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Abstract
Evidence games study situations where a sender persuades a receiver by selectively 
disclosing hard evidence about an unknown state of the world. Evidence games often 
have multiple equilibria. Hart et al. (Am Econ Rev 107:690-713, 2017) propose to 
focus on truth-leaning equilibria, i.e., perfect Bayesian equilibria where the sender 
discloses truthfully when indifferent, and the receiver takes off-path disclosure 
at face value. They show that a truth-leaning equilibrium is an equilibrium of a 
perturbed game where the sender has an infinitesimal reward for truth-telling. We 
show that, when the receiver’s action space is finite, truth-leaning equilibrium 
may fail to exist, and it is not equivalent to equilibrium of the perturbed game. To 
restore existence, we introduce a disturbed game with a small uncertainty about 
the receiver’s payoff. A purifiable truthful equilibrium is the limit of a sequence of 
truth-leaning equilibria in the disturbed games as the disturbances converge to zero. 
It exists and features a simple characterization. A truth-leaning equilibrium that is 
also purifiable truthful is an equilibrium of the perturbed game. Moreover, purifiable 
truthful equilibria are receiver optimal and give the receiver the same payoff as the 
optimal deterministic mechanism.
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1 Introduction

In many real-life situations, communication relies on hard evidence. For example, a 
jury’s verdict is based on hard evidence presented in the court, rather than exchanges 
of empty claims. Evidence games study such situations. There is a sender (e.g., a 
prosecutor), and a receiver (e.g., a jury). The sender has private hard evidence about 
an unknown state of the world (e.g., whether a defendant is guilty) that she can 
selectively present to the receiver, and the receiver takes an action (e.g., conviction 
or acquittal) that is payoff relevant to both players. Full revelation of evidence is 
often impossible in the presence of conflict of interest between the sender and the 
receiver–the receiver wants to learn the payoff relevant state and act accordingly, 
whereas the sender merely wants to induce her preferred receiver action (e.g., 
convicting the defendant). Therefore, the sender has an incentive to persuade the 
receiver that a certain state is more likely by partially revealing evidence.

Formally, verifiability of hard evidence is modeled by assuming that the sender’s 
feasible set of disclosure depends on her type (i.e., her evidence), and in this paper, 
we assume that the sender’s type space is ordered.1 That is, some sender types have 
more evidence than others, and the sender can disclose less evidence than she has, 
hence the feasible set of disclosure is the lower contour set of her type under the 
“more evidence” order. Moreover, the sender’s payoff depends only on the receiver’s 
action and not her type or the state of the world. For example, the prosecutor’s 
objective is to convict the defendant. This is not affected by what evidence she has. 
In equilibrium, her chance of convicting the defendant may depend on the evidence 
she has, because when she has more evidence, there are more ways to present 
evidence in the court, and thereby she can better persuade the jury.

Evidence games often have multiple (Nash) equilibria. For instance, there is a 
trivial equilibrium where, regardless of her evidence, the prosecutor presents 
no evidence to the court, and the jury acquits the defendant regardless of what 
is presented (this must be optimal on the equilibrium path for the jury if the 
presumption of innocence is practiced). This is undoubtedly not a sensible prediction 
of what happens in courtrooms. However, this equilibrium is both perfect (Selten 
1975) and sequential (Kreps and Wilson 1982) under mild assumptions.2 Consider a 
perturbation to the prosecutor’s strategy that assigns higher probability on disclosing 
evidence that supports conviction than on disclosing evidence that supports acquittal, 
and a perturbation to the jury’s strategy such that the probability of convicting the 
defendant after seeing any evidence is no larger than that after seeing no evidence. 
As both perturbations diminish, this gives a convergent sequence of �-constrained 

1 See (Bull and Watson 2004, 2007) for discussions on this assumption. Alternatively, Grossman and 
Hart (1980) and Grossman (1981) assume that there is a finite type space, and each sender type can dis-
close any subset of the type space containing her true type.
2 Without specifying a complete model, let us assume that the prosecutor is one of four possible types: 
having no evidence (type ∅ ), having only evidence supporting conviction (type c ), having only evidence 
supporting acquittal (type a ), and having both kinds of evidence (type ac ). The type ac has more evi-
dence than either type c or type a , who in turn has more evidence than type ∅ . The jury’s payoff is such 
that they prefer conviction if the prosecutor’s type is c , and they strictly prefer acquittal if the prosecu-
tor’s type is ac , a , or ∅.
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equilibria in completely mixed strategies. Therefore, the trivial equilibrium is 
perfect. Similarly, given proper perturbations in the prosecutor’s strategy, it is 
consistent for the jury to hold the belief that, after seeing any evidence, the actual 
evidence possessed by the prosecutor favors acquitting the defendant. Therefore, this 
trivial equilibrium is also a sequential equilibrium.

There are also extensive discussions on the value of commitment power in 
evidence games. That is, whether the receiver can achieve a higher payoff by 
committing ex ante to a mapping from the sender’s disclosure to a distribution over 
his actions. Glazer and Rubinstein (2006) show that there is no value of commitment 
when the receiver’s action is a binary one; Sher (2011) shows the same result when 
the receiver’s payoff is concave in his action, and the receiver’s actions can be either 
finite or continuous.

Hart et  al. (2017) (henceforth HKP) generalize the condition of concavity in 
Sher (2011) for the case of continuous receiver actions. They focus on the receiver’s 
commitment to a deterministic mechanism. That is, the receiver commits to an 
action for each possible disclosure, and he cannot randomize over his actions.3 They 
show that committing to a deterministic mechanism has no value if the receiver 
chooses an action on the real line, the receiver’s expected payoff is a single-peaked 
function of his action given any distribution of the state, and the sender strictly 
prefers higher receiver action. Moreover, HKP propose the following equilibrium 
refinement in evidence games. A truth-leaning equilibrium is a perfect Bayesian 
equilibrium such that4

(Truth-leaning)  Given the receiver’s strategy, the sender discloses her evidence 
truthfully if doing so is optimal;

(Off-path beliefs)  The receiver takes any off-path disclosure at face value (i.e., he 
believes that the sender discloses truthfully).

 As is argued in HKP, these conditions follow the straightforward intuition that there 
is a “slight inherent advantage” for the sender to tell the whole truth, and “there 
must be good reasons for not telling it.” Under the assumption that the receiver 
takes a continuous action, HKP show that a truth-leaning equilibrium exists and is 
receiver optimal. That is, it gives the receiver the same ex ante payoffs as the optimal 
deterministic mechanism.

However, in many applications of evidence games, the receiver takes a discrete 
action. For example, juries choose between conviction and acquittal, banks decide 
whether or not to grant a loan, and rating agencies rate financial assets into finitely 

3 In an earlier version of their paper, Hart et  al. (2015) allow the receiver to randomize and show a 
stricter condition under which commitment to a stochastic mechanism has no value.
4 HKP define truth-leaning equilibrium as a refinement to Nash equilibrium. However, we note that any 
truth-leaning equilibrium is a perfect Bayesian equilibrium (as is defined in section  3) and sequential 
equilibrium. We view all solution concepts in the current paper as refinements of perfect Bayesian equi-
librium.
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many grades. A part of this paper is to answer the following question: is truth-
leaning equilibrium a “good” solution concept when the receiver’s action set is 
finite?

The short answer is “no,” and one reason is that a truth-leaning equilibrium may 
fail to exist. Loosely speaking, nonexistence arises because the sender lacks a strict 
incentive to persuade the receiver.5 Truth-leaning equilibrium also ignores that 
players often face small payoff uncertainties in evidence games. It is an idealization 
to assume, for example, that a prosecutor knows perfectly a jury’s criteria when 
making their verdict. Solution concepts that ignore this may lead to unrealistic 
predictions.

To address these problems, we propose the following solution concept by 
introducing a small uncertainty (i.e., disturbance) to the receiver’s payoff à la 
(Harsanyi 1973).6 Suppose that the receiver receives a random private payoff shock 
associated with each of his actions. In this disturbed game, the sender has a strict 
incentive to persuade the receiver, and a truth-leaning equilibrium exists.7 We define 
a purifiable truthful equilibrium as the limit of a sequence of truth-leaning equilibria 
in the disturbed games as the disturbances converge to zero. That is, a purifiable 
truthful equilibrium is a truth-leaning equilibrium of an infinitesimally disturbed 
game. A purifiable truthful equilibrium always exists and is a perfect Bayesian 
equilibrium.

Purifiable truthful equilibria are also receiver optimal. That is, purifiable truthful 
equilibria maximize the receiver’s ex ante payoff among all perfect Bayesian 
equilibria. And the receiver’s purifiable truthful equilibrium payoff is the same as 
his payoff in the optimal deterministic mechanism. The receiver, however, may 
achieve a higher payoff than his purifiable truthful equilibrium payoff by committing 
to a stochastic mechanism. This is akin to the results in HKP.

Another problem of truth-leaning equilibrium in finite evidence games is that it 
may not follow the intuition that the sender is slightly more advantageous if she 
discloses truthfully. To formalize this intuition, we revisit the perturbed game in 

5 In HKP, if a piece of evidence e′ is inherently better than the sender’s evidence e (i.e., the receiver’s 
optimal action knowing that the sender’s evidence is e′ is strictly higher than his optimal action knowing 
that the sender’s evidence is e ) and the sender can feasibly disclose e′ , then the sender’s payoff from any 
randomization between disclosing e′ and e is strictly higher than her payoff from disclosing only e , given 
any Bayesian consistent system of beliefs of the receiver and any sequentially rational receiver strategy. 
This is not the case when the receiver’s action is finite.
6 While Harsanyi’s purification theorem has been widely accepted as a leading justification for mixed 
strategy equilibria, it has also been applied as a refinement in dynamic games (e.g., Bhaskar et al. (2013); 
Bhaskar and Thomas (2019)) and cheap talk games (Diehl and Kuzmics 2021). Evidence games are a 
class of games with nongeneric payoffs, since the sender’s action is not payoff relevant. Hence, some 
equilibria of evidence games are not purifiable.
7 For example, the prosecutor does not know how lenient the jury is (i.e., how convinced the jury has to 
be in order to reach a conviction). However, she knows that after seeing more evidence in favor of con-
viction, the likelihood that the jury will convict the defendant is strictly higher. Therefore, the prosecutor 
strictly prefers presenting all evidence that supports conviction.
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HKP, where the sender receives a small reward if she discloses truthfully, and the 
sender must disclose truthfully with at least some small probability. We define a 
weakly truth-leaning equilibrium as the limit of a sequence of perfect Bayesian 
equilibria of the perturbed games as the perturbations converge to zero.8 HKP show 
that truth-leaning equilibrium is equivalent to weakly truth-leaning equilibrium. 
When the receiver’s action space is finite, however, this equivalence is no longer 
true. It turns out that purifiability is the missing connection: a weakly truth-
leaning equilibrium that is also purifiable truthful is a truth-leaning equilibrium; a 
truth-leaning equilibrium that is also purifiable truthful is a weakly truth-leaning 
equilibrium in “almost all” (in a precise sense, see Proposition 7) evidence games.

The paper proceeds as follows. Section  2 presents a simple example where 
truth-leaning refinement leads to nonexistence of equilibrium and discusses some 
other limitations of the existing refinements. We construct the purifiable truthful 
equilibrium of this example. Section  3 models evidence games. Section  4 studies 
purifiable truthful equilibrium and compares various equilibrium refinements of 
evidence games. The last section concludes. Proofs are in the Appendix.

2  A simple example

Every new aircraft design has to be certified by the Federal Aviation Administration 
(FAA) before any aircraft built according to this design can enter service. Like 
other innovations, altering the design of an aircraft often entails high level of risks. 
The FAA often has to rely on information and test results provided by airplane 
manufacturers, yet airplane manufactures’ disclosure is far from complete.9

Imagine an airplane manufacturer (the sender) seeking to get a new aircraft design 
certified by the FAA (the receiver). The design can be good or bad with equal likeli-
hood. If the design is bad, the aircraft manufacturer has some bad evidence (e.g., 
mechanical failures during test flights) with probability 2

3
 . Otherwise, the aircraft 

manufacturer has no evidence. The FAA does not know the quality of the design and 
chooses to Approve ( a = 1 ) or Reject ( a = 0 ) the aircraft design based on evidence 
disclosed by the sender. The disclosure of bad evidence is voluntary and verifiable. 
That is, disclosing no evidence is always possible, but the airplane manufacturer can 
disclose bad evidence only if it has bad evidence. The airplane manufacturer’s payoff 
depends only on the FAA’s action: it receives 1 if the design is approved and 0 if the 

8 It is important to make the distinction between a disturbed game and a perturbed game clear. A dis-
turbed game is a game with a small receiver payoff uncertainty. A perturbed game, as is studied in HKP, 
is one where both players’ payoff functions are public information. Throughout the paper, we refer to 
them by their respective names.
9 For example, design flaws of the battery system on board Boeing’s 787 Dreamliners caused two inci-
dents in 2013, which led to the grounding of all aircraft at the time and a redesign of the battery system 
(see https:// www. reute rs. com/ artic le/ us- boeing- 787- batte ry- idUSK CN0JF 35G20 141202). More recently, 
MCAS, a new flight control software in Boeing’s 737 MAX aircraft, caused two deadly crashes within 
two years of the airliner’s first commercial operation. Boeing allegedly did not submit certification docu-
ments to FAA detailing changes to the flight control system (see https:// www. reute rs. com/ artic le/ us- boe-
ing- 737max- exclu sive- idUSK BN241 3R6).

https://www.reuters.com/article/us-boeing-787-battery-idUSKCN0JF35G20141202
https://www.reuters.com/article/us-boeing-737max-exclusive-idUSKBN2413R6
https://www.reuters.com/article/us-boeing-737max-exclusive-idUSKBN2413R6
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design is rejected. The FAA, on the other hand, gains from approving a good design 
and loses from approving a bad design. Its payoff is 0 if it rejects the design, 1 if it 
approves a good design, and -2 if it approves a bad design. Hence, the FAA has a 
cutoff decision rule. If, after observing the disclosed evidence, its posterior belief that 
the design is good exceeds 2

3
 , its optimal action is Approve; if its posterior belief is 

less than 2
3
 , its optimal action is Reject; if its posterior belief is exactly 2

3
 , either action 

as well as any randomization between the two actions is optimal.
A strategy of the sender describes how it discloses bad evidence. Let p be the 

probability that the sender discloses no evidence if it has bad evidence. Since bad 
evidence fully reveals that the design is bad, the receiver always chooses Reject 
(thus the sender gets 0) after seeing bad evidence. Let q be the probability that the 
receiver chooses Approve after seeing no evidence. Let � be the receiver’s posterior 
belief that the design is good after seeing no evidence. Since no evidence is 
disclosed with positive probability, Bayes’ rule requires that � =

3

4+2p
.

2.1  Truth‑leaning equilibrium

It is easy to verify that the game has a continuum of perfect Bayesian equilibria–any 
p ≥ 1

4
 , q = 0 , and � =

3

4+2p
≤ 2

3
 constitute an equilibrium. That is, the sender with 

bad evidence discloses no evidence with at least probability 1
4
 , and the receiver 

always rejects the new design.
However, there is no truth-leaning equilibrium. Given the receiver’s strategy, 

the sender with bad evidence is indifferent between disclosing no evidence and 
disclosing truthfully, since both actions yield zero payoff. Truth-leaning therefore 
requires the sender to disclose bad evidence truthfully (i.e., p = 0 ), which is not 
satisfied by any perfect Bayesian equilibrium.

2.2  Purifiable truthful equilibrium

Suppose that the receiver receives a payoff shock � for choosing Approve, where � is 
normally distributed according to N(0, �2) and is private information of the receiver 
(hence the receiver’s type). That is, the receiver’s payoff from approving a good 
design is 1 + � , and that from approving a bad design is � − 2 . Given any posterior 
belief � , almost all receiver types have a unique optimal action after seeing no evi-
dence, which is Approve if 𝜇 >

2−𝜁

3
 (equivalently, 𝜁 > 2 − 3𝜇 ) and Reject if 𝜇 <

2−𝜁

3
 

(equivalently, 𝜁 < 2 − 3𝜇 ). Hence, in any perfect Bayesian equilibrium of the dis-
turbed game, the design is approved with probability Φ

(
3�−2

�

)
 if the sender dis-

closes no evidence, where Φ is the cdf of the standard normal distribution. Since this 
probability is strictly positive for all � , the sender strictly prefers disclosing no evi-
dence to disclosing truthfully.

To summarize, let q(� ) denote the probability that the type � receiver approves the 
design after observing no evidence. The perfect Bayesian equilibrium of the disturbed 
game is unique (except for the strategy of a single receiver type), where p = 1 , � =

1

2
 , 
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and q(� ) = 0 if 𝜁 <
1

2
 , q(� ) = 1 if 𝜁 >

1

2
 . Since the sender strictly prefers disclosing 

no evidence, this equilibrium is also truth-leaning. In this equilibrium, Approve is 
chosen with probability Φ(−

1

2�
) after the receiver observes no evidence. That is, the 

disturbed game has a unique truth-leaning equilibrium outcome: the sender discloses 
no evidence, and after seeing no evidence, the receiver chooses Approve with prob-
ability Φ(−

1

2�
) and believes that the design is good with 1

2
 probability.

As the disturbance diminishes (i.e., as � ↓ 0 ), the unique equilibrium outcome of 
the disturbed game converges to a perfect Bayesian equilibrium of the original evi-
dence game where the sender discloses no evidence, the receiver always chooses 
Reject, and the receiver’s posterior belief on the good design is 1

2
 after seeing no 

evidence (i.e., p = 1 , q = 0 , � =
1

2
).

2.3  Weakly truth‑leaning equilibrium

Consider the following perturbed game. Let �1 and �2 be small positive reals that are 
common knowledge to the sender and the receiver. The sender receives a reward �1 
if it discloses (bad evidence) truthfully, and the sender must disclose truthfully with 
at least probability �2.

If its posterior belief 𝜇 >
2

3
 , then the receiver has a unique optimal action Approve 

after observing no evidence. Then, for 𝜀1 < 1 , the sender strictly prefers disclosing 
no evidence, so the Bayesian consistent belief is 𝜇 =

1

2
<

2

3
 . If 𝜇 <

2

3
 , the receiver’s 

unique optimal action is Reject after observing no evidence. With the reward for 
truth-telling, the sender strictly prefers disclosing truthfully, so the Bayesian consist-
ent belief is 𝜇 =

3

4
>

2

3
 . Hence, the receiver’s posterior belief � =

2

3
 in any perfect 

Bayesian equilibrium of the perturbed game. Indeed, for 𝜀1 < 1 and �2 ≤ 3

4
 , the per-

turbed game has a unique perfect Bayesian equilibrium, where p =
1

4
 , q = �1 , � =

2

3
.

As �1, �2 ↓ 0 , the perfect Bayesian equilibrium of the perturbed game converges 
to a perfect Bayesian equilibrium of the original game, where p =

1

4
 , q = 0 , � =

2

3
.

2.4  Discussion

Figure  1 illustrates the equilibria of the game. There is a continuum of perfect 
Bayesian equilibria which differ in the sender’s strategy. Among them, the weakly 
truth-leaning equilibrium maximizes the probability that the sender discloses truth-
fully. The purifiable truthful equilibrium maximizes the receiver’s posterior belief 
on the good design.

The fact that this simple game does not possess a truth-leaning equilibrium 
suggests that truth-leaning equilibrium is not an appropriate solution concept for 
finite evidence games. A more fundamental problem of truth-leaning equilibrium is 
the discrepancy between the refinement and the intuition behind it. The requirement 
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that the sender weakly prefers disclosing truthfully seemingly stems from the sender 
having an infinitesimal reward for truth-telling, but in the example, the weakly 
truth-leaning equilibrium constructed by adding an infinitesimal reward for truth-
telling is not the same as imposing the truth-leaning refinement on perfect Bayesian 
equilibria.10 The following proposition summarizes these observations. The negative 
result motivates the study of purifiable truthful equilibrium.

Proposition 1 In a finite evidence game, a truth-leaning equilibrium may fail to 
exist, and a weakly truth-leaning equilibrium may not be truth-leaning.

Weakly truth-leaning equilibrium exists in finite evidence games, but it also has 
several shortcomings. A distinctive feature of the weakly truth-leaning equilibrium 
in the above example is that the receiver is indifferent between choosing Approve 
and Reject after seeing no evidence, but it is prescribed to choose only Reject. 
This feature is prevalent and not specific to this example, and it leads to several 
problems. First, the equilibrium may fail to be perfect. In the example, given any 
mixed strategy of the receiver, disclosing no evidence is a strictly better response for 
the sender than disclosing bad evidence truthfully. Hence, the weakly truth-leaning 
equilibrium where the sender plays a mixed strategy is not a perfect equilibrium.11

Second, weakly truth-leaning equilibrium may not be robust to incomplete 
receiver payoff information. As is shown above, the sender strictly prefers disclos-
ing no evidence once we introduce a small uncertainty to the receiver’s payoff. In 
defense of weakly truth-leaning equilibrium, the perfect Bayesian equilibrium in 
every perturbed game where the sender receives a small reward for truth-telling 
(i.e., p =

1

4
 , q = �1 , � =

2

3
 ) is robust to incomplete receiver payoff information in 

our example,12 but this is not a generic result. In general, a weakly truth-leaning 
10 Recall that HKP show the equivalence of truth-leaning equilibrium and weakly truth-leaning equi-
librium in evidence games where the receiver continuously chooses an action, and its payoff function 
is single-peaked given any belief. In the current example, suppose that the receiver chooses an action 
a ∈ ℝ , and the receiver has quadratic loss utility, i.e., his payoff is −(a − x)2 , where x is a random vari-
able that equals 0 if the design is bad and 1 if the design is good. The unique truth-leaning equilibrium is 
as follows. The sender always discloses no evidence, the receiver’s belief and action are 1

2
 after seeing no 

evidence and 0 after seeing bad evidence. This is also the unique weakly truth-leaning equilibrium.

11 We assume that the receiver acts only if no evidence is disclosed. An alternative way to model the 
example is to let the receiver take an action after each possible disclosure. That is, he has two informa-
tion sets (one after seeing no evidence, and one after seeing bad evidence) and four pure strategies. In 
this model, the weakly truth-leaning equilibrium is not a proper equilibrium (Myerson 1978) of the nor-
mal form game. It is normal form perfect and extensive form perfect and proper.
12 To see this, consider a disturbed game where: (i) the sender receives �1 if it discloses truthfully; (ii) 
the sender must disclose truthfully with at least probability �2 ; (iii) the receiver receives a payoff shock � 
distributed according to N(0, �2) for choosing Approve, which is its private information. For 𝜀1 <

1

2
 , 

𝜀2 <
3

4
 , and 𝜀 <

3−4𝜀2

6−2𝜀2
⋅

1

−Φ−1(𝜀1)
 , the disturbed game has an essentially unique perfect Bayesian equilib-

rium (except for the strategy of a single receiver type), where p =
9

4+2�Φ−1(�1)
− 2 , � =

2+�Φ−1(�1)

3
 , q(� ) = 0 

if 𝜁 < −𝜀Φ−1(𝜀1) , and q(� ) = 1 if 𝜁 > −𝜀Φ−1(𝜀1) . In this equilibrium, the design is approved with proba-
bility �1 after the receiver observes no evidence. As � ↓ 0 , the equilibrium outcome converges to p =

1

4
 , 

q = �1 , � =
2

3
.
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equilibrium may fail to be the limit point of a sequence of equilibria of perturbed 
games that are robust to incomplete receiver payoff information.

Third, different sequences of perturbations may select different weakly truth-
leaning equilibria, and not all sequences of perturbed games have a convergent 
sequence of perfect Bayesian equilibria as the perturbation goes to zero.

Consider a slight variant to our example, where the sender’s bad evidence is 
either type 1 or type 2 (think about software failures and hardware failures). If the 
design is bad, the sender has type 1 bad evidence, type 2 bad evidence, and no 
evidence each with 1

3
 probability; if the design is good, the sender has no evidence. 

The sender with a certain type of bad evidence can disclose truthfully or no evidence 
but cannot disclose the other type of bad evidence. Let pi denote the probability that 
the sender with type i bad evidence discloses no evidence, q the probability that the 
receiver chooses Approve after seeing no evidence, and � the receiver’s belief that 
the design is good after seeing no evidence. The game has a continuum of perfect 
Bayesian equilibria, where p1 + p2 ≥ 1

2
 , q = 0 , and � =

3

4+p1+p2
.

Now, let us consider the following perturbed game. Given small positive reals 
𝜀1, 𝜀2 < 1 and �1|1, �2|2 ≤ 1

2
 , the sender receives a reward �i if it truthfully discloses 

type i bad evidence, and the sender with type i bad evidence must disclose truth-
fully with at least probability �i|i . If 𝜀i < 𝜀j , the unique perfect Bayesian equilibrium 
is pi =

1

2
 , pj = 0 , q = �i , � =

2

3
 . That is, the receiver randomizes between Approve 

and Reject after seeing no evidence in order to match the lower reward �i ; the sender 
with type i bad evidence is indifferent and randomizes between disclosing no evi-
dence and disclosing truthfully, while the sender with type j bad evidence strictly 
prefers disclosing truthfully because of the higher reward �j . If �1 = �2 , there is a 
continuum of perfect Bayesian equilibria, where p1 + p2 =

1

2
 , q = �1 = �2 , � =

2

3
 . 

Hence, as (�1, �1|1, �2, �2|2) → 0 , whether there exists a convergent sequence of per-
fect Bayesian equilibria depends on the rates of convergence of �1 and �2 . If �1 = �2 
almost always, then any perfect Bayesian equilibrium of the unperturbed game such 
that p1 + p2 =

1

2
 is the limit point of a sequence of perfect Bayesian equilibria of the 

perturbed games. If �i ≤ �j almost always and 𝜀i < 𝜀j infinitely often, then the unique 
weakly truth-leaning equilibrium is pi =

1

2
 , pj = 0 , q = 0 , and � =

2

3
 . If neither case 

happens, there is no convergent sequence of perfect Bayesian equilibria of the per-
turbed game. In conclusion, the unperturbed game has a continuum of weakly truth-
leaning equilibria, where p1 + p2 =

1

2
 , q = 0 , � =

2

3
 , and different weakly truth-lean-

ing equilibria may be selected by different sets of infinitesimal perturbations.

0 1/4 1

Weakly
truth-
leaning

Purifiable
truthfulPBE

Truth-
leaning

(non-equilibrium)

Fig. 1  The probability that the sender discloses no evidence when having bad evidence ( p)



52 S. Jiang 

1 3

Purifiable truthful equilibrium is spared from similar problems. For almost all 
evidence games, purifiable truthful equilibria do not involve the receiver’s “bor-
derline” beliefs, and any purifiable truthful equilibrium is infinitesimally close to a 
truth-leaning equilibrium of any infinitesimally disturbed game. That is, purifiability 
does not depend on the selection of disturbances. The normality of the receiver’s 
payoff shock in our example is dispensable. Moreover, the set of purifiable truthful 
equilibria has a simple structure, and we give a characterization of the set of purifi-
able truthful equilibria of any evidence game.

3  The evidence game

There are two stages. Two players, a sender (she) and a receiver (he), move sequen-
tially. At the outset of the game, a state of the world � ∈ {G,B} is realized with 
probability �0 ∈ (0, 1) on � = G . Neither player observes the realized state �,13 and 
the prior �0 is common knowledge. In the first stage, the sender observes a piece of 
hard evidence e ∈ E and discloses m ∈ E to the receiver, where E is a finite set of 
evidence. In the second stage, the receiver observes the disclosed evidence m and 
chooses an action a ∈ A , where A = {a1 < a2 < ⋯ < aK} is a finite subset of the 
real line with K ≥ 2.

3.1  Evidence and disclosure

Let FG and FB be two distributions over the set of evidence E . The sender’s evidence 
e is a random draw from either FG or FB , depending on the realized state. If � = G , e 
is drawn from distribution FG ; if � = B , it is drawn from distribution FB.

Disclosure is verifiable. That is, the set of evidence that the sender can feasibly 
disclose depends on the evidence she has (in contrast, in a signaling game, the 
sender chooses from the same set of signals regardless of her type). Throughout the 
paper, we maintain the following assumptions that are standard in the literature: 

(Reflexivity)  The sender can always truthfully disclose her evidence e;

(Transitivity)  If the sender can disclose e′ when she has evidence e , and she can 
disclose e′′ when she has evidence e′ , then she can disclose e′′ if she 
has evidence e.

 Under these assumptions, we can represent the “disclosure rule” as a preorder ≾ on 
E . Disclosing m is feasible given evidence e if and only if m ≾ e , and the feasible set 
of disclosure given a piece of evidence e is its lower contour set {m ∈ E ∶ m ≾ e} , 
denoted LC(e).

13 Since the sender’s payoff is independent of the realized state, it does not change our analysis if the 
realized state is known to the sender.
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3.2  Payoffs

The receiver’s payoff uR(a,�) depends on both his action and the realized state of 
the world (but not the true evidence or the disclosed evidence), and the receiver 
maximizes his expected payoff.14 We assume that the receiver’s payoff function 
satisfies the following assumption15

(Increasing differences)  uR(a,G) − uR(a,B) is strictly increasing in a.

 Under this assumption, the receiver wants to match the state of the world. That is, 
his optimal action is weakly increasing in his posterior belief that the state is good. 
More precisely, given � ∈ [0, 1] , the solution to the receiver’s maximization problem

is upper hemicontinuous and weakly increasing in �.16

The sender’s payoff equals the receiver’s action, i.e., uS(a,�) = a . Given the 
assumption on the receiver’s payoff, the sender has a weak incentive to persuade the 
receiver that the state is good. Notice that the evidence e , the disclosed evidence m , 
and the realized state � are payoff irrelevant to the sender.

An evidence game is a tuple G = ⟨𝜋0, (E,≾),FG,FB,A, uR⟩.

3.3  Strategies and perfect Bayesian equilibrium

A strategy of the sender is � ∶ E → Δ(E) such that supp(𝜎(⋅|e)) ⊂ LC(e) , a 
strategy of the receiver is � ∶ E → Δ(A) , and a system of beliefs of the receiver is 
� ∶ E → [0, 1] , where �(m) denotes the receiver’s posterior belief that the state is 
good after observing m.

A perfect Bayesian equilibrium of G is a collection of the sender’s strategy, the 
receiver’s strategy, and the receiver’s system of belief (�, �,�) such that: 

(Sender optimality)  Given � , 

 for all e ∈ E;

�(�) = argmax
a∈A

�uR(a,G) + (1 − �)uR(a,B)

supp(𝜎(⋅|e)) ⊂ argmax
m≾e

∑

a∈A

a ⋅ 𝜌(a|m)

14 Equivalently, one can assume that E ⊂ ℝ and that the receiver’s payoff uR(a, e) is linear in the sender’s 
evidence e.
15 If no receiver action is dominated (i.e., every action is the receiver’s unique optimal action at 
some belief), the assumption of increasing differences is equivalent to the assumption of single-peak-
edness in HKP, i.e., for all � ∈ [0, 1] , there exists a single-peaked function f� ∶ ℝ ∶→ ℝ such that 
�uR(a,G) + (1 − �)uR(a,B) = f�(a) for all a ∈ A.
16 Throughout the paper, we say a correspondence � ∶ [0, 1] ⇉ A is weakly increasing if ai ≤ aj for all 
𝜇i < 𝜇j , ai ∈ �(�i) , and aj ∈ �(�j).
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(Receiver optimality)  Given � , 

 for all m ∈ E;

(Bayesian consistency)  For all on-path disclosure m ∈
⋃

e∈E supp(�(⋅�e)) , 

4  Refinements of perfect Bayesian equilibrium

Sections  4.1 through  4.3 study truth-leaning equilibrium, purifiable truthful 
equilibrium, and weakly truth-leaning equilibrium. Section  4.4 shows the 
relationship between these refinements. Section  4.5 shows that purifiable truthful 
equilibria are receiver optimal, and that there is no value of committing to a 
deterministic mechanism.

4.1  Truth‑leaning equilibrium

A truth-leaning equilibrium of G is a perfect Bayesian equilibrium (�, �,�) such that: 

(Truth-leaning)  Given � , 

(Off-path beliefs)  For all off-path disclosure m , �(m) = �(m) , where 

As the example in Sect.  2 shows, a truth-leaning equilibrium may not exist. 
The following proposition shows that nonexistence happens extensively. Fix an 
evidence structure and vary only the receiver’s payoffs. Unless “more evidence” 
implies “better evidence” (i.e., � is weakly increasing), there is a positive measure of 
evidence games in which a truth-leaning equilibrium does not exist.

Proposition 2 Fix 𝜋0, (E,≾),FG,FB , and A . Let G  be the set of all evidence games 
with prior �0 , evidence space (E,≾) , distributions of evidence FG and FB , and 
receiver action space A . Identify G  with a subset of ℝ2K by the bijection

supp(𝜌(⋅|m)) ⊂ 𝜙(𝜇(m))

�(m) =

∑
e∈E �(m�e)FG(e)�0∑

e∈E �(m�e)[FG(e)�0 + FB(e)(1 − �0)]
.

e ∈ argmax
m≾e

∑

a∈A

a ⋅ 𝜌(a|m) ⇒ 𝜎(e|e) = 1;

�(m) =
FG(m)�0

FG(m)�0 + FB(m)(1 − �0)
.
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If 𝜈 ∶ (E,≾) → [0, 1] is weakly increasing, then every evidence game in G  has a 
truth-leaning equilibrium, and in all truth-leaning equilibria, the sender discloses 
truthfully. If � is not weakly increasing, a truth-leaning equilibrium does not exist in 
a positive measure of evidence games in G .

4.2  Disturbed games and purifiable truthful equilibrium

A disturbed game is where the receiver has a private payoff shock (i.e., his type) 
� ∶ A → ℝ . The receiver has type dependent payoff vR(a,�|� ) = uR(a,�) + � (a) . 
We identify the set of the receiver’s types with ℝK , where K = |A| is the number of 
available receiver actions. Let � be a distribution over ℝK that has full support and is 
absolutely continuous with respect to the Lebesgue measure.17 Denote by GR(�) the 
disturbed game where the receiver’s type is distributed according to �.

In the disturbed game, a strategy of the sender is � ∶ E → Δ(E) such that 
supp(𝜎(⋅|e)) ⊂ LC(e) , a strategy of the receiver in GR(�) is r ∶ E ×ℝ

K → Δ(A) , and 
a system of beliefs of the receiver is � ∶ E → [0, 1] , where �(m) is the receiver’s 
posterior belief that the state is good after observing m.18 Given any strategy of the 
receiver r , let � ∶ E → Δ(A) be the induced distributions over the receiver’s actions. 
That is,

is the probability that the receiver takes action a after m is disclosed. We shall also 
use the shorthand notation and write this as � = ⟨r, �⟩.

A truth-leaning equilibrium of GR(�) is a tuple (�, r,�) such that:

(Receiver optimality in disturbed games) Given � , 

 for all m ∈ E and � ∈ ℝ
K , where 𝜏(�̄�, 𝜁) ⊂ A is the solution to the type � 

receiver’s problem given posterior belief �̄� ∈ [0, 1] on the good state, i.e., 

⟨𝜋0, (E,≾),FG,FB,A, uR⟩ ↦ {uR(a,G), uR(a,B)}a∈A.

�(a|m) = ∫ r(a|m, �)�(d� )

supp(r(⋅|m, 𝜁)) ⊂ 𝜏(𝜇(m), 𝜁)

𝜏(�̄�, 𝜁) = argmax
a∈A

�̄�uR(a,G) + (1 − �̄�)uR(a,B) + 𝜁(a);

17 The assumption that the disturbance has full support is dispensable. For every purifiable truthful equi-
librium, there exists a sequence of disturbances which assign positive probability to finitely many payoff 
shocks, and a sequence of truth-leaning equilibria of the disturbed games that converges to the purifiable 
truthful equilibrium.
18 For the purpose of finding truth-leaning equilibria, it is without loss to assume that the receiver’s 
belief is independent of his type, since on-path beliefs are determined by Bayes’ rule, and off-path beliefs 
are determined by the refinement.
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(Sender optimality), (Bayesian consistency), (Truth-leaning), and (Off-path 
beliefs), as are defined above for the original game G.

If (�, r,�) is a truth-leaning equilibrium, we say (�, �,�) is a truth-leaning 
equilibrium outcome of GR(�).

In any disturbed game, the sender has a strict incentive to persuade the receiver. 
That is, from the sender’s perspective, the expected value of the receiver’s optimal 
action is strictly increasing in his posterior belief. Therefore, a truth-leaning 
equilibrium exists in any disturbed game, and it is equivalent to a weakly truth-
leaning equilibrium. Moreover, a truth-leaning equilibrium is essentially unique, 
and the receiver’s equilibrium system of beliefs depends only on the evidence 
space (E,≾) and the distributions FG and FB . Specifically, it is independent of the 
disturbance �.19 Hence, the receiver’s equilibrium system of beliefs is the same 
across all truth-leaning equilibria of all disturbed games. In fact, the set of truth-
leaning equilibria is the same in all disturbed games.

Lemma 3 A truth-leaning equilibrium exists in all disturbed games. Moreover, there 
exist a closed and convex set Σ⋆ ⊂ Δ(E)E and a system of beliefs of the receiver 𝜇⋆ 
such that for all disturbed games GR(�) , (�, r,�) is a truth-leaning equilibrium of 
GR(�) if and only if 𝜎 ∈ Σ⋆ , 𝜇 = 𝜇⋆ , and supp(r(⋅|m, 𝜁)) ⊂ 𝜏(𝜇(m), 𝜁) for all m ∈ E 
and � ∈ ℝ

K.

We define a purifiable truthful equilibrium as the limit point of a sequence of 
truth-leaning equilibrium outcomes of the disturbed games as the payoff uncertainty 
goes to zero. Formally, a purifiable truthful equilibrium of G is a tuple (�, �,�) such 
that there exists a sequence of disturbances {�n}∞

n=1
 , and for each �n , a truth-leaning 

equilibrium outcome (�n, �n,�n) of GR(�
n) such that �n converges weakly to the point 

mass at 0 , denoted �n
w
������→ �0 , and (�n, �n,�n) → (�, �,�).

By Lemma 3, it is easy to see that a purifiable truthful equilibrium exists, and in 
any purifiable truthful equilibrium, 𝜎 ∈ Σ⋆ and 𝜇 = 𝜇⋆ . Since the receiver’s prob-
lem in any disturbed game depends only on his type and his posterior belief, the 
receiver’s action after seeing the disclosed evidence in any purifiable truthful equi-
librium should depend only on his posterior belief. That is, if two pieces of evidence 
m and m′ are such that 𝜇⋆(m) = 𝜇⋆(m�) , then �(⋅|m) = �(⋅|m�) in any purifiable 
truthful equilibrium. Conversely, any perfect Bayesian equilibrium satisfying these 
conditions is a purifiable truthful equilibrium.

Theorem  4 A purifiable truthful equilibrium exists and is a perfect Bayes-
ian equilibrium. Moreover, (�, �,�) is a purifiable truthful equilibrium if 
and only if 𝜎 ∈ Σ⋆ , 𝜇 = 𝜇⋆ , supp(𝜌(⋅|m)) ⊂ 𝜙(𝜇(m)) for all m ∈ E , and 
�(m) = �(m�) ⇒ �(⋅|m) = �(⋅|m�).

19 Indeed, as is shown in Appendix A.2, it is independent of the receiver’s payoff function uR in the 
undisturbed evidence game, but for the purpose of Lemma  3, we consider only disturbed games of a 
fixed evidence game.
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Theorem 4 shows that the set of purifiable truthful equilibria is a connected set 
in all evidence games. If 𝜙(𝜇⋆(m)) is a singleton for all m ∈ E , then the receiv-
er’s purifiable truthful equilibrium strategy is unique and is a pure strategy (i.e., 
𝜌(a|m) = 1a∈𝜙(𝜇⋆(m)) ), and all purifiable truthful equilibria differ only on the send-
er’s strategies. Since the sender’s action is payoff irrelevant, all purifiable truthful 
equilibria have the same payoff relevant outcome in the sense that the joint distri-
bution of (a,�) is the same. Moreover, any purifiable truthful equilibrium can be 
approached using arbitrary disturbances (see the remarks in Appendix A.3). That 
is, for all purifiable truthful equilibria (�, �,�) and all sequences of disturbances 
�n

w
������→ �0 , a sequence of truth-leaning equilibrium outcomes (�n, �n,�n) of the dis-

turbed games GR(�
n) converges to (�, �,�) . In Appendix A.6, we show that this is 

generic: for almost all evidence games, the receiver’s purifiable truthful equilibrium 
strategy is unique and in pure strategies; consequently, any purifiable truthful equi-
librium is infinitesimally close to a truth-leaning equilibrium of any infinitesimally 
disturbed game.

Because the disclosed evidence is payoff irrelevant, these results do not follow 
the standard results for “generic” extensive form games. Since the sender can have a 
continuum of equilibrium strategies, and different strategies correspond to different 
joint distributions of (e,m) , there is a continuum of purifiable truthful equilibrium 
outcomes defined as distributions over terminal nodes identified by (a, e,m,�) in 
evidence games. In contrast, for almost all finite extensive form games, the set 
of Nash equilibrium outcomes is finite (Kreps and Wilson 1982). It is also worth 
mentioning that purifiable truthful equilibria may not be regular (consider the 
associated normal form game and apply the definition of regularity by van Damme 
(1996)) even in generic evidence games. For example, in the purifiable truthful 
equilibrium of the example in Sect. 2, given that the receiver always chooses Reject, 
the sender is indifferent between any value of p . The equilibrium p = 1 , q = 0 is 
therefore irregular.

For nongeneric evidence games, i.e., where 𝜙(𝜇⋆(m)) is not a singleton for some 
m ∈ E , there is a continuum of the receiver’s purifiable truthful equilibrium strate-
gies. A given purifiable truthful equilibrium may be the limit point of truth-lean-
ing equilibrium outcomes only for some sequences of disturbed games, and not all 
sequences of disturbed games have a convergent sequence of truth-leaning equi-
librium outcomes. For example, consider a slight variant of the example in Sect. 2 
where the receiver’s payoff from approving a bad design is -1 (instead of -2). As 
a result, the receiver’s belief threshold is 1

2
 . There exists a continuum of purifiable 

truthful equilibria, where p = 1 , q ∈ [0, 1] , � =
1

2
 . Specifically, there exists a purifi-

able truthful equilibrium in which the receiver chooses Approve ( a = 1 ) and Reject 
( a = 0 ) with equal probability after seeing no evidence, i.e., q =

1

2
 . But in order to 

approach this equilibrium using truth-leaning equilibrium outcomes of the disturbed 
games, the sequence of disturbances {�n}∞

n=1
 must satisfy 𝜂n({𝜁(1) > 𝜁(0)}) →

1

2
 . 

That is, the probability that the receiver has a strict incentive to choose Approve 
at belief 1

2
 must converge to 1

2
 , equating the probability that the receiver chooses 

Approve in the intended purifiable truthful equilibrium.
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4.3  Perturbed games and weakly truth‑leaning equilibrium

Let � = {�e, �e|e}e∈E be a collection of positive real numbers. The perturbed game 
GS(�) , as is defined in HKP, is an evidence game where the sender who has evi-
dence e receives an extra payoff �e if she discloses truthfully, and she must dis-
close truthfully with at least probability �e|e . That is, the sender’s payoff is 
vS(a, e,m) = a + �e1e=m , and a strategy of the sender is � ∶ E → Δ(E) such that 
supp(𝜌(⋅|e)) ⊂ LC(e) and �(e|e) ≥ �e|e for all e.

A perfect Bayesian equilibrium of GS(�) is a collection of the sender’s strategy, 
the receiver’s strategy, and the receiver’s system of beliefs (�, �,�) such that:

(Sender optimality) Given � , 

 for all e and m ≠ e;
(Receiver optimality) and (Bayesian consistency), as are defined for G.

A weakly truth-leaning equilibrium of G is a tuple (�, �,�) such that there exists a 
sequence of perturbations {�n}∞

n=1
 and for each �n , a PBE (�n, �n,�n) of GS(�

n) such 
that �n → 0 , and (�n, �n,�n) → (�, �,�).

Proposition 5 A weakly truth-leaning equilibrium exists and is a perfect Bayesian 
equilibrium.

Unlike purifiable truthful equilibria, weakly truth-leaning equilibria often 
involve “borderline” receiver beliefs where the receiver is indifferent between two 
actions (see the remarks in Appendix A.5). Consequently, they may not be proper, 
and different sequences of perturbations may select different weakly truth-leaning 
equilibria, as is the case in the example in Sect. 2.

4.4  Relationship between truth‑leaning, weakly truth‑leaning, and purifiable 
truthful equilibria

HKP show that truth-leaning equilibrium and weakly truth-leaning equilibrium are 
equivalent in a class of evidence games where the receiver continuously chooses an 
action on the real line. The leading example in Sect. 2 shows that this is not true for 
finite evidence games. It turns out that the equivalence can be restored for purifiable 
truthful equilibria. On the one hand, if a purifiable truthful equilibrium is weakly 
truth-leaning, it is also a truth-leaning equilibrium. On the other hand, in almost 
all evidence games, a purifiable truthful equilibrium that is also truth-leaning is a 
weakly truth-leaning equilibrium.

Proposition 6 If a purifiable truthful equilibrium is weakly truth-leaning, it is also a 
truth-leaning equilibrium.

𝜎(m|e) > 0 ⇒ m ∈ argmax
m≾e

∑

a∈A

vS(a, e,m) ⋅ 𝜌(a|m)
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Proposition 7 Fix 𝜋0, (E,≾),FG,FB , and A . Let G ⊂ ℝ
2K be the set of all evidence 

games with prior �0 , evidence space (E,≾) , distributions of evidence FG and FB , and 
receiver action space A . Let N ⊂ G  be the set of evidence games that have a purifi-
able truthful equilibrium that is truth-leaning but not weakly truth-leaning. N  has 
Lebesgue measure zero.

For nongeneric games, a purifiable truthful equilibrium that is truth-leaning equi-
librium need not be weakly truth-leaning. Consider again the example presented in 
Sect. 4.2 where the receiver’s belief threshold is 1

2
 . There exists a continuum of truth-

leaning equilibria, where p = 1 , q > 0 , and � =
1

2
 . That is, the sender always dis-

closes no evidence, and the receiver approves the design with positive probability so 
that the sender’s incentive to disclose no evidence is strict. All truth-leaning equilib-
ria are purifiable truthful. However, there is a unique weakly truth-leaning equilib-
rium, where p = 1 , q = 1 , and � =

1

2
 . That is, the receiver must choose Approve after 

seeing no evidence. This is because, in every perturbed game, the sender cannot 
report no evidence with probability one, the receiver’s posterior belief is therefore 
strictly higher than the belief threshold 1

2
 , and he strictly prefers choosing Approve 

after seeing no evidence. This example is not generic, since the receiver is indiffer-
ent between Approve and Reject after seeing no evidence.

The example in Sect.  2 also shows that purifiable truthful equilibrium and 
weakly truth-leaning equilibrium do not imply each other, and neither implies 
truth-leaning equilibrium. To complete this part, we now show, using a variant of 
the example in Sect.  2, that an equilibrium that is both truth-leaning and weakly 
truth-leaning can fail to be purifiable truthful. Suppose that we alter the distribu-
tion of the sender’s evidence when the design is good such that the sender has bad 
evidence and no evidence with equal probability. The distribution when the design 
is bad remains unchanged. The game has a unique truth-leaning equilibrium, where 
p = 0 , q = 0 , � =

3

5
.20 That is, the sender discloses truthfully, the receiver always 

rejects the design, and the receiver’s belief on the good design is 3
5
 after seeing no 

evidence. Notice that this is also the unique weakly truth-leaning equilibrium of the 
game. However, it is not a purifiable truthful equilibrium. In the unique purifiable 
truthful equilibrium, the sender always discloses no evidence, the receiver always 
rejects the project, and its belief on the good design is 1

2
 after seeing no evidence  

(i.e., p = 1, q = 0,� =
1

2
).

4.5  Receiver optimality and value of commitment

A justification for truth-leaning equilibria in HKP is that they are receiver optimal. 
Moreover, HKP show that optimal deterministic mechanisms give the receiver the 

20 Although bad evidence is not fully revealing of the state, it reveals that the sender has bad evidence. 
Therefore, the receiver’s posterior belief on the good design is 3

7
 , and the receiver’s unique optimal action 

is Reject. Hence, we can describe an equilibrium of the game using p, q,� , as are defined in Sect. 2.
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same expected payoff as truth-leaning equilibria.21 Nonexistence of truth-leaning 
equilibrium prevents us from claiming the same in finite evidence games. The 
following proposition shows that purifiable truthful equilibria have these desired 
properties.

Proposition 8 Purifiable truthful equilibria are receiver optimal. The receiver’s 
purifiable truthful equilibrium payoff equals his payoff in the optimal deterministic 
mechanism.

To better illustrate this result, consider modifying the example in Sect.  2 
as follows. The receiver’s belief threshold is 1

3
 , and the sender has conclusive 

good evidence with probability 2
3
 if the state is good. That is, the sender can have 

(conclusive) good evidence, (conclusive) bad evidence, or no evidence. In the 
unique purifiable truthful equilibrium, the sender truthfully discloses good evidence 
and never discloses bad evidence, and the receiver chooses Accept if and only if 
good evidence is disclosed. Besides this purifiable truthful equilibrium, there exists 
a continuum of perfect Bayesian equilibria, where the sender type with bad evidence 
discloses no evidence, the sender type with good evidence discloses no evidence 
with at least 1

4
 probability, and the receiver always chooses Accept on the equilibrium 

path. Clearly, the purifiable truthful equilibrium gives the receiver a strictly higher 
expected payoff than any other perfect Bayesian equilibrium.

Sher (2011) shows that if the receiver’s payoff is a concave function in his action, 
even stochastic mechanisms cannot give the receiver a higher payoff than his payoff 
in the receiver optimal equilibrium. Our assumption of increasing differences is 
weaker, and the receiver may achieve a higher payoff than his purifiable truthful 
equilibrium payoff by committing to a stochastic mechanism. As an example, 
consider adding a third receiver action, Use at own risk ( a =

1

2
 ), to the example in 

Sect. 2. If this action is chosen, the sender’s payoff is 1
2
 , and the receiver’s payoff 

is x if the design is good and −x if the design is bad, where 0 < x <
1

4
 . Notice that 

the receiver’s payoff function is not concave in his action in the good state. Let 
q(0), q(

1

2
) , and q(1) denote the receiver’s probability of choosing Reject, Use at 

own risk, and Approve after seeing no evidence, respectively. And again, p is the 
sender’s probability of disclosing no evidence when having bad evidence, and � is 
the receiver’s posterior belief that the design is good after seeing no evidence. This 
game has a continuum of perfect Bayesian equilibria, where p = 1 , q(0) + q(

1

2
) = 1 , 

and � =
1

2
 . That is, the sender always discloses no evidence, the receiver chooses 

Reject, Use at own risk, or randomizes between these two actions after seeing no 
evidence, and the receiver’s posterior belief on the good design is 1

2
 after seeing no 

evidence.22 In every equilibrium, the receiver’s ex ante expected payoff is zero. The 

22 All perfect Bayesian equilibria are purifiable truthful, and all perfect Bayesian equilibria where 
q(

1

2
) > 0 are truth-leaning. The unique weakly truth-leaning equilibrium has q( 1

2
) = 1.

21 A deterministic mechanism is an action plan � ∶ E → A . In the mechanism design problem, the 
receiver moves first and publicly chooses a mechanism � . The sender privately observes her evidence e 
and optimally choose m ≾ e . The action �(m) is then taken, and payoffs are realized. An optimal deter-
ministic mechanism maximizes the receiver’s expected payoff among all deterministic mechanisms.
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receiver can achieve a positive payoff by committing to a stochastic mechanism. 
Suppose that it commits to choosing Use at own risk after seeing bad evidence 
and randomizing over Reject and Approve with equal probability after seeing no 
evidence. It is then optimal for the sender to disclose bad evidence truthfully, since 
it receives 1

2
 regardless. As the sender discloses evidence truthfully, the receiver’s ex 

ante expected payoff is 1
12

−
1

3
x > 0.

5  Conclusion

HKP propose truth-leaning equilibrium as a solution concept in evidence games. 
The intuition is that the sender may find it slightly more advantageous to disclose 
evidence truthfully when being indifferent. This paper points out two problems 
of applying this solution concept to finite evidence games. First, it may fail to 
exist. Second, it may not agree with the intuition that the sender receives an 
infinitesimal reward for truth-telling. That is, truth-leaning equilibrium is not 
equivalent to weakly truth-leaning equilibrium in finite evidence games.

We propose a simple solution to restore existence by adding a small payoff 
uncertainty to the receiver. In the disturbed game, the sender is as if she faces a 
single receiver whom she has strict incentive to persuade, and therefore, a truth-
leaning equilibrium exists. A purifiable truthful equilibrium is a truth-leaning 
equilibrium in an infinitesimally disturbed game. We show that a purifiable truthful 
equilibrium always exists and characterize the set of purifiable truthful equilibria.

We also show the equivalence between truth-leaning and weakly truth-leaning 
for purifiable truthful equilibria. If a purifiable truthful equilibrium is weakly 
truth-leaning, it is also a truth-leaning equilibrium. Conversely, in almost all 
finite evidence games, a purifiable truthful equilibrium that is also truth-leaning 
is a weakly truth-leaning equilibrium.

Finally, we show that purifiable truthful equilibria are receiver optimal, and the 
receiver cannot achieve a higher payoff by committing to a deterministic mechanism.

Appendix A Proofs

A.1. Proof of Proposition 2

Proof Fix an evidence game G ∈ G  , and suppose that � is weakly increasing. Since 
the receiver’s optimal action correspondence � is also weakly increasing, it is easy 
to verify that (�, �,�) such that �(e|e) = 1 , �(m) = �(m) , and �(a|m) = 1 if and only 
if a = max�(�(m)) for all e,m ∈ E is a truth-leaning equilibrium of G.

We now show that in all truth-leaning equilibria, the sender discloses truth-
fully. To obtain a contradiction, suppose that there exists a truth-leaning equilib-
rium (�, �,�) such that 𝜎(m|e) > 0 for some m ≠ e . Then the receiver’s expected 
action after seeing m must exceed that after seeing e . Therefore, 𝜇(m) > 𝜇(e) . Since 
m is an on-path message, �(m) is by Bayes’ rule and is a convex combination of 
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{𝜈(e�)|m ≾ e�} . Since � is increasing, �(m) ≤ �(m) . On the other hand, e is off-path, 
because m is feasible and gives a strictly higher payoff than e for all sender types 
who can feasibly disclose e . Hence, �(e) = �(e) . But �(m) ≤ �(e) , which is a con-
tradiction to 𝜇(m) > 𝜇(e) . Therefore, �(e|e) = 1 for all e ∈ E in every truth-leaning 
equilibrium of every game in G .

Let 𝜈1 < 𝜈2 < ⋯ < 𝜈N be elements of �(E) and Ei = �−1(�i) . If � is not weakly 
increasing, N ≥ 2 , and we can define

for all i ≥ 2 . Let i⋆ be the largest i such that there exist m ∈ Ei and e ∈ ∪j<iEj , 
and m ≾ e . The existence of i⋆ is guaranteed by the assumption that � 
is not weakly increasing. Let M⋆ = {m ∈ Ei⋆ ∶ ∃e ∈ ∪j<i⋆Ej,m ≾ e} , 
E⋆ = {e ∈ ∪j<i⋆Ej ∶ ∃m ∈ Ei⋆ ,m ≾ e}.

We now define a set of games where no truth-leaning equilibrium exists. Let S  be 
the set of all evidence games in G  such that 𝜙(�̄�i⋆) = {a1} and 𝜙(𝜈i⋆) = {aK} . That is, 
the highest action is uniquely optimal at belief 𝜈i⋆ , and the lowest action is uniquely 
optimal at belief �̄�i⋆ . The set S  has positive Lebesgue measure, and no game in S  
has a truth-leaning equilibrium. Suppose that, contrary to our claim, (�, �,�) is a 
truth-leaning equilibrium of some G ∈ S  . Then the sender’s expected payoff from 
disclosing any m ∈ M⋆ must exceed a1 . Otherwise, the receiver chooses the lowest 
action a1 after seeing some m ∈ M⋆ , so no other sender type would disclose m with 
positive probability in a truth-leaning equilibrium. Hence, 𝜇(m) = 𝜈(m) = 𝜈i⋆ , and aK 
is the receiver’s unique optimal action after seeing m , a contradiction. Therefore, in 
the truth-leaning equilibrium, all sender types in M⋆ ∪ E⋆ disclose with probability 
one messages in M⋆ ; all sender types in ∪j≥i⋆Ej⧵M

⋆ disclose truthfully and get aK ; 
all sender types in ∪j<i⋆Ej⧵E

⋆ disclose truthfully and get a1 . By Bayes’ rule, at some 
m ∈ M⋆,

Hence, after seeing m , a1 is the receiver’s unique optimal action. This is a 
contradiction to the statement that the sender’s expected payoff from disclosing m 
exceeds a1 . Therefore, a truth-leaning equilibrium does not exist in any evidence 
game in S  .   ◻

A.2. Proof of lemma 3

Proof Given any posterior belief �̄� ∈ [0, 1] on the good state, 
two actions ai and aj are both optimal for receiver type � only if 
𝜁(aj) − 𝜁(ai) = �̄�[uR(ai,G) − uR(aj,G)] + (1 − �̄�)[uR(ai,B) − uR(aj,B)] . By 

�̄�i = max
m∈∪j<iEj

FG(Ei ∪ {m})𝜋0

FG(Ei ∪ {m})𝜋0 + FB(Ei ∪ {m})(1 − 𝜋0)
< 𝜈i

𝜇(m) ≤ FG(E
⋆ ∪M⋆)𝜋0

FG(E
⋆ ∪M⋆)𝜋0 + FB(E

⋆ ∪M⋆)(1 − 𝜋0)
≤ �̄�i⋆ .
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assumption, this is true only for an �-null set of � . Hence, 𝜏(�̄�, ⋅) is �-a.e. a singleton 
set. This allows us to define

In any equilibrium (�, r,�) of the disturbed game, �(�(m)) is the sender’s expected 
payoff if she discloses m.

Moreover, �(⋅, �) is weakly increasing for all � ∈ ℝ
K . Let 𝜇i < 𝜇j , ai ∈ �(�i, �) , 

and aj ∈ �(�j, �) . Then

Hence,

Since uR(a,G) − uR(a,B) is strictly increasing in a , (A.1) implies that aj ≥ ai.
Therefore, � ∶ [0, 1] → ℝ is strictly increasing. Suppose that, contrary to the 

claim, there exist 𝜇i < 𝜇j such that �(�i) = �(�j) . Then, for all � except for on a �
-null set, �(�i, �) = �(�j, �) . This is true only if uR(a,G) − uR(a,B) is constant across 
all a ∈ A , which contradicts the assumption of increasing differences.

Now consider an auxiliary evidence game G(�) without receiver type, where the 
receiver chooses an action in ℝ , and given any posterior belief � ∈ [0, 1] , he has 
a unique optimal action �(�).23 This is the standard setup in Jiang (2019). We are 
to establish a duality between truth-leaning equilibria of GR(�) and truth-leaning 
equilibria of G(�).

Let (�̂�, â, �̂�) be a truth-leaning equilibrium of G(�).24 Let r ∶ E ×ℝ
K → Δ(A) be 

such that supp(r(⋅|m, 𝜁)) ⊂ 𝜏(�̂�(m), 𝜁) for all m ∈ E and � ∈ ℝ
K . We are to show 

that (�̂�, r, �̂�) is a truth-leaning equilibrium of GR(�) . By construction, it satisfies 
receiver optimality, Bayesian consistency, and the condition on off-path beliefs. We 
only need to verify sender optimality and truth-leaning. Since 𝜏(�̂�(m), ⋅) is �-a.e. 
a singleton for all m , r(a|m, 𝜁) = 1a∈𝜏(�̂�(m),𝜁) for all m, a , and almost all � . Hence, 
with slight abuse of notation, 

∑
a∈A a ⋅ r(a�m, 𝜁) = 𝜏(�̂�(m), 𝜁 ) for all m and almost 

all � . Integrating over � on both sides, 
∑

a∈A a ⋅ 𝜌(a�m) = 𝜑(�̂�(m)) = â(m) . That is, 
the sender’s problem given â in G(�) is the same as the sender’s problem given r in 
GR(�) . Since (�̂�, �̂�, �̂�) is sender optimal and truth-leaning, (�̂�, r, �̂�) is therefore also 
sender optimal and truth-leaning.

Conversely, let (�̂�, r̂, �̂�) be a truth-leaning equilibrium of GR(�) , and define 
a = 𝜑◦�̂� . It is easy to see that (�̂�, a, �̂�) is a truth-leaning equilibrium of G(�).

𝜑(�̄�) = ∫ sup 𝜏(�̄�, 𝜁)𝜂(d𝜁) = ∫ inf 𝜏(�̄�, 𝜁)𝜂(d𝜁).

�iuR(ai,G) + (1 − �i)uR(ai,B) + � (ai) ≥ �iuR(aj,G) + (1 − �i)uR(aj,B) + � (aj),

�juR(aj,G) + (1 − �j)uR(aj,B) + � (aj) ≥ �juR(ai,G) + (1 − �j)uR(ai,B) + � (ai).

(A.1)(�j − �i)[uR(aj,G) − uR(aj,B)] ≥ (�j − �i)[uR(ai,G) − uR(ai,B)].

23 There are different ways to define the receiver’s payoff ũR ∶ ℝ × {G,B} → ℝ in the auxiliary evidence 
game. Let us assume that ũR(a,𝜔) = ∫ vR(𝜏(𝜑

−1(a), 𝜁 ),𝜔|𝜁 )𝜂(d𝜁 ) for all a ∈ �([0, 1]).
24 â ∶ E → ℝ is a pure strategy of the receiver. Since given any posterior belief � , the receiver has a 
unique optimal action �(�) in the auxiliary game, he uses a pure strategy such that â = 𝜑◦�̂� in any equi-
librium of G(�).
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We now use the characterization of truth-leaning equilibria of the auxiliary 
evidence game in Jiang (2019). Fixing a finite evidence space (E,≾) and distribu-
tions FG and FB , a truth-leaning equilibrium of G(�) exists for all strictly increasing 
� ∶ [0, 1] → ℝ . Moreover, there exists a system of beliefs 𝜇⋆ ∶ E → [0, 1] such that 
for all strictly increasing � , (�, a,�) is a truth-leaning equilibrium of G(�) if and 
only if 𝜇 = 𝜇⋆ , a = �◦� , �(e|e) = 1�(e)≤�(e) , and

for all m ∈ E . Notice that (A.2) defines a continuous mapping 
f ∶ Δ(E)E → [0, 1]E, � ↦ � . Therefore, Σ⋆ = f −1(𝜇⋆) is a closed subset of Δ(E)E , 
and (�, a,�) is a truth-leaning equilibrium of G(�) if and only if 𝜎 ∈ Σ⋆ , 𝜇 = 𝜇⋆ , 
and a = �◦� . It is also easy to verify that Σ⋆ is convex. Hence, by the above duality, 
for all disturbances � , (�, r,�) is a truth-leaning equilibrium of the disturbed game 
GR(�) if and only if 𝜎 ∈ Σ⋆ , 𝜇 = 𝜇⋆ , and supp(r(⋅|m, 𝜁)) ⊂ 𝜏(𝜇(m), 𝜁) for all m ∈ E 
and � ∈ ℝ

K.  ◻

A.3. Proof of theorem 4

Proof The first statement is implied by the second statement, since 𝜇⋆ is Bayesian 
consistent with any sender’s strategy 𝜎 ∈ Σ⋆ by Lemma 3, and � is nonempty-valued.

For the “only if ” part of the second statement, let (�, �,�) be a purifiable truth-
ful equilibrium. There exists a sequence of disturbances �n

w
������→ �0 and for each �n , 

a truth-leaning equilibrium (�n, rn,�n) of GR(�
n) such that (�n, �n,�n) → (�, �,�) , 

where �n = ⟨rn, �n⟩ . By Lemma  3, 𝜎n ∈ Σ⋆ for all n , and since Σ⋆ is closed, 
𝜎 ∈ Σ⋆ . Additionally, 𝜇n = 𝜇⋆ for all n , so 𝜇 = 𝜇⋆ . Fix any m ∈ E and a ∈ A 
such that a ∉ �(�(m)) = �(�(m), 0) . Since � is upper hemicontinuous in � , 
there exists a neighborhood U of 0 in ℝK such that a ∉ �(�(m), �) for all � ∈ U . 
By receiver optimality, rn(a|m, �) = 0 for all n and � ∈ U . Hence, as �n

w
������→ �0 , 

�n(a|m) = ∫ rn(a|m, �)�n(d�) → 0 . That is, a ∉ supp(�(⋅|m)) . Lastly, let 
m,m� ∈ E be such that �(m) = �(m�) . Since �(�(m), �) = �(�(m�), �) for all � , 
rn(a|m, �) = rn(a|m�, �) for all n , a , and almost all � . Therefore, �n(⋅|m) = �n(⋅|m�) 
for all n , so their limits also coincide, i.e., �(⋅|m) = �(⋅|m�).

For the “if” part of the second statement, let (�, �,�) be such that 𝜎 ∈ Σ⋆ , 𝜇 = 𝜇⋆ , 
supp(𝜌(⋅|m)) ⊂ 𝜙(𝜇(m)) for all m ∈ E , and �(m) = �(m�) ⇒ �(⋅|m) = �(⋅|m�) . We 
are to show that it is a purifiable truthful equilibrium by construction. Let 
𝜇1 < 𝜇2 < ⋯ < 𝜇N be elements of �(E) , i.e., all posterior beliefs of the receiver 
after seeing some disclosed evidence. Since � is upper hemicontinuous in � , there 

(A.2)�(m) = min

�
�(m),

∑
e∈E �(m�e)FG(e)�0∑

e∈E �(m�e)[FG(e)�0 + FB(e)(1 − �0)]

�



65

1 3

Equilibrium refinement in finite action evidence games  

exists r > 0 such that 𝜏(𝜇i, 𝜁) ⊂ 𝜙(𝜇i) for all i and all � ∈ Br(0) , where Br(0) is the 
open ball of radius r around 0 in ℝK . For each � = (�1, �2,… , �N) ∈ ×N

i=1
�(�i) , let 

V� be the set of � ∈ Br(0) such that �(�i, �) = {�i} for all i = 1, 2,… ,N . That is, V� 
is the set of receiver types who have a unique optimal action �i given each belief �i . 
Notice that V� ’s are pairwise disjoint, 

⋃
� V� = Br(0) , and �� ∈ V� for all � ∈ V� and 

� ∈ (0, 1) . Moreover, each V� has positive Lebesgue measure.25 Let qn → � be a 
sequence such that supp(qn(⋅|m)) = �(�(m)) for all m ∈ E , and 
�(m) = �(m�) ⇒ qn(⋅|m) = qn(⋅|m�) . By abuse of notation, we write qn(a|m) as 
qn(a,�(m)) , and let xn

�
= ΠN

i=1
qn(�i,�i) . For all � and all n , xn

𝛼
> 0 . Therefore, for 

each n , we can define a distribution �n over ℝK with full support and absolutely con-
tinuous with respect to the Lebesgue measure such that �n

(
1

n
V�

)
=

n−1

n
xn
�
 for all � , 

where 1
n
V� = {� ∶ n� ∈ V�} is a subset of V� . That is, �n assigns increasingly large 

probability on the open ball of radius 1
n
 around 0. By construction, �n

w
������→ �0 . Let r be 

any receiver strategy in the disturbed games such that supp(r(⋅|m, 𝜁)) ⊂ 𝜏(𝜇(m), 𝜁) 
for all m ∈ E and � ∈ ℝ

K . By Lemma 3, (�, r,�) is a truth-leaning equilibrium of 
GR(�

n) . Let (�, �n,�) be the associated equilibrium outcome. Notice that 
�n(a|m) = ∫ r(a|m, �)�n(d�) is bounded from below by n−1

n
qn(a|m) and from above 

by n−1
n
qn(a|m) + 1

n
 , and recall that qn → � . Hence, �n → � , and (�, �,�) is a purifia-

ble truthful equilibrium.  ◻

Remarks The above proof implies that, if 𝜙(𝜇⋆(m)) is a singleton for all m ∈ E , 
there exists a sequence of truth-leaning equilibrium outcomes of the disturbed 
games (�n, �n,�n) that converges to (�, �,�) for all purifiable truthful equilib-
ria (�, �,�) and all disturbances �n

w
������→ �0 . Let r be any receiver strategy in the dis-

turbed games such that supp(r(⋅|m, 𝜁)) ⊂ 𝜏(𝜇⋆(m), 𝜁) for all m ∈ E and � ∈ ℝ
K . 

By Lemma 3, (�, r,�) is a truth-leaning equilibrium of all disturbed games GR(�
n) . 

Since � is upper hemicontinuous in � , and 𝜙(𝜇⋆(m)) is a singleton for all m ∈ E , 
r(a|m, ⋅) is constant on a small neighborhood of 0 in ℝK for all a ∈ A and m ∈ E . 
Hence, �n(a|m) → r(a|m, 0) = �(a|m) for all a ∈ A and m ∈ E.

A.4. Proof of proposition 5

Proof The proof works similarly as the proof of Proposition 1 in HKP despite dif-
ferences in our settings. First, observe that a perfect Bayesian equilibrium exists 
in every perturbed game GS(�) . The set of sender strategies in the perturbed game 
Σ ⊂ Δ(E)E and the set of receiver strategies Δ(A)E are convex and compact. Given 
a strategy of the receiver, the set of the sender’s strategies that are optimal is closed 
and nonempty. This yields an upper hemicontinuous best response correspondence 

25 Since � is upper hemicontinuous in � , we only need to show that V� is nonempty for all � . Notice that 
�(�i, � ) = {�i} if and only if 𝜁 (𝛼i) > 𝜁 (a�) for all a� ∈ �(�i) , a′ ≠ �i . The assumption of increasing differ-
ences guarantees that �(�i) ’s are ranked, and �(�i) ∩ �(�j) is either empty or a singleton. Therefore, all 
inequalities can be simultaneously satisfied for all i  . That is, there exists � ∈ ℝ

K such that �(�i, � ) = {�i} 
for all i  . Hence, V� is nonempty.
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of the sender ΓS ∶ Δ(A)E ⇉ Σ . Given a sender strategy � , since all evidence is 
disclosed with positive probability, there is a unique Bayesian consistent system 
of beliefs �� , and the mapping � ↦ �� is continuous. Since the solution to the 
receiver’s optimality problem � is upper hemicontinuous, we have an upper hemi-
continuous best response correspondence of the receiver ΓR ∶ Σ ⇉ Δ(A)E such that 
ΓR(�) = ×m∈EΔ(�(�

�(m))) . Then by the Kakutani fixed point-theorem, there exists 
�, � such that � ∈ ΓS(�) and � ∈ ΓR(�) . That is, the perturbed game has a Nash equi-
librium. The Nash equilibrium (�, �) paired with the system of beliefs �� consists of 
a perfect Bayesian equilibrium of the perturbed game.

Since the set of the sender’s strategies {𝜎 ∶ supp(𝜎(⋅|e) ⊂ LC(e)} ⊂ Δ(E)E , 
the set of the receiver’s strategies Δ(A)E , and the set of systems of beliefs [0, 1]E 
are compact, any sequence of perfect Bayesian equilibria of perturbed games 
{(�n, �n,�n)}∞

n=1
 has a convergent subsequence. Hence, a weakly truth-leaning equi-

librium exists. It is straightforward to verify that any weakly truth-leaning equilib-
rium is also a perfect Bayesian equilibrium.  ◻

A.5. Proof of proposition 6

Proof Let (�, �,�) be a weakly truth-leaning equilibrium that is also purifiable truth-
ful. We show that (i) if 𝜎(e|e) > 0 , then �(e|e) = 1 , and (ii) if �(e|e) = 0 , then 
e ∉ argmax

m≾e

∑
a∈A a ⋅ 𝜌(a�m) , and �(e) = �(e) . It then follows that (�, �,�) is also a 

truth-leaning equilibrium.
The first claim is due to (�, �,�) being a purifiable truthful equilibrium. Let 

�n
w
������→ �0 , and (�n, �n,�n) → (�, �,�) be such that (�n, �n,�n) is a truth-leaning out-

come of GR(�
n) for all n . If 𝜎(e|e) > 0 , then there exists N such that 𝜎n(e|e) > 0 for 

all n ≥ N . However, (�n, �n,�n) is truth-leaning, so �n(e|e) = 1 for all n ≥ N . There-
fore, �(e|e) = 1.

The second claim is due to weakly truth-leaning. Let �n → 0 , and 
(�n, �n,�n) → (�, �,�) be such that (�n, �n,�n) is a perfect Bayesian equilibrium of 
GS(�

n) for all n . If �(e|e) = 0 , e ∉ argmax
m≾e

∑
a∈A a ⋅ 𝜌(a�m) . Otherwise, for all n , e is 

the unique maximizer to the sender’s problem in GS(�
n) , so �n(e|e) = 1 , and �n ↛ � . 

Hence, for all e′ ≿ e and all n , �n(e|e�) = 0 . By Bayes’ rule, �n(e) = �(e) for all n . 
Therefore, �(e) = �(e).  ◻

Remarks In a similar fashion to the proof above, we can show that if a weakly truth-
leaning equilibrium (�, �,�) does not involve “borderline” receiver beliefs, i.e., 
�(�(m)) is a singleton for all m ∈ E , then it is a truth-leaning equilibrium. Hence, 
in all evidence games where a truth-leaning equilibrium does not exist, all weakly 
truth-leaning equilibria involve “borderline” receiver beliefs where the receiver is 
indifferent between two actions.
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A.6. Proof of proposition 7

Proof Notice that the receiver’s system of beliefs 𝜇⋆ is the same across all purifi-
able truthful equilibria of all games in G  . Moreover, given any two actions ai, aj and 
a belief � ∈ [0, 1] , the receiver is indifferent between actions ai and aj at � if and 
only if u(ai,G), u(ai,B), u(aj,G), u(aj,B) are on a hyperplane in ℝ4 . Therefore, the 
receiver is indifferent between two actions at some belief 𝜇⋆(m) only on a Lebesgue 
null set of G . We are to show that, if 𝜙(𝜇⋆(m)) is a singleton for all m ∈ E , then a 
truth-leaning equilibria that is also purifiable truthful is weakly truth-leaning. This 
concludes that N  has Lebesgue measure zero.

Let G ∈ G  be such that 𝜙(𝜇⋆(m)) is a singleton for all m , and (𝜎, 𝜌,𝜇⋆) a truth-
leaning equilibrium of G that is also purifiable truthful. Given any perturbation 
� = {�e, �e|e}e∈E , we define (��, ��,��) as follows: 

(1) ��(e|e) = 1 if �(e|e) = 1;
(2) ��(e|e) = �e|e , and ��(m|e) = (1 − �e|e)�(m|e) for all m ≠ e if �(e|e) = 0;
(3) �� = �;
(4) �� is by Bayes’ rule, i.e., 

For sufficiently small � , (��, ��,��) is a perfect Bayesian equilibrium of G(�) . Sender 
optimality is satisfied if

for all e ∈ E such that �(e|e) = 0 . For all m ∈ E , since � is upper hemicontinuous 
and 𝜇⋆(m) is a singleton for all m , there exists 𝛿 > 0 such that 𝜙(𝜇) = 𝜙(𝜇⋆(m)) for 
all m and all � ∈ [0, 1] such that |𝜇 − 𝜇⋆(m)| < 𝛿 . Since 𝜇𝜀 → 𝜇⋆ , when � is suffi-
ciently small, 𝜌𝜀(a|m) = 𝜌(a|m) = 1a=𝜙(𝜇𝜀(m))

= 1a=𝜙(𝜇⋆(m)) for all m ∈ E . That is, 
receiver optimality is satisfied. By construction, it is also Bayesian consistent, and 
(��, ��,��) → (�, �,�) for any sequence � → 0 . Therefore, (�, �,�) is a weakly truth-
leaning equilibrium.  ◻

A.7. Proof of proposition 8

Proof We first show that every receiver optimal perfect Bayesian equilibrium coex-
ists with a payoff equivalent purifiable truthful equilibrium, in the sense that the 
receiver’s ex ante payoff and the each sender type’s interim payoff are the same in 
the two equilibria.

Let v̂(𝜇) = maxa∈A 𝜇uR(a,G) + (1 − 𝜇)uR(a,B) be the receiver’s payoff given 
posterior belief � on the good state. The function v̂ ∶ [0, 1] → ℝ is piecewise linear 
and weakly convex. It is linear on an interval [𝜇, �̄�] if and only if there exists an 

��(m) =

∑
e∈E ��(m�e)FG(e)�0∑

e∈E ��(m�e)[FG(e)�0 + FB(e)(1 − �0)]
.

𝜀e < max
m∈E

∑

a∈A

a[𝜌(a|m) − 𝜌(a|e)]
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action a such that it is receiver optimal at every belief 𝜇 ∈ [𝜇, �̄�] . The receiver’s ex 
ante payoff in a perfect Bayesian equilibrium (�, �,�) is 

∑
m∈E �̄�(m)v̂(𝜇(m)) , where 

�̄�(m) =
∑

e∈E 𝜎(m�e)[FG(e)𝜋0 + FB(e)(1 − 𝜋0)] is the probability that m is disclosed. 
Notice that 

∑
m∈E �̄�(m)𝜇(m) = 𝜋0 . By convexity, the receiver’s ex ante payoff is at 

least v̂(𝜋0).
Let us start with a simple case. Suppose that there exists a receiver optimal per-

fect Bayesian equilibrium where all sender types receive the same payoff. Without 
loss of generality, assume that the receiver chooses the same action ā after seeing 
any on-path disclosure. The receiver’s ex ante payoff in E is therefore v̂(𝜋0) , and 
ā ∈ 𝜙(𝜋0) . Hence, in any purifiable truthful equilibrium, the receiver must also get 
v̂(𝜋0) . Moreover, letting 𝜇⋆ be the receiver’s system of beliefs in purifiable truthful 
equilibria, ā ∈ 𝜙(𝜇⋆(m)) for all on-path disclosure m . Hence, there exists a purifi-
able truthful equilibrium where the receiver always takes action ā on the equilibrium 
path, and it is payoff equivalent to the receiver optimal perfect Bayesian equilibrium.

For the more general case, let E be a receiver optimal perfect Bayesian equilib-
rium. It uniquely defines a partition {E1,E2,… ,EN} of the evidence space E , such 
that the sender receives distinct equilibrium payoffs given evidence in each Ei . 
Notice that in the equilibrium E , the sender’s disclosure is in the same element of 
partition Ei as her evidence. Therefore, restricted to each Ei , E is a well-defined per-
fect Bayesian equilibrium Ei of the evidence game Gi = ⟨𝜋0, (Ei,≾),F

i
G
,Fi

B
,A, uR⟩ , 

where Fi
�
(⋅) = F�(⋅)∕F�(Ei) is the distribution of evidence in state � conditional on 

Ei . Moreover, Ei is receiver optimal, and the receiver’s ex ante payoff in E is the 
weighted average of his ex ante payoff in each Ei.

We have shown that there exists a purifiable truthful equilibrium of Gi that is pay-
off equivalent to each Ei . This allows us to define a tuple (�, �,�) such that, restricted 
to each Ei , it is the purifiable truthful equilibrium of Gi that is payoff equivalent to 
Ei . It is easy to verify using Proposition 1 in Jiang (2019), which characterizes the 
unique receiver’s system of beliefs in purifiable truthful equilibria, and Theorem 4 
above that (�, �,�) is a purifiable truthful equilibrium of the evidence game G . 
Moreover, it is payoff equivalent to E by construction.

We now show that the receiver’s ex ante payoff is the same in all purifiable truth-
ful equilibria. Hence, all purifiable truthful equilibria are receiver optimal. Let 
(�, �,�) be a purifiable truthful equilibrium. Since the sender has a strict incentive to 
persuade the receiver, 𝜎(m|e) > 0 only if m ∈ argmax

m�≾e

𝜇(m�) . Let 𝜇1 < 𝜇2 < ⋯ < 𝜇N 

be elements of �(E) , and define Ei = {e ∶ maxm≾e 𝜇(m) = 𝜇i} for each �i . The 
receiver’s ex ante payoff in the purifiable truthful equilibrium is then ∑N

i=1
[FG(Ei)𝜋0 + FB(Ei)(1 − 𝜋0)]v̂(𝜇i) . By Theorem 4, 𝜇 = 𝜇⋆ in all purifiable truth-

ful equilibria. Therefore, the receiver’s ex ante payoff does not depend on the choice 
of purifiable truthful equilibrium.

We now turn to the problem where the receiver commits to a deterministic 
mechanism. We make two observations. First, a revelation principle applies, and 
it is without loss to focus on truthful mechanisms. A mechanism � is truthful if 
𝛾 ∶ (E,≾) → A is weakly increasing. Second, it is without loss to assume that no 
receiver action is dominated. The assumption of increasing differences ensures that 
if an action ai is dominated, then given any posterior belief, the receiver’s expected 
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payoff from taking an adjacent action (i.e., ai−1 or ai+1 ) is at least the same as tak-
ing action ai . Moreover, replacing action ai with an adjacent action in a mechanism 
does not change the sender’s incentive constraints. Therefore, there exists an optimal 
deterministic mechanism that does not involve dominated receiver actions.

Let 𝜇1 < 𝜇2 < ⋯ < 𝜇K be such that at each belief �i , �(�i) = {ai} , i.e., ai is the 
unique optimal action for the receiver. A deterministic mechanism � ∶ E → A can 
be identified with �̃� ∶ E → {𝜇i}

K
i=1

 such that �̃�(m) = 𝜇i if and only if �(m) = ai . Let 
�n

w
������→ 0 be a sequence of disturbances. Recall that �(�, ⋅) is a.e. a singleton for all 

� ∈ [0, 1] . By slight abuse of notation, we shall define

Since �n is strictly increasing, 𝜑n
◦�̃� ∶ E → ℝ is weakly increasing given any truth-

ful mechanism � . Hence, in the auxiliary game G(�n) , it is incentive compatible for 
all sender types to disclose truthfully if the receiver commits to the deterministic 
action plan 𝜑n

◦�̃� , and the receiver’s expected payoff by making this commitment is

where the expectation is taken over the state of the world � and the sender’s type e . 
As n → ∞ , (A.3) converges to

which is the receiver’s expected payoff by committing to the mechanism � in the 
original evidence game G . In each auxiliary game G(�n) , HKP shows that there is 
no value of committing to a deterministic mechanism, and (A.3) is bounded by the 
receiver’s truth-leaning equilibrium payoff. By the duality between truth-leaning 
equilibria of the auxiliary game G(�n) and truth-leaning equilibria of the disturbed 
game GR(�

n) , (A.3) is also bounded by the receiver’s truth-leaning equilibrium pay-
off in the disturbed game GR(�

n) . As n → ∞ , the receiver’s expected payoff from 
committing to the mechanism � is therefore bounded by his purifiable truthful equi-
librium payoff in the original evidence game G . The receiver can achieve any equi-
librium payoff using a deterministic mechanism, since every perfect Bayesian equi-
librium coexists with a perfect Bayesian equilibrium that gives the receiver the same 
payoff and in which the receiver uses a pure strategy. Therefore, the receiver’s payoff 
in the optimal deterministic mechanism must equal his purifiable truthful equilib-
rium payoff.  ◻
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�n(�) = ∫ �(�, �)�n(d�).

(A.3)�

[

∫ vR(𝜏(�̃�(e), 𝜁),𝜔|𝜁)𝜂n(d𝜁)
]
,

�
[
uR(�(e),�)

]
,
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