 Based on the Random Forests algorithm, Hothorn
et al. (2006) propose a method building on their conditional inference framework for
recursive partitioning which can also deal with ordered outcomes. Similarly, Hor-
nung (2019a) proposes an Ordinal Forest method for prediction of ordinal response
variables. While both of the these approaches take the ordering information of the
outcomes into account, they focus mainly on prediction and variable importance with-

2 A different strand of the literature focused particularly on adjustments towards ordered classification
rather than regression which excludes the estimation of the conditional probabilities as is the case in
the parametric ordered choice models. See, for example, (Kramer et al. 2001), who propose a simple
procedure for constructing a distance-sensitive classification learner, or Piccarreta (2008) who suggest
usage of alternative objective functions. Both of these measures put higher penalty on misclassification the
more distant the predicted category is from the true one.
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6 M. Lechner, G. Okasa

out considering estimation of the marginal effects or the associated inference for the
effects which are a fundamental part of the classical econometric ordered choice mod-
els. We propose a new estimator—Ordered Forest—that adapts the Random Forests
algorithm, while providing not only the predictions of conditional probabilities, but
also enabling the estimation of marginal effects and the inference thereof and thus
offering a flexible alternative to parametric ordered choice models without imposing
strict functional form assumptions. In what follows, we formally define the underlying
Random Forests and derive the Ordered Forest estimator.

3 Random Forests

Random Forests as introduced by Breiman (2001) became quickly a very popular
predictionmethod thanks to its good prediction accuracy, while being relatively simple
to tune. Further advantages of Random Forests as a nonparametric technique are the
high degree of flexibility and ability to deal with large number of predictors, while
coping better with the curse of dimensionality problem in comparison to classical
nonparametric methods such as kernel or local linear regression (see, for example,
Racine 2008). In what follow we focus on the definition of the Regression Random
Forests as the building block of the Ordered Forest estimator.

Random Forests are based on bootstrap aggregation, i.e. the so-called bagging of
single regression trees where the covariates considered for each next split within a tree
are selected at random.More precisely, theRandomForest algorithmdraws a bootstrap
sample Z∗

i (Xi ,Yi ) of size N from the available training data for b = 1, ..., B bootstrap
replications. For each bootstrapped sample, aRandomForest tree is grownby recursive
partitioning until the minimum leaf size is reached. The recursive partitioning is based
on finding an optimal split given by a splitting covariate and its splitting point, such
that the mean-squared error is minimized. This is achieved by a greedy search over
all covariates and all possible splitting points, where the predictions are based on
averaging outcomes in the resulting subsets defined by the split (Hastie et al. 2009).
At each of the splits, m out of p covariates chosen at random are considered. The
minimum leaf size then determines how many recursive splits are conducted, i.e. how
deep the trees are grown. After all B trees are grown in this fashion, the Regression
Random Forest prediction μ̂(x) of the conditional mean E[Yi | Xi = x] is the
ensemble of the tree predictions μ̂b(x):

μ̂(x) = 1

B

B∑

b=1

μ̂b(x) with μ̂b(x) = 1

| {i : Xi ∈ Lb(x)} |
∑

{i :Xi∈Lb(x)}
Yi , (3.1)

where Lb(x) denotes a leaf containing x . Single trees, if grown sufficiently deep, have
a low bias, but fairly high variance. By averaging overmany single trees with randomly
choosing the set of observations and splitting covariates, the variance of the estimator is
being reduced substantially. First, the variance reduction is achieved through bagging.
The higher the number of bootstrap replications, the lower the variance. Second, the
variance is further reduced through the random selection of covariates. The lower is
the number of considered covariates for a split, the more is the correlation between the
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Random Forest estimation of the ordered choice model 7

trees reduced, and consequently, the bigger is the variance reduction of the average
(Hastie et al. 2009).

Another attractive feature of RandomForests is theweighted average representation
of the final estimate of the conditional mean E[Yi | Xi = x]. As such we can rewrite
the Random Forest prediction as follows:

μ̂(x) =
N∑

i=1

ŵi (x)Yi , (3.2)

where the weights are defined as:

ŵb,i (x) = 1({Xi ∈ Lb(x)})
| {i : Xi ∈ Lb(x)} | with ŵi (x) = 1

B

B∑

b=1

ŵb,i (x). (3.3)

As such the forest weights ŵi (x) are again an average over all single tree weights.
These tree weights capture if the training example Xi falls into the leaf Lb(x) scaled by
the size of that leaf. Notice, that the weights are locally adaptive. Intuitively, Random
Forests resemble the classical nonparametric kernel regression with an adaptive, data-
driven bandwidth and with limited curse of dimensionality. One can show that in the
regression case, the Random Forest estimate as defined in (3.1) is equivalent to the
weighting estimate defined in (3.2). This weighting perspective of Random Forests
has been firstly suggested by Hothorn et al. (2004) and Meinshausen (2006) in the
scope of survival and quantile regression, respectively. Recently, Athey et al. (2019)
point out the usefulness of the Random Forest weights in various estimation tasks. In
this spirit, we will later on in Sect. 4.3 use the forest induced weights explicitly for
inference as has been recently suggested by Lechner (2018).

Besides the huge popularity of Random Forests for prediction, the statistical lit-
erature focused on establishing asymptotic properties of Random Forests as well
(Meinshausen 2006; Biau 2012; Scornet et al. 2015; Mentch and Hooker 2016). A
major step towards formally valid inference has been done in a recent work by Wager
(2014) and Wager and Athey (2018) who prove consistency and asymptotic normal-
ity of Random Forest predictions, under some modifications of the standard Random
Forest algorithm. These modifications concern both the tree-building procedure as
well as the tree-aggregation scheme. First, the tree aggregation is now done using
subsampling without replacement instead of bootstrapping. Second, the tree-building
procedure introduces the major and crucial condition of so-called honesty as first
suggested by Athey and Imbens (2016). A tree is honest, if it does not use the same
responses for both, placing splits and estimating the within-leaf predictions. This can
be achieved by the so-called double-sample trees, which split the random subsample
of training data Z∗

i (Xi ,Yi ) into two disjoint sets of the same size, while the one is
used for placing splits and the other one for estimating the predictions. Furthermore,
for the consistency it is essential that the size of the leaves L of the trees becomes
small relative to the sample size as N gets large.3 This is achieved by introducing some

3 Wager and Athey (2018) point out that the leaves need to be relatively small in all dimensions of the
covariate space. This implies that the high-dimensional settings are not considered and hence the theoretical
asymptotic results might not hold in such settings.
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8 M. Lechner, G. Okasa

randomness in choosing the splitting variables. Particularly, each covariate receives
a minimum amount of positive chance of a split. Such constructed tree is then said
to be a random-split tree. Additionally, the trees are required to be α-regular, mean-
ing that after each split, both of the child nodes contain at least a fraction α > 0 of
the training data. Also, trees have to be symmetric in a sense that the order of the
training data is independent of the predictor output. Lastly, some additional regularity
conditions such as i.i.d. sampling need to be satisfied for the asymptotic arguments
to hold.4 Overall, apart from subsampling and honesty the above conditions are not
particularly binding and do not fundamentally deviate from the standard regression
Random Forest. Then, under the above assumptions, the Random Forest predictions
can be shown to be (pointwise) asymptotically Gaussian and unbiased. We use this
result to provide an inference procedure for the marginal effects of theOrdered Forest
discussed in Sect. 4.3.

4 Ordered Forest Estimator

The general idea of theOrdered Forest estimator is to provide a flexible alternative for
estimation of ordered choice models that can deal with a large-dimensional covariate
space. As such, the main goal is the estimation of conditional ordered choice proba-
bilities, i.e. P[Yi = m | Xi = x], as well as marginal effects, i.e. the changes in the
estimated probabilities in association with changes in covariates. Correspondingly,
the variability of the estimated effects is of interest and therefore a method for con-
ducting statistical inference is provided as well. The latter two features go beyond the
traditional machine learning estimators which focus solely on the prediction exercise,
and complement the prediction with the same econometric output as the traditional
parametric estimators.

4.1 Conditional choice probabilities

The main idea of the estimation of the ordered choice probabilities by a Random
Forest algorithm lies in the estimation of cumulative, i.e. nested probabilities based
on binary indicators. Such transformations of an ordered model into multiple binary
models have been previously proposed in the context of generalized linear models
(e.g. Fahrmeir et al. 1994) and ordinal classification (e.g. Kwon et al. 1997; Frank and
Hall 2001). This approach is universal as in principle any estimator of a conditional
mean could be used for the prediction of the choice probabilities. However, we adapt
this approach by using a specific version of the Random Forest algorithm that further
enables not only the estimation of the conditional choice probabilities, but also the
estimation of marginal effects and the inference thereof.

4 For example, covariates need to be independently distributed with a density that is bounded away from 0
and infinity. Notice, that this condition prevents categorical covariates if a certain category has p(x) = 0.
For a detailed description of the conditions as well as of the proof, see Theorem 1 in Wager and Athey
(2018).
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Random Forest estimation of the ordered choice model 9

As such, for an i .i .d. random sample of size N (i = 1, ..., N ), consider an ordered
outcome variable Yi ∈ {1, ..., M} with ordered classes m. Then the binary indicators
are given as Ym,i = 1(Yi ≤ m) for outcome classes m = 1, ..., M − 1. First, the
ordered model is transformed into multiple overlapping binary models which are
estimated by Random Forests yielding the predictions for the cumulative probabilities,
i.e. Ŷm,i = P̂[Ym,i = 1 | Xi = x]. Second, the estimated cumulative probabilities are
differenced to isolate the respective class probabilities Pm,i = P[Yi = m | Xi = x].
Hence, the estimate for the conditional probability of the m-th ordered class is given
by subtracting two adjacent cumulative probabilities as P̂m,i = Ŷm,i − Ŷm−1,i .

Given that the building block of the above procedure is the estimation of the con-
ditional probabilities P[Ym,i = 1 | Xi = x], we apply the Regression Random Forest
to directly estimate these probabilities as opposed to a Classification Random Forest.
In the Regression Random Forest, this is achieved by averaging the binary outcomes
in the leaves of the trees, which subsequently get averaged across the trees, result-
ing in valid probabilities bounded between 0 and 1 for each binary outcome. In an
alternative case of a Classification Random Forest, the predictions are not directly the
probabilities, but rather the predicted classes by using a majority voting in the leaves
of the trees and subsequently a majority voting across the trees (Hastie et al. 2009).
A valid probability prediction can be obtained only as a by-product by averaging the
class predictions across the trees instead of majority voting. As such, we are interested
to minimize the squared error between the observed outcome and the estimated prob-
ability as is the case for the Regression Random Forest, as opposed to minimizing the
misclassification error in the case of the Classification Random Forest. Furthermore,
the theoretical guarantees of asymptotic unbiasedness of predictions, asymptotic nor-
mality and consistency, which are crucial for the inference on marginal effects are
applicable exclusively to the Regression Random Forest as pointed out by Wager and
Athey (2018).

Formally, the proposed estimation procedure can be described as follows:

1. Create M − 1 binary indicator variables such as

Ym,i = 1(Yi ≤ m) for m = 1, ..., M − 1, (4.1)

where m is known and given by the definition of the dependent variable.
2. Estimate regression Random Forest for each of the M − 1 indicators as

P[Ym,i = 1 | Xi = x] = μm(x) =
N∑

i=1

wm,i (x)Ym,i for m = 1, ..., M − 1,

(4.2)

where the forest weights are defined as wm,i (x) = 1
B

∑B
b=1 wm,b,i (x) with trees

weights given by wm,b,i (x) = 1({Xi∈Lb,m (x)})
|{i :Xi∈Lb,m (x)}| with leaves Lb,m(x) for a total of B

trees.
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10 M. Lechner, G. Okasa

3. Obtain forest predictions for each of the M − 1 indicators as

Ŷm,i = P̂[Ym,i = 1 | Xi = x] = μ̂m(x) =
N∑

i=1

ŵm,i (x)Ym,i for m = 1, ..., M − 1,

(4.3)

where Ŷm,i are estimated cumulative probabilities.
4. Compute ordered probabilities for each distinct class as

P̂m,i = Ŷm,i − Ŷm−1,i for m = 2, ..., M (4.4)

with

ŶM,i = 1 and P̂1,i = Ŷ1,i (4.5)

and

P̂m,i = 0 if P̂m,i < 0 (4.6)

P̂m,i = P̂m,i∑M
m=1 P̂m,i

for m = 1, ..., M, (4.7)

where Eq. (4.4) makes use of the cumulative (nested) probability feature. As such,
the predicted values of two subsequent binary indicator variables Ym,i are subtracted
from each other to isolate the probability of the higher order class. In Eq. (4.5) the
first part is given by construction as follows from the indicator function (4.1) that
all values of Yi fulfil the condition for m = M and from the fact that cumulative
probabilities must add up to 1. The second part defines the probability of the lowest
value of the ordered outcome variable. This follows directly from the Random Forest
estimation as the created indicator variable Y1,i describes the very lowest value of
the ordered outcome classes and as such, no modification of its predicted value is
necessary to obtain a valid probability prediction. Line (4.6) ensures that the computed
probabilities from (4.4) do not become negative. This might occasionally happen
especially if the respective outcome classes comprise of very few observations.5 This
issue is well-known also from the Generalized Ordered Logit model where the parallel
regression assumption is relaxed (see McCullagh and Nelder 1989, p. 155). However,
even though it is possible in theory, growing honest trees and increasing the sample
size seems to largely prevent this from happening in practice. Lastly, in case negative
predictions should occur and thus being set to zero, (4.7) defines a normalization
step to ensure that all class probabilities sum up to 1. Notice, that such an approach
requires estimation of M − 1 forests in the training data, which might appear to be
computationally expensive. However, given that most empirical problems involve a

5 As a practical recommendation, we suggest collapsing some of the outcome categories with extremely
low frequencies.
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Random Forest estimation of the ordered choice model 11

rather limited number of outcome classes (usually not exceeding 10 distinct classes)
and the relatively fast estimation of standard regression forest,6 the here proposed
procedure shall be computationally tractable (see Tables 29 and 30 in Appendix B.4
for a comparison with competing methods).

4.2 Marginal effects

After estimating the conditional ordered choice probabilities, it is of interest to inves-
tigate how the estimated probabilities are associated with covariates, i.e. how the
changes in the covariates translate into changes in the probabilities. Typical measures
for such relationships in standard nonlinear econometrics are the marginal, or, partial
effects. Thus, for nonlinear models, including ordered choice models, two fundamen-
tal measures are of common interest, mean marginal effects and marginal effects at the
mean of the covariates.7 These quantities are feasible also in the case of the Ordered
Forest estimator. Due to the character of the ordered choicemodel, themarginal effects
on all probabilities of different values of the ordered outcome classes are estimated,
i.e. P[Yi = m | Xi = x]. In the following, let us define the marginal effect for an
element xk of Xi as follows:

MEk,m
i (x) = ∂P[Yi = m | Xk

i = xk, X−k
i = x−k]

∂xk
, (4.8)

with Xk
i and X−k

i denoting the elements of Xi with and without the k-th element,
respectively.8 Next, let us define the marginal effect for categorical variables as a
discrete change in the following way:

MEk,m
i (x) = P[Yi = m | Xk

i =
⌈
xk

⌉
, X−k

i = x−k]
− P[Yi = m | Xk

i =
⌊
xk

⌋
, X−k

i = x−k], (4.9)

where �·� and 	·
 denote upper and lower integer values, respectively, such that a
difference of one unit is respected. Notice, that in the case of a binary variable this leads

to the respective probabilities being evaluated at
⌈
xk

⌉
= 1 and

⌊
xk

⌋ = 0 as is usual for

desired quantity of interest, i.e. the marginal effect at mean by evaluating MEk,m
i (x)

at the population mean of Xi , for which the sample mean is a natural estimator.
The mean marginal effect is obtained by taking sample averages of MEk,m

i (x), i.e.
1
N

∑N
i=1 MEk,m

i (x). Additionally, it is possible to evaluate the marginal effect for all
values in the support of Xi to visualize its estimated functional form.

6 The computational speed of the regression forests depends on many tuning parameters, of which the
number of bootstrap replications, i.e. the number of grown trees, is the most decisive one.
7 One can evaluate the marginal effect at any arbitrarily chosen value. The default option is usually the
mean or the median.
8 As a matter of notation, capitals denote random variables, whereas small letters refer to the particular
realizations of the random variable.

123



12 M. Lechner, G. Okasa

Having formally defined the desired marginal effects, the next issue is the estima-
tion of these effects. For the case of binary and categorical covariates Xk , this appears
straightforward as the estimated Ordered Forest model provides predicted values for

all probabilities at all values xk . As such, the estimate M̂ E
k,m
i (x) of marginal effects

defined in Eq. (4.9) remains as a difference of the two conditional probabilities esti-
mated by the Ordered Forest. However, it is less obvious for continuous variables,
where derivatives are needed. As the estimates of the choice probabilities are averaged
leafmeans, themarginal effect is not explicit and not differentiable. In the nonparamet-
ric literature Stoker (1996) and Powell and Stoker (1996), among others, are directly
concerned with estimating average derivatives. However, these methods lack conve-
nience of estimation and have thus not been widely adopted by empirical researchers.9

Therefore,we approximate the derivative by a discrete analogue based on the definition
of a derivative as follows:

M̂ E
k,m
i (x) = P̂[Yi = m | Xk

i = xkU , X−k
i = x−k ] − P̂[Yi = m | Xk

i = xkL , X−k
i = x−k ]

xkU − xkL
(4.10)

= P̂m,i (x
kU ) − P̂m,i (x

kL )

xkU − xkL
, (4.11)

with xkU , xkL defined as xkU = xk + h · σ(xk) and xkL = xk − h · σ(xk), while
ensuring that the support of xk is respected, and where σ(·) denotes standard deviation
and h controls the window size for evaluating the marginal effect. We recommend to
set h = 0.1 to achieve accurate evaluation at the margin.10 Hence, the approximation
targets the marginal change in the value of the covariate Xk

i . Notice, that such an
estimation ofmarginal effects is muchmore demanding exercise than solely predicting
the choice probabilities. Therefore, it is expected that considerably more subsampling
iterations are needed for a good performance. Note that this approach to estimating
marginal effects is applicable to any estimator that estimates conditional ordered choice
probabilities and is not restricted only to the Ordered Forest.

4.3 Inference

The building block of theOrdered Forest are the estimates of conditional probabilities
such as P[Ym,i = 1 | Xi = x]. Particularly, the Ordered Forest makes use of linear
combinations of such probability estimates made by the Random Forest for both
the conditional ordered choice probabilities as well as for the corresponding marginal

9 The issues range from estimation difficulty, possibly non-standard distribution of the estimator, to ambigu-
ous choices of nuisance parameters.
10 We have additionally experimented with h = 0.5 and h = 1 which resulted in incrementally larger effect
sizes. Generally, the lower the window size h, the more local the effect and the higher the window size
h, the more global the effect becomes. As Burden and Faires (2011) point out, the window size h should
not be chosen too small due to the instability of the numerical derivative approximations. In the software
implementation in the R package orf, users can control this parameter by changing the argument window.
See Lechner and Okasa (2019) for more details.
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Random Forest estimation of the ordered choice model 13

effects. Therefore, for conducting inference on these quantities, it is sufficient to ensure
that the underlying estimates of conditional probabilities are asymptotically normally
distributed. Here, we combine the results of Wager and Athey (2018) and Lechner
(2018). First, we use the asymptotic results of Wager and Athey (2018) who show
that the consistency and normality of Random Forest predictions hold also when
dealing with binary outcomes and thus also hold for probability predictions of type
P[Ym,i = 1 | Xi = x].11 Hence, the finalOrdered Forest estimates for the conditional
ordered choice probabilities and the marginal effects, based on a forest algorithm
respecting the conditions discussed in Sect. 3, inherit the asymptotic properties of
consistency and normality. Second, we adapt the inference procedure for Random
Forests as developed by Lechner (2018) to estimate the variance of the conditional
ordered choice probabilities and the corresponding marginal effects.

The here proposed method for conducting approximate inference of the estimated
marginal effects utilizes theweight-based representation ofRandomForest predictions
and adapts the weight-based inference proposed by Lechner (2018) for the case of the
OrderedForest estimator.12 Themain condition for conductingweight-based inference
is to ensure that the weights and the outcomes are independent. In general, the weights
are functions of the covariates for the observation i and the training data. In order to
estimate the variance of the marginal effects successfully, the conditioning set of the
weights must be reduced. Therefore, if the observation i is not part of the training
data and there is i .i .d. sampling, then the weights depend only on the observation i
and are furthermore independent of the outcomes (for a formal analysis, see Lechner
2018). This is achieved through sample splitting where one half of the sample is used
to build the forest, and thus to determine the weights, and the other half to estimate the
effects using the respective outcomes. Notice that this condition goes beyond honesty
as defined in Wager and Athey (2018) as this requires not only estimating honest trees
but estimating honest forest as a whole. The reason for this is the fact that the weights
are not based on the estimated trees, but on the estimated forest. Therefore, to ensure
independence between the weights and outcomes, the honesty condition must be w.r.t.
to the forest and it is not sufficient to build honest trees only. This comes, however,
at the expense of the efficiency of the estimator as less data are effectively used.
Nevertheless, the simulation evidence in Lechner (2018) suggests that this efficiency
loss is small, if present at all.13

Since the Ordered Forest estimator is based on differences of Random Forest pre-
dictions for adjacent outcome categories, also the covariance term enters the variance
formula of the final estimator14 as opposed to the Modified Causal Forests developed
in Lechner (2018). Further, the estimation of marginal effects is based on differences

11 The asymptotic normality holds as long as the predictions are constructed by averaging the binary
outcomes and thus resulting in a probability estimate ensuring that the predictions remain real valued as
noted by Wager and Athey (2018) as well as Mentch and Hooker (2016). This excludes the classification
forest, where the predictions are constructed via majority voting.
12 See also Lechner (2002) and Imbens and Abadie (2006) for related approaches.
13 The so-called cross-fitting to avoid the efficiency loss as suggested by Chernozhukov et al. (2018) does
not appear to be applicable here as the independence of the weights and the outcomes would not be ensured.
14 One could avoid the covariance term with an additional sample split, which might, however, further lead
to a decreased efficiency of the estimator.
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of single Ordered Forest predictions which also needs to be taken into account.15 Let
us first rewrite the marginal effects in terms of weighted means of the outcomes as
follows:

M̂ E
k,m
i (x) = P̂m,i (x

kU ) − P̂m,i (x
kL )

xkU − xkL

= 1

xkU − xkL
·
([ N∑

i=1

ŵi,m(xkU )Yi,m −
N∑

i=1

ŵi,m−1(x
kU )Yi,m−1

]

−
[ N∑

i=1

ŵi,m(xkL )Yi,m −
N∑

i=1

ŵi,m−1(x
kL )Yi,m−1

])

= 1

xkU − xkL
·
([ N∑

i=1

ŵi,m(xkU )Yi,m −
N∑

i=1

ŵi,m(xkL )Yi,m

]

−
[ N∑

i=1

ŵi,m−1(x
kU )Yi,m−1 −

N∑

i=1

ŵi,m−1(x
kL )Yi,m−1

])

= 1

xkU − xkL
·
( N∑

i=1

w̃i,m(xkU xkL )Yi,m −
N∑

i=1

w̃i,m−1(x
kU xkL )Yi,m−1

)
,

where w̃i,m(xkU xkL) = ŵi,m(xkU )−ŵi,m(xkL), and w̃i,m−1(xkU xkL) = ŵi,m−1(xkU )

− ŵi,m−1(xkL) are the new weights defining the marginal effect. As such the quantity
of interest for inference becomes the variance of the above expression given as:

Var

(
M̂ E

k,m
i (x)

)
= Var

(
1

xkU − xkL
·
( N∑

i=1

w̃i,m(xkU xkL )Yi,m

−
N∑

i=1

w̃i,m−1(x
kU xkL )Yi,m−1

))

= Var

(∑N
i=1 w̃i,m(xkU xkL )Yi,m

xkU − xkL

)

+ Var

(∑N
i=1 w̃i,m−1(xkU xkL )Yi,m−1

xkU − xkL

)

− 2 · Cov

(∑N
i=1 w̃i,m(xkU xkL )Yi,m

xkU − xkL
;
∑N

i=1 w̃i,m−1(xkU xkL )Yi,m−1

xkU − xkL

)
,

15 Notice that for outcome classes m = 1 and m = M , the variance formula simplifies substantially.
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which suggests the following estimator for the variance16:

ˆVar

(
M̂ E

k,m
i (x)

)
= N

N − 1
· 1

(xkU − xkL)2
·

·
( N∑

i=1

(
w̃i,m(xkU xkL)Yi,m − 1

N

N∑

i=1

w̃i,m(xkU xkL)Yi,m

)2

+
N∑

i=1

(
w̃i,m−1(x

kU xkL)Yi,m−1 − 1

N

N∑

i=1

w̃i,m−1(x
kU xkL)Yi,m−1

)2

− 2 ·
N∑

i=1

(
w̃i,m(xkU xkL)Yi,m − 1

N

N∑

i=1

w̃i,m(xkU xkL)Yi,m

)

·
(

w̃i,m−1(x
kU xkL)Yi,m−1 − 1

N

N∑

i=1

w̃i,m−1(x
kU xkL)Yi,m−1

))
,

where for the marginal effects at the mean of the covariates the weights w̃i,m(xkU xkL)

and the scaling factor 1/(xkU − xkL)2 are evaluated at the respective sam-
ple means, whereas for the mean marginal effects the average of the weights
1
N

∑N
i=1 w̃i,m(xkU xkL) and of the scaling factor 1/

( 1
N

∑N
i=1(x

kU − xkL)
)2 is used.

Notice also the fact that the scaling factor drops out in the case of categorical covari-
ates. According to the simulation study in Lechner (2018), the weight-based inference
in case of theModified Causal Forests tends to be rather conservative for the individual
effects and rather accurate for aggregate effects. The results from the here conducted
empirical application resemble this pattern where inference for the marginal effects
at the mean of the covariates is more conservative in comparison to inference for the
mean marginal effects (see also Appendix C.2 for a comparison). Note that unlike the
general approach to estimating marginal effects, the weight-based inference for these
effects is uniquely tied to a class of weight-based, asymptotically normally distributed
estimators centred at the true value. For the forest-based estimators, this implies the
necessary condition of honesty such as in the here proposed Ordered Forest.

5 Monte Carlo simulation

In order to investigate the finite sample performance of the proposed Ordered Forest
estimator, we perform a Monte Carlo simulation study comparing competing estima-
tors for ordered choicemodels based on the RandomForest algorithm. As a parametric
benchmark, we take the ordered logistic regression. The considered models are specif-
ically the following: (i) Ordered Logit (McCullagh 1980), (ii) naive Ordinal Forest

16 Here, we estimate the variance with sample counterparts. An alternative approach, as in Lechner (2018),
would be to first apply the law of total variance and, second, estimate the conditional moments by non-
parametric methods. However, due to the presence of the covariance term the conditioning set contains two
variables which causes the convergence rate to decrease and hence such variance estimation might even
result in less precise estimates, depending on the sample size.
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16 M. Lechner, G. Okasa

Table 1 General settings of the
simulation

Monte Carlo

observations in training set 200 (800)

observations in testing set 10,000

replications 100

covariates with effect 15

trees in a forest 1,000

randomly chosen covariates
√
p

minimum leaf sizea 5

a Due to the conceptual differences of the Conditional Forests, an
alternative stopping rule ensuring growing deep trees is chosen. See
details in Appendix B.4

(Hothorn et al. 2006) and (v) Ordered Forest as developed in Sect. 4. Within the
simulation study the Ordered Forest estimator is analysed more closely to study the
finite sample performance of the estimator depending on the particular forest building
schemes and the way the ordering information is being taken into account. Regarding
the former we study the Ordered Forest based on the standard Random Forest as in
Breiman (2001), i.e. with boostrapping and without honesty as well as based on the
adjusted Random Forest as in Wager and Athey (2018), i.e. with subsampling and
with honesty. Regarding the latter, we study an alternative approach for estimating the
conditional choice probabilities which could be labelled as a ’Multinomial’ Forest. In
that case, the ordering information is not being taken into account and the probabilities
of each category are estimated directly. The details of this approach are provided in
Appendix A.1. Given this, the Ordered Forest estimator should perform better than
the Multinomial Forest in terms of the prediction accuracy thanks to the incorporation
of additional information from the ordering of the outcome classes. Within the sim-
ulation we investigate the accuracy of predictions for the conditional ordered choice
probabilities. Given the definition of marginal effects as (scaled) differences in pre-
dictions for different values of the covariates, the simulation results in turn provide
supportive evidence on the estimation of marginal effects as well.

General settings regarding the sample size, the number of replications, as well as
forest-specific tuning parameters for the Monte Carlo simulation are depicted in Table
1. Furthermore, a detailed description of the software implementation of the respective
estimators aswell as the software specific tuning parameters are discussed inAppendix
B.4.
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5.1 Data generating process

In terms of the data generating process, we built upon an Ordered Logit model as
defined in (2.1) and (2.2). As such we simulate the underlying continuous latent vari-
able Y ∗

i as a linear function of regressors Xi , while drawing the error term ui from the
logistic distribution. Then, the continuous outcome Y ∗

i is discretized into an ordered
categorical outcome Yi based on the threshold parameters αm .17 Furthermore, the
intercept term is fixed to zero, i.e. β0 = 0, and thus, the thresholds are relative to this
value of the intercept. As a result, such DGP captures the probability of the latent vari-
able Y ∗

i falling into a particular class given the location defined by the deterministic
component of the model together with its stochastic component (Carsey and Harden
2013).

In simulations of the data generating process, different numbers of possible discrete
ordered classes are considered, particularly M = {3, 6, 9} which corresponds to the
simulation set-up used in Janitza et al. (2016) and Hornung (2019a). Further, both
equal class widths, i.e. equally spaced threshold parameters αm , as well as randomly
spaced thresholds, while still preserving the monotonicity of the discrete outcome
Yi , are considered. For the latter, the threshold quantiles are drawn from the uniform
distribution, i.e. αq

m ∼ U (0, 1) and ordered afterwards. For the former, the threshold
quantiles are equally spaced between 0 and 1 depending on the number of classes. The
β coefficients are specified as having fixed coefficient size, namely β1, ..., β5 = 1,
β6, ..., β10 = 0.75 and β11, ..., β15 = 0.5 as is also the case in Janitza et al. (2016) and
Hornung (2019a).Moreover, an option for nonlinear effects is introduced, too.As such,
the covariates do not enter the functional form linearly, but are given by a sine function
sin(2Xi ) as, for example, in Lin et al. (2014), which is hard to model as opposed to
other nonlinearities such as polynomials or interactions. The set of covariates Xi is
drawn from the multivariate normal distribution with zero mean vector and a pre-
specified variance-covariance matrix �, i.e. Xi ∼ N (0, �), where � is specified
either as an identity matrix and as such implying zero correlation between regressors,
or it is specified to have a specific correlation structure between regressors18 as follows:

ρi, j =

⎧
⎪⎨

⎪⎩

1 for i = j

0.8 for i �= j; i, j ∈ {1, 3, 5, 7, 9, 11, 13, 15}
0 otherwise ,

which is inspired by the correlation structure from the simulations in Janitza et al.
(2016) and Hornung (2019a). Further, an option to include additional variables with
zero effect is implemented as well. As such, another 15 covariates are added to the
covariate space with β16 = ... = β30 = 0 which are again drawn from the normal

17 The thresholds are determined beforehand according to fixed threshold quantiles α
q
m of a large sample

of N = 1′000′000 observations of the latent Y ∗
i from the very same DGP to reflect the realized outcome

distribution and then used afterwards in the simulations as a part of the deterministic component.
18 Note that with a too high multicollinearity, the Ordered Logit model breaks down. With restricting
the level of correlation among covariates, the logit model can be still reasonably compared to the other
competing methods.
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distribution with zero mean and a pre-specified variance-covariance matrix �0, i.e.
X0
i ∼ N (0, �0), where �0 defines a declining correlation among noise covariates as

ρ0
i, j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for i = j

0.8 for i �= j; i, j ∈ {1, 2, 3}
0.6 for i �= j; i, j ∈ {4, 5, 6}
0.4 for i �= j; i, j ∈ {7, 8, 9}
0.2 for i �= j; i, j ∈ {10, 11, 12}
0 otherwise .

As the performance of theOrdered Forest estimator in high-dimensional settings is of
particular interest, due to the lack of theoretical results in such settings, we include an
option for additionally enlarging the covariate space with 1000 zero effect covariates
according to the same DGP as above, effectively creating a setting with p >> N .
In the high-dimensional case the Ordered Logit is excluded from the simulations for
obvious reasons. Overall, considering all the possible combinations for specifying the
DGP, we end up with 72 different DGPs.19 For all of them we simulate a training
dataset of size N = 200 and a testing dataset of size N = 10′000 for evaluating the
prediction performance of the consideredmethods.We simulate the large testing set for
three main reasons. First, the large testing set enables us to reduce the prediction noise
and thus provides a more reliable measure for average out-of-sample performance
of the estimators. Second, the large testing set also helps to reduce the simulation
noise and thus to obtain more precise estimates for the performance measures. Third,
we choose the large testing set to ensure further comparability with the simulation
studies performed by Janitza et al. (2016) and Hornung (2019a). Note that such a
large testing set is also common choice in many other simulation studies (see, for
example, Jacob 2020; or Knaus et al. 2021). Further, we focus more closely on the
simulation designs corresponding to the least and the most complex DGPs for which
we simulate also a training set of size N = 800. The former DGP (labelled as simple
DGP henceforth) corresponds exactly to an Ordered Logit model as in (2.1) with equal
class widths, uncorrelated covariates with linear effects and without any additional
zero effect variables. The latter DGP (labelled as complex DGP henceforth) features
random class widths, correlated covariates with nonlinear effects and additional zero
effect variables. For each replication, we estimate the model on the training set and
evaluate the predictions on the testing set, for all tested methods.

5.2 Competingmethods

We consider the ordered logistic regression as a parametric benchmark method in
our simulations as the most widely used method by practitioners when dealing with

19 For the low-dimensional setting we have n = 4 options for the DGP settings, out of which we can choose
from none to all of them, whereby the ordering does not matter, we end up with 16 possible combinations
as given by the formula

∑n
r=0

(n
r
)
, each for 3 possible numbers of outcome classes resulting in 48 different

DGPs. For the high-dimensional setting we have n = 3 options as the additional noise variables are always
considered. This for all 3 distinct numbers of outcome classes yields 24 different DGPs.
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ordered categorical outcome variables.20 In addition, we compare the Ordered Forest
to other flexible Random Forests methods adapted towards ordinal regression—the
Conditional Forest (Hothorn et al. 2006) and the Ordinal Forest (Hornung 2019a). In
case of the Conditional Forest, the difference to standard regression forests lies in a
different splitting criterion using a test statistic where the conditional distribution at
each split is based on permutation tests (for details see Strasser and Weber 1999; and
Hothorn et al. 2006). Their proposed Ordinal Forest regression assumes an underlying
latent continuous responseY ∗

i as is the case in standard ordered choicemodels.Hothorn
et al. (2006) define a score vector s(m) ∈ R

M , with m = 1, ..., M observed ordered
classes. This scores reflect the distances between the classes. The authors suggest to
set the scores as midpoints of the intervals of Y ∗

i which define the classes. As the
underlying Y ∗

i is unobserved, such a suggestion results in s(m) = m and Ordinal
Forest regression collapses to a standard forest regression as pointed out by Janitza
et al. (2016).21 However, although the tree-building step coincides, the prediction step
differs as the estimates are the choice probabilities calculated as the proportions of
the respective outcome classes falling into the same leaf instead of averages of the
outcomes.As such, for each leafwithin a tree, the prediction is computed for each value
of the ordered categorical outcome as its share within the leaf, resulting in a probability
predictions between 0 and 1. This is in contrast to standard prediction procedures,
which would compute an average of all values of the ordered categorical outcome.
Nevertheless, after computing the single-tree predictions as the relative frequencies
of the ordered outcomes, the forest estimates of the conditional choice probabilities
P̂[Yi = m | Xi = x] are computed by taking the averages of the choice probabilities
produced by each tree, i.e. the same aggregation scheme as in a regression forest.
Hornung (2019a) points out that setting s(m) = m implies inherently assuming that
the class widths, i.e. the adjacent intervals of the continuous outcome variable Y ∗

i
determining the discrete outcome Yi are of the same length. This, however, does not
have to hold in general and these intervals might not follow any particular pattern.22

In order to address this issue, Hornung (2019a) proposes an Ordinal Forest method,
which optimizes these interval widths bymaximizing the out-of-bag (OOB) prediction
performance of the forests.23 However, in contrast to the approach of Hothorn et al.
(2006), the forest algorithmused is basedon the forest as developedbyBreiman (2001),
while the primary target is to predict the ordinal class and the choice probabilities are
obtained as relative frequencies of trees predicting the particular class. As such, each
tree predicts the most probable value of the ordered categorical outcome. Thereupon,
the forest prediction for the conditional choice probability is computed as the share
of trees predicting the particular categorical value of the ordered outcome. This is

20 We refrain from further comparisons with alternatives such as the ordinal generalized additive models
(see, for example, Hastie 2017) to highlight the differences between the workhorse parametric model and
the flexible forest-based models.
21 Janitza et al. (2016) perform also a simulation study to test the robustness of the suggested score values
by setting s(m) = m2, but do not find any significant differences to simple s(m) = m.
22 Recently, Buri and Hothorn (2020) and Tutz (2022) proposed score-free methods based on Random
Forests that do not rely on the underlying continuous intervals of the observed ordered classes.
23 This approach could be regarded as semiparametric as it uses the nonparametric structure of the trees
and assumes a particular parametric distribution (standard normal) within its optimization procedure.
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in contrast to the estimation scheme by Hothorn et al. (2006), where the probability
prediction step occurs at the level of trees, instead of at the level of forest as is the case
here. Hornung (2019a) shows better prediction performance of such Ordinal Forests
which optimize the class widths of Y ∗

i in comparison to the Conditional Forests.
Without the optimization step, the author denotes such forest as the naive Ordinal
Forest.24

Although both of these methods demonstrate good predictive performance, none
of them provides theoretical guarantees with regards to the bias and distribution of
the predictions. This is due to the fact that none of these methods grow the trees in
the forest respecting the conditions laid out in Wager and Athey (2018), most notably
the honesty condition, which has been shown to be crucial to ensure the asymptotic
unbiasedness and asymptotic normality of the forest estimator (Wager and Athey
2018). In other words, these methods do not use separate sets of observations to grow
the tree, i.e. to place the splits, and to make the predictions in the leaves of the tree.
Further, it is worth to mention that in practice both methods suffer from considerable
computational costs. For a comparison of the computation time with the Conditional
Forest as well as the Ordinal Forest, see Tables 29 and 30 in Appendix B.4.

5.3 Evaluationmeasures

In order to properly evaluate the prediction performance we use two measures of
accuracy, namely the mean-squared error (MSE) and the ranked probability score
(RPS). The former evaluates the error of the estimated conditional choice probabilities
as a squared difference from the true values of the conditional choice probabilities.
Given our simulation design, we know these true values and hence, we can define the
Monte Carlo average MSE as:

AMSE = 1

R

R∑

j=1

1

N

N∑

i=1

1

M

M∑

m=1

(
P[Yi, j = m | Xi, j = x] − P̂[Yi, j = m | Xi, j = x]

)2
,

where j refers to the j-th simulation replication, while R being the total number of
replications. The second measure, the RPS as developed by Epstein (1969) is arguably
the preferred measure for the evaluation of probability forecasts for ordered outcomes
as it takes the ordering information into account (see Gneiting and Raftery 2007; and
Constantinou and Fenton 2012). The Monte Carlo average RPS can be defined as
follows:

ARPS = 1

R

R∑

j=1

1

N

N∑

i=1

1

M − 1

M∑

m=1

(
P[Yi, j ≤ m | Xi, j = x] − P̂[Yi, j ≤ m | Xi, j = x]

)2
,

24 A more detailed description of the conditional as well as the Ordinal Forest is provided in Appendix A.2
and A.3, respectively.
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where on the contrary to the MSE, the difference between the cumulative choice
probabilities is measured. The RPS can be seen as a generalization of the Brier Score
(Brier 1950) for multiple, ordered outcomes. As such, it measures the discrepancy
between the predicted cumulative distribution function and the true one. Nevertheless,
although the ordering information is taken into account, the relative distance between
the classes is not reflected as pointed out by Janitza et al. (2016).

5.4 Simulation results

For the sake of brevity, here we focus mainly on the simulation results obtained for
the simple and for the complex DGP, while the results for all 72 DGPs are provided in
Appendix B.2. Figures1 and 2 summarize the results for the low-dimensional setting
for the simple and the complex DGP, respectively. Similarly, Figs. 3 and 4 present
the results for the simple and the complex DGP for the high-dimensional setting. The
upper panels of the figures show the ARPS, the preferred accuracy measure, whereas
the lower panels show the AMSE as a complementary measure. Within the figures
the transparent boxplots in the background show the results for the smaller sample
size along with the bold boxplots in the foreground showing the results for the bigger
sample size. From left to right the figures present the results for 3, 6 and 9 outcome
classes, respectively. The figures compare the prediction accuracy of the Ordered
Logit, naive Ordinal Forest, Ordinal Forest, Conditional Forest, Ordered Forest and
the Multinomial Forest, where the asterisk (∗) denotes the honest version of the last
two forests considered. Further tables with more detailed results and statistical tests
for mean differences in the prediction errors are listed in Appendix B.1.

In the low-dimensional setting with the simple DGP it is expected that the ordered
logistic regression should perform best in terms of both the AMSE as well as the
ARPS. Indeed,we do observe this results in Fig. 1 as theOrderedLogitmodel performs
unanimously best out of the considered models, reaching almost zero prediction error.
Among the flexible forest-based estimators, the proposed Ordered Forest belongs
to those better performing methods in terms of both accuracy measures. The honest
versions of the forests lag behindwhat points at the efficiency loss due to the additional
sample splitting. Overall, the ranking of the estimators stays stable with regard to the
number of outcome categories. Additional pattern common to all estimators is the
lower prediction error and increased precision with growing sample size.

In the case of the complex DGP, the performance of the flexible forest-based esti-
mators is expected to be better in comparison to the parametric Ordered Logit. This can
be seen in Fig. 2 as the Ordered Logit lags behind the majority of the flexible methods
in both accuracy measures. The somewhat higher prediction errors of the naive and
the Ordinal Forest compared to the other forest-based methods might be due to their
different primary target which are the ordered classes instead of the ordered prob-
abilities as is the case for the other methods. In this respect the Conditional Forest
exhibits considerably good prediction performance. The Ordered Forest outperforms
the competing forest-based estimators in terms of the ARPS throughout all outcome
class scenarios and also in terms of the AMSE in two scenarios, being outperformed
only by the Conditional Forest in case of 9 outcome classes. Interestingly, the multino-
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Fig. 1 Simulation Results: Simple DGP & Low Dimension. Note: Figure summarizes the prediction accu-
racy results based on 100 simulation replications. The upper panel contains the ARPS and the lower panel
contains the AMSE. The boxplots show the median and the interquartile range of the respective measure.
The transparent boxplots denote the results for the small sample size, while the bold boxplots denote the
results for the big sample size. From left to right the results for 3, 6 and 9 outcome classes are displayed

mial forest performs very well across all scenarios. However, it is consistently worse
than the Ordered Forest with bigger discrepancy between the two the more outcome
classes are considered. This points to the value of the ordering information and the
ability of the Ordered Forest to utilize it in the estimation. With regard to the sample
size, we observe the same pattern as in Fig. 1.

Considering the high-dimensional setting for the case of the simple DGP, we see
in Fig. 3 that the Ordered Forest slightly lags behind the other methods, except the
scenarios with 3 outcome classes. In comparison, the Conditional Forest performs best
in terms of the ARPS as well as in terms of the AMSE. This is possibly due to the
feature of the Conditional Forest to provide unbiased variable selection for covariates
with no effects, as is the case in this DGP. Also the naive and the Ordinal Forest exhibit
better performance compared to the previous simulation designs.However, it should be
noted that the overall differences in the magnitude of the prediction errors are much
lower within this simulation design as compared to the previous designs. Further,
taking a closer look at the ARPS results of the Multinomial Forest we clearly see that
in the simple ordered design the ignorance of the ordering information really harms
the predictive performance of the estimator the more outcome classes are considered.
Additionally, it is interesting to see that the performance gain due to a bigger sample
size seems to bemuch less for the honest version of the forests in the high-dimensional
setting as opposed to the low-dimensional setting.

Lastly, the case of the complex DGP in the high-dimensional setting as in Fig. 4
shows some interesting patterns. In general, all of the methods exhibit good predictive
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Fig. 2 Simulation Results: Complex DGP & Low Dimension. Note: Figure summarizes the prediction
accuracy results based on 100 simulation replications. The upper panel contains the ARPS and the lower
panel contains the AMSE. The boxplots show the median and the interquartile range of the respective
measure. The transparent boxplots denote the results for the small sample size, while the bold boxplots
denote the results for the big sample size. From left to right the results for 3, 6 and 9 outcome classes are
displayed

performance as the loss in the prediction accuracy due to the high-dimensional covari-
ate space is small. Additionally, although dealing with the most complex design, no
substantial loss in the prediction accuracy can be observed in comparison to the less
complex designs. This fact demonstrates the ability of the Random Forest algorithm
as such to effectively cope with highly nonlinear functional forms even in high dimen-
sions. Further, it seems that the role of the sample size is of particular importance in
this complex design. On the contrary to the previous designs, where the prediction
accuracy increases almost by a constant amount for all estimators and thus does not
change their relative ranking, here it does not hold anymore. First, some estimators
seem to learn faster than others, i.e. to have a faster rate of convergence. As such in the
small sample size the Ordered Forest has in some settings higher values of the ARPS
as well as the AMSE than the Conditional Forest, however manages to outperform
the Conditional Forest in the bigger training sample. This becomes most apparent in
the case of 9 outcome classes. Here, the median of the ARPS is almost the same for
the two methods based on the small training sample, but significantly lower for the
Ordered Forest based on the larger training sample.25 Second, for the Ordinal Forest
the prediction accuracy even worsens with the bigger training sample, which might
hint on possible convergence issues. This might possibly come from the fact that the
estimator comprises multiple distinct optimization and partly nonlinear transforma-
tion steps that are tied together, but lack formal asymptotic arguments to analyse the

25 See Appendix B.1 for the detailed results of the statistical tests conducted.
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Fig. 3 Simulation Results: Simple DGP & High Dimension. Note: Figure summarizes the prediction accu-
racy results based on 100 simulation replications. The upper panel contains the ARPS and the lower panel
contains the AMSE. The boxplots show the median and the interquartile range of the respective measure.
The transparent boxplots denote the results for the small sample size, while the bold boxplots denote the
results for the big sample size. From left to right the results for 3, 6 and 9 outcome classes are displayed

impacts and propagation of the estimation errors into the final point estimator. Overall,
the Ordered Forest achieves the lowest ARPS as well as AMSE within this design,
closely followed by the conditional and themultinomial forest. However, the generally
good performance of the Conditional Forest might be due to a different type of the
stopping criterion as well as due to the unbiased variable selection.

In addition to the four main simulation designs discussed above, we also inspect
all 72 different DGPs to analyse the performance and the sensitivity of the Ordered
Forest to the particular features of the simulated DGPs (for details see Appendix B.2).
In case of both the low-dimensional setting, aswell as the high-dimensional setting, the
OrderedForest performsparticularlywell if there are nonlinear effects accompaniedby
high correlation of regressors as such aswell as togetherwith additional noise variables
or randomly spaced thresholds. Furthermore, the honest version of theOrdered Forest
achieves consistently lower prediction accuracy in both settings. It seems that in small
samples the increase in variance due to honesty dominates the reduction in the bias of
the estimator. In order to further investigate the impact of the honesty feature in bigger
samples as well as the convergence of theOrdered Forest, we quadruple the size of the
training set once again and repeat the main simulation for the Ordered Forest and its
honest version with N = 3′200 observations (see Appendix B.1 for the full results).
Firstly, for both versions we observe that with growing sample size the prediction
errors get lower and the precision increases. However, the rate of convergence seems
to be slower than the parametric rate of

√
N . Secondly, we observe the same pattern as

in the smaller sample sizes, namely slightly lower prediction accuracy for the honest
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Fig. 4 Simulation Results: Complex DGP & High Dimension. Note: Figure summarizes the prediction
accuracy results based on 100 simulation replications. The upper panel contains the ARPS and the lower
panel contains the AMSE. The boxplots show the median and the interquartile range of the respective
measure. The transparent boxplots denote the results for the small sample size, while the bold boxplots
denote the results for the big sample size. From left to right the results for 3, 6 and 9 outcome classes are
displayed

version of the Ordered Forest which stays roughly constant across all simulation
designs. Hence, even in the biggest sample the additional variance dominates the bias
reduction. However, it should be noted that for a prediction exercise honesty is an
optional choice, while if inference is of interest, honesty becomes binding.

5.5 Empirical results

Additionally to the above synthetic simulations, we explore the performance of the
Ordered Forest estimator based on real datasets26 previously used in Janitza et al.
(2016) and Hornung (2019a). Table 2 summarizes the features of the datasets and the
descriptive statistics are provided in Appendix B.3.1. We compare our estimator in
terms of the prediction accuracy to all the estimators used in the above Monte Carlo
simulation.

Similarly to Hornung (2019a) we evaluate the prediction accuracy based on a
repeated cross-validation in order to reduce the dependency of the results on the par-
ticular training and test sample splits. As such we perform a 10-fold cross-validation
on each dataset, i.e. we randomly split the dataset in 10 equally sized folds and use
9 folds for training the model and 1 fold for validation. This process is repeated such
that each fold serves as a validation set exactly once. Lastly, we repeat this whole

26 The here proposed algorithm has been already applied and is in use for predicting match outcomes in
football, see Goller et al. (2021) and SEW Soccer Analytics for details.
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Table 2 Description of the datasets

Datasets summary
Dataset Sample size Outcome Class range Covariates

Wine quality 4, 893 Quality score 1 (moderate)–6 (high) 11

Mammography 412 Visits history 1 (never)–3 (over year) 5

Nhanes 1, 914 Health status 1 (excellent)–5 (poor) 26

Vlbw 218 Physical condition 1 (threatening)–9 (optimal) 10

Support Study 798 Disability degree 1 (none)–5 (fatal) 15

Fig. 5 Cross-Validation: ARPS. Note: Figure summarizes the prediction accuracy results in terms of the
ARPS based on 10 repetitions of 10-fold cross-validation for respective datasets. The boxplots show the
median and the interquartile range of the respective measure

procedure 10 times and report average accuracy measures. The results of the cross-
validation exercise for the ARPS as well as the AMSE are summarized in Figs. 5 and
6, respectively. Similarly as for the simulation results, Appendix B.3 contains more
detailed statistics.

The main difference in evaluating the prediction accuracy in comparison to the
simulation study is the fact that we do not observe the underlying ordered class prob-
abilities, but only the realized ordered classes. This affects the computation of the
accuracy measures and it can be expected that the prediction errors are somewhat
higher in comparison to the simulation data, which is also the case here. Overall, the
results imply a substantial heterogeneity in the prediction accuracy across the consid-
ereddatasets.On theonehand, the parametricOrderedLogit doeswell in small samples
(vlbw), whereas the forest-based methods are somewhat lagging behind. This is not
surprising as a lower precision in small samples is the price to pay for the additional
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Fig. 6 Cross-Validation: AMSE. Note: Figure summarizes the prediction accuracy results in terms of the
AMSE based on 10 repetitions of 10-fold cross-validation for respective datasets. The boxplots show the
median and the interquartile range of the respective measure

flexibility. On the other hand, in the largest sample (winequality) the Ordered Logit is
clearly the worst performing method and all forest-based methods perform substan-
tially better. With respect to the Ordered Forest estimator we observe relatively high
prediction accuracy for three datasets (mammography, supportstudy,winequality) and
relatively low prediction accuracy for two datasets (nhanes, vlbw) in comparison to the
competing methods. The good performance in the winequality and the supportstudy
dataset is expected due to the large samples available. In case of the mammography
dataset, even when smaller in sample size, theOrdered Forest maintains the good pre-
diction performance, with its honest version doing even better. Theworse performance
for the vlbw dataset might be due to the small sample size. However, the honest version
of the Ordered Forest performs rather well. The relatively poor performance in the
case of the nhanes dataset comes rather at surprise as the sample size is rather large.
Nevertheless, here the differences among all estimators are very small in magnitude,
in fact the smallest among the considered datasets. Overall, the empirical results pro-
vide evidence for a good predictive performance of the newOrdered Forest estimator,
especially its non-honest version, based on various real datasets.

6 Empirical application

In order to showcase the Ordered Forest estimation of marginal effects, we revisit the
question of self-assessed health status and its relationship with socio-economic char-
acteristics as, for example, analysed previously by Case et al. (2002) and Murasko
(2008). In our empirical application we analyse the dataset from the 2009 National

123



28 M. Lechner, G. Okasa

Health Interview Survey (NHIS) used in Angrist and Pischke (2014) which includes
an ordered categorical outcome indicating a self-assessed health status. The specific
survey question of interest reads as: ’Would you say your health in general is excel-
lent, very good, good, fair, or poor?’ and is coded on an ordered scale ranging from
1 (poor) to 5 (excellent). We examine how the ordered choice probabilities of the
self-assessed health status differ for individuals with and without a coverage by pri-
vate health insurance (see Levy and Meltzer 2008, for a review of insurance effects
on health) as well as how these probabilities vary with further socio-demographic
characteristics, namely age, race and family size as well as economic characteristics,
namely education, employment status and family income. The considered dataset is
well-suited for demonstrating the evaluation of marginal effects for several reasons.
First, the dataset features an ordered categorical outcome with five distinct ordered
categories, which are unevenly distributed and thus challenging for estimating the
associated marginal effects. Second, the dataset includes both continuous as well as
categorical covariates which enables an exhaustive demonstration of the evaluation
of marginal effects for various variable types. Third, the dataset contains more than
18′000 observations which allows for a precise estimation of the marginal effects. The
descriptive statistics for the considered dataset are presented in Appendix C.1.27 We
follow the data preparation of Angrist and Pischke (2014) and discard all observations
with missing values and retain only individuals from single family households and
those of age between 26 and 59 years as those do not yet qualify for the public health
insurance programme Medicare.

We estimate the ordered choice probabilities for the self-reported health status
conditional on having a private health insurance contract and further socio-economic
characteristics using the Ordered Forest in its honest version as defined in Sect. 4.3
and in Lechner (2018) as well as the Ordered Logit and evaluate the corresponding
marginal effects. Table 3 contains the estimated mean marginal effects for each out-
come class for all covariates together with the associated standard errors, t-values,
p-values as well as conventional significance levels for both the Ordered Forest as
well as the Ordered Logit.28

In general, we see similar patterns in terms of the effect sizes and effect direction
for both the Ordered Forest and the Ordered Logit. However, we do observe more
variability in terms of the effect direction in case of the Ordered Forest. This is due
to the main difference to the Ordered Logit as the Ordered Forest does not use any
parametric link function in the estimation of the marginal effects and as such does
not impose any functional form on these estimates. As a result, the Ordered Forest
does neither fix the sign of the marginal effects estimates nor revert it exactly once
within the class range as is the case for the Ordered Logit (the so-called single crossing
feature, see, for example, Boes and Winkelmann 2006; or Greene and Hensher 2010)
but rather estimates these in a data-driven manner. Nevertheless, the Ordered Forest,
same as the Ordered Logit, still ensures that the marginal effects across the class range
sum up to zero. In terms of uncertainty of the effects the level of precision estimated

27 The dataset is freely accessible from the R-package stevedata (Miller 2021) or in the data appendix of
Angrist and Pischke (2014) available online.
28 The results for the marginal effects at mean are available in Appendix C.2.
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via the weight-based inference seems slightly lower as compared to the delta method
used in the Ordered Logit.

In particular, inspecting the variable of interest we immediately see the additional
flexibility of theOrderedForest.While bothmethods estimate positivemarginal effects
of having a private health insurance on the probability of being in very good or excel-
lent health condition and negative marginal effects for being in good or fair health
condition, the Ordered Forest estimates also a positive effect for being in poor health
condition, whereas the Ordered Logit is forced to estimate a negative effect due to its
above-mentioned single-crossing property. As such, the Ordered Forest estimates a
non-monotonic effect of having a private health insurance across the class probabil-
ities. The results suggest that on one hand individuals with health insurance are by
4.51 percentage points less likely to be in good health condition and by 0.95 percent-
age points less likely to be in fair health condition, respectively. On the other hand,
individuals with health insurance are 4.44 percentage points more likely to be in very
good health condition as well as 0.78 percentage points more likely to be in excellent
health condition, respectively, but they are also 0.23 percentage points more likely to
be in poor health condition. As the decision to sign up for a private health insurance
is not random, i.e. the data come from a non-experimental setting, it is not possible
to uncover the causal effect without strong assumptions. One might, however, argue
that based on the partial correlation evidence, due to the regular medical care and
prevention the health insurance increases the likelihood of being in rather good health
condition, but also that individuals with rather poor health condition are more likely
to sign up for a private health insurance to cover up for the expected medical care
costs. As can be seen, the Ordered Forest enables for such a non-monotonic effects
analysis, while the classical Ordered Logit (without any additional augmentation such
as splines or similar) does not permit such mechanism to take place at all. Overall, in
terms of effect sizes as well as statistical uncertainty, we observe similar results for
both estimators.

Inspecting the effects of the additional conditioning variables, we see similar results
for the binary covariates. As such, neither the Ordered Forest nor the Ordered Logit
find evidence for gender influencing the health class probabilities, while both methods
estimate a lower probability of being in very good or excellent health condition for
people of colour and the unemployed, results that are comparable in both effect sizes
and the statistical precision. For the categorical income level variable, both methods
estimate a positive relationship, i.e. individuals with higher income are less likely to
be in rather bad health condition. However, in case of the Ordered Forest, the effects
are sizeable, whereas in the case of the Ordered Logit the effect sizes lack substantive
relevance. Lastly, for continuous covariates, bothmethods estimate a higher likelihood
of being in rather bad health condition for increasing age with similar effect sizes as
well as with similar statistical precision. In terms of education and family size, the
Ordered Forest suggests non-monotonic effects, which is not the case for the Ordered
Logit.

Overall, themain advantage of the estimation of themarginal effects by theOrdered
Forest stems fromamoreflexible, data-driven approximation of possible nonlinearities
in the functional form.
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7 Conclusion

In this paper, we develop and apply a new machine learning estimator of the econo-
metric ordered choice models based on the Random Forest algorithm. The Ordered
Forest estimator is a flexible alternative to parametric ordered choice models such as
the Ordered Logit or Ordered Probit which does not rely on any distributional assump-
tions and provides essentially the same output as the parametric models, including the
estimation of the marginal effects as well as the associated inference. The proposed
estimator utilizes the flexibility of Random Forests and can thus naturally deal with
nonlinearities in the data and with a large-dimensional covariate space, while taking
the ordering information of the categorical outcome variable into account. Hence,
the estimator flexibly estimates the conditional ordered choice probabilities without
restrictive assumptions about the distribution of the error term, or other assumptions
such as the single index and constant threshold assumptions as is the case for the
parametric ordered choice models (see Boes and Winkelmann 2006, for a discus-
sion of these assumptions). Further, the estimator allows also the estimation of the
marginal effects, i.e. how the estimated conditional ordered choice probabilities vary
with changes in covariates. The weighted representation of these effects together with
the honesty of the forest enables the weight-based inference as suggested by Lechner
(2018). The fact that the estimator comprises of linear combinations of Random Forest
predictions ensures that the theoretical guarantees of Wager and Athey (2018) are sat-
isfied. Additionally, a free software implementation of the Ordered Forest estimator
in both R (R Core Team 2021) and Python (Van Rossum and Drake 2009) is available
in the package orf available on the official CRAN (Lechner and Okasa 2019) and
PyPI (Lechner et al. 2022) repositories to enable the usage of the method by applied
researchers.

The performance of the Ordered Forest estimator is studied and compared to other
competing estimators in an extensive Monte Carlo simulation as well as using real
datasets. The simulation results suggest good performance of the estimator in finite
samples, including also high-dimensional settings. The advantages of the machine
learning estimation compared to a parametric method become apparent when dealing
with high correlation among covariates and highly nonlinear functional forms. In such
cases all of the considered forest-based estimators perform better than the Ordered
Logit in terms of the prediction accuracy. Among the forest-based estimators, the
Ordered Forest in its non-honest version, i.e. without sample splitting, proposed in
this paper performs well throughout all simulated DGPs and outperforms the compet-
ing methods in the most complex simulation designs. In contrast, the honest version of
the Ordered Forest lags behind as the increase in variance dominates the bias reduc-
tion. These results document the trade-off between prediction performance, for which
honesty is optional, and statistical inference, for which the honesty is required. The
empirical evidence using real datasets supports the findings from theMonte Carlo sim-
ulation. Additionally, the estimation of the marginal effects as well as the inference
procedure seems to work well in the presented empirical example.

Despite the attractive properties of the Ordered Forest estimator, many interesting
questions are left open. Particularly, a further extension of the Monte Carlo simulation
to study the sensitivity of the Ordered Forest in respect to tuning parameters of the
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underlying Random Forest as well as in respect to different simulation designs would
be of interest. Similarly, the performance of the estimator with and without honesty
for larger sample sizes should be further investigated. Also, the optimal choice of the
size of the window for evaluating the marginal effects would be worth to explore.
Additionally, besides the theoretical guarantees for the point estimator, a rigorous
asymptotic analysis of the weight-based inference procedure for the estimation of
standard errors would be beneficial to describe the exact theoretical properties. Lastly,
it would be of great interest to see more real data applications of the Ordered Forest
estimator such as, for example, in Kim et al. (2021), especially for large samples.

A Other machine learning estimators

A.1 Multinomial Forest

Considering theOrdered Forest estimator, a possiblemodification formodels with cat-
egorical outcome variable without an inherent ordering appears to be straightforward.
Instead of estimating cumulative probabilities and afterwards isolating the respective
class probabilities,we can estimate the class probabilities Pm,i = P[Yi = m | Xi = x]
directly. As such the binary outcomes are now constructed to indicate the particular
outcome classes separately. Then the Random Forest predictions for each class yield
the conditional choice probabilities which need to be afterwards normalized to sum
up to 1. Formally, consider (un)ordered categorical outcome variable Yi ∈ {1, ..., M}
with classes m and sample size N (i = 1, ..., N ). Then, the estimation procedure can
be described as follows:

1. Create M binary indicator variables such as

Ym,i = 1(Yi = m) for m = 1, ..., M . (A.1)

where m is known and given by the definition of the dependent variable.
2. Estimate regression Random Forest for each of the M indicators as

P[Ym,i = 1 | Xi = x] = μm(x) =
N∑

i=1

wm,i (x)Ym,i for m = 1, ..., M,

(A.2)

where the forest weights are defined as wm,i (x) = 1
B

∑B
b=1 wm,b,i (x) with trees

weights given by wm,b,i (x) = 1({Xi∈Lb,m (x)})
|{i :Xi∈Lb,m (x)}| with leaves Lb,m(x) for a total of B

trees.
3. Obtain forest predictions for each of the M indicators as

Ŷm,i = P̂[Ym,i = 1 | Xi = x] = μ̂m(x) =
N∑

i=1

ŵm,i (x)Ym,i for m = 1, ..., M,

(A.3)
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where Ŷm,i are estimated probabilities.
4. Compute probabilities for each class as

P̂m,i = Ŷm,i for m = 1, ..., M (A.4)

P̂m,i = P̂m,i∑M
m=1 P̂m,i

for m = 1, ..., M, (A.5)

where the Eq. (A.4) defines the probabilities of all M classes and subsequent Eq.
(A.5) ensures that the probabilities sum up to 1 as this might not be the case otherwise.
Similarly to the Ordered Forest estimator, also the Multinomial Forest is a linear
combination of the respective forest predictions and as such also inherits the theoretical
properties stemming fromRandomForest estimation as described in Sect. 3 of themain
text.

A.2 Conditional Forest

The Conditional Forest as discussed in Sect. 2 of the main text is grown with the
so-called conditional inference trees. The main idea is to provide an unbiased way
of recursive splitting of the trees using a test statistic based on permutation tests
(Strasser and Weber 1999). To describe the estimation procedure, consider an ordered
categorical outcome Yi ∈ (1, ..., M) with ordered classes m and sample size N (i =
1, ..., N ). Further, define binary case weights wi ∈ {0, 1} which determine if the
observation is part of the current leaf. Then, the algorithm developed by Hothorn et al.
(2006) can be described as follows:

1. Test the global null hypothesis of independence between any of the P covariates
and the outcome, for the particular case weights, given a bootstrap sample Zb.
Afterwards, select the p-th covariate Xi,p with the strongest association with the
outcome Yi , or stop if the null hypothesis cannot be rejected. The association is
measured by a linear statistic T given as:

Tp(Zb, w) =
N∑

i=1

wi gp(Xi,p)h(Yi ), (A.6)

where gp(·) and h(·) are specific transformation functions.
2. Split the covariate sample space Xp into two disjoint sets I and J with adapted

case weights wi1(Xi,p ∈ I) and wi1(Xi,p ∈ J ) determining the observations
falling into the subset I andJ , respectively. Then, the split is chosen by evaluating
a two-sample statistic as a special case of A.6:

T I
p (Zb, w) =

N∑

i=1

wi1(Xi,p ∈ I)h(Yi ) (A.7)

for all possible subsets I of the covariate sample space Xp.
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3. Repeat steps 1 and 2 recursively with modified case weights.

Hence, the above algorithm distinguishes between variable selection (step 1) and
splitting rule (step 2),while both relying on the variations of the test statistic Tp(Zb, w).
In practice, however, the distribution of this statistic under the null hypothesis is
unknown and depends on the joint distribution of Yi and Xi,p. For this reason, the
permutation tests are applied to abstract from the dependency by fixing the covariates
and conditioning on all possible permutations of the outcomes. Then, the conditional
mean and covariance of the test statistic can be derived and the asymptotic distribution
can be approximated by Monte Carlo procedures, while Strasser and Weber (1999)
proved its normality. Finally, variables and splits are chosen according to the lowest
p-value of the test statistic Tp(Zb, w) and T I

p (Zb, w), respectively.
Besides the permutation tests, the choice of the transformation functions gp(·) and

h(·) is important and depends on the type of the variables. For continuous outcome and
covariates, identity transformation is suggested. For the case of an ordinal regression
which is of interest here, the transformation function is given through the score function
s(m). If the underlying latent Y ∗

i is unobserved, it is suggested that s(m) = m and
thus h(Yi ) = Yi . Hence, in the tree building the ordered outcome is treated as a
continuous one (Janitza et al. 2016). Then, however, the leaf predictions are the choice
probabilities computed as proportions of the outcome classes falling within the leaf,
instead of fitting a within-leaf constant. The final Conditional Forest predictions for
the choice probabilities are the averaged conditional tree probability predictions. Such
obtained choice probabilities are analysed in the Monte Carlo study in Sect. 5 of the
main text.

A.3 Ordinal Forest

In the following, the algorithm for theOrdinal Forest as developed byHornung (2019a)
is described. To begin with, consider an ordered categorical outcome Yi ∈ (1, ..., M)

with ordered classesm and sample size N (i = 1, ..., N ). Then, for a set of optimization
forests b = 1, ..., Bsets :

1. DrawM−1 uniformly distributed variables Db,m ∼ U (0, 1) and sort them accord-
ing to their values. Further, set Db,1 = 0 and Db,M+1 = 1.

2. Define a score set Sb,m = {Sb,1, ..., Sb,M } with scores constructed as Sb,m =
	−1

( Db,m+Db,m+1
2

)
for m = 1, ..., M , where 	(·) is the cumulative distribution

function of the standard normal.
3. Create a new continuous outcome Zb,i = (Zb,1, ..., Zb,N ) by replacing each class

value m of the original ordered categorical Yi by the m-th value of the score set
Sb,m for all m = 1, ..., M .

4. Use Zb,i as dependent variable and estimate a regression forest RFSb,m with Bprior

trees.
5. Obtain the out-of-bag (OOB) predictions for the continuous Zb,i and transform

them intopredictions forYi as follows: Ŷb,i = m if Ẑb,i ∈ ]
	−1(Db,m),	−1(Db,m+1)

]
.
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6. Compute a performance measure for the given forest R̂F Sb,m based on some per-

formance function of type f (Yi , Ŷb,i ).

After estimating Bsets of optimization forests, take Sbest of these which achieved the
best performance according to the performance function. Then, construct the final set
of uniformly distributed variables D1, ..., DM+1 as an average of those from Sbest for
m = 1, ..., M+1. Finally, form the optimized score set Sm = {S1, ..., SM }with scores
constructed as Sm = 	−1

( Dm+Dm+1
2

)
for m = 1, ..., M . The continuous outcome

Zi = (Z1, ..., ZN ) is then similarly as in the optimization procedure constructed by
replacing each m value of the original outcome Yi by the m-th value of the optimized
score set Sm for all m = 1, ..., M . Finally, estimate the regression forest RFf inal

using Zi as the dependent variable. On the one hand, the class prediction of such an
Ordinal Forest is one of the M ordered classes which has been predicted the most
by the respective trees of the forest. On the other hand, the probability prediction is
obtained as a relative frequency of trees predicting the particular class. Such predicted
choice probabilities are analysed in the conducted Monte Carlo study in Sect. 5 of the
main text. Further, the so-called naive forest corresponds to the Ordinal Forest with
omitting the above described optimization procedure.

B Simulation study

B.1 Main simulation results

In Tables 4, 5, 6, 7 and 8 are summarized the simulation results presented in Sect. 5.4
of the main text. Each table specifies the particular simulation design as follows: the
column Class indicates the number of outcome classes, Dim. specifies the dimension,
DGP characterizes the data generating process as defined in the main text and Statistic
contains summary statistics of the simulation results. In particular, the mean of the
respective accuracy measure and its standard deviation. Furthermore, rows t-test and
wilcox-test contain the p-values of the parametric t-test as well as the nonparametric
Wilcoxon test for the equality of means between the results of the Ordered Forest
and all the other methods. The alternative hypothesis is that the mean of the Ordered
Forest is less than the mean of the other method to test if the Ordered Forest achieves
significantly lower prediction error than the other considered methods. Furthermore,
Figs. 7, 8, 9 and 10 complement the results presented in Sect. 5.4 of the main text for
the simulations with the increased sample size.

B.1.1 ARPS: Sample Size = 200

See Table 4.

B.1.2 AMSE: Sample Size = 200

See Table 5.
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B.1.3 ARPS: Sample Size = 800

See Table 6.

B.1.4 AMSE: Sample Size = 800

See Table 7.

B.1.5 ARPS & AMSE: Sample Size = 3200

See Table 8 and Figs. 7, 8, 9, 10.

B.2 Complete simulation results

Tables 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20 summarize the simulation results
for all 72 different DGPs, complementing the main results presented in Sect. 5.4 of
the main text. Each table specifies the particular simulation design as follows: the first
column DGP provides the identifier for the data generating process. Columns 2 to 5
specify the particular characteristics of the respective DGP, namely if the DGP fea-
tures additional noise variables (noise), 15 in the low-dimensional case and 1000 in the
high-dimensional case, nonlinear effects (nonlin), high correlation among covariates
(multi) and randomly spaced thresholds (random). The sixth column Statistic contains
summary statistics of the simulation results. In particular, the mean of the respective
accuracy measure (mean) and its standard deviation (st.dev.). Furthermore, rows t-test
andwilcox-test contain the p-values of the parametric t-test as well as the nonparamet-
ric Wilcoxon test for the equality of means between the results of the Ordered Forest
and all the other methods. The alternative hypothesis is that the mean of the Ordered
Forest is less than the mean of the other method to test if the Ordered Forest achieves
significantly lower prediction error than the other considered methods.

B.2.1 ARPS: low dimension with 3 classes

See Table 9.

B.2.2 ARPS: low dimension with 6 classes

See Table 10.

B.2.3 ARPS: low dimension with 9 classes

See Table 11.

B.2.4 ARPS: high dimension with 3 classes

See Table 12.
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B.2.5 ARPS: high dimension with 6 classes

See Table 13.

B.2.6 ARPS: high dimension with 9 classes

See Table 14.

B.2.7 AMSE: low dimension with 3 classes

See Table 15.

B.2.8 AMSE: low dimension with 6 classes

See Table 16.

B.2.9 AMSE: low dimension with 9 classes

See Table 17.

B.2.10 AMSE: high dimension with 3 classes

See Table 18.

B.2.11 AMSE: high dimension with 6 classes

See Table 19.

B.2.12 AMSE: high dimension with 9 classes

See Table 20.

B.3 Empirical results

In this section we present more detailed and supplementary results regarding the
empirical results (Sect. 5.5) discussed in the main text. In the following the descriptive
statistics for the considered datasets and the results for the prediction accuracy are
summarized (Tables 21, 22, 23, 24, 25).

B.3.1 Descriptive statistics

123
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Table 21 Descriptive statistics: mammography dataset

Mammography dataset
Variable Type Mean SD Median Min Max

SYMPT Categorical 2.97 0.95 3.00 1.00 4.00

PB Numeric 7.56 2.10 7.00 5.00 17.00

HIST Categorical 1.11 0.31 1.00 1.00 2.00

BSE Categorical 1.87 0.34 2.00 1.00 2.00

DECT Categorical 2.66 0.56 3.00 1.00 3.00

y Categorical 1.61 0.77 1.00 1.00 3.00

Table 22 Descriptive statistics: nhanes dataset

Nhanes dataset
Variable Type Mean SD Median Min Max

sex Categorical 1.51 0.50 2.00 1.00 2.00

race Categorical 2.87 1.00 3.00 1.00 5.00

country_of_birth Categorical 1.34 0.79 1.00 1.00 4.00

education Categorical 3.37 1.24 3.00 1.00 5.00

marital_status Categorical 2.31 1.74 1.00 1.00 6.00

waistcircum Numeric 100.37 16.37 99.40 61.60 176.70

Cholesterol Numeric 196.89 41.59 193.00 97.00 432.00

WBCcount Numeric 7.30 2.88 6.90 1.60 83.20

AcuteIllness Categorical 1.25 0.43 1.00 1.00 2.00

depression Categorical 1.39 0.76 1.00 1.00 4.00

ToothCond Categorical 3.05 1.24 3.00 1.00 5.00

sleepTrouble Categorical 2.28 1.28 2.00 1.00 5.00

wakeUp Categorical 2.41 1.30 2.00 1.00 5.00

cig Categorical 1.51 0.50 2.00 1.00 2.00

diabetes Categorical 1.14 0.34 1.00 1.00 2.00

asthma Categorical 1.15 0.36 1.00 1.00 2.00

heartFailure Categorical 1.03 0.16 1.00 1.00 2.00

stroke Categorical 1.03 0.18 1.00 1.00 2.00

chronicBronchitis Categorical 1.07 0.26 1.00 1.00 2.00

alcohol Numeric 3.93 20.18 2.00 0.00 365.00

heavyDrinker Categorical 1.17 0.37 1.00 1.00 2.00

medicalPlaceToGo Categorical 1.92 0.67 2.00 1.00 5.00

BPsys Numeric 124.44 18.62 122.00 78.00 230.00

BPdias Numeric 71.18 11.84 72.00 10.00 114.00

age Numeric 49.96 16.68 50.00 20.00 80.00

BMI Numeric 29.33 6.66 28.32 14.20 73.43

y Categorical 2.77 1.00 3.00 1.00 5.00
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Table 23 Descriptive statistics: supportstudy dataset

Supportstudy dataset
Variable Type Mean SD Median Min Max

age Numeric 62.80 16.27 65.29 20.30 100.13

sex Categorical 1.54 0.50 2.00 1.00 2.00

dzgroup Categorical 3.23 2.48 2.00 1.00 8.00

num.co Numeric 1.90 1.34 2.00 0.00 7.00

scoma Numeric 12.45 25.29 0.00 0.00 100.00

charges Numeric 59307.91 86620.70 28416.50 1635.75 740010.00

avtisst Numeric 23.53 13.60 20.00 1.67 64.00

race Categorical 1.36 0.88 1.00 1.00 5.00

meanbp Numeric 84.52 27.64 77.00 0.00 180.00

wblc Numeric 12.62 9.31 10.50 0.05 100.00

hrt Numeric 98.59 32.93 102.50 0.00 300.00

resp Numeric 23.60 9.54 24.00 0.00 64.00

temp Numeric 37.08 1.25 36.70 32.50 41.20

crea Numeric 1.80 1.74 1.20 0.30 11.80

sod Numeric 137.64 6.34 137.00 118.00 175.00

y Categorical 2.90 1.81 2.00 1.00 5.00

Table 24 Descriptive statistics: vlbw dataset

Vlbw dataset
Variable Type Mean SD Median Min Max

race Categorical 1.57 0.50 2.00 1.00 2.00

bwt Numeric 1094.89 260.44 1140.00 430.00 1500.00

inout Categorical 1.03 0.16 1.00 1.00 2.00

twn Categorical 1.24 0.43 1.00 1.00 2.00

lol Numeric 7.73 19.47 3.00 0.00 192.00

magsulf Categorical 1.18 0.39 1.00 1.00 2.00

meth Categorical 1.44 0.50 1.00 1.00 2.00

toc Categorical 1.24 0.43 1.00 1.00 2.00

delivery Categorical 1.41 0.49 1.00 1.00 2.00

sex Categorical 1.50 0.50 1.00 1.00 2.00

y Categorical 5.09 2.58 6.00 1.00 9.00

B.3.2 Prediction accuracy

Tables 26 and 27 summarize in detail the results of the prediction accuracy exercise
using real datasets for the ARPS and the AMSE, respectively. The first column Data
specifies the dataset, the second columnClass defines the number of outcome classes of
the dependent variable and the third column Size indicates the number of observations.
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Table 25 Descriptive statistics: winequality dataset

Winequality dataset
Variable Type Mean SD Median Min Max

fixed.acidity Numeric 6.85 0.84 6.80 3.80 14.20

volatile.acidity Numeric 0.28 0.10 0.26 0.08 1.10

citric.acid Numeric 0.33 0.12 0.32 0.00 1.66

residual.sugar Numeric 6.39 5.07 5.20 0.60 65.80

chlorides Numeric 0.05 0.02 0.04 0.01 0.35

free.sulfur.dioxide Numeric 35.31 17.01 34.00 2.00 289.00

total.sulfur.dioxide Numeric 138.38 42.51 134.00 9.00 440.00

density Numeric 0.99 0.00 0.99 0.99 1.04

pH Numeric 3.19 0.15 3.18 2.72 3.82

sulphates Numeric 0.49 0.11 0.47 0.22 1.08

alcohol Numeric 10.51 1.23 10.40 8.00 14.20

y Categorical 3.87 0.88 4.00 1.00 6.00

Similarly to the simulation results, the column Statistic contains summary statistics
and statistical tests results for the equality of means between the results of theOrdered
Forest and all the other methods.

B.4 Software implementation

The Monte Carlo study has been conducted using the R statistical software (R Core
Team 2021) in version 3.5.2 (Eggshell Igloo) and the respective packages implement-
ing the estimators used. With regards to the forest-based estimators the main tuning
parameters, namely the number of trees, the number of randomly chosen covariates
and the minimum leaf size have been specified according to the values in Table 1 in
the main text.

In terms of the particular R packages used the ordered logistic regression has been
implemented using the rms package (version 5.1-3) written by Harrell (2019). The
respective lrm function for fitting the Ordered Logit has been used with the default
parameters, except setting themaximumnumber of iterations,maxit=25 as for some of
the DGPs the Ordered Logit has experienced convergence issues. Next, the naive and
the Ordinal Forest have been applied based on the ordinalForest package in version
2.3 (Hornung 2019b) with the ordfor function. As described in Appendix A.3 the
Ordinal Forest introduces additional tuning parameters for which we use the default
parameters as suggested in the package manual. Further, the Conditional Forest has
been estimated with the package party in version 1.3-1 (Hothorn et al. 2006; Strobl
et al. 2007, 2008). Regarding the choice of the tuning parameters, we rely on the
default parameters of the cforest function. A particularity of the Conditional Forest is,
due to the conceptual differences to standard regression forest in terms of the splitting
criterion, the choice of the stopping rule. This is controlled by the significance level
α (see Appendix A.2 for details). However, in order to grow deep trees we follow the
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suggestion in the package manual to setmincriterion= 0, which has been also used in
the simulation study conducted in Janitza et al. (2016). Lastly, the Ordered Forest as
well as the Multinomial Forest algorithms are implemented using the package ranger
in version 0.11.1 (Wright and Ziegler 2017) with the default hyperparameters. The
honest versions of the above two estimators rely on the grf package in version 0.10.2
(Tibshirani et al. 2018) with the default hyperparameters as well. A detailed overview
of packages with the corresponding tuning parameters is provided in Table 28.

Furthermore, Tables 29 and 30 compare the absolute and relative computation time
of the respective methods. For comparison purposes, we measure the computation
time for the four main DGPs presented in Sect. 5.4 of the main text, namely the simple
DGP in the low- and high-dimensional case as well as the complex DGP in the low-
and high-dimensional case, for both the small sample size (N = 200) and the big
sample size (N = 800) for all considered number of outcome classes. We estimate
the model based on the training set and predict the class probabilities for a test set
of size N = 10′000 as in the main simulation. We repeat this procedure 10 times
and report the average computation time. The tuning parameters and the software
implementations are chosen as defined in Table 1 in the main text and Table 28 herein,
respectively. All simulations are computed on a 64-BitWindows machine with 4 cores
(1.80GHz) and 16GB RAM storage.

The results reveal the expected pattern for the Ordered Forest. The more outcome
classes the longer the computation time as by definition of the algorithm more forests
have to be estimated. Furthermore, we also observe a longer computation time if the
number of observation and/or the number of considered splitting covariates increases
which is also an expected behaviour. However, the computation time is not sensitive
to the particular DGP which it should not be either. The latter two patterns are true
for all considered methods. In comparison to the other forest-based methods, the
computational advantage of theOrdered Forest becomes apparent. TheOrdered Forest
outperforms the Ordinal and the Conditional Forest in all cases. In some cases the
OrderedForest is evenmore than100 times faster and even in the closest cases it ismore
than 3 times faster than the two. In absolute terms this translates to computation time
of around 1s for the Ordered Forest and around 50s for the Ordinal and around 150s
for the Conditional Forest in the most extreme case. Contrarily, in the closest case, the
computation time for theOrderedForest is around15s,while for theOrdinal Forest this
is around 80s and around 60s for the Conditional Forest. This points to the additional
computation burden of the Ordinal and the Conditional Forest. The only exception
is the naive forest which does not include any optimization step. Furthermore, we
observe a slightly longer computation time for the Multinomial Forest in comparison
to the Ordered Forest, which is due to one extra forest being estimated. The honest
versions of the two forests take a bit longer in general, but this seems to reverse once
bigger samples are considered (in terms of both number of observations as well as
number of considered covariates).

Generally, the sensitivity with regards to the computation time appears to be very
different for the consideredmethods. For theOrderedForest aswell as theMultinomial
Forest, including their honest versions, themost important aspect is clearly the number
of outcome classes. For the naive and the Ordinal Forest the number of observations
seems to be most decisive and for the Conditional Forest paradoxically the size of
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Table 31 Descriptive statistics: NHIS dataset

NHIS dataset
Variable Type Mean SD Median Min Max

Health status Categorical 3.93 0.95 4.00 1.00 5.00

Health insurance Categorical 0.84 0.37 1.00 0.00 1.00

Female Categorical 0.50 0.50 0.50 0.00 1.00

Non-white Categorical 0.20 0.40 0.00 0.00 1.00

Age Numeric 42.72 8.70 43.00 26.00 59.00

Education Numeric 13.74 2.99 14.00 0.00 18.00

Family size Numeric 3.63 1.37 4.00 2.00 18.00

Employed Categorical 0.82 0.39 1.00 0.00 1.00

Income Categorical 94178.04 56738.46 85985.78 19282.93 167844.53

the prediction set is most relevant. Overall, the above result support the theoretical
argument of the Ordered Forest being computationally advantageous in comparison
to the Ordinal and the Conditional Forest.

C Empirical application

In this appendix we provide the descriptive statistics for the dataset used in the
empirical application of the main text as well as supplementary results containing
the estimation of marginal effects.

C.1 Descriptive statistics

Further, to describe the differences in the health status based on the health insurance
we inspect the ordered class probabilities for the self-reported health status for indi-
viduals with and without a private healths insurance contract. The descriptive results
are reported in Table 33, including statistical evidence for the differences between the
two groups. The descriptive evidence suggests that individuals with health insurance
have a higher probability to be in excellent or very good health condition and at the
same time have a lower probability to be in good or fair health condition. This evidence
is both statistically precise and economically relevant. Furthermore, individuals with
health insurance seem to have also a lower probability to be in poor health condition.
However the evidence for that is less pronounced, both in statistical as well as in
economic terms.
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Table 32 Descriptive statistics by class: NHIS dataset

NHIS dataset
Health status

Variable Poor Fair Good Very Good Excellent

Health status 1.14 5.66 25.14 34.92 33.13

Health insurance 79.07 71.50 77.88 87.52 87.76

Female 49.77 51.08 49.28 50.43 49.92

Non-white 31.63 23.89 22.84 18.18 18.21

Age 47.65 45.37 43.75 42.73 41.30

Education 12.11 12.20 12.89 13.97 14.46

Family size 3.33 3.68 3.68 3.59 3.64

Employed 28.84 65.57 80.99 84.35 84.21

Income 53409.03 62473.99 78957.11 99685.45 106743.21

N 215 1063 4724 6562 6226

share in % 1.14 5.66 25.14 34.92 33.13

Means of variables for respective outcome class displayed. Shares for dummy variables are indicated in %

Table 33 Differences in health
status based on health insurance:
NHIS dataset

NHIS dataset
Health status Health insurance

Yes No Diff t Value p Value

Poor 1.07 1.51 −0.44 −1.84 0.07

Fair 4.81 10.19 −5.38 −9.28 0.00

Good 23.26 35.14 −11.88 −12.66 0.00

Very good 36.31 27.54 8.77 9.70 0.00

Excellent 34.55 25.62 8.93 10.08 0.00

N 15,816 2,974

C.2 Marginal effects

In what follows, the results for the marginal effects at mean are presented for the
considered NHIS dataset. Similarly as in the main text, the effects are computed for
each outcome class of the dependent variable both for the Ordered Forest as well
as for the Ordered Logit. The estimations are done in R version 3.6.1 using the orf
package (Lechner and Okasa 2019) in version 0.1.3 for the Ordered Forest and the
oglmx package (Carroll 2018) in version 3.0.0.0 for the Ordered Logit (Table 34).
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Data availability The data used in this manuscript in Sect. 5.5 are the ones used in Hornung (2019a) and are
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are available online from the R-package stevedata (Miller 2021) in version 0.4.0 which can be downloaded
from the official CRAN repository at https://cran.r-project.org/package=stevedata. Additionally, these data
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