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Abstract
We study a contest design problem in which a designer chooses how many Tull-
ock contests to have, how much to award to each contest, and which contestants (of 
high or low type) should be assigned to which contest. Our main result is that a sin-
gle grand contest maximizes total effort. We consider three extensions. First, when 
the designers’ objective changes to maximizing the effort submitted by the winning 
contestant, we find that the optimal design involves the high-type contestants being 
assigned to a set of pairwise contests. Second, under multiple participations (a play-
er’s effort is valid in multiple contests, as in several applications), running a contest 
open to all, along with a parallel contest open only to low types, increases total effort 
over a single grand contest. Third, tilting the playing field (a player’s effort is multi-
plied by a tilting factor) in favor of low types increases total effort in a single grand 
contest, even more than what is possible with multiple participations; thus, in appli-
cations, a quota reserved for traditionally disadvantaged categories results in lower 
total effort than a grand contest that optimally handicaps advantaged categories.

1  Introduction

In a contest, contestants exert costly and irreversible efforts to win prizes.1 In design-
ing a contest, a designer could, for instance, group all contestants into the same 
grand contest for a single prize, or group them by ability into several sub-contests 
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with smaller prizes, or only the two top contestants could be selected to compete for 
a single grand prize with everyone else being excluded.

In applications, it is common for contestants to be assigned to contests that have 
different prizes. For instance, school admission contests could be open to every-
body, or a quota could be reserved for a selected population subgroup. In practice, 
we often observe quotas reserved for traditionally disadvantaged categories. For 
instance, Kumar et al. (2022) report that, in India, schools are required to reserve 
25% of their enrollment slots for economically underprivileged students. A grant-
giving entity can organize a single, generous grant or several small grants could be 
opened to scholars according to their seniority level; examples are the Society for 
Neuroscience Jacob P. Waletzky Award and the Young Investigator Award, both 
given to an early career neuroscientist.2

In this paper, we study the effort-maximizing type-based centralized assignment 
of contestants and prizes into Tullock contests: a contest designer chooses how 
many winner-take-all contests to induce, how much of her prize budget to award to 
the winner of each contest, and who participates in each such contest.3

In our main setup in Sect. 4, each contestant participates in at most one contest, 
and each contest treats contestants identically.4 We model the contests à la Tullock 
under complete information and with contestants’ types equal to the constant mar-
ginal cost of effort, which can be high or low. Our main finding is that the total-
effort-maximizing centralized assignment allocates all contestants (of both types) 
and all the prize budget into a single grand contest. Establishing the optimality of a 
single grand contest is non-trivial and, to our knowledge, is not a direct consequence 
of existing results. Intuitively, if in a grand contest high types sufficiently outnumber 
low types so that the latter would be discouraged—or even inactive—the designer 
could spur efforts of low types by, for instance, shifting part of the prize budget 
away from the grand contest to a parallel low-type-only contest. However, the conse-
quent increase in low-type efforts would be dominated by the decrease in high-type 
efforts resulting from the lower prize left in the high-type-only contest.

We then analyze three extensions. First, in Sect. 5, we analyze the optimal cen-
tralized assignment when the designer maximizes the expected equilibrium winners’ 
efforts (WE), instead of the expected equilibrium total effort (TE). WE is relevant in 
all applications where the designer benefits only from the amount of effort exerted 
by the winner, but not that of the losers; for instance, in a grant competition, the 

2  See https://​www.​sfn.​org/​caree​rs/​awards/​lifet​ime/​jacob-p-​walet​zky-​award and https://​www.​sfn.​org/​
Caree​rs/​Awards/​Early-​Career/​Young-​Inves​tigat​or-​Award.
3  We suppose for simplicity that the designer awards a single prize to the winner of each contest, rather 
than allowing for multiple prizes. Modeling the probability of being ranked in a specific spot below the 
winner in a Tullock contest is not trivial: for examples of multi-prize lottery contest models, see for 
instance (Clark and Riis 1996, 1998; Amegashie 2000; Yates and Heckelman 2001; Szymanski and Val-
letti 2005; Fu and Lu 2009, 2012a, b; Azmat and Möller 2009; Schweinzer and Segev 2012; Vesperoni 
2016). In practice, the designer can assign different types of contestants to different contests, for instance, 
by deploying entry credential requirements or by direct observation of types after repeated interaction 
with the same pool of contestants.
4  In sections 6 and 7, we relax these two assumptions.

https://www.sfn.org/careers/awards/lifetime/jacob-p-waletzky-award
https://www.sfn.org/Careers/Awards/Early-Career/Young-Investigator-Award
https://www.sfn.org/Careers/Awards/Early-Career/Young-Investigator-Award
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winner’s project is particularly valuable—as it receives more attention, funding, 
and visibility—and thus only the winner’s effort is valuable to the designer. Simi-
larly, students compete for admission to a school, and the school may care more 
about the effort exerted (as a proxy for a student’s training) by the admitted—hence, 
winning—students, rather than the effort exerted by the non-admitted ones. A 
key remark is in order. We interpret the noise in the contest outcome as an exog-
enous probability of making a “mistake” and not selecting the best project/student 
as the winner: for instance, a designer may have limited resources (time or money) 
to screen projects/students and pick the “best.” In other words, the noise could be 
due to a “performance measurement error” (see, e.g., Fu and Lu 2012b).5 Hence, a 
designer aware of such an exogenous probability of a mistake should consider it and 
thus weigh in her objective each effort (as a proxy for actual quality) by its “noisy” 
probability of winning. We find that a WE-maximizing designer organizes (multiple) 
pairwise contests, each between two high types, and fully excludes all low types. 
Hence, the optimality of a grand contest fails when maximizing WE rather than TE. 
The intuition is as follows. As large efforts are more likely to win—and hence to 
enter into WE—than small efforts, the designer tends to benefit more from high-type 
efforts than low-type efforts, in contrast to TE. Our results show that this novel WE-
specific force dominates all others, yielding the optimality of allocating the budget 
entirely to pairwise high-high contests.6

In our second extension in Sect. 6, we build on the contribution by Dahm and 
Esteve-González (2018) and assume that some contestants, with the same effort, 
compete in more than one contest, so that they may win more than one prize: i.e., 
a setup with multiple participations. As reported by Dahm and Esteve-González 
(2018): “Consider scholarships for students from under-represented groups that aim 
at enhancing the diversity of the university community. These scholarships are open 
to students from minority groups and coexist with scholarships based on merit.” 
As Dahm and Esteve-González (2018) show, having a parallel contest only for low 
types can yield a larger TE than in the grand contest under single participation. Note 
that the effort exerted by low types (e.g., the training of disadvantaged students) is 
now valid also for the contest with all types, which is the reason for the difference 
with our main result under single participation. We also derive an upper bound on 
the prize to be allocated to the low-type-only contest, which shows that the contest 
with all types should be allocated the vast majority of the prize budget.

In our third extension in Sect. 7, we move back to a setup of single participation 
in a single grand contest, but allow the designer to treat contestants differently by 
tilting the playing field in favor of some types. We then compare TE under optimal 
tilting with TE under multiple participation and show that the former outperforms 
even the maximum TE with a parallel low-type-only contest (described in Sect. 6). 

5  An alternative interpretation of the noise is also mentioned by Fu and Lu (2012b): “perturbation in 
production.” We thank a referee for raising the important issue of the nature of the noise.
6  It bears keeping in mind that, in real-life, designers may have a variety of objectives other than TE or 
WE maximization —e.g., equity, inclusion, or steering talented young researchers into a long-term career 
in a specific field.
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This ranking of TE is novel and reaffirms the optimality of a grand contest as in 
the main model; if a designer can choose between a parallel low-type-only con-
test or tilting the playing field in favor of low types in a single grand contest as 
two alternative tools to stimulate efforts, the latter dominates. Note that, in fact, it 
is not uncommon to observe policies favoring low types in practice. According to 
the so-called Environmental Context Dashboard, student SAT scores are disclosed 
to colleges together with an index of the students’ rigor of their high schools and 
socio-economic background (e.g., crime rates and poverty levels in students’ neigh-
borhoods). In the words of the College Board, this dashboard levels the playing field 
as it “shines a light on students who have demonstrated resourcefulness to overcome 
challenges and achieve more with less” (College Board 2020), hence helping stu-
dents who grew up in challenging conditions in their competition with more for-
tunate students. From the normative viewpoint, our novel result (the maximum TE 
when tilting the playing field outperforms that with multiple participation) suggests 
that, rather than reserving an admission quota to students who come from a disad-
vantaged socio-economic background, a unified admission in which the scores of 
disadvantaged students are given a “boost” may better stimulate overall efforts.

2 � Literature review

When contestants are (ex-ante) identical, the optimality of a single grand contest has 
been shown by several authors. An example is Moldovanu and Sela (2006), which 
focuses on private information all-pay auctions where sub-contests are restricted to 
have an equal number of contestants and identical prizes.7 Another example is Fu 
and Lu (2009), which allows for multiple prizes within the same (sub)contest; e.g., 
including also a prize for the second-ranked contestants.8 The optimality of a single 
grand contest when contestants are identical is intuitive; “simply merging smaller 
contests always creates more competition and induces contestants to exert more 
effort, no matter how these smaller contests are constructed” (Fu and Lu 2009). 
However, the case of heterogeneous contestants is relevant; in the words of Rosen 
(1988), “How are contestants stratified and sorted among contests according to their 
talents and motivation? [...] The question is important because known heterogeneity 
among contestants reduces performance incentives. Therefore ‘tracking’ or sorting 
contestants by known abilities across different games has positive value.” Hence, 
in contrast to the above-mentioned papers, we study the centralized assignment of 
heterogeneous contestants by types to a set of contests, which is a field of applied 
interest.

7  When the contest is in more than one round and the winners of each group in the first round goes up 
to the next round, then the optimality of a grand contest does not necessarily hold; see Gradstein and 
Konrad (1999) and Moldovanu and Sela (2006). However, the present paper exclusively focuses on static 
setups.
8  Fu and Lu (2009) allow for prizes for the second and higher ranked players by adapting (Clark and Riis 
1996, 1998)’s approach for the probability of being ranked less-than-first.
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The analysis of selecting heterogeneous contestants into a single contest has been 
studied widely. The exclusion principle by Baye et  al. (1993) states that exclud-
ing the strongest contestants from an all-pay auction increases total effort when 
the excluded contestants are outliers in skills and the remaining bidders are suffi-
ciently homogenous.9 Also, Fullerton and McAfee (1999), in a complete informa-
tion Tullock contest with heterogeneous contestants, show that the selection of 
only the two best contestants is optimal under a mild condition. The intuition why 
a WE -maximizing designer organizes contests between pairs of high types resem-
bles the intuition behind the selection of the two strongest finalists in Fullerton and 
McAfee (1999), even if their model is different.10 Nevertheless, in these papers, the 
designer selects contestants into a single contest, while in our setting the designer 
assigns contestants to multiple contests and finetunes the allocation of the prize 
budget across those contests. Similarly, a parallel branch of the literature studies the 
allocation of multiple prizes in a single contest with heterogeneous players (e.g., 
González-Díaz and Siegel 2013; Xiao 2016, 2018). While we do not allow for more 
than one prize per contest, we allow for more than one contest rather than a single 
one.

The main focus of Fu and Lu (2009) is on identical players, but they also numeri-
cally investigate the case of two high types and two low types. “When contestants 
are endowed with differing talents, an additional line of freedom is added to the con-
test design problem. [...] Although a complete characterization of a general model 
is hard to obtain, one may imagine that the optimal contest design would depend 
on the distribution of talents.” They conclude their numerical example by saying 
“designing effort-maximizing contests with substantially heterogeneous contestants 
requires greater sophistication in the matching of contestants and prizes. A more 
general theory is required that can adequately illuminate the subtlety of this dimen-
sion despite the technical difficulty”. In the stylized setup of the present paper, we 
provide a tool—namely, segregations—that allows us to characterize the optimal 
assignment with binary heterogeneity. Hence, while Fu and Lu (2009) show that 
the optimality of a single grand contest extends to multiple-winner setups, our main 
result shows that it extends to a setup with heterogeneous contestants. Allowing for 
heterogeneous types creates an extra layer of difficulty; namely, the choice of assign-
ment affects the contestants’ endogenous participation. For instance, a low type 
competing in a contest with many high types would rather not participate (exert 0 
effort). This extra layer of difficulty that heterogeneity adds is the reason behind the 
simplicity of our other assumptions, such as that of a linear impact function in the 
Tullock contest success function and of binary types.

9  At the same time, creating a parallel contest with the excluded strong contestants may then further 
increase total effort. For instance, Parreiras and Rubinchik (2015), in an all-pay auction where a contest-
ant of ability �i privately knows her valuation Vi ∼ U

[

0, �i

]

 , find that homogeneity of abilities increases 
efforts and that separating contestants according to their ability into two groups of exogenously assumed 
equal size may be beneficial.
10  For instance, Fullerton and McAfee’s model includes entry fees collected by and valuable for the 
designer.
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Like the present paper, Mathews and Namoro (2008), Leuven et al. (2011), and 
Xiao (2023) analyze situations where a designer has a fixed budget and a fixed set 
of contestants of heterogeneous types to be allocated among contests. Mathews and 
Namoro (2008) and Leuven et al. (2011) mainly focus on players’ voluntary deci-
sion to enter into contests. Mathews and Namoro (2008) consider two strategic and 
heterogeneous contestants choosing which contest to enter, out of two possibilities. 
Leuven et  al. (2011) also derive a result about the optimality of a grand contest. 
Unlike the present paper, Leuven et al. (2011) consider dividing a grand contest into 
two sub-contests, rather than any number. Furthermore, they consider neither WE 
-maximization nor the comparison between TE under multiple participations and TE 
under tilting the playing field. Xiao (2023)’s analysis is more general than ours in 
that contestants can be of more than two types and each contest may have more 
than one prize, but he does not allow for multiple participations, tilting of the play-
ing field, or a design that induces partial participation. However, the most important 
difference is structural: unlike the present paper, Xiao (2023) models the contests as 
all-pay auctions. This has two important consequences. First, because of the intense 
competition of all-pay auctions, heterogeneity is particularly detrimental to efforts: 
two identical contestants exert an equilibrium aggregate effort equal to the prize (full 
rent dissipation) and hence Xiao’s main result is that “separating – assigning par-
ticipants with the same ability together – is superior to mixing – assigning partici-
pants with different abilities together”: “by separating the students according to their 
abilities, we can introduce intense competition among asymmetric players”, (Xiao 
2023, p. 1–2). In our setup, the noise of the Tullock contest stimulates low types’ 
efforts when up against high types: hence, the optimal assignment in our noisy setup 
is a single grand contest with both high and low types. Second, as Xiao works with 
all-pay auctions, his results build on the elegant and tractable characterizations of 
Siegel (2009) and Siegel (2010) and cleverly provide the optimal centralized assign-
ment of contestants circumventing the need for a full characterization of equilibria. 
On the contrary, we work with Tullock contests, which are not covered by Siegel’s 
results, and consequently we develop a novel technique: the analysis of segregations.

Our WE-maximization builds on the recently blossoming field that studies objec-
tives other than TE in contest design. Maximizing the winner’s entry is crucial in 
innovation contests (see, e.g., Taylor 1995; Ales et  al. 2017; Mihm and Schlapp, 
2018). Serena (2017) compares WE-maximization to TE-maximization in Tullock 
contests in terms of exclusion and leveling of the playing field. The WE-optimal 
biases are considered by Drugov and Ryvkin (2017) in a two-player symmetric 
contest (with general contest success function) and by Barbieri and Serena (2022) 
in a dynamic best-of-three setup. WE-maximizing sequential-elimination contests 
are considered by Fu and Wu (2018a), Fu and Wu (2018b).11 None of these papers 
analyze the WE -maximizing assignment of an exogenous pool of contestants into 
contests.

11  The role of information on contestants’ types in affecting WE is considered in Serena (2021) in a 
two-sided private information environment and in Deng et al. (2020a), Deng et al. (2020b) in a one-sided 
private information environment with perceptional bias.
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Our results in the multiple-participation setup share common features with the 
intuition behind (Szymanski and Valletti 2005) and directly draw from Dahm and 
Esteve-González (2018). Szymanski and Valletti (2005) show that, “in a three-per-
son contest where one contestant is very strong, a second prize can be optimal from 
the point of view of eliciting maximum effort from every contestant”. The intuition 
behind their result is that the second prize gives the two weak contestants some-
thing to fight for, which is particularly valuable to boost their efforts when the strong 
contestant is highly talented. Similarly, we find that the extra prize for low types 
only encourages low types and hence mitigates their discouragement due to being 
up against high types. Szymanski and Valletti (2005) do not consider the possibility 
of multiple contests or endogenous centralized assignments. In Dahm and Esteve-
González (2018), contestants all compete for the main prize, while only disadvan-
taged contestants (the set of weakest, not necessarily identical, contestants) compete 
for an extra prize, with the same effort they exert for the main prize. While Dahm 
and Esteve-González (2018)’s setup is more general than ours as it does not restrict 
attention to binary types, our binary setup (with only high and low types) allows us 
to derive two novel analytical results. The first novel result is that TE achievable by 
creating a parallel low-type-only contest is lower than that achieved in a single con-
test by tilting the playing field in favor of low types, thus restoring, to some extent, 
the optimality of a single grand contest found in our main setup. The second novel 
result shows that the contest open to all should be allocated the vast majority of the 
prize budget and the low-type-only contest significantly less. This finding helps us 
understand real-life contests where the prize (in monetary terms, fame, visibility, 
prestige, etc.) for the low-type-only contests is typically significantly lower than that 
of the grand contest.

The tilting-the-playing-field policy has a solid tradition in the contest litera-
ture (for a survey see, e.g., Mealem and Nitzan 2016. Some classic results are, 
for instance, in Nti (1999) and Franke (2012). A key insight therein is that giving 
player-idiosyncratic multiplicative advantages to underdogs and/or disadvantages to 
favorites levels the playing field, thus stimulating competition and efforts.

3 � The main model

There are m ≥ 2 high-type contestants, each with marginal cost of effort equal to 
h ∈ (0, 1) , and n ≥ 2 low-type contestants, each with marginal cost of effort equal 
to 1. For simplicity, we assume that m and n are even. In the first period, the 
designer assigns contestants to any number of contests and splits her use-it-or-lose-
it budget V > 0 into a winning prize for each contest.12 In the second period, con-
testants are fully informed of the designer’s first-period choices, and each of them 

12  We rule out the possibility that prizes depend on actual exerted efforts (see, e.g., Cohen et al. 2008; 
Chowdhury and Sheremeta 2011). Furthermore, the prize in a specific contest does not depend on the 
identity of the winner. That is, any two players assigned to the same contest obtain an identical prize in 
case of victory, in contrast to Riis (2010).
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simultaneously exerts a nonnegative level of effort. Each contest is assumed to be à 
la Tullock; that is, a player’s probability of victory if her effort is x and total effort in 
the contest is X is x/X.13

We now describe the designer’s first-period decision more formally, borrowing 
from Xiao (2023). The contest designer is given an exogenous (use-it-or-lose-it) 
prize budget of V > 0 and an exogenous set of heterogenous contestants C . The over-
all number of contestants is |C| = m + n (m high-type contestants and n low-type 
contestants). The contest designer chooses a set partition P of the set of contestants 
C . The set partition P specifies the contest designer’s choice of both the number |P| 
of contests, each modeled as a winner-take-all Tullock contest, and, for each contest 
j ∈ {1, ..., |P|} , which set of contestants are assigned to contest j. The contest 
designer also chooses the prize structure. In particular, the prize structure V is a |P|−
tuple V = {v1, ..., v|P|} that satisfies the feasibility constraint that 

∑

�P�

j=1
vj = V  , where 

for each j ∈ {1, ..., |P|} , the prize in contest j is denoted as vj ∈ [0,V] . The prize 
structure V provides the contest designer’s choice of the values of the winner-take-
all prizes for each of the |P| Tullock contests.14

In the second period, contestants observe the pair (P,V) chosen by the designer 
and simultaneously exert efforts. Letting Φ denote the set of all feasible pairs of a set 
partition P of C and prize structure V for the |P| contests specified by P , the design-
er’s first-period problem is to choose a feasible pair (P,V) ∈ Φ to maximize TE.15

In our equilibrium analysis, we focus on type-symmetric subgame-perfect equi-
libria, which we will simply call “equilibria.” Type-symmetry means that all low-
(high-)type contestants in the same contest exert the same equilibrium effort el ( eh ). 
These equilibrium efforts, in principle, differ across contests according to the spe-
cific centralized assignment (of players and prizes), but we omit such dependence in 
the notation for simplicity. We work by backward induction: throughout the paper, 
we first analyze how contestants behave in the second period for a given centralized 
assignment (how many players of each type they are up against, and for what prize 
they compete), and then we analyze the optimal assignment for the designer in the 
first period.

13  Any one of the usual tie-breaking rules suffices to rule out that total effort equals 0 as an equilibrium 
outcome in any contest with a strictly positive prize, so we omit this aspect from our formal analysis. 
Note also that the analysis is not, in general, tractable under a generalized Tullock success function with 
discriminatory parameter r > 0 . As soon as, in a contest, there is more than 1 player per type, there is no 
general closed-form solution for equilibrium efforts. Furthermore, even for “simple” values of r, one may 
run into tractability issues: for instance, for m = 4 , n = 2 , h = 1∕4 , and r = 1∕3 , algebraic solutions for 
equilibrium efforts must be expressed through complex numbers (i.e., a “casus irreducibilis” ). A proof is 
available upon request.
14  Note that the designer can essentially exclude from all the contests the contestant assigned to contest j 
by setting vj = 0.
15  In Sect. 5, we consider WE as an alternative objective.
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4 � TE‑maximizing centralized assignment

In this section, we derive the TE-maximizing centralized assignment in the model in 
Sect. 3. We first derive preliminary results that will be used repeatedly throughout 
our analysis.

4.1 � Preliminary results

This section’s results are valid for a single contest and have immediate (and omitted) 
proof.

Lemma 1  Consider a single Tullock contest with prize Ṽ  , m̃ high types, and ñ low 
types. Equilibrium efforts are

and total equilibrium effort in the contest is

The conditions that appear in equations (1) and (2) determine whether low types 
are active: in fact, note that low types are inactive if m̃−1

hm̃
≥ 1 ⟺ m̃ ≥

1

1−h
 , which 

holds when high types are particularly strong (h is small) or numerous ( m̃ large). 
The bottom part of (3) is the well-known expression for total effort in an m̃-player 
homogeneous contest with prize Ṽ  and marginal effort cost h. (When no confusion 
arises, we omit the qualifier “equilibrium” for equilibrium efforts.) The top expres-
sion of (3) is the total effort when both high and low types are active. The following 
lemma analyzes how the top expression of (3 ) depends on m̃ and ñ.

Lemma 2  For any m̃ ≥ 0 , n ≥ 0 , and h ∈ (0, 1),

From the above lemma and (3), we immediately see that, if the designer can 
organize only one contest, she would never exclude contestants as total effort in (3) 

(1)el =

{

(m̃+ñ−1)(1+hm̃−m̃)

(hm̃+ñ)2
Ṽ

0

if
m̃−1

hm̃
< 1

if
m̃−1

hm̃
≥ 1,

(2)eh =

{

(m̃+ñ−1)(ñ−hñ+h)

(hm̃+ñ)2
Ṽ

m̃−1

hm̃2
Ṽ

if
m̃−1

hm̃
< 1

if
m̃−1

hm̃
≥ 1,

(3)ñel + m̃eh =

{

m̃+ñ−1

hm̃+ñ
Ṽ

m̃−1

hm̃
Ṽ

if
m̃−1

hm̃
< 1

if
m̃−1

hm̃
≥ 1.

(4)
m̃ + ñ − 1

hm̃ + ñ
strictly increases in m̃,

(5)
m̃ + ñ − 1

hm̃ + ñ
strictly increases (strictly decreases) in ñ if

m̃ − 1

hm̃
< (>)1.
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strictly increases in m̃ and increases in ñ (strictly if low types are active, as in the 
top expression of (3), and weakly if low types are inactive, as in the bottom expres-
sion of (3))—see also Fang (2002). However, our designer can organize any num-
ber of contests with any number of high or low types in each contest. This differ-
ence makes our results in Sect. 4.2 below non-trivial and not a direct consequence 
of existing results. In fact, our designer can implement any exclusion or inclusion 
of players by ability. Such broad policy space allows the designer to finetune the 
heterogeneity across players within each contest. Thus, the standard intuition for the 
optimality of a grand contest under full homogeneity does not trivially carry over to 
our setup with heterogeneous contestants.

4.2 � Segregations and TE‑maximizing centralized assignment

The main result of this section is that, for single-participation contests, the designer 
organizes a grand contest and allocates the entire prize budget V to it. We prove 
this result by showing that, starting from any contest, “segregations” reduce TE. In 
particular, we call the starting contest the unified contest with prize V1 ≤ V  , m1 ≤ m 
high types, and n1 ≤ n low types. Alternatively, the designer may decide to assign 
the prize V1 and the m1 and n1 contestants into two sub-contests: a new contest with 
prize d ∈

[

0,V1

]

 in which m2 ∈
{

0, ...,m1

}

 high types and n2 ∈
{

0, ..., n1
}

 low types 
compete, and the original contest with the remaining players and prize (i.e., m1 − m2 
high types and n1 − n2 low types competing for a prize V1 − d ). We call such an 
assignment a  segregation of 

(

m2, n2
)

 contestants with prize d. Informally, one can 
think of a segregation as splitting the unified contest. We use index “u” for the uni-
fied contest, “ s − o ” for the original contest after segregation, and “ s − n ” for the 
new contest after segregation. We visualize an example of a segregation in Fig. 1 
with m1 = 4 , n1 = 6 , and n2 = m2 = 2.

In what follows, we show that any segregation reduces TE, regardless of V1 , d, 
m1 , m2 , n1, and n2 . As any contest organization can be reached with appropriate 
segregations starting from the single grand contest with all contestants and prize 
V, the optimality of a grand contest follows.

Fig. 1   Segregation: unified, original and new contests ( m1 = 4 , n1 = 6 , n2 = m2 = 2)
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Without segregation, the total effort in the unified contest, TEu , is as in (3):

With the segregation of 
(

m2, n2
)

 contestants with prize d, total effort in the original 
contest, TEs−o

(

V1 − d
)

, is

and total effort in the new contest between 
(

m2, n2
)

 contestants, TEs−n(d), is

using (3) specialized to the original and new contests. Finally, we define the maxi-
mum total effort that could result from the segregation of 

(

m2, n2
)

 contestants as

i.e., the sum of (7) and (8). The main result of this section is that TEs ≤ TEu for any 
(

m2, n2
)

.
We begin with two cases of special interest: (1) a segregation of low types 

only, and (2) a segregation of high types only. The first segregation is especially 
interesting from a technical point of view as it reduces the discouragement of 
low types in the unified contest, and may even turn them from being inactive to 
active. From an applied point of view, the first segregation may correspond to 
creating a new contest reserved only for relatively young or inexperienced con-
testants while excluding them from the original contest. The second segregation 
is especially interesting from a technical point of view when enough high types 
are segregated away from the original contest so that low types in the original 
contest move from being inactive to active. From an applied point of view, the 
second segregation may correspond to creating a new contest reserved only for 
particularly distinguished contestants. For those two cases of special interest, we 
obtain the following results.

Lemma 3  (Segregations of low types reduce TE) Consider the segregation of 
(

0, n2
)

 
players with n2 ≥ 0 . Then TEs ≤ TEu.

Proof  See Appendix A. 	�  ◻

(6)TEu =

{ m1+n1−1

hm1+n1
V1

m1−1

hm1

V1

if
m1−1

hm1

< 1

if
m1−1

hm1

≥ 1.

(7)TEs−o
�

V1 − d
�

=

⎧

⎪

⎨

⎪

⎩

m1−m2+n1−n2−1

h(m1−m2)+n1−n2

�

V1 − d
�

m1−m2−1

h(m1−m2)

�

V1 − d
�

if
m1−m2−1

h(m1−m2)
< 1

if
m1−m2−1

h(m1−m2)
≥ 1,

(8)TEs−n(d) =

{ m2+n2−1

hm2+n2
d

m2−1

hm2

d

if
m2−1

hm2

< 1

if
m2−1

hm2

≥ 1,

TEs
≡ max

d∈[0,V1]

(

TEs−o
(

V1 − d
)

+ TEs−n(d)
)

,
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Lemma 4  (Segregations of high types reduce TE) Consider the segregation of 
(

m2, 0
)

 players with m2 ≥ 0 . Then TEs ≤ TEu.

Proof  See Appendix A. 	�  ◻

Lemmas 3 and 4 show that, when the objective is TE, neither creating a new con-
test reserved for (some) low types nor one reserved for (some) high types is benefi-
cial. We next show the same conclusion applies to segregations of any combinations 
of some high  and some low types jointly.

Proposition 1  (Segregations reduce TE) Consider the segregation of 
(

m2, n2
)

 play-
ers, with m2, n2 ≥ 0 . Then TEs ≤ TEu.

Proof  See Appendix A. 	�  ◻

As any structure of contests can be reached with the appropriate segregations 
starting from the single grand contest with all contestants and prize V, Proposition 1 
immediately implies the optimality of a single grand contest.

Corollary 1  (Optimal assignment) TE is maximized by a grand contest with all con-
testants and the entire prize budget.

While the suboptimality of segregations of high types (Lemma 4 ) is perhaps 
not surprising, the intuition behind the suboptimality of segregations of low types 
(Lemma 3) is crucial to understanding the optimality of a single grand contest (Cor-
ollary 1). First, consider the case of (relatively) many low types and (relatively) few 
high types. Then, segregating low types does not pay simply because the discour-
agement of low types in the grand contest is not too severe. Second, consider the 
more delicate case of (relatively) many high types and (relatively) few low types, 
so that the latter would be greatly discouraged, or even inactive, in a grand contest. 
Then, the designer could still spur efforts of low types by moving some prize budget 
away from the grand contest into a parallel low-type-only contest with non-negative 
prize d; however, the consequent increase in efforts of low types due to d would be 
dominated by the reduction of high-type efforts resulting from lowering the prize 
they fight for from V to V − d . The reason why the latter effect dominates the former 
is exactly that we are considering the case of high types sufficiently outnumbering 
low types, and hence the high types in the grand contest are very productive as the 
competition among them is fierce. A reduction in the prize high types fight for is not 
worth the extra effort obtained from low types by relocating d to a low-type-only 
parallel contest. The result of Corollary 1 follows; there is neither room for exclu-
sion nor segregation by the designer.

In the main setup analyzed so far, we considered the TE-maximizing central-
ized assignment under single-participation and with equal treatment of contest-
ants within contests. In the remainder of the paper, we consider three extensions: 
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WE-maximizing centralized assignments, multiple participations, and tilting of 
the playing field.

5 � WE‑maximizing centralized assignments

In this section, we derive the WE-maximizing centralized assignments in the 
model of Sect. 3. Importantly, note that WE is a structurally different objective 
than the highest effort. In fact, consider, for instance, a one-shot Tullock contest 
with one high and one low type exerting efforts eh and el < eh , respectively; then, 
while the highest effort is eh , we have that WE = eh ⋅

(

eh∕TE
)

+ el ⋅
(

el∕TE
)

 , 
which is different than eh . In words, even the player exerting the lowest effort 
could win in a Tullock contest, and, if so, the contest organizer cares about the 
effort of the low type. Recall that maximizing WE is relevant for all applications 
where the designer only benefits from the effort exerted by the winner. Using (1) 
and (2), we obtain the following.

Lemma 5  Consider a single Tullock contest with prize Ṽ  , m̃ high types, and ñ low 
types. The expected winner’s effort in the contest is

where p̂h and p̂l are the equilibrium probabilities of victory of a high and low type, 
respectively.

Proof  See Appendix A. 	�  ◻

Proposition 1 finds that it never pays to exclude agents under TE-maximiza-
tion. Under WE-maximization, instead, we find that exclusions may pay.

Proposition 2  (WE in a single contest) In a single Tullock contest with prize Ṽ  , 
m̃ high types, and ñ low types, WE decreases in ñ , and it can strictly decrease or 
increase in m̃.

Proof  See Appendix A. 	�  ◻

In Sect. 5.1, we use Proposition 2 as a building block to derive the number, 
composition, and prize distribution of the WE-maximizing contests. In particu-
lar, we mirror the structure of the analysis of TE in Sect. 4.2 by analyzing how 
segregations affect WE; we find that segregation may increase WE, in contrast to 
the result for TE.

(9)p̂heh + p̂lel =

{

(m̃+ñ−1)(ñ+m̃h2+m̃ñ(m̃+ñ−2)(1−h)2)
(hm̃+ñ)3

Ṽ
m̃−1

hm̃2
Ṽ

if
m̃−1

hm̃
< 1

if
m̃−1

hm̃
≥ 1,
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5.1 � Segregations may increase WE

We use the same terminology and notation of Sect. 4.2, except that we analyze WE 
rather than TE. Without segregation, WE in the unified contest, WEu , is as in (9) 
with m̃ = m1 and ñ = n1:

With the segregation of 
(

m2, n2
)

 contestants, WE in the original contest, 
WEs−o

(

V1 − d
)

, reads as

where

and WE in the new contest between 
(

m2, n2
)

 contestants, WEs−n(d), reads as

using (9) specialized to the original and new contests. Finally, we define WE after 
segregation and with optimally chosen prizes as

The main result of this section is that some segregations increase WE, and in particu-
lar we find that a WE-maximizing assignment has any number of contests between 
pairs of high types with any prize allocation. In order to understand the intuition, we 
first explain why “small” contests (with a few contestants) yield greater WE than big 
ones (those with many contestants) and second why, within the class of small con-
tests, having only high types yields the highest WE.

To intuitively understand the first point, consider a homogeneous contest. In this 
case, WE is the individual effort of the (only) winner. As individual efforts decrease 
in the number of contestants, the intuition follows.

To intuitively understand the second point, consider a two-player contest and let 
eij be the equilibrium effort of a type i up against a type j. In a high-high contest, 

WEu =

⎧

⎪

⎨

⎪

⎩

(m1+n1−1)(n1+m1h
2+m1n1(m1+n1−2)(1−h)

2)

(hm1+n1)
3 V1

m1−1

hm2
1

V1

if
m1−1

hm1

< 1

if
m1−1

hm1

≥ 1.

(10)WEs−o
�

V1 − d
�

=

⎧

⎪

⎨

⎪

⎩

(m1−m2+n1−n2−1)Ψ

(h(m1−m2)+n1−n2)
3

�

V1 − d
�

m1−m2−1

h(m1−m2)
2

�

V1 − d
�

if
m1−m2−1

h(m1−m2)
< 1

if
m1−m2−1

h(m1−m2)
≥ 1,

(11)
Ψ ≡n1 − n2 +

(

m1 − m2

)

h2 +
(

m1 − m2

)(

n1 − n2
)

(

m1 − m2 + n1 − n2 − 2
)

(1 − h)2,

(12)WEs−n(d) =

⎧

⎪

⎨

⎪

⎩

(m2+n2−1)(n2+m2h
2+m2n2(m2+n2−2)(1−h)

2)

(hm2+n2)
3 d

m2−1

hm2
2

d

if
m2−1

hm2

< 1

if
m2−1

hm2

≥ 1,

WEs
≡ max

d∈[0,V1]

{

WEs−o
(

V1 − d
)

+WEs−n(d)
}

.
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WE = ehh , in a low-low contest, WE = ell , and intuitively ehh > ell . In a high-low 
contest, WE is a convex combination between ehl and elh , which are both lower than 
ehh , as commonly known in the literature; asymmetries dampen competition. For 
these reasons, a high-high contest is WE-maximizing within the class of two-player 
contests.

The two above pieces of intuition suggest the optimality of small homogeneous 
contests. In fact, we formally obtain the following result.

Proposition 3  (Optimal assignment to maximize WE) The WE-maximizing structure 
is one with any arbitrary allocation of the prize budget V to any number of pairwise 
contests, each between two high types.

Proof  See Appendix A. 	�  ◻

Note that any number of high-high contests with arbitrary prize allocation is WE-
equivalent because, in any such contest, WE = ehh and ehh is linear in the prize allo-
cated to that contest.16

The result of Proposition 3, together with the corresponding result for TE we 
derived in Corollary 1, highlights the importance of a careful specification of the 
designer’s objective function, as it has the potential of drastically changing the 
optimum. This result parallels one of the findings of Moldovanu and Sela (2006). 
They analyze whether it is better to organize one unified contest or some sub-con-
tests whose winners compete against each other. Their derived optimum crucially 
depends on the objective of the designer (maximization of expected total effort or 
highest effort); likewise, in our setup, the optimal contest structure crucially depends 
on whether the designer maximizes TE or WE.

Despite Proposition 3 showing that segregations of high types are beneficial to 
WE, one may still wonder about the optimal structure if the designer does not have 
so much leeway and rather has only control over low types, as we did in Lemma 3 
for TE-maximization. In particular, we allow the designer to segregate away from 
the original contest any number of low types in any number of contests, but to nei-
ther exclude nor segregate high types from the original contest.17 Hence, the only 
things the designer can finetune in the original contest are the prize and the number 
of low types. This setting is realistic, for instance, in case of contests with minimum 
entry requirements, which matter only when applicants’ qualifications do not meet a 
minimum requirement. We find the following.

16  We assume that, in case of multiple contests, the overall WE is the sum of the WE of each contest. 
First, this definition prevents nearly meaningless results; if only one contest would impact WE, then there 
would trivially never be room for allocating a strictly positive amount of budget to more than one contest. 
Second, and more importantly, this definition is in line with the applications spelled out in the Introduc-
tion; in case of multiple grants for scholars, the winning effort in each such contest is valuable.
17  Note that segregation of all high types remains possible by segregating all low types.



132	 S. Barbieri, M. Serena 

1 3

Proposition 4  (Segregating only low-types might increase WE) Consider a designer 
who can segregate low types only. If m1 > 2

�

1 +
√

1 − h
�

∕h , then a WE-maximiz-
ing designer allocates all the prize budget to a segregated contest with two low types 
only. If m1 < 2

�

1 +
√

1 − h
�

∕h , then a WE-maximizing designer allocates all the 
prize budget to the original contest with high types only (that is, segregate, or 
exclude, the low types).

Proof  See Appendix A. 	�  ◻

The intuition behind the optimal structure of Proposition 4 is simple and builds 
on the intuition behind the optimality of high-high contests (Proposition 3). If the 
number of high types m1 is high, then the original contest is far from the ideal high-
high-only contest, and thus a low-low-only contest with full prize budget becomes 
optimal. If m1 is small, on the contrary, then the original contest is close to the ideal 
high-high-only contest, especially if the designer excludes all low types from the 
competition (formally, segregates them into a separate contest with 0 prize). It is 
necessary to exclude low types from the original contest when they would otherwise 
exert strictly positive effort, and this would decrease WE; in fact, we know from (1) 
that low types exert strictly positive effort if m1 < 1∕(1 − h) , which is the case under 
m1 < 2

�

1 +
√

1 − h
�

∕h if h > 3∕4 . This is intuitive; when h > 3∕4 , high and low 
types are similarly talented, and thus low types are not discouraged in the contest 
with high types and exert strictly positive effort. This is exactly when the designer is 
better off excluding the low types.

6 � Multiple participations

We now consider the possibility of multiple participations. With respect to the 
model in Sect. 3, now some contestants, with the same effort, compete in more than 
one contest. We begin by showing that, starting from a grand contest (which was 
optimal under single participation), TE increases under multiple participation after 
the following segregation; high and low types compete for V − d > 0 and low types 
compete for d ∈ (0,V) in a parallel low-type-only contest. This multiple-participa-
tion setup is directly inspired by the work of Dahm and Esteve-González (2018).

Proposition 5  (Dahm and Esteve-González 2018) If m−1
m

< h < 1 −
1

1+n(n+m−2)
 , then 

there exist d ∈ (0,V) such that, if 

(1)	 high and low types compete for V − d, and
(2)	 low types compete among themselves in a parallel new contest with prize d,

then TE is strictly larger than the TE of the grand contest in which all types compete 
for V.
Proof  See Appendix A. 	�  ◻
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The intuition behind Proposition 5 is as follows. As low types have the chance 
of winning two prizes with the same effort, while high types can win only one, this 
segregation effectively biases the competition in favor of weaker contestants. As 
known in the literature, this tends to increase efforts (e.g., Nti 1999; Franke 2012). 
Note also that the value of h can neither be too large nor too small; it has to be inter-
mediate.18 In fact, if h was too small, high types would be so much stronger than low 
types that the prize d that would boost efforts of low types and make them competi-
tive enough in the contest with all types would be too costly for the designer. If h 
was too large, high and low types would be very similar in skills. Think about the 
extreme case of h → 1 ; then, the contest with all types would be highly competitive, 
being among almost equally skilled contestants, and thus giving an extra reason to 
fight to low types only—namely, the extra prize d—would unlevel the playing field 
of the contest with all types (competition for V − d ) and discourage high types.

The derivation of the TE-maximizing d in the multiple-participation contest 
(described in Proposition 5) is challenging. Nevertheless, as numerical simula-
tions show that the optimal d is often small relative to the prize in the original con-
test ( V − d ), we provide analytically two upper bounds, collected in the following 
proposition.

Proposition 6  Suppose (m − 1)∕m ≤ h ≤ 1 − 1∕(1 + n(n + m − 2)) and consider the 
multiple-participation contest described in Proposition 5. Let � be the level of d that 
maximizes TE. Then

(13)𝛿

V − 𝛿

< min

{

n − h(n − 1)

h(m + n − 1)
,

n2(1 − h)2

4h(n − h(n − 1))

}

.

Fig. 2   Right-hand side of (13) with most permissive h, as a function of m and n, each between 2 and 30

18  One can show that (m − 1)∕m < 1 − 1∕(1 + n(n + m − 2)) < 1, so some h < 1 that satisifes the 
hypothesis of Proposition 5 exists for any m and n.
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Proof  See Appendix A. 	�  ◻

We now discuss the upper bounds on the right-hand side of 
(13). Note that it depends on h. Fixing (m, n) and considering 
h ∈

[

(m − 1)∕m, 1 − 1∕(1 + n(n + m − 2))
]

 (see Proposition 5), there exists a 
“most permissive” value of h such that the right-hand side of (13) is the largest. 
Even for such a value of h, we still obtain quite low values of the right-hand side 
of (13), which implies that the extra prize � for low types is significantly lower 
than the prize V − � for the contest with all types. We plot in Fig. 2 the right-
hand side of (13) under such a most permissive value of h for the tightness of 
the bound in (13). When m = 2 , the upper bound in (13) is not tight and mostly 
not informative. For any other value of m, Fig.  2 shows that 𝛿∕(V − 𝛿) < 1∕3 
regardless of the number of low types n and h; that is, the extra prize for low 
types is always at most half the prize for the contest with all types. The upper 
bound becomes particularly tight for high values of m and n. For instance, when 
m = n = 10 [20], the right-hand side of (13) with most permissive value of h 
equals 1/9 [1/19].

One could consider other assignments with multiple participation. For instance, 
one could show that the diametrically opposed assignment, where high and low 
types compete for V − d > 0 and high types compete for d ∈ (0,V) in a parallel 
high-type-only contest, would yield a lower TE. This is intuitive; not only low types 
are discouraged because they are weaker, but also because the high types they face 
have a further incentive to exert high efforts as they compete simultaneously for 
the extra prize d. In fact, in the words of (Dahm and Esteve-González 2018,  p. 
126), this assignment “does not seem interesting from an affirmative action point 
of view.”

Finally, one could wonder how the result of Proposition 5 derived in our binary 
setup with only high and low types extends to more than three types. Despite the 
proof becoming more tedious and algebraically complex, in Appendix B we show 
that the main structure of the optimal assignment under multiple participations car-
ries over. In particular, we provide sufficient conditions on the primitives (number 
and marginal costs of high, medium, and low types), such that TE increases with 
respect to the grand contest when the designer organizes three prizes, one for a con-
test with all types, one for a contest with low and medium types, and one for a con-
test with low types only.

7 � Tilting the playing field

With respect to the model in Sect.  3, we now abandon the assumption that the 
designer treats contestants identically. Instead, we now assume that the effort of each 
high type is multiplied by a factor 𝛽 > 0 in affecting the probability of victory.
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In the grand contest with multiplicative bias � for high types, the maximization 
problem of a high type reads as

and that of a low type as

In a type-symmetric ( x = el and y = eh ) and interior equilibrium, we obtain similar 
equilibrium expressions to (1) and (2). However, now we have to take into account 
corner equilibria for both high and low types. In fact, if � is sufficiently high (i.e., 
� ≥ hm∕(m − 1) ), the effect of � does not suffice to encourage low types to partici-
pate, and hence low types exert 0 effort. If � is sufficiently low  (i.e., � ≤ h(n − 1)∕n ), 
the disadvantage given to high types is too big and hence high types exert 0 effort. 
As the former threshold of � is always greater than the latter, we obtain three regions 
for the equilibrium efforts in the grand contest;

Therefore, total effort equals

In what follows, we can ignore both � ≤ h(n − 1)∕n and � ≥ hm∕(m − 1) , as the 
resulting contest would be outcome-equivalent to one with only high or low types 
and no tilting of playing field which, as we know from Sect.  4.2, is not optimal. 
Hence, we focus on the values of � such that the equilibrium efforts are strictly posi-
tive for both types; namely, when � ∈ (h(n − 1)∕n, hm∕(m − 1)) . In this region, one 
can see that the derivative of (14) with respect to � equals 0 if and only if � = �

∗ , 
where

max
y

�y

�y + nel + (m − 1)�eh
V − h ⋅ y,

max
x

x

x + (n − 1)el + m�eh
V − x.

el =

⎧

⎪

⎨

⎪

⎩

n−1

n2
V

𝛽
(m+n−1)(𝛽+hm−𝛽m)

(hm+𝛽n)2
V

0

if 𝛽 <
h(n−1)

n

if 𝛽 ∈
�

h(n−1)

n
,

hm

m−1

�

if 𝛽 >
hm

m−1
,

eh =

⎧

⎪

⎨

⎪

⎩

0
(m+n−1)(𝛽n−hn+h)

(hm+𝛽n)2
V

m−1

hm2
V

if 𝛽 <
h(n−1)

n

if 𝛽 ∈
�

h(n−1)

n
,

hm

m−1

�

if 𝛽 >
hm

m−1
.

(14)nel + meh =

⎧

⎪

⎨

⎪

⎩

n−1

n
V

(m+n−1)(𝛽2n+mh+mn(𝛽−1)(h−𝛽))
(hm+𝛽n)2

V
m−1

hm
V

if 𝛽 <
h(n−1)

n

if 𝛽 ∈
�

h(n−1)

n
,

hm

m−1

�

if 𝛽 >
hm

m−1
.

(15)�
∗
≡ h ⋅

m + 2n − 2 + hm

h(2m + n − 2) + n
,
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i.e., �∗ is the unique critical point for TE. At the two boundaries of the interval 
� ∈

[

h(n − 1)∕n, hm∕(m − 1)
]

 , TE equals, respectively, n−1
n
V  and m−1

hm
V  . One can 

show that TE at � = �
∗ is greater than TE at either of these boundaries. Hence, since 

�
∗ is the only critical point of TE, �∗ is the TE-maximizing value of �.

Notice that �∗ ∈ (0, 1) , as intuition would suggest: it is optimal to give a disad-
vantage to high types so as to level the playing field. If we plug �∗ into the expres-
sion for TE in (14), again focusing on � ’s such that low and high types are active, we 
obtain the following level of total effort under optimal tilting �∗ , which we denote by 
TE�:

One can immediately see that TE� is greater than under no tilting (as in (3)), because 
the second addend of TE� is positive. We conclude by showing that TE� is also 
greater than the maximum of TE obtained under multiple participation.

Proposition 7  The total effort obtained with optimal tilting of the playing field (giv-
ing a disadvantage to efforts of high types through �∗ in (15)) is greater than that 
obtained with optimal multiple participations (creating a low-type-only contest with 
optimal prize d∗).

Proof  See Appendix A. 	�  ◻

Proposition 7 reaffirms the optimality of a single grand contest when the two 
alternative tools of creating a parallel low-type-only contest or tilting the playing 
field in the original grand contest are compared.

8 � Conclusions

In a simple setup with binary types, we investigate the effort-maximizing central-
ized assignment of contestants and prizes across Tullock contests. Our main result 
is that a single grand contest maximizes total effort; contestant exclusions do not 
pay. We consider three extensions; the first one changes the objective function of 
the designer, and the second and third change the tools in her hands. As for the first, 
when considering the centralized assignment that maximizes the expected winners’ 
efforts instead of total effort, the optimal assignment involves pairwise high-type-
only contests; particular types of exclusions do pay. As for the second and third, we 
allow the designer to let some contestants participate in more than one contest with 
the same effort, or treat contestants differently by tilting the playing field, respec-
tively. The literature suggests both tools increase total effort. We show that tilting 
the playing field increases total effort more than multiple participations, thus reaf-
firming the optimality of a grand contest when the two alternative tools of creating a 
parallel low-type-only contest or tilting the playing field in the original grand contest 
are compared. Furthermore, we characterize an upper bound on the optimal prize 

(16)TE� =
m + n − 1

hm + n
V +

mn(1 − h)2

4h(hm + n)
V .
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allocated to the low-type-only parallel contest and show that such a prize is signifi-
cantly smaller than that of the contest to which all contestants have access.

Several avenues of future research open up. First, our setup is purposefully styl-
ized to prioritize simplicity and tractability; in fact, we assume linear impact and 
cost functions, and binary types. However, it is known that, for instance, the canoni-
cal results on tilting the playing field and equalizing win probabilities across con-
testants do not extend to more general setups (see, e.g., Franke et al. 2013; Drugov 
and Ryvkin 2017; Deng et al. 2020a, b; Fu and Wu 2020). Generalizations of our 
simple setup are also likely to uncover further insights into the  issue of optimal cen-
tralized assignment and the long-standing question of when a single grand contest is 
optimal.

Appendix A: Proofs

Proof of Lemma 3  Plugging m2 = 0 into (8), TEs−n(d) =
n2−1

n2
d , and thus, using also 

(7), we obtain

Let d∗ ≡ argmaxd∈[0,V1]
{

TEs−o
(

V1 − d
)

+ TEs−n(d)
}

. Consider two cases.

Case 1. If m1−1

hm1

≥ 1 , then m1−1

hm1

≥ 1 >
n2−1

n2
 , so d∗ = 0 and TEs =

m1−1

hm1

V = TEu . In 
words, if in the unified contests low types exert no effort, then segregating n2 low 
types and allocating part of the prize to the new contest does not pay off as the loss 
in competition in the original contest is greater than the benefit of having a new con-
test in which low types exert effort.

Case 2. If m1−1

hm1

< 1 , note that, using h < 1 , (4), and m1 + n1 > n2 , we obtain

while (5) implies

Therefore, these last two displayed equations imply

TEs−o
(

V1 − d
)

+ TEs−n(d) =

{ m1+n1−n2−1

hm1+n1−n2

(

V1 − d
)

+
n2−1

n2
d

m1−1

hm1

(

V1 − d
)

+
n2−1

n2
d

if
m1−1

hm1

< 1

if
m1−1

hm1

≥ 1.

m1 + n1 − 1

hm1 + n1
>

m1 + n1 − 1

m1 + n1
>

n2 − 1

n2
,

m1 + n1 − 1

hm1 + n1
>

m1 +
(

n1 − n2
)

− 1

hm1 +
(

n1 − n2
) .
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and this concludes the proof. 	�  ◻

Proof of Lemma 4  By (7) and (8), the total effort resulting from the segregation is

As in the Proof of Lemma 3, let d∗ maximize the above expression. We consider 
three cases.

Case 1. If m1−m2−1

h(m1−m2)
≥ 1 , then m1−1

hm1

≥ 1 by (4), and thus, we can use (6) and the 
above-displayed expression to rewrite TEu

> TEs as

As m1 > m1 − m2 and m1 > m2 , by (4) we have m1−1

hm1

>
(m1−m2)−1
h(m1−m2)

 and m1−1

hm1

>
m2−1

hm2

 , 
hence the same logic leading to (17) yields TEu

> TEs.

Case 2. If m1−m2−1

h(m1−m2)
< 1 and m1−1

hm1

≥ 1 , TEu
> TEs can be rewritten as

As m1−1

hm1

≥ 1 =
m1+n1−m2−1

m1−m2−1+n1
>

m1+n1−m2−1

h(m1−m2)+n1
 by h < 1 and m1−1

hm1

>
m2−1

hm2

 by ( 4), the same 

logic leading to (17) yields TEu
> TEs.

Case 3. If m1−m2−1

h(m1−m2)
< 1 and m1−1

hm1

< 1 , TEu
> TEs can be rewritten as

As m1+n1−1

hm1+n1
>

(m1−m2)+n1−1
h(m1−m2)+n1

 by (4), and m1+n1−1

hm1+n1
>

m1−1

hm1

>
m2−1

hm2

 , first by (5) and 

m1−1

hm1

< 1 , and then by (4) and m1 > m2 , the same logic leading to (17) yields 
TEu

> TEs . 	�  ◻

(17)

TEs =
m1 + n1 − n2 − 1

hm1 + n1 − n2

(

V1 − d∗
)

+
n2 − 1

n2
d∗

<

m1 + n1 − 1

hm1 + n1

(

V1 − d∗
)

+
m1 + n1 − 1

hm1 + n1
d∗

= TEu,

⎧

⎪

⎨

⎪

⎩

m1+n1−m2−1

h(m1−m2)+n1

�

V1 − d
�

+
m2−1

hm2

d

m1−m2−1

h(m1−m2)

�

V1 − d
�

+
m2−1

hm2

d

if
m1−m2−1

h(m1−m2)
< 1,

if
m1−m2−1

h(m1−m2)
≥ 1.

m1 − 1

hm1

V1 >
m1 − m2 − 1

h
(

m1 − m2

)

(

V1 − d∗
)

+
m2 − 1

hm2

d∗.

m1 − 1

hm1

V1 >
m1 + n1 − m2 − 1

h
(

m1 − m2

)

+ n1

(

V1 − d∗
)

+
m2 − 1

hm2

d∗.

m1 + n1 − 1

hm1 + n1
V1 >

(

m1 − m2

)

+ n1 − 1

h
(

m1 − m2

)

+ n1

(

V1 − d∗
)

+
m2 − 1

hm2

d∗.
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Proof of Proposition 1  Using (6), (7), and (8), the expressions to be compared depend 
on whether the thresholds m1−1

hm1

, m1−m2−1

h(m1−m2)
 , and m2−1

hm2

 are larger or smaller than 1. As by 

(4) we have m1−1

hm1

≥ max
{

m1−m2−1

h(m1−m2)
,
m2−1

hm2

}

 , letting d∗ maximize TE after the segrega-
tion, there are two possibilities to consider. 

1.	 If m1−1

hm1

< 1 , then m1−m2−1

h(m1−m2)
< 1 and m2−1

hm2

< 1 as well. In words, if the number of high 
types in the unified contest is too low to generate a corner equilibrium in which low 
types exert zero effort, then segregations can neither lead to corners in the original 
contest nor in the new contest. From (6), (7), and (8), TEu

> TEs is equivalent to 

 and as m1+n1−1

hm1+n1
>

(m1−m2)+n1−1
h(m1−m2)+n1

>
(m1−m2)+(n1−n2)−1
h(m1−m2)+(n1−n2)

 , first by (4) and then by (5) 

and m1−1

hm1

< 1 , the same logic leading to (17) yields TEu
> TEs.

2.	 If m1−1

hm1

≥ 1, then we further distinguish four subcases 

(a)	 If m1−m2−1

h(m1−m2)
≥ 1 and m2−1

hm2

≥ 1 , then TEu
> TEs is equivalent to 

 As m1−1

hm1

>
(m1−m2)−1
h(m1−m2)

 and m1−1

hm1

>
m2−1

hm2

 by (4),   the same logic leading to 

(17) yields TEu
> TEs.

(b)	 If m1−m2−1

h(m1−m2)
≥ 1 and m2−1

hm2

< 1 , then TEu
> TEs is equivalent to 

 As m1−1

hm1

>
(m1−m2)−1
h(m1−m2)

 by (4),  and m1−1

hm1

>
m2−1

hm2

>
m2+n2−1

hm2+n2
 (first by (4),  and 

then by (5) and m2−1

hm2

< 1 ), the same logic leading to (17) yields TEu
> TEs

.
(c)	 If m1−m2−1

h(m1−m2)
< 1 and m2−1

hm2

≥ 1 , then TEu
> TEs is equivalent to 

 As m1−1

hm1

>
(m1−m2)−1
h(m1−m2)

>
m1−m2+(n1−n2)−1
h(m1−m2)+(n1−n2)

 (first by (4),  and then by (5) and 

(m1−m2)−1
h(m1−m2)

< 1 ), and m1−1

hm1

>
m2−1

hm2

 by (4), the same logic leading to (17) 

yields TEu
> TEs.

m1 + n1 − 1

hm1 + n1
V1 >

m1 − m2 + n1 − n2 − 1

h
(

m1 − m2

)

+ n1 − n2

(

V1 − d∗
)

+
m2 + n2 − 1

hm2 + n2
d∗,

m1 − 1

hm1

V1 >
m1 − m2 − 1

h
(

m1 − m2

)

(

V1 − d∗
)

+
m2 − 1

hm2

d∗.

m1 − 1

hm1

V1 >
m1 − m2 − 1

h
(

m1 − m2

)

(

V1 − d∗
)

+
m2 + n2 − 1

hm2 + n2
d∗.

m1 − 1

hm1

V1 >
m1 − m2 + n1 − n2 − 1

h
(

m1 − m2

)

+ n1 − n2

(

V1 − d∗
)

+
m2 − 1

hm2

d∗.
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(d)	 If m1−m2−1

h(m1−m2)
< 1 and m2−1

hm2

< 1 , then TEu
> TEs is equivalent to 

 As 

 where the last step follows by m1−m2−1

h(m1−m2)
< 1 , and 

 where the last step follows by m2−1

hm2

< 1 , the same logic leading to (17) 
yields TEu

> TEs.
	�  ◻

Proof of Lemma 5  When m̃−1
hm̃

≥ 1 , expected winner’s effort coincides with eh by 
el = 0 ; otherwise expected winner’s effort is the sum of efforts of high and low 
types, each weighted by corresponding probabilities of victory, which are

for a high type and

for a low type. Expression (9) follows simplifying the expression p̂heh + p̂lel . 	�  ◻

Proof of Proposition 2  Consider the expected winner’s effort in (9). When m̃−1
hm̃

≥ 1 , 
WE is constant in n and decreases in m̃ . When m̃−1

hm̃
< 1 , simple algebra shows that 

WE decreases in ñ if and only if 𝜔(h) ≡ m̃ah2 − m̃bh + ñc < 0 , where

Note that �(h) is convex in h as a ≥ 0 . Hence, it suffices to show that 𝜔(h) < 0 at the 
two boundaries of the domain of h; namely, (m̃ − 1)∕m̃ and 1. When h = (m̃ − 1)∕m̃ , 

�(h) takes value (3 − 2m̃)(m̃ + ñ − 1)2∕m̃ < 0 . When h = 1 , �(h) takes value 

(2 − m̃ − ñ)(m̃ + ñ) < 0 . Therefore, 𝜔(h) < 0.
We are left to consider the derivative of WE with respect to m̃ when m̃−1

hm̃
< 1 . The 

claim holds also at m̃ = ñ = 2 , hence we focus on this case, where we obtain

m1 − 1

hm1

V1 >
m1 − m2 + n1 − n2 − 1

h
(

m1 − m2

)

+ n1 − n2

(

V1 − d∗
)

+
m2 + n2 − 1

hm2 + n2
d∗.

m1 − 1

hm1

≥ 1 =
m1 − m2 + n1 − n2 − 1
(

m1 − m2 − 1
)

+ n1 − n2
>

m1 − m2 + n1 − n2 − 1

h
(

m1 − m2

)

+ n1 − n2
,

m1 − 1

hm1

≥ 1 =
m2 + n2 − 1

m2 − 1 + n2
>

m2 + n2 − 1

hm2 + n2
,

p̂h =
m̃(ñ − hñ + h)

m̃(ñ − hñ + h) + ñ(1 + hm̃ − m̃)

p̂l =
ñ(1 + hm̃ − m̃)

m̃(ñ − hñ + h) + ñ(1 + hm̃ − m̃)

a ≡m̃2 + 3(ñ − 1)2 + m̃(4ñ − 3),

b ≡1 + m̃2 + ñ(5ñ − 8) + m̃(6ñ − 2),

c ≡2 − ñ + 2m̃(m̃ + ñ − 2).
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Now, at m̃ = ñ = 2 , m̃−1

hm̃
< 1 reads h > 1∕2 . Let h̃ ≡

�

29 − 3
√

33
�

∕16 ≈ 0.735 . 
Then, (18) implies that when h ∈

(

1∕2, h̃
)

 WE strictly increases in m̃ , while when 
h ∈

(

h̃, 1
)

 WE strictly decreases in m̃ . 	�  ◻

Proof of Proposition 3  Imagine any possible assignment of contestants into contests. 
Any sub-contest necessarily belongs to one of the following two categories; either 
it has high types, or it does not. Note that a contest with high types must exist by 
m ≥ 2.

Consider a contest with high types and prize Ṽ  . By Proposition 2, WE decreases 
in the number of low types. Hence, WE increases by excluding all low types. Finally, 
note that in the remaining contest, which has only high types, WE = eh , which is 
maximized excluding all high types but two (see (2)); in particular, in such a contest 
with two high types only, then WE = eh =

Ṽ

4h
.

Consider now a contest without high types and prize Ṽ  . Here, WE = el <
Ṽ

4
 by 

(1). It is profitable to switch the prize Ṽ  to the contest with two high types only, 
where in fact WE =

Ṽ

4h
 , as h < 1.

By the above reasoning, the structure maximizing WE, must be composed of two-
player high-type-only contests. Finally, eh is linear in the prize, and thus WE is maxi-
mized for any number of two-player high-type-only contests with any prize alloca-
tion; namely, WE =

V

4h
 regardless of how many two-high-type contests are organized 

and of their prize allocation. 	�  ◻

Proof of Proposition 4  We proceed with similar initial steps to those of the proof of 
Lemma 3.

Plugging m2 = 0 into (12), WEs−n(d) =
(n2−1)n2

n3
2

d =
n2−1

n2
2

d , and thus, using also 
(10), we obtain

where Ψ is defined in (11). Let d∗ ≡ argmaxd∈[0,V1]
{

WEs−o
(

V1 − d
)

+WEs−n(d)
}

.

1.	 If m1−1

hm1

≥ 1 , then, the above-displayed expression is maximized by n∗
2
= 2 (the 

least possible competition level), as can be immediately seen in the term n2−1
n2
2

 . For 
n∗
2
= 2 , we obtain 

(18)
𝜕WE

𝜕m̃

|

|

|

|m̃=ñ=2

> 0 ⟺ 8h2 − 29h + 17 > 0.

WEs−o
�

V1 − d
�

+WEs−n(d) =

⎧

⎪

⎨

⎪

⎩

(m1+n1−n2−1)Ψ�m2=0

(hm1+n1−n2)
3

�

V1 − d
�

+
n2−1

n2
2

d

m1−1

hm2
1

�

V1 − d
�

+
n2−1

n2
2

d

if
m1−1

hm1

< 1

if
m1−1

hm1

≥ 1,

WEs−o
(

V1 − d
)

+WEs−n(d) =
m1 − 1

hm2
1

(

V1 − d
)

+
d

4
.
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 Hence, d∗ = 0 if m1−1

hm2
1

<
1

4
⟺ m1 > 2

1+
√

1−h

h
 , and d∗ = V  if 

m1−1

hm2
1

>
1

4
⟺ m1 < 2

1+
√

1−h

h
 . Notice that the condition m1 < 2

1+
√

1−h

h
 may hold 

(for instance, it does hold when m1 = 2).
2.	 If m1−1

hm1

< 1 , then segregating two low types might induce a reduction of the low 
types in the original contest, and thus such segregation might decrease WEs−o . 
However, tedious, but routine algebra shows that the 𝜕WEs−o∕𝜕n2 > 0 , and thus 
it is never optimal to leave any low types competing in the original contest; 
namely, n∗

2
= n1 . And, as discussed above, in a low-type-only contest, WE = el , 

which is in turn maximized by leaving only two low types, which is achieved by 
excluding all but two low types. Therefore, we obtain the same expression for 
WEs−o

(

V1 − d
)

+WEs−n(d) o f  t he  case  m1−1

hm1

≥ 1 above ;  namely, 
m1−1

hm2
1

(

V1 − d
)

+
1

4
d . The optimal d∗ is then identical too.

	�  ◻

Proof of Proposition 5  Despite the result closely mirroring Proposition 6 in Dahm 
and Esteve-González (2018), we provide here for completeness a proof specific to 
our notation and high-low setup. The payoff of a low type who exerts effort x is

so at an interior type-symmetric solution the following first-order condition (FOC) 
must hold:

The payoff of a high type who exerts effort y is

leading to the following FOC:

Now multiply (19) by n and (20) by m, and then add them up to get

Implicitly differentiating (21) with respect to d, we obtain

x

x + meH + (n − 1)eL
(V − d) +

x

x + (n − 1)eL
d − x,

(19)
meH + (n − 1)eL
(

meH + neL
)2

(V − d) +
(n − 1)eL
(

neL
)2

d = 1.

y

y + neL + (m − 1)eH
(V − d) − hy,

(20)
neL + (m − 1)eH
(

meH + neL
)2

(V − d) = h.

(21)(m + n − 1)
1

meH + neL
(V − d) +

n − 1

neL
d = n + mh.
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where 
(

meH + neL
)� is the derivative of equilibrium total effort with respect to d. 

(An analogous interpretation holds for quantities such as e′
L
. ) Letting d ↓ 0 and con-

tinuing to assume that the equilibrium is interior so that the efforts of all agents are 
positive, (22) becomes

The last step of the proof uses the fact that at d = 0, we have (n − 1)eH > neL . To see 
this, evaluating (19) and (20) at d = 0 and dividing one by the other, we obtain

Note that our hypothesis h >
m−1

m
 guarantees that eH and eL are both positive, thus 

validating our assumption that in equilibrium all types of agents exert positive effort. 
Note as well that h < 1 − 1∕(1 + n(n + m − 2)) guarantees (n − 1)eH > neL. Substi-
tuting this inequality into (23) we see that, at d = 0 , 

(

meH + neL
)�

> 0 , so a mar-
ginal increase to d > 0 increases total effort. 	� ◻

Proof of Proposition 6  We proceed in three steps. In Step 1, we prove a preliminary 
result needed to characterize the two upper bounds on � ; namely, neL < (n − 1)eH . 
In Step 2 and Step 3, we prove respectively the first and second upped bounds in the 
proposition.

Step 1. To simplify notation, in this proof we denote TE = meH + neL . First note 
that at the optimal solution d = �, both types exert strictly positive effort. To see 
this, note that, by Proposition 5, 𝛿 > 0. The condition 𝛿 > 0 implies eL > 0 by any of 
the standard tie-breaking rule arguments applied to the separate new contest 
reserved for low types. Furthermore, if eH = 0 at d = �, then TE = neL =

n−1

n
V , 

where the last equality follows by (19). But then a better strategy would be to set 
d = 0 , which by (3) yields a total effort of m+n−1

n+hm
V  , and m+n−1

n+hm
V >

n−1

n
V  by (4). 

Therefore, at d = � both (19) and (20) hold.
Implicitly differentiating (20) with respect to d, we obtain

Imposing optimality of d, i.e., e�
H
= −

n

m
e�
L
 , (24) gives

(22)

−
m + n − 1

meH + neL
−

(m + n − 1)(V − d)
(

meH + neL
)2

(

meH + neL
)�

+
n − 1

neL
−

n − 1

n

d

e2
L

e�
L
= 0,

(23)m
(n − 1)eH − neL
(

meH + neL
)

neL
=

(m + n − 1)V
(

meH + neL
)2

(

meH + neL
)�

eH =
h + n(1 − h)

hm − (m − 1)
eL.

(24)

eHm − eLn − eLmn − eHm
2

(

meH + neL
)3

e�
H
+

(2eH − eHm − eLn)n
(

meH + neL
)3

de�
L

=
neL + (m − 1)eH

(V − d)(meH + neL)
2
.
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Furthermore, imposing optimality of d ,  i.e., 
(

meH + neL
)�

= 0, (22) gives

As e′
L
> 0 at the optimal solution by (25), the above implies that we must have

or

Step 2. We now show that if V − 𝛿 < V
(

h
m+n−1

n+hm

)

 , then TE ≤
m+n−1

n+hm
V , so d = � 

would yield lower total effort than d = 0 , which is a contradiction. This is immedi-
ate, as we can rearrange (20) to obtain

and the extremes of the above yield TE ≤
V−𝛿

h
<

m+n−1

n+hm
V .

Note now that V − � ≥ V
(

h
m+n−1

n+hm

)

⟺ � ≤ V
(

1 − h
m+n−1

n+hm

)

 , so

Step 3. We now show that, in addition to (27), the following upper bound also holds:

To see this, note that multiplying (20) by 1/h and subtracting (19) from the result, 
we obtain

Isolating 𝛿

V−𝛿
> 0 and using eH >

n

n−1
eL from (26) in Step 1, we obtain

(25)e�
L
= m

neL + (m − 1)eH

n(V − d)
> 0.

(

−
m + n − 1

meH + neL
+

n − 1

neL

)

n

n − 1

e2
L

d
= e�

L
.

n − 1

neL
>

m + n − 1

meH + neL
,

(26)neL < eH(n − 1).

h =
1

TE
(V − �) −

eH

TE2
(V − �) ≤

(V − �)

TE
,

(27)
�

V − �

≤

1 − h
m+n−1

n+hm

h
m+n−1

n+hm

=
n − h(n − 1)

h(m + n − 1)
.

�

V − �

≤
n2(1 − h)2

4h(n + h − hn)
.

1

hTE
−

eH

hTE2
=

1

TE
−

eL

TE2
+

n − 1

n2eL

�

V − �

.
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From (20) we obtain eH
TE

=
(

1 −
h

V−�
TE

)

 , which we plug in the above expression to 
obtain

Note that (1 − Ax)(Bx − 1) is maximized for x at x = A+B

2AB
 ; that is TE

V−�
=

n+2 h−hn

2 h(n+h−hn)
 . 

We then obtain the upper bound reached at

Conditions (27) and (28) prove the statement of the proposition. 	�  ◻

Proof of Proposition 7  Consider the equilibrium described in Proposition 5 and 
denote by TEd the resulting total effort. Solving (19) and (20) gives that total effort 
equals

Comparing the above displayed value with (16), we see that TE� ≥ TEd is equivalent 
to

𝛿

V − 𝛿

=
n2eL

n − 1

(

1

TE

(

1

h
− 1

)

−
(eH

h
− eL

)

1

TE2

)

<neH

(

1

TE

(

1

h
− 1

)

−
(eH

h
− eL

)

1

TE2

)

<neH

(

1

TE

(

1

h
− 1

)

−
(eH

h
−

n − 1

n
eH

)

1

TE2

)

=n
(

1

h
− 1

) eH

TE

(

1 −
eH

TE

)

−
( eH

TE

)2

.

𝛿

V − 𝛿

<n
(

1

h
− 1

)(

1 −
h

V − 𝛿

TE
)

h

V − 𝛿

TE −
(

1 −
h

V − 𝛿

TE
)2

=
(V − 𝛿 − hTE)(n(1 − h)TE − (V − 𝛿 − hTE))

(V − 𝛿)2

=
(

1 − h
TE

V − 𝛿

)(

(n + h − hn)
TE

V − 𝛿

− 1
)

.

(28)

𝛿

V − 𝛿

<

(

1 − h
n + 2h − hn

2h(n + h − hn)

)(

(n + h − hn)
n + 2h − hn

2h(n + h − hn)
− 1

)

=
n2(1 − h)2

4h(n + h − hn)
.

TEd =
m + n − 1

n + hm
(V − d) −

(1 − (1 − h)m)n(V − d)

2hm(hm + n)

+

√

4hm(n − 1)(hm + n)d(V − d) + (1 − (1 − h)m)2n2(V − d)2

2hm(hm + n)
.

√

4hm(n − 1)(hm + n)d(V − d) + (1 − (1 − h)m)2n2(V − d)2

≤2hm(m + n − 1)d +
1

2
nm2(1 − h)2V + (1 − (1 − h)m)n(V − d).
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Squaring both sides and simplifying (1 − (1 − h)m)2n2(V − d)2 , the above reduces to

Moving all terms in d(V − d) to the left-hand side and dividing both sides by (mV)2 
we obtain

We now define �(h,m, n, z) the difference between the left-hand side of the above-
displayed expression and its right-hand side, where we replace 

(

1 −
d

V

)

 with z ∶

The rest of the proof shows that 𝜙(h,m, n, z) < 0 for any z ∈ [0, 1] , if 
m−1

m
< h <

n(n+m−2)

1+n(n+m−2)
.

We begin by showing that

This follows because if h =
n(n+m−2)

1+n(n+m−2)
 , then (n(1 − h)(m + n − 2) − h) = 0 , and this 

is the only addendum that can be positive in �.
We now show that even at the level of z that maximizes � , � remains negative. 

First, note that 𝜙(h,m, n, 0) < 0 and 𝜙(h,m, n, 1) < 0. Second, focusing on an inte-
rior solution, standard calculations imply that

where

4hm(n − 1)(hm + n)d(V − d) ≤(2hm(m + n − 1)d)2 +
(

1

2
nm2(1 − h)2V

)2

+ 2hm(m + n − 1)dnm2(1 − h)2V

+ 4hm(m + n − 1)d(1 − (1 − h)m)n(V − d)

+ nm2(1 − h)2V(1 − (1 − h)m)n(V − d).

(n(1 − h)(m + n − 2) − h)4h
d

V

(

1 −
d

V

)

≤

(

2h(m + n − 1)
d

V

)2

+
(

1

2
nm(1 − h)2

)2

+ 2hm(m + n − 1)
d

V
n(1 − h)2

+ n(1 − h)2(1 − (1 − h)m)n
(

1 −
d

V

)

.

�(h,m, n, z) ≡(n(1 − h)(m + n − 2) − h)4h(1 − z)z

− (2h(m + n − 1)(1 − z))2 −
(

1

2
nm(1 − h)2

)2

− 2hm(m + n − 1)(1 − z)n(1 − h)2

− n(1 − h)2(1 − (1 − h)m)nz.

𝜙

(

n(n + m − 2)

1 + n(n + m − 2)
,m, n, z

)

< 0.

max
z∈(0,1)

�(h,m, n, z) =
(h(2 − n) + n)2

16h(m + n − 2)(hm + n)
f (h,m, n),
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Thus, the proposition is proven if we can show that f (h,m, n) < 0 . To see this, con-
sider the value of f (h,m, n) in the two boundaries of the domain of 
h ∈

(

m−1

m
,

n(n+m−2)

1+n(n+m−2)

)

 . First, f
(

n(n+m−2)

1+n(n+m−2)
,m, n

)

< 0 , because 

𝜙

(

n(n+m−2)

1+n(n+m−2)
,m, n, z

)

< 0 for any z ∈ [0, 1]. Second, note that

We will next show that f (h,m, n) is convex in h, thus concluding that f (h,m, n) < 0 . 
We have that

with

and hence g(h,m, n) ≥ g
(

m−1

m
,m, n

)

= 8 − 6n2 + 8mn(−2 + m + n) > 0 , thus con-
cluding the proof that f is strictly convex in h. 	�  ◻

9 Appendix B: Multiple‑participation with 3 types

In this extension, we assume there are nh ≥ 2 high types, nm ≥ 2 medium types, 
and nl ≥ 2 low types, with marginal cost of effort equal, respectively, to ch, cm , and 
cl , with 0 < ch < cm < cl . We investigate robustness of our result in Proposition 5 
showing conditions such that total effort is not maximized in the grand contest, but 
instead by separating contestants with relatively low type to balance out the contest, 
if multiple participations are possible.

Proposition 8  (Split contests with three types) Consider the following three 
conditions:

f (h,m, n) ≡4h2 + 4(1 − h)h(3 − (3 + h(m − 1) − m)m)n

+ (1 − h)
(

1 − 9h + 2(1 − h)(−1 + 3h)m + (1 − h)3m2
)

n2.

f
(

m − 1

m
,m, n

)

= −4
(m + n − 1)(n − 1)(m − 1)

m2
< 0.

g(h,m, n) ≡
�
2f (h,m, n)

(�h)2
= 8 + 2n(−12 + 9n + 2m(8 + 6h(−1 + m) − 4m

−7n + 3
(

3h + (−1 + h)2m
)

n
))

,

𝜕g(h,m, n)

𝜕h
=12nm(2m + 3n − 2mn + 2hmn − 2)

>12nm
(

2m + 3n − 2mn + 2
(

m − 1

m

)

mn − 2
)

=12(2m + n − 2)nm

>0,
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If (29) holds and at least one between (30) and (31) holds, then there exists a split 
contest in which 

(1)	 all types compete for a prize VLMH < V ,

(2)	 low and medium types compete for a prize VLM ≥ 0,

(3)	 low types compete for a prize VL ≥ 0, with VL + VLM + VLMH = V  , and such that 
total effort in the split contest is strictly larger than that of the unified grand 
contest in which all types compete for V.

Proof  In our equilibrium characterization, we denote equilibrium efforts in the type 
symmetric equilibrium as 

(

eh, em, el
)

 and we proceed under the assumption that 
efforts are all positive. Following the same logic as for the proof of Proposition 5, 
equilibrium efforts are characterized by the following first-order conditions:

We now multiply the first FOC by nl , the second by nm , and the third by nh , and add 
them to obtain

Then, using implicit differentiation we get

(29)cl + (ch − cl)nh + (cm − cl)nm > 0,

(30)chnh + cmnm <

(

−2 + nh + nm + nl
)

nl
(

cl(nh + nm) − chnh − cmnm
)

,

(31)
ch
(

1 + nm + nl
(

−2 + nh + nl
)

+ nm
(

−2 + nh + 2nl)
))

cmnm + clnl

< −2 + nh + nm + nl.

(32)

(

nl − 1
)

eL
(

nleL
)2

VL +
nmeM +

(

nl − 1
)

eL
(

nmeM + nleL
)2

VLM +
nheH + nmeM +

(

nl − 1
)

eL
(

nmeH + nmeM + nleL
)2

VLMH = cl

(

nm − 1
)

eM + nleL
(

nmeM + nleL
)2

VLM +
nheH +

(

nm − 1
)

eM + nleL
(

nheH + nmeM + nleL
)2

VLMH = cm

(

nh − 1
)

eH + nmeM + nleL
(

nheH + nmeM + nleL
)2

VLMH = ch

nl − 1

nleL
VL +

nm + nl − 1

nmeM + nleL
VLM +

nh + nm + nl − 1

nheH + nmeM + nleL
VLMH = nlcl + nmcm + nhch.
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Recall that V = VLMH + VLM + VLM , so dVLMH = −dVL − dVLM . Therefore, as 
VL,VLM ↓ 0 , the above becomes

The strategy of proof is to show that, at VL = VLM = 0 , the left-hand side of (33) 
is positive if at least one between (30) and (31) holds. Therefore, we can conclude 
that total effort is not maximized by the joint contest, but instead total effort would 
increase after increasing VL or VM.

We now turn to the determination of the equilibrium effort levels at VL = VLM = 0 . 
Now, (32) when VL = VLM = 0 read

which solve as

0 =
nl − 1

nl
dVL +

nl − 1

nl
VLd

(

1

eL

)

+
nm + nl − 1

nmeM + nleL
dVLM

+
(

nm + nl − 1
)

VLMd

(

1

nmeM + nleL

)

+
nh + nm + nl − 1

nheH + nmeM + nleL
dVLMH −

nh + nm + nl − 1
(

nheH + nmeM + nleL
)2

VLMHd
(

nheH + nmeM + nleL
)

.

(33)

eHnm
(

nl − 1
)

+ eMnm
(

nl − 1
)

− eLnl
(

nh + nm
)

eLnl
(

eHnh + eLnl + eMnm
) dVL

+ nh
eH

(

nm + nl − 1
)

− eLnl − eMn
(

eLnl + eMnm
)(

eHnh + eLnl + eMnm
)dVLM

=
nh + nm + nl − 1

(

nheH + nmeM + nleL
)2
Vd

(

nheH + nmeM + nleL
)

.

nheH + nmeM +
(

nl − 1
)

eL
(

nheH + nmeM + nleL
)2

V =cl

nheH +
(

nm − 1
)

eM + nleL
(

nheH + nmeM + nleL
)2

V =cm

(

nh − 1
)

eH + nmeM + nleL
(

nheH + nmeM + nleL
)2

V =ch,
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Using 0 < ch < cm < cl, we obtain eH > eM > eL , so the solution is interior if (29) 
holds. Recalling (33), total effort increases when

which, given (34), boils down to (30). Total also increases if 
eH

(

nl + nm − 1
)

> eLnl + eMnm , which, given (34), boils down to (31). 	� ◻

The next example illustrates Proposition  8. Consider nh = nm = nl = 2 , 
and cl = 1. Under these conditions (29) becomes ch >

3

2
− cm , (30) becomes 

ch <
16

9
− cm , and (31) becomes ch <

8+8cm

17
 . Recalling as well that ch < cm , we 

see that if ch = 0.8 , cm = 0.9 , then (29), (30), and (31) are all satisfied. Fur-
thermore, numerical simulations show that the optimal distribution of prizes is 
VL ≅ 0.014,VLM ≅ 0.021,VLMH ≅ 0.964.
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