
Dette, Holger; Pepelyshev, Andrey; Zhigljavsky, Anatoly

Article  —  Published Version

Prediction in regression models with continuous
observations

Statistical Papers

Suggested Citation: Dette, Holger; Pepelyshev, Andrey; Zhigljavsky, Anatoly (2023) : Prediction in
regression models with continuous observations, Statistical Papers, ISSN 1613-9798, Springer Berlin
Heidelberg, Berlin/Heidelberg, Vol. 65, Iss. 4, pp. 1985-2009,
https://doi.org/10.1007/s00362-023-01465-6

This Version is available at:
https://hdl.handle.net/10419/317016

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  http://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s00362-023-01465-6%0A
https://hdl.handle.net/10419/317016
http://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Statistical Papers (2024) 65:1985–2009
https://doi.org/10.1007/s00362-023-01465-6

REGULAR ART ICLE

Prediction in regression models with continuous
observations

Holger Dette1 · Andrey Pepelyshev2 · Anatoly Zhigljavsky2

Received: 13 February 2023 / Revised: 20 June 2023 / Published online: 29 August 2023
© The Author(s) 2023

Abstract
We consider the problem of predicting values of a random process or field satisfying
a linear model y(x) = θ� f (x) + ε(x), where errors ε(x) are correlated. This is a
common problem in kriging, where the case of discrete observations is standard. By
focussing on the case of continuous observations, we derive expressions for the best
linear unbiased predictors and their mean squared error. Our results are also applicable
in the case where the derivatives of the process y are available, and either a response
or one of its derivatives need to be predicted. The theoretical results are illustrated by
several examples in particular for the popular Matérn 3/2 kernel.

Keywords Optimal prediction · Correlated observations · Kriging · Best linear
unbiased estimation

Mathematics Subject Classification 62M20 · 60G25

1 Introduction

A common problem, which occurs in many different areas, most notably geostatistics
(Ripley 1991; Cressie 1993), computer experiments (Sacks et al. 1989; Stein 1999;
Santner et al. 2003; Leatherman et al. 2017) and machine learning (Rasmussen and
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Williams 2006), is to predict the response y(t0) at a point t0 ∈ R
d from given responses

y(t1), . . . , y(tN ) at points t1, . . . , tN ∈ R
d , where t0 �= ti for all i = 1, . . . , N .

Making the prediction assuming that responses are observations of a random field is
called kriging (Stein 1999). In classical kriging, it is assumed that y is a random field
of the form

y(t) = f �(t)θ + ε(t), (1.1)

where f (t) ∈ R
m is a vector of known regression functions, θ ∈ R

m is a vector of
unknown parameters and ε is a random field with zero mean and existing covariance
kernel, say K (t, s) = E[ε(t)ε(s)]. The components of the vector-function f (t) are
assumed to be linearly independent on the set of points where the observations have
been made.

It is well-known, see e.g. (Sacks et al. 1989), that in the case of discrete observations
the best linear unbiased predictor (BLUP) of y(t0) has the form

ŷ(t0) = f �(t0)θ̂BLUE + K�
t0 Σ−1(Y − X θ̂BLUE), (1.2)

where Σ = (
K (ti , t j )

)N
i, j=1 is an N×N -matrix, Kt0 = (

K (t0, t1), . . . , K (t0, tN )
)�

is a vector in R
N , X = ( f (t1), . . . , f (tN ))� is an N ×m-matrix, Y = (y(t1), . . . ,

y(tN ))� ∈ R
N is a vector of observations and

θ̂BLUE = (X�Σ−1X)−1X�Σ−1Y

is the best linear unbiased estimator (BLUE) of θ . The BLUP satisfies the unbiased
condition E[ŷ(t0)] = E[y(t0)] and minimizes the mean squared error MSE(ỹ(t0)) =
E (y(t0) − ỹ(t0))

2 in the class of all linear unbiased predictors ỹ(t0); its mean squared
error is

MSE(ŷ(t0)) = K (t0, t0) −
[
f (t0)
Kt0

]� [
0 X�
X Σ

]−1 [
f (t0)
Kt0

]
.

In the present paper, which is a follow-up of (Dette et al. 2019), we generalize
the predictor (1.2) to the case of continuous observations of the response including
possibly derivatives and prediction of derivatives and weighted averages of y(t). In
practice, observations are rarely continuous but often they are made on very fine
grids which make the model with continuous observations a good model for such
experimental schemes. Analyzing models with very large number of observations can
be significantly harder than the analyzing models with continuous observations.

An important note concerning construction of the BLUPs at different points is the
fact that there is a considerable common part related to the use of the sameBLUE. This
could lead to significant computational savings relative to independent construction
of the BLUPs. This observation extend to the cases when the observations are taken
in Rd and when derivatives are also used for predictions.

The remaining part of this paper is organized as follows. In Sect. 2 we consider the
BLUPs when we observe the process or field only. In Sect. 3 we study the BLUPs for
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Prediction in regression models 1987

either process values or one of its derivatives when we observe the process (or field)
with derivatives. in Sect. 4 we give additional illustrating examples of the BLUPs for
particular kernels. In Sect. 5 we provide proofs of the main results.

2 Prediction without derivatives

2.1 Prediction at a point

Assume T ⊂ R
d and consider prediction at a point t0 /∈ T for a response given by the

model (1.1), where the observations for all t ∈ T are available. The vector-function
f : T →R

m is assumed to contain functions which are bounded, integrable, smooth
enough and linearly independent on T ; the covariance kernel K (t, s) = E[ε(t)ε(s)]
is assumed strictly positive definite.

A general linear predictor of y(t0) can be defined as

ŷQ(t0) =
∫

T
y(t)Q(dt),

where Q is a signedmeasure defined on the Borel field of T . This predictor is unbiased
if E[ŷQ(t0)] = E[y(t0)], which is equivalent to the condition

∫

T
f (t)Q(dt) = f (t0).

The mean squared error (MSE) of ŷQ(t0) is given by

MSE(ŷQ(t0)) = E
(
y(t0) − ŷQ(t0)

)2
.

The best linear unbiased predictor (BLUP) ŷQ∗(t0) of y(t0) minimizes the mean
squared error MSE(ŷQ(t0)) in the set of all linear unbiased predictors. The corre-
sponding signed measure Q∗ will be called BLUP measure throughout this paper.
Unlike the case of discrete observations, the BLUP measure does not have to exist for
continuous observations.

Assumption A (1) The best linear unbiased estimator (BLUE) θ̂BLUE = ∫
T y(t)G(dt)

exists in the model (1.1), where G(dt) is some signed vector-measure on T ,
(2) There exists a signed measure ζt0(dt) which satisfies the equation

∫

T
K (t, s)ζt0(dt) = K (t0, s), ∀s ∈ T . (2.1)

Assumption A will be discussed in Sect. 2.2 below. We continue with a general
statement establishing the existence and explicit form of the BLUP.
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1988 H. Dette et al.

Theorem 1 If Assumption A holds then the BLUP measure Q∗ exists and is given by

Q∗(dt) = ζt0(dt) + c�G(dt), (2.2)

where the signed measure ζt0(dt) satisfies (2.1) and c = f (t0) − ∫T f (t)ζt0(dt) . The
MSE of the corresponding BLUP ŷQ∗(t0) is given by

MSE(ŷQ∗(t0)) = K (t0, t0) + c�Df (t0) −
∫

T
K (t, t0)Q∗(dt) , (2.3)

where D = ∫
T
∫
T K (t, s)G(dt)G�(ds) is the covariance matrix of θ̂BLUE =∫

T y(t)G(dt).

This theorem is a particular case of a more general Theorem 2, which considers
the problem of predicting an integral of the response. A few examples illustrating
applications of Theorem 1 for particular kernels are given in Sect. 4.

We can interpret the construction of the BLUP at t0 in model (1.1) as the follow-
ing two-stage algorithm. At stage 1, we use the BLUE θ̂BLUE = ∫

T y(t)G(dt) for
estimating θ . At stage 2, we compute the BLUP in the model

ỹ(t) = y(t) − f �(t)θ̂BLUE = ε(t) − f �(t)
∫

T
ε(t ′)G(dt ′) ,

which is amodelwith newerror process andno trend. Straightforwardly, the covariance
function of the process ỹ(t) is calculated as

K̃ (t, s) = K (t, s) − f �(t)Df (s).

It then follows from Theorem 1 applied to the new model that the signed measure
Q∗(dt) satisfies the equation

∫

T
K̃ (t, s)Q∗(dt) = K̃ (s, t0), ∀s ∈ T .

From (2.3) in the new model, we obtain an alternative representation for the MSE of
the BLUP ŷQ∗(t0); that is,

MSE(ŷQ∗(t0)) = K̃ (t0, t0) −
∫

T
K̃ (t, t0)Q∗(dt) .

2.2 Validity of Assumption A

If T is a discrete set then Assumption A is satisfied for any strictly positive definite
covariance kernel.

In general, the main part of Assumption A is the existence of the BLUE of the
parameter θ , which has been clarified by Dette et al. (2019). According to their The-
orem 2.2, the BLUE of θ exists if and only if there exists a signed vector-measure
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Prediction in regression models 1989

G = (G1, . . . ,Gm)� on T , such that the m×m-matrix
∫
T f (t)G�(dt) is the identity

matrix and

∫

T
K (t, s)G(dt) = Df (s) (2.4)

holds for all s ∈ T and somem×m-matrix D. In this case, θ̂BLUE = ∫
T Y (t)G(dt) and

D is the covariance matrix of θ̂BLUE; this matrix does not have to be non-degenerate.
LetHK be the reproducing kernel Hilbert space (RKHS) associated with kernel K .

If the function K (t0, s) belongs toHK , then the second part of Assumption A is also
satisfied; that is, there exists a measure ζt0(dt) satisfying the Eq. (2.1). This follows
from results of Parzen (1961). Note that the function K (t0, s) does not automatically
belong toHK since in general t0 /∈ T .

If all components of f belong to HK then Assumption A holds and the matrix D
in (2.4) is non-degenerate; see Dette et al. (2019) and Parzen (1961).

If the matrix D in Theorem 1 is non-degenerate then this theorem can be refor-
mulated in the following form which is practically more convenient as there is no
unbiasedness condition to check.

Proposition 1 Assume that there exists a signed measure ζt0(dt) satisfying (2.1) and
a signed vector-measure ζ(dt) satisfying equation

∫

T
K (t, s)ζ(dt) = f (s), ∀s ∈ T . (2.5)

If additionally the matrix C = ∫
T f (t)ζ�(dt) is non-degenerate, then the BLUP

measure exists and is given by (2.2) with D = C−1. Its MSE is given by (2.3).

Clearly, if the conditions of Proposition 1 are satisfied then the BLUE measure
G(dt) is expressed via the measure ζ(dt) by G(dt) = C−1ζ(dt).

Explicit forms of the BLUP for some kernels are given in Sect. 4.

2.3 Matching expressions in the case of discrete observations

Let us show that in the case of discrete observations the form of the BLUP of
Proposition 1 coincides with the standard form (1.2). Assume that T is finite, say,
T = {t1, . . . , tN }. In this case, Eq. (2.5) has the form Σζ = X , where ζ is and N×m-
matrix. Since the kernel K is strictly positive definite, this gives ζ = Σ−1X , and
we also obtain C = X�Σ−1X , G� = C−1ζ�. A general linear predictor is of form
ỹ(t0) = Q�Y and the BLUP is Q�∗ Y with Q�∗ = ζ�

t0 + c�G�, where ζt0 = Σ−1Kt0

satisfies Eq. (2.1) and c = f (t0)−X�ζt0 .Expanding the expression for Q
�∗ we obtain

Q�∗ = (Σ−1Kt0)
� + c�C−1(Σ−1X)�

= K�
t0 Σ−1 + ( f (t0) − X�Σ−1Kt0)

�C−1X�Σ−1 . (2.6)

123



1990 H. Dette et al.

The classical form of the BLUP is given by (1.2), which can be written as Q�Y
with Q� = f �(t0)C−1X�Σ−1 + K�

t0 Σ−1 − K�
t0 Σ−1XC−1Σ−1X� and coincides

with (2.6).

2.4 Predicting an average with respect to ameasure

Assume that we have a realization of a random field (1.1) observed for all t ∈ T ⊂ R
d .

Consider the prediction problem of Z = ∫
S y(t)ν(dt), where ν(dt) is some (signed)

measure on the Borel field of Rd with support S. Assume that S\T �= ∅ (otherwise,
if S ⊆ T , the problem is trivial as we observe the full trajectory {y(t) | t ∈ T }). We
interpret Z as a weighted average of the true process values on S. The general linear
predictor can be defined as

ẐQ =
∫

T
y(t)Q(dt), (2.7)

where Q is a signed measure on the Borel field of T . The estimator ẐQ is unbiased if
and only if

∫

T
f (t)Q(dt) =

∫

S
f (s)ν(ds) . (2.8)

The BLUP signed measure Q∗ minimizes

MSE(ẐQ) = E
(
Z − ẐQ

)2

among all signed measure Q satisfying the unbiasedness condition (2.8). Assumption
A and Theorem 1 generalize to the following.

Assumption A′. The BLUE θ̂BLUE exists and there exists a signed measure ζν(dt)
which satisfies the equation

∫

T
K (t, s)ζν(dt) =

∫

S
K (s, u)ν(du), ∀s ∈ T . (2.9)

Theorem 2 Suppose that Assumption A′ holds and let D be the covariance matrix of
θ̂BLUE = ∫

T y(t)G(dt). Then the BLUP measure exists and is given by

Q∗(dt) = ζν(dt) + c�G(dt), (2.10)

where ζν(dt) is the signed measure satisfying (2.9) and c = ∫
S f (s)ν(ds) −∫

T f (t)ζν(dt). The MSE of the BLUP ẐQ∗ is given by

MSE(ẐQ∗)=
∫

S

∫

S
K (s, u)ν(ds)ν(du)+c�D

∫

S
f (s)ν(ds)−

∫

S

∫

T
K (t, u)ν(du)Q∗(dt).
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The proof of Theorem 2 is given in Sect. 5 and contains the proof of Theorem 1 as
a special case. Note also that the BLUP ẐQ∗ is simply the average (with respect to the
measure ν) of the BLUPs at points s ∈ S.

2.5 Location scale model on a product set

In this section we consider the location scale model

y(t) = θ + ε(t), where t = (t1, t2) ∈ T (2.11)

and assume that the kernel K of the random field ε(t) is given by

K(t, t ′) = E[ε(t)ε(t ′)] = K1(t1, t
′
1)K2(t2, t

′
2) , (2.12)

for t = (t1, t2), t ′ = (t ′1, t ′2) ∈ T . We also assume that the set T ⊂ R
2 is a product-set

of the form T = T1 × T2, where T1 and T2 are Borel subsets of R (in particular,
these sets could be discrete or continuous). The kernel K of the product form (2.12)
is called separable; such kernels are frequently used in modelling of spatial-temporal
structures because they offer enormous computational benefits, including rapid fitting
and simple extensions of many techniques from time series and classical geostatistics
[see Gneiting et al. (2007) or Fuentes (2006) among many others].

Assume that Assumption A′ holds for two one-dimensional models

y(i)(u) = θ + ε(i)(u) , u ∈ Ti (i = 1, 2) (2.13)

with Ki (u, u′) = E[ε(i)(u)ε(i)(u′)] , u, u′ ∈ Ti (i = 1, 2). Let the measures Gi (du)

define the BLUE
∫
Ti y(i)(u)Gi (du) in these two models. Then the BLUE of θ in the

model (2.11) is given by θ̂ = ∫
T y(t)G(dt), where G is a product-measure G(dt) =

G1(dt1)G2(dt2), Assume we want to predict y(t) at a point T = (T1, T2) /∈ T . Note
that Eq. (2.9) can be rewritten as

∫

T
K(t, s)ζT (dt) = K(s, T ), ∀s ∈ T .

A solution of the above equation has the form ζT (dt1, dt2) = ζT1(dt1)ζT2(dt2) ,

where ζTi (dt) (i = 1, 2) satisfies the equation

∫

Ti
Ki (u, v)ζTi (du) = Ki (v, Ti ), ∀v ∈ Ti . (2.14)

Finally, the BLUP at the point T = (T1, T2) is
∫
T y(t)Q∗(dt), where

Q∗(dt) = ζT (dt) + cG(dt) with c = 1 −
∫

T
ζT (dt).
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1992 H. Dette et al.

The measure G(dt) is the BLUE measure and does not depend on T1, T2. On the
other hand, the measure ζT (dt) and constant c do depend on T1, T2. The MSE of the
BLUP is MSE(ŷQ∗(T )) = 1 + c − ∫

T K(t, T )Q∗(dt) .

Example 1 Consider the case of T = [0, 1]2 and the exponential kernel

K(t, t ′) = E[ε(t)ε(t ′)] = exp
{−λ

[|t1 − t ′1| + |t2 − t ′2|
]}

,

where λ > 0 and t = (t1, t2), t ′ = (t ′1, t ′2) ∈ [0, 1]2. Define the measure

G(du) = 1

2 + λ
[δ0(du) + δ1(du) + λdu] , u ∈ [0, 1].

In view of (Dette et al. (2019), Sect 3.4),
∫ 1
0 y(u)G(du) is the BLUE in the model

y(u) = θ + ε(u) with kernel K (u, u′) = E[ε(u)ε(u′)] = e−λ|u−u′|, u, u′ ∈ [0, 1].
Equation (2.14) can be rewritten as

∫ 1

0
e−λ|v−u|ζTi (du) = e−λ|v−Ti |, ∀v ∈ [0, 1].

It follows from (Dette et al. (2019), Sect 3.4) that this equation is satisfied by the
measure

ζTi (du) =
⎧
⎨

⎩

e−λ|Ti |δ0(du), if Ti ≤ 0,
δTi (du), if 0 ≤ Ti ≤ 1,
e−λ(Ti−1)δ1(du), if Ti ≥ 1.

For T1 ≤ 0 we obtain Q∗(dt) = ζ(T1,T2)(dt) + cG(dt) in the following form

Q∗(dt) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

e−λ|T1|δ0(dt1)δT2(dt2) + (
1 − e−λ|T1|)G(dt), if 0 ≤ T2 ≤ 1,

e−λ|T1|−λ|T2|δ0(dt1)δ0(dt2) + (
1 − e−λ|T1|−λ|T2|)G(dt),

if T2 ≤ 0,
e−λ|T1|−λ(T2−1)δ0(dt1)δ1(dt2) + (

1 − e−λ|T1|−λ|T2−1|)G(dt),
if T2 ≥ 1.

Similar formulas can be obtained for 0 < T1 < 1 and T1 ≥ 1.
In Table 1 we show the square root of the MSE of the BLUP for the equidistant

design supported at points (i/(N − 1), j/(N − 1)), i, j = 0, 1, . . . , N − 1. We can
see that the MSE for the design with N = 4 is already rather close to the MSE for the
design with large N and the design with continuous observations.

In Fig. 1 we show the plot of the square root of theMSE as a function of a prediction
point for points (T1, T2) ∈ [0.5, 2]× [0.5, 2]. As the design is symmetric with respect
to the point (0.5, 0.5), the plot of the MSE is also symmetric with respect to this point.
Consequently only the upper quadrant is depicted in the figure.
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Table 1 The square root of the MSE of the BLUP at several points for the N×N -point equidistant design
in the location scale model on the square [0, 1]2 and the exponential kernel with λ = 2

N 2 3 4 8 16 32 ∞
T = (2, 2) 1.1446 1.1225 1.1177 1.1145 1.11398 1.11386 1.11383

T = (0.5, 2) 1.1242 1.0879 1.0884 1.0831 1.08177 1.08133 1.08117

In the case N = ∞ we provide the MSE for continuous observations.

Fig. 1 The square root of the MSE of the BLUP for the N×N -point equidistant design with N = 3 (left)
and N = 4 (right) and the exponential kernel with λ = 2

We observe that the MSE tends to zero when the prediction point tends to one of
design points and the MSE does not change much if the prediction point is far enough
from the observation domain.

Remark 1 The results of this section can be easily generalized to the case of d > 2
variables and, moreover, to the model y(t) = θ f (t) + ε(t), where t = (t1, . . . , td) ∈
T1 × . . . × Td , K(t, t ′) = E[ε(t)ε(t ′)] = K1(t1, t ′1) · · · Kd(td , t ′d) and f (t) =
f(1)(t1) · · · f(d)(td), where f(i) are some functions on Ti ; i = 1, . . . , d.

3 Prediction with derivatives

In this section we consider prediction problems, where the trajectory y in model (1.1)
is differentiable (in the mean-square sense) and derivatives of the process (or field)
y are available. This problem is mostly known in the literature under the name of
gradient-enhanced kriging and became very popular in many different areas; see e.g.
recent papers (Bouhlel and Martins 2019; Han et al. 2017; Ulaganathan et al. 2016),
where many references to applications can also be found.

In Sect. 3.1 we discuss the discrete case of a once-differentiable process and in
Sect. 3.2 we consider the general case of a q times differentiable (in the mean-square
sense) process y satisfying the model (1.1). For the process y to be q times differ-
entiable, the covariance kernel K and vector-function f in (1.1) have to be q times
differentiable, which is one of the assumptions in Sect. 3.2. In Sect. 3.3 we consider
the prediction problem for the location scale model on a two-dimensional product set
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1994 H. Dette et al.

in the case where the kernel K of the random field ε has the product form (2.12). The
results of this section can be easily generalized to the case of d > 2 variables.

3.1 Discrete case

Consider the model (1.1), where the kernel K and vector-function f are differentiable
and one can observe the process y and its derivative at N different points t1, . . . , tN ∈
R. In this case, the BLUP of y(t0) has the form

ŷ(t0) = f �(t0)θ̂BLUE,2N + K�
t0,2NΣ−1(Y2N − X2N θ̂BLUE,2N ), (3.1)

where Y2N = (y(t1), . . . , y(tN ), y′(t1), . . . , y′(tN ))� ∈ R
2N ,

Σ =
(

Σ00 Σ10

Σ�
10 Σ11

)

is a block matrix,

Σ00 = (
K (ti , t j )

)N
i, j=1, Σ10 =

( ∂

∂ti
K (ti , t j )

)N

i, j=1
, Σ11 =

( ∂2

∂ti∂t j
K (ti , t j )

)N

i, j=1

are N×N -matrices,

Kt0,2N =
(
K (t0, t1), . . . , K (t0, tN ),

∂

∂t0
K (t0, t1), . . . ,

∂

∂t0
K (t0, tN )

)�

is a vector in R
2N , X2N = ( f (t1), . . . , f (tN ), f ′(t1), . . . , f ′(tN ))� is an 2N ×m-

matrix and

θ̂BLUE,2N = (X�
2NΣ−1

d X2N )−1X�
2NΣ−1

d Y2N

is the BLUE of θ . The MSE of the BLUP (3.1) is given by

MSE(ŷ(t0)) = K (t0, t0) −
[

f (t0)
Kt0,2N

]� [
0 X�

2N
X2N Σ2N

]−1 [
f (t0)
Kt0,2N

]
.

For more general cases of prediction of processes and fields with derivatives
observed at a finite number of points, see Morris et al. (1993); Näther and Šimák
(2003).

3.2 Continuous observations on an interval

Consider the continuous-time model (1.1), where the error process ε has a q times
differentiable covariance kernel K (t, s). We also assume that the vector-function f is
q times differentiable and therefore the response y is q times differentiable as well.
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Suppose we observe realization y(t) = y(0)(t) for t ∈ T0 ⊂ R and assume that
observations of the derivatives y(i)(t) are also available for all t ∈ Ti , where Ti ⊂ R;
i = 1, . . . , q. The sets Ti (i = 0, 1, . . . , q) do not have to be the same; some of these
sets (but not all) can even be empty. If at least one of the sets Ti contains an interval
then we speak of a problem with continuous observations.

Consider the problem of prediction of y(p)(t0), the p-th derivative of y at a point
t0 /∈ Tp, where 0 ≤ p ≤ q.

A general linear predictor of the p-th derivative y(p)(t0) can be defined as

ŷp,Q(t0) =
∫

Y�(t)Q(dt) =
q∑

i=0

∫

Ti
y(i)(t)Qi (dt), (3.2)

whereY(t) = (
y(t), y(1)(t), . . . , y(q)(t)

)�
is a vectorwith observations of the process

and its derivatives,Q(dt) = (Q0(dt), . . . , Qq(dt))� is a vector of length (q + 1) and
Q0(dt), . . . , Qq(dt) are signed measures defined on T0, . . . ,Tq , respectively. The
covariance matrix of Y(t) is

K(t, s) = E[Y(t) − EY(t)][Y(t) − EY(t)]� =
(

∂ i+ j K (t, s)

∂t i∂s j

)q

i, j=0

which is a non-negative definite matrix of size (q + 1) × (q + 1).
The estimator ŷp,Q(t0) is unbiased if E[ŷp,Q(t0)] = E[y(p)(t0)], which is equiva-

lent to

∫
F(t)Q(dt) = f (p)(t0),

where F(t) = (
f (t), f (1)(t), . . . , f (q)(t)

)
is a m×(q + 1)-matrix.

Assumption A′′.
(1) The best linear unbiased estimator (BLUE) θ̂BLUE = ∫

G(dt)Y(t) exists in the
model (1.1), whereG(dt) is some signed m×(q + 1)-matrix measure (that is, the j-th
column of G(dt) is a signed vector measure defined on T j );

(2) There exists a signed vector-measure ζp,t0(dt) (of size q +1) which satisfies the
equation

∫
K�(t, s)ζp,t0(dt) = ∂ pK (s, t0)

∂t p0
, ∀s ∈ Ti , (3.3)

where K(t, s) = (
∂ j K (t,s)

∂s j
)q
j=0 is a (q + 1)-dimensional vector.

The problem of existence and construction of the BLUE in the continuous model
with derivatives is discussed in Dette et al. (2019). A general statement establishing
the existence and explicit form of the BLUP is as follows. The proof is given in Sect. 5.
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Theorem 3 If Assumption A′′ holds, then the BLUP measure Q∗ exists and is given
by

Q∗(dt) = ζp,t0(dt) + G�(dt)cp, (3.4)

where the signed measure ζp,t0(dt) satisfies (3.3) and

cp = f (p)(t0) −
∫

F(t)ζp,t0(dt).

The MSE of the BLUP ŷp,Q∗(t0) is given by

MSE(ŷp,Q∗(t0)) = ∂2pK (t, s)

∂t p∂s p

∣∣
∣∣t=t0
s=t0

+ c�
p D f (p)(t0) −

∫
K�(t, t0)Q∗(dt) ,

where

D =
∫ ∫

G(dt)K(t, s)G�(ds)

is the covariance matrix of θ̂BLUE = ∫
G(dt)Y(t).

Example 2 As a particular case of prediction in the model (1.1), in this example we
consider the problem of predicting a value of a process (so that p = 0)withMatérn 3/2
covariance kernel K (t, s) = (1 + λ|t − s|)e−λ|t−s| ; this kernel is once differentiable
and is very popular in practice, see e.g. Rasmussen and Williams (2006). We assume
that the vector-function f in the model (1.1) is 4 times differentiable and that the
process y and its derivative y′ are observed on an interval [A, B] (so that T0 = T1 =
[A, B] in the general statements). As shown in Dette et al. (2019), for this kernel
the BLUE measure G(dt) can be expressed in terms of the signed matrix-measure
ζ(dt) = (ζ0(dt), ζ1(dt)) with

ζ0(dt) = zAδA(dt) + zBδB(dt) + z(t)dt,

ζ1(dt) = z1,AδA(dt) + z1,BδB(dt),

where

zA = 1

4λ3
(
f (3)(A) − 3λ2 f (1)(A) + 2λ3 f (A)

)
,

z1,A = 1

4λ3
(− f (2)(A) + 2λ f (1)(A) − λ2 f (A)

)
,

zB = 1

4λ3
(− f (3)(B) + 3λ2 f (1)(B) + 2λ3 f (B)

)
,

z1,B = 1

4λ3
(
f (2)(B) + 2λ f (1)(B) + λ2 f (B)

)
,

z(t) = 1

4λ3
(
λ4 f (t) − 2λ2 f (2)(t) + f (4)(t)

)
.
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Then using (Dette et al. (2019), Sect. 3.4) we obtain ζ0,t0(dt) = (ζ0,t0,0(dt),
ζ0,t0,1(dt)) with

ζ0,t0,0(dt) = zt0,AδA(dt) + zt0,BδB(dt) + zt0(t)dt,

ζ0,t0,1(dt) = zt0,1,AδA(dt) + zt0,1,BδB(dt),

where for t0 > B we have zt0,A = 0, zt0,1,A = 0, zt0(t) = 0,

zt0,B = (1 + λ(t0 − B))e−λ(t0−B), zt0,1,B = (t0 − B)e−λ(t0−B) .

We also obtain the matrix

C =
∫ B

A
ζ0(dt) f

�(t) +
∫ B

A
ζ1(dt) f

′�(t)

defined in (Dette et al. (2019), Lem. 2.1) from the condition of unbiasedness. If D,
the covariance matrix of the BLUE is non-degenerate, then D = C−1. In the present
case,

C = 1

2

[
f (A) f �(A) + f (B) f �(B)

]
+ 1

2λ2

[
f ′(A) f ′�(A) + f ′(B) f ′�(B)

]
+

− 1

4λ

[
f ′(A) f �(A) + f (A) f ′�(A) + f ′(B) f �(B) + f (B) f ′�(B)

]
+

+ 1

4λ3

∫ B

A

[
λ4 f (t) f �(t) + 2λ2 f ′(t) f ′�(t) + f ′′(t) f ′′�(t)

]
dt ,

c0 =
(
f (t0) − [zt0,B f (B) + zt0,1,B f ′(B)]

)
.

The BLUE-defining measure G(dt) is expressed through the measures ζ(dt) and the
matrix C by G(dt) = C−1ζ(dt). The BLUP measure for process prediction is given
by

Q∗(dt) = ζ0,t0(dt) + G�(dt)c0

=
(
ζ0,t0,0(dt) + c�

0 C
−1ζ0(dt), ζ0,t0,1(dt) + c�

0 C
−1ζ1(dt)

)�
,

where

c0 = f (t0) −
∫

F(t)ζ0,t0(dt).

For the location scale model with f (t) = 1, we obtain C = 1 + λ(B − A)/4,
c0 = (1 − zt0,B) and, therefore, a BLUP measure for this model is given by

Q∗(dt) =
(
0.5c0δA(dt)/C + (0.5c0/C + zt0,B)δB(dt) + 0.25c0λdt/C,

−0.25c0/(Cλ)δA(dt) + (zt0,1,B + 0.25c0/(Cλ))δB(dt)
)�
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Table 2 The square root of the MSE of the BLUP at the point t0 = 2 for different designs. (i) the design
ξN ,0 observing the process at N -point equidistant points, (ii) the design ξN ,2 observing the process at
N -point equidistant points and the derivative at two boundary points. (iii) the design ξN ,N observing the
process and derivative at N -point equidistant points. The model is the location scale model on the interval
[0, 1] and the covariance kernel of the error process is given by the Matérn 3/2 kernel with λ = 2. For
continuous observations the square root of the BLUB is given by

√
MSE = 0.9985569896

N 2 4 8 16

ξN ,0 1.059339 1.038152 1.019244 1.009052

ξN ,2 0.999276 0.9985675343 0.9985573516 0.9985570068

ξN ,N 0.999276 0.9985675343 0.9985573516 0.9985570068

Therefore, the corresponding BLUP is given

ŷ0,Q∗(t0) = 0.5c0y(A)/C + (0.5c0/C + zt0,B)y(B) + 0.25c0λ
∫ B

A
y(t)dt/C

−0.25c0/(Cλ)y′(A) + (zt0,1,B + 0.25c0/(Cλ))y′(B).

Table 2 gives values of the square root of theMSE of the BLUP in the location scale
model at the point t0 = 2 for three families of designs, where [A, B] = [0, 1]. We
observe that observations of derivatives inside the interval do not bring any improve-
ment to the BLUPwhich can be explained by the fact that theweights of the continuous
BLUP at derivatives at points in the interior of the interval [A, B] are 0.

3.3 Location scale model on a product set

Similarly to Sect. 2.5, we consider the location scale model (2.11) defined on the
product set T = T1 × T2 (where T1 and T2 are Borel sets in R) with the kernel K of
the random field ε having the product form (2.12). The results of this section (as of
Sect. 2.5) can be easily generalized to the case of d > 2 variables.

Assume that Assumption A′′ with q = 1 is satisfied for two one-dimensional
models (2.13). For this assumption to hold, the process {y(t1, t2) | (t1, t2) ∈ T } has
to be once differentiable with respect to t1 and t2. Let the measures G0,i (du) and
G1,i (du) define the BLUE

∫

Ti
y(i)(u)G0,k(du) +

∫

Ti
y(1)
(i) (u)G1,i (du)

in the univariate models (2.13); i = 1, 2. In this case, results of Dette et al. (2019)
imply that the BLUE of θ in the model (2.11) has the form θ̂ = ∫

T Y�(t)G(dt),
where

Y�(t) =
(
y(t),

∂

∂t1
y(t),

∂

∂t2
y(t),

∂2

∂t1∂t2
y(t)

)
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and

G(dt) = (G00(dt),G10(dt),G01(dt),G11(dt))
�

with Gi j (dt) = Gi,k(dt1)G j,k(dt2).
Assume we want to predict y(T ) at a point T = (T1, T2) /∈ T . The analogue of the

Eq. (2.9) is given by

∫

T
K�(t, t ′)ZT (dt ′) = K(t, T ), ∀t ∈ T , (3.5)

where

K((t1, t2), (s1, s2)) =

⎛

⎜⎜⎜
⎝

K1(t1, s1)K2(t2, s2)
∂

∂t1
K1(t1, s1)K2(t2, s2)

K1(t1, s1)
∂

∂t2
K2(t2, s2)

∂
∂t1

K1(t1, s1)
∂

∂t2
K2(t2, s2)

⎞

⎟⎟⎟
⎠

.

Observing the product-form of expressions, we directly obtain that a solution of
(3.5) has the form

ZT (dt1, dt2) =

⎛

⎜⎜
⎝

ζ0,T1(dt1)ζ0,T2(dt2)
ζ1,T1(dt1)ζ0,T2(dt2)
ζ0,T1(dt1)ζ1,T2(dt2)
ζ1,T1(dt1)ζ1,T2(dt2)

⎞

⎟⎟
⎠ ,

where measures ζ0,Ti (dt) and ζ1,Ti (dt) for i = 1, 2 satisfy the equation

∫

Ti
Ki (t, s)ζ0,Ti (dt) +

∫

Ti

∂

∂t
Ki (t, s)ζ1,Ti (dt) = Ki (s, Ti ), ∀s ∈ Ti .

Finally, the BLUP at the point T = (T1, T2) is
∫
T Y�(t)Q∗(dt), where Q∗(dt) =

ZT (dt) + c0G(dt) with c0 = 1 − ∫
T (1, 0, 0, 0)ZT (dt).

The MSE of the BLUP is given by

MSE(ŷ0,Q∗(T )) = 1 + c0D −
∫

T
K�(t, T )Q∗(dt),

where D is the variance of the BLUE.

Example 3 Consider a location scale model on a square [0, 1]2 with a product covari-
ance Matérn 3/2 kernel, that is

K(t, t ′) = E[ε(t)ε(t ′)] = K (t1, t
′
1)K (t2, t

′
2),

where
K (u, u′) = (1 + λ|u − u′|)e−λ|u−u′|. (3.6)
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Define the measures

G0(du) = 1

4 + λ
[2δ0(du) + 2δ1(du) + λdu]

and

G1(du) = 1

(4 + λ)λ
[δ1(du) − δ0(du)] , u ∈ [0, 1].

In view of (Dette et al. (2019), Sect. 3.4),

∫ 1

0
y(u)G0(du) +

∫ 1

0
y(1)(u)G1(du)

defines a BLUE in the model y(u) = θ + ε(u) with u ∈ [0, 1] and covariance kernel
(3.6). Additionally, from (Dette et al. (2019), Sect. 3.4) we have

ζ0,Ti (du) =
⎧
⎨

⎩

(1 + λ|Ti |)e−λ|Ti |δ0(du), Ti ≤ 0,
δTi (du), 0 ≤ Ti ≤ 1,
(1 + λ(Ti − 1))e−λ(Ti−1)δ1(du), Ti ≥ 1,

and

ζ1,Ti (du) =
⎧
⎨

⎩

−|Ti |e−λ|Ti |δ0(du), Ti ≤ 0,
0, 0 ≤ Ti ≤ 1,
(Ti − 1)e−λ(Ti−1)δ1(du), Ti ≥ 1.

Finally, c0 = 1 − ∫ 1
0

∫ 1
0 (1, 0, 0, 0)ZT (dt) = 1 − ∫ 1

0 ζ0,T1(dt1)
∫ 1
0 ζ0,T2(dt2) and the

BLUP measure is given by Q∗(dt) = ZT (dt) + c0G(dt); that is,

Q∗(dt) =

⎛

⎜⎜
⎝

ζ0,T1(dt1)ζ0,T2(dt2) + c0G0(dt1)G0(dt2)
ζ1,T1(dt1)ζ0,T2(dt2) + c0G1(dt1)G0(dt2)
ζ0,T1(dt1)ζ1,T2(dt2) + c0G0(dt1)G1(dt2)
ζ1,T1(dt1)ζ1,T2(dt2) + c0G1(dt1)G1(dt2)

⎞

⎟⎟
⎠ .

We now investigate the performance of five discrete designs:

(i) the design ξN2,0,0,0, where we observe process y on an N×N grid;
(ii) the design ξN2,4,4,4, wherewe observe process y on an N×N grid and additionally

derivatives ∂ y
∂t1

, ∂ y
∂t2

, ∂2 y
∂t1∂t2

at 4 corners of [0, 1]2;
(iii) the design ξN2,N2,N2,0, where we observe process y and derivatives ∂ y

∂t1
, ∂ y

∂t2
on

an N×N grid;
(iv) the design ξN2,N2,N2,0, where we observe process y on an N×N grid and deriva-

tives ∂ y
∂t1

, ∂ y
∂t2

, ∂2 y
∂t1∂t2

at 4N − 4 equidistant points on the boundary of [0, 1]2;
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Table 3 The square root of theMSE of the BLUP at the point (2, 2) (upper part) and the point (0.5, 2) (lower
part) for several designs in the location scale model on the square [0, 1]2 with Matérn 3/2 product-kernel
(λ = 2). The square root of the MSE of the continuous BLUP equals 1.119510 at the point (2, 2) and
0.958494 at the point (0.5, 2)

N 2 3 4 8 16

ξN2,0,0,0 1.16139 1.15344 1.14972 1.13548 1.12764

ξN2,4,4,4 1.121205 1.119682 1.119582 1.119543 1.119528

ξN2,N2,N2,0 1.124401 1.121576 1.120913 1.119893 1.119609

ξN2,4N−4,4N−4,4N−4 1.121205 1.119632 1.119535 1.119511 1.119510

ξN2,0,0,0 1.03152 1.00413 0.99900 0.97862 0.96862

ξN2,4,4,4 0.979953 0.962754 0.963426 0.960604 0.959550

ξN2,N2,N2,0 0.982184 0.958732 0.959663 0.958606 0.958511

ξN2,4N−4,4N−4,4N−4 0.979953 0.958566 0.959314 0.958556 0.958500

(v) the design ξN2,N2,N2,N2 , where we observe process y and derivatives ∂ y
∂t1

, ∂ y
∂t2

,
∂2 y

∂t1∂t2
at N×N equidistant points on an N×N grid.

The results are depicted in Table 3, which shows the square root of the MSE of
predictions at the point (2, 2) and (0.5, 2) for different sample sizes. For any given
N ≥ 2, the MSE for prediction outside the square [0, 1]2 for the designs ξN2,N2,N2,N2

and ξN2,4N−4,4N−4,4N−4 are exactly the same. This is related to the fact that the
BLUPweights associated with all derivatives at interior points in [0, 1]2 of the designs
ξN2,N2,N2,N2 are all 0. This means that for optimal prediction of y(t0) at a point t0
outside the observation region one needs the design guaranteeing the optimal BLUE
plus the observations of y(t) and y′(t) at points t closest to t0. Note that the results of
(Dette et al. (2019), Sect. 3.4) imply that the continuous optimal design for the BLUE
does not use values of any derivatives of the process (or field for the product-covariance
model) in the interior of T .

The observation above is consistent with our other numerical experience which
have shown that the BLUP at a point t0 ∈ (0, 1) × (0, 1) constructed from the design
ξN2,N2,N2,N2 has vanishing weights at all derivatives of interior points of [0, 1]2 with
five exceptions: the center 0 and the four points which are closest to t0 in the L∞
(Manhattan) metric.

Figures 2 and 3 compare the MSE for some designs. Figure3 illustrates that the
MSE for designs ξN2,4N−4,4N−4,4N−4 and ξN2,N2,N2,N2 is exactly the same for all
points outside [0, 1]2 and almost the same at all interior points of [0, 1]2. This is in
full agreement with Table 3, which also illustrates this phenomenon.

4 Additional examples of predicting process values

In this section, we give further examples of prediction of values of specific random
processes y(t), which follows the model (1.1) and observed for all t ∈ T = [A, B]. In
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Fig. 2 Square root of the MSE of the BLUP for the design ξN2,0,0,0 with N = 3 (left) and N = 4 (right),
and the Matérn 3/2 product-kernel with λ = 2

Fig. 3 Square root of the MSE of the BLUP for the design ξN2,4N−4,4N−4,4N−4 (left) and ξN2,N2,N2,N2

(right) with N = 3 and the Matérn 3/2 product-kernel with λ = 2

Sect. 4.1, we illustrate application of Proposition 1 and in Sect. 4.2 we give an example
of application of Theorem 3. In the example of Sect. 4.2 we consider the integrated
Brownian motion process, which is a once differentiable random process, and we
assume that in addition to values of y(t), the values of the derivative of y(t) are also
available. As in the main body of the paper, the components of the vector-function
f (t) in (1.1) are assumed to be smooth enough (for all formulas to make sense) and
linearly independent on T .

4.1 Prediction for Markovian error processes

4.1.1 General Markovian process

Consider the prediction of the random process (1.1) with T = [A, B] and the Marko-
vian kernel K (t, s) = u(t)v(s) for t ≤ s, where u(·) and v(·) are twice differentiable
positive functions such that q(t) = u(t)/v(t) ismonotonically increasing.As shown in
(Dette et al. (2019),Sect. 2.6), a solution of the equation

∫ B
A K (t, s)ζ(dt) = f (s) hold-

ing for all s ∈ T is the signed vector-measure ζ(dt) = zAδA(dt)+ zBδB(dt)+ z(t)dt
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with

zA = 1

v2(A)q ′(A)

[ f (A)u′(A)

u(A)
− f ′(A)

]
,

z(t) = − 1

v(t)

[h′(t)
q ′(t)

]′
, zB = h′(B)

v(B)q ′(B)
,

where ψ ′ denotes a derivative of a function ψ , the vector-function h(·) is defined by
h(t) = f (t)/v(t).

Then we obtain ζt0(dt) = z0AδA(dt) + z0BδB(dt) with

z0A = 1 − u′(A)

v2(A)q ′(A)
v(t0), z0B = 1

v(B)
v(t0),

C = 1

v2(A)q(A)
f (A) f �(A) +

∫ B

A

[ f (t)/v(t)]′[ f (t)/v(t)]′�
q ′(t)

dt

and

c̃ = C−1c = C−1
(
f (t0) −

[
1 − u′(A)

v2(A)q ′(A)
v(t0) f (A) + 1

v(B)
v(t0) f (B)

])
.

The BLUP measure is given by

Q∗(dt) = ζt0(dt) + c�G(dt) = ζt0(dt) + c̃�ζ(dt)

and the MSE of the BLUP is

MSE(ŷQ∗(t0)) = u(t0)v(t0) + c̃� f (t0) −
∫ B

A
K (t, t0)Q∗(dt) .

4.1.2 Prediction when the error process is Brownian motion

The covariance kernel K (t, s) = min(t, s) of Brownian motion is a particular case
of the Markovian kernel with u(t) = t and v(s) = 1, t ≤ s. Further we present the
BLUP for few choices of f (t).

For the location-scale model with f (t) = 1, we obtain c = 0 and, therefore, the
BLUP measure is given by Q∗(dt) = δB(dt). The BLUP is ŷQ∗(t0) = y(B) and it
has MSE(ŷQ∗(t0)) = t0 − B.

For the model with f (t) = t , we obtain c̃ = B−1(t0 − B) and, thus, the BLUP
measure is given by

Q∗(dt) = δB(dt) + t0 − B

B
δB(dt) = t0

B
δB(dt).

The BLUP is ŷQ∗(t0) = t0
B y(B) and it has MSE(ŷQ∗(t0)) = t0

B (t0 − B).
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Table 4 The square root of the MSE of the BLUP at the point t0 = 2 for the N -point equidistant design in
the location scale model on the interval [0, 1] and the OU kernel with λ = 2; for the continuous observations√
MSE = 1.164262

N 2 4 8 16 32

√
MSE 1.18579 1.167157 1.164806 1.164381 1.16429

For the model with f (t) = t2, we obtain c̃ = (A3 + 4/3(B3 − A3))−1(t20 − B2)

and, thus, the BLUP measure is given by

Q∗(dt) = δB(dt) + t20 − B2

A3 + 4/3(B3 − A3)

(
2BδB(dt) − AδA(dt) − 2dt

)
.

The BLUP is

ŷQ∗(t0) = y(B) + t20 − B2

A3 + 4/3(B3 − A3)

(
2By(B) − Ay(A) − 2

∫ B

A
y(t)dt

)

and it has the mean squared error

MSE(ŷQ∗(t0)) = t0 + c̃ · t20 −
∫ B

A
t · Q∗(dt).

4.1.3 Prediction for an OU error process

The covariance kernel K (t, s) = exp(−λ|t − s|) of the OU error process is also a
particular case of the Markovian kernel with u(t) = eλt and v(s) = e−λs , t ≤ s.

For the location-scale model f (t) = 1, we obtain c̃ = (1 + (B − A) λ
2 )−1(1 −

e−λ|t0−B|) and, therefore, the BLUP measure is given by

Q∗(dt) = c̃/2δA(dt) + (e−λ|t0−B| + c̃/2)δB(dt) + c̃λ/2dt .

The BLUP is ŷQ∗(t0) = c̃/2y(A) + (e−λ|t0−B| + c̃/2)y(B) + c̃λ/2
∫ B
A y(t)dt and it

has MSE(ŷQ∗(t0)) = 1 + c̃ − ∫ B
A e−λ|t−t0|Q∗(dt).

In Table 4 we give values of the square root of the MSE of the BLUP at the point
t0 = 2 for the N -point equidistant design in the location scale model on the interval
[0, 1] and the OU kernel with λ = 2. From this table, we can see that one does not
need many points to get almost optimal prediction: indeed, the MSE for designs with
N ≥ 4 is very close to the MSE for the continuous observations. Similar results have
been observed for other points t0 and other Markovian kernels.

4.2 Prediction when the error process is integrated Brownianmotion

Consider the prediction of the random process (1.1) with T = [A, B], the 4 times
differentiable vector of regression functions f (t) and the kernel of the integrated
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Brownian motion defined by

K (t, s) = min(t, s)2(3max(t, s) − min(t, s))/6.

From (Dette et al. (2019), Sect. 3.2) we have that the signed matrix-measure ζ(dt) =
(ζ0(dt), ζ1(dt))has components ζ0(dt) = zAδA(dt)+zBδB(dt)+z(t)dt and ζ1(dt) =
z1,AδA(dt) + z1,BδB(dt), where

zA = f (3)(A) − 6

A2 f (1)(A) + 12

A3 f (A),

z1,A = − f (2)(A) + 4

A
f (1)(A) − 6

A2 f (A),

zB = − f (3)(B), z1,B = f (2)(B), z(t) = f (4)(t).

Therefore we obtain ζt0,0(dt) = zt0,AδA(dt) + zt0,BδB(dt) + zt0(t)dt and ζt0,1(dt) =
zt0,1,AδA(dt) + zt0,1,BδB(dt) with (for t0 > B)

zt0,A = K (3)(A, t0) − 6

A2 K
(1)(A, t0) + 12

A3 K (A, t0) = 0,

zt0,1,A = −K (2)(A, t0) + 4

A
K (1)(A, t0) − 6

A2 K (A, t0) = 0,

zt0,B = −K (3)(B, t0) = 1, zt0,1,B = K (2)(B, t0) = t0 − B,

and zt0(t) = K (4)(t, t0) = 0. This implies ζt0,0(dt) = δB(dt) and ζt0,1(dt) = (t0 −
B)δB(dt). Alsowe obtainC = 12

A3 f (A) f �(A)− 6
A2

(
f ′(A) f �(A)+ f (A) f ′�(A)

)
+

4
A f ′(A) f ′�(A) + ∫ B

A f ′′(t) f ′′�(t)dt and c̃0=C−1c0=C−1
(
f (t0) − [ f (B) + (t0 −

B) f ′(B)]
)
.

For the location-scale model with f (t) = 1, we obtain c = 0 and, therefore,
the BLUP measure is given by Q∗(dt) = (δB(dt), (t0 − B)δB(dt))�. The BLUP is
ŷQ∗(t0) = y(B) + (t0 − B)y′(B) and it has MSE(ŷQ∗(t0)) = t30/3 − t0B(t0 − B/2).

5 Proofs

5.1 Proof of Theorem 2

To start, we proof the following lemma.

Lemma 1 The mean squared error [relative to the true process value] of any unbiased
estimator ẐQ = ∫

T y(t)Q(dt) is given by

MSE(ẐQ) = E

(
Z − ẐQ

)2 =
∫

S

∫

S
K (t, s)ν(dt)ν(ds)−2

∫

S

∫

T
K (t, s)ν(dt)Q(ds)+

∫

T

∫

T
Q(dt)K (t, s)Q(ds).
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Proof Straightforward calculation gives

MSE(ẐQ)= E

(
Z − ẐQ

)2 = E

(
Z −

∫

T
y(t)Q(dt)

)2

= E

(∫

S
[θ� f (t) + ε(t)]ν(dt) −

∫

T
[θ� f (t) + ε(t)]Q(dt)

)2

= E

(∫

S
ε(t)ν(dt) −

∫

T
ε(t)Q(dt)

)2

=E

(∫

S
ε(t)ν(dt)−

∫

T
ε(t)Q(dt)

)(∫

S
ε(s)ν(ds)−

∫

T
ε(s)Q(ds)

)

=
∫

S

∫

S
K (t, s)ν(dt)ν(ds)−2

∫

S

∫

T
K (t, s)ν(dt)Q(ds)

+
∫

T

∫

T
K (t, s)Q(dt)Q(ds) ,

as required.

Let us now prove the main result. We will show that MSE(ẐQ) ≥ MSE(ẐQ∗),
where ẐQ is any linear unbiased estimator of the from (2.7) and ẐQ∗ is defined by the
measure (2.10). Define R(dt) = Q(dt)−Q∗(dt). From the condition of unbiasedness
for Q(dt) and Q∗(dt), we have

∫
T f (t)R(dt) = 0m×1.

We obtain

MSE(ẐQ)= MSE(ẐQ∗+R)

=
∫

S

∫

S
K (t, s)ν(dt)ν(ds) − 2

∫

S

∫

T
K (t, s)ν(dt)[Q∗ + R](ds)

+
∫

T

∫

T
[Q∗ + R](dt)K (t, s)[Q∗ + R](ds)

=MSE(Q∗)−2
∫

S

∫

T
K (t, s)ν(dt)R(ds)+

∫

T

∫

T
R(dt)K (t, s)R(ds)

+2
∫

T

∫

T
Q∗(dt)K (t, s)R(ds)

≥MSE(Q∗)−2
∫

S

∫

T
K (t, s)ν(dt)R(ds)+2

∫

T

∫

T
Q∗(dt)K (t, s)R(ds)

= MSE(Q∗) + 2
∫

T

[ ∫

T
Q∗(dt)K (t, s) −

∫

S
K (t, s)ν(dt)

]
R(ds)

= MSE(Q∗) + 2
∫

T
c�Df (s)R(ds) = MSE(Q∗) ,

where the inequality follows from nonnegative definiteness of the covariance kernel
and the last equality follows from the unbiasedness condition

∫
f (t)R(dt) = 0. �
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5.2 Proof of Theorem 3

For simplicity, assume p = 0; the case p > 0 can be dealt with analogously. First, we
derive the following lemma.

Lemma 2 The mean squared error of any unbiased estimator ŷQ(t0) of the form (3.2)
is given by

MSE(ŷQ(t0))= E
(
y(t0) − ŷQ(t0)

)2

= K (t0, t0) − 2
∫

T
K�(t0, s)Q(ds) +

∫

T

∫

T
Q�(dt)K(t, s)Q(ds) .

Proof Straightforward calculation gives

MSE(ŷQ(t0))= E
(
y(t0) − ŷQ(t0)

)2 = E

(

y(t0) −
q∑

i=0

∫

T
y(i)(t)Qi (dt)

)2

= E

(

θ� f (t0) + ε(t0) −
q∑

i=0

∫

T
[θ� f (i)(t) + ε(i)(t)]Qi (dt)

)2

= E

(

ε(t0) −
q∑

i=0

∫

T
ε(i)(t)Qi (dt)

)2

= K (t0, t0) − 2
q∑

j=0

∫

T

∂ j K (t0, s)

∂s j
Q j (ds)

+
q∑

i=0

q∑

j=0

∫

T

∫

T

∂ i+ j K (t, s)

∂t i∂s j
Qi (dt)Q j (ds) ,

as required.

Now we will prove the main result. We will show that

MSE(ŷQ(t0)) ≥ MSE(ŷQ∗(t0)),

where ŷQ(t0) is any linear unbiased estimator of the form (3.2) and ŷQ∗(t0) is defined
by (3.4). DefineR(dt) = Q(dt)−Q∗(dt). From the unbiasedness condition forQ(dt)
andQ∗(dt), we have

∫
T F(t)R(dt) = 0m×1 withF(t) = ( f (t), f (1)(t), . . . , f (q)(t)).

Therefore we obtain
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MSE(ŷQ(t0))= MSE(ŷQ∗+R(t0))

= K (t0, t0) − 2
∫

T
K�(t0, s)[Q∗ + R](ds)

+
∫

T

∫

T
[Q∗ + R]�(dt)K(t, s)[Q∗ + R](ds)

=MSE(ŷQ∗(t0))−2
∫

T
K�(t0, s)R(ds)+

∫

T

∫

T
R�(dt)K(t, s)R(ds)

+2
∫

T

∫

T
Q�∗ (dt)K(t, s)R(ds)

≥MSE(ŷQ∗(t0))−2
∫

T
K�(t0, s)R(ds)+2

∫

T

∫

T
Q�∗ (dt)K(t, s)R(ds)

= MSE(ŷQ∗(t0)) + 2
∫

T

[ ∫

T
Q�∗ (dt)K(t, s) − K�(t0, s)

]
R(ds)

= MSE(ŷQ∗(t0)) + 2
∫

T
c�
p DF(s)R(ds) = MSE(ŷQ∗(t0)) ,

where the inequality follows from nonnegative definiteness of the covariance kernel
and the last equality follows from the unbiasedness condition

∫
F(t)R(dt) = 0.
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