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Abstract

We extend the equivariance and invariance conditions for construction of optimal
designs to multiple-group mixed models and, hence, derive the support of optimal
designs for first- and second-order models on a symmetric square. Moreover, we
provide a tool for computation of D- and L-efficient exact designs in multiple-group
mixed models by adapting the algorithm of Harman et al. (Appl Stoch Models Bus
Ind, 32:3-17, 2016). We show that this algorithm can be used both for size-constrained
problems and also in settings that require multiple resource constraints on the design,
such as cost constraints or marginal constraints.

Keywords Optimal design - Exact design - Random coefficient regression -
Equivariance - Invariance - Resource constraints

1 Introduction

The aim of this work is computation of highly efficient experimental designs in
multiple-group random coefficient regression models. Analytical approach for deter-
mining optimal approximate designs for this type of models has been discussed, i.e., in
Fedorov and Jones (2005), Schmelter (2007) and Prus (2022). In Fedorov and Jones
(2005), optimal designs were obtained for specific regression functions. Schmelter
(2007) proposed optimality conditions in the particular case of group-wise identical
designs for commonly used linear and determinant criteria. In Prus (2022), equivalence
theorems for the general form of multiple-group models have been formulated.
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For computing optimal designs in mixed-effect models, several solutions are avail-
able. However, most of them focus on computing approximate designs for several
traditional criteria, and we are not aware of any work that considers additional con-
straints besides the size of the design.

Namely, Dumont et al. (2018) created an R package for computing designs in
mixed-effects model that is predominantly focused on nonlinear models that are used
in drug development. However, they only consider the D-optimality criterion without
any additional constraints that may arise in the experiment (such as budget, material
or other types of resources). The software package (Aliev et al. 2012) is aimed at
computing approximate designs, mainly for mixed-effects models arising in pharma-
cokinetic applications. Finally, the software solution of Nyberg et al. (2012) seems
to be the most versatile, as it admits user-defined criteria, including their Bayesian
versions, but the focus is on approximate designs in nonlinear mixed-effect models
and no additional constraints can be included.

In our paper, we propose to use the algorithm of Harman et al. (2016), originally
developed for computing D-efficient exact designs in the linear regression model
with possibly multiple resource constraints, for the general form of multiple-group
models. We also propose analytical solutions based on equi- and invariance properties
of optimal designs for several particular models.

The paper has the following structure: In Sect. 2, we shortly introduce the multiple
group model, the design problem and the optimality conditions that are subsequently
used in Sect. 3 to show the equivariance and invariance properties of D- and L-optimal
designs. In Sect.4, we show that the problem of computing optimal designs in the
multiple-group mixed model can be reformulated as a problem of computing optimal
designs with respect to a monotonous criterion function with resource constraints
on weights, and, hence, a modification of a recent algorithm for computing resource
constrained designs can be used to obtain efficient exact designs in our model. In
Sects. 5 and 6, we compute the D- and I M S E-optimal designs in bilinear and quadratic
models and show that we can easily solve problems with additional constraints that
cannot be solved analytically.

2 Multiple-group RCR model

2.1 Model specification

In multiple-group random coefficient regression model the -th observation of the j-th
observational unit in the i-th group is given by

Yijn =Foyxin)Bij +€ijn, xin€ X, i=1,....5, j=1,...,n,
h=1,...,m, (1

where n; is the number of observational units in group i, m; is the number of obser-
vations per unit in group 7, observational settings x;; come from some experimental
region A;. In this work we allow for multivariate (/-variate) response and F ;) denotes a
group-specific (I x p) matrix of known regression functions in group i. In the particular
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Computational aspects of experimental designs... 867

case of univariate response we deal with “classical” regression functions: F(;) = fg),
and / = 1. Unit-specific random parameters ; i = Bij1, ... Bi jp)—r have unknown
mean B and given (p x p) covariance matrix D;, &;;; denote observational errors
with zero mean and non-singular (/ x /) covariance matrix X;. All observational errors
and all random parameters are assumed to be uncorrelated.

The covariance matrix of the best linear unbiased estimator for B is given by

-1
S
&w@0=[2yx®WJ*+mrﬂ , @)
i=1
= = = = -1/2
where F; = (F[ (xi1). ..., (im )T for Foy(xin) = 27 *Feoy(xin), h

1,...,m;, and the symmetric positive definite matrix Eil/ % with the property %;
n125l/2
i [

2.2 Design criteria

The experimental settings x;, ..., X;», in formula 1 are not necessarily all distinct.
We define an exact design in group i as

Xils vy Xik;
= ), 3
5 <mi1, ~.-,mik,«)
where x;1, ..., xjx,; are the distinct support points in X; with the corresponding num-

bers of observations m;1, ..., mj; €N, Z?:l mig = m;.
For analytical purposes we also introduce approximate designs:

£ = Xily oo Xik;
1 ’
Wil ..., Wik;
where w;r > 0 denotes the weight of observations at x;z, k = 1,...k;, and

ki
» i Wik = 1.
We will use the following notation for the moment (or information) matrix in group

ki
M; (&) = m; Z wix F i) (xin) "F i) (rin). “
k=1
For exact designs we have w;y = mj;/m; and

M; (&) = F/'F;,

which follows from formula (4) and the definition of Fi below formula (2).
We will also use the notation & for the tuple of all group-designs &;: & = (&1, ..., &).
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868 M. Prus, L. Filova

Further we extend the definition of the variance—covariance matrix (2) with respect
to approximate designs:

R 7!
Covg = |:Z n; <Mi(gi)—l +Dl.) 1:| . )
i=1

We generally search for the designs which minimize the variance-covariance matrix.
Instead of the minimization of the matrix itself (which is in general not possible), we
instead minimize suitable functions of this matrix which we call optimality criteria.
We focus on the commonly used linear (L-) and determinant (D-) criteria for the
estimation of the population parameters B, which are given by

N

-1
$r(§) =tr [Zni (Mi(éi>—1+D,-)_l} V], ©)

i=1

where V is some non-negative definite (p x p) matrix, and

¢p(§) = —Indet (an (Mi(éi)il + Di)_1> , (7

i=1

respectively (see Prus 2022). (Note that matrix M; (§;) here differs from that in Prus
Prus 2022 by constant m;.)

Frequently used particular cases of the L-criterion are the c- and A-criterion, which
are of the form (6) withV =cc',c € R?,and V = I,, where I, is the p x p identity
matrix, respectively. Another frequently used linear criterion is the / M S E-criterion.
For the estimation of the mean parameters B in multiple-group model (1) we define
this criterion as follows:

d1mse(E)
: . . T
=Y au ( I [(F@u)ﬂo ~Fiy()8o) (Fi (B — Fiy (1)Bo) } vi<dx>) ,
i=1 Xi
®)
where v; is some suitable measure on the experimental region A; (typically uniform
on &;) with v;(&;) = 1 and g; is a coefficient related to group i, Zle a; = 1. The

coefficients ay, . .., a; may depend on the group sizes or, alternatively, equal weight
may be given to each group. I M S E-criterion (8) may be rewritten in form

brmse(§) =tr (COV (30) > ai /X Fi)(0) TF i) () v (dx)> - ©)
i=1 i
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Computational aspects of experimental designs... 869

Then we extend it for approximate designs by using the extended variance-
covariance matrix (5) and we obtain the particular linear criterion with V =
Y ai in F ) (x) "F(;)(x) v; (dx), which simplifiesto V = le F1)(x) TF(1)(x) vi (dx)
if the regression matrices F(;), the experimental regions A; and the weighting measures
v; are the same among all groups: F;) =F(1), &; = Xjandv; = v fori =1,...,s.

2.3 Optimality conditions

The optimality conditions for the L- and D-criteria are provided by the following
theorems (see Prus 2022):

Theorem 1 Approximate designs £* = (&, ..., &Y) are L-optimal for estimation of
the mean parameters B iff

N

-
m; tr IFN‘(,')(X[) |:Mi(§i*)_1 (Mi(gi*)_l +Di)7] |:Z r (Mr(gr*)_l +Dr)l:| v

r=1

K -1
: [Z nr (MAEH ™!+ Dr)l} (MieH ™" + Dl-)f1 M; <s;*>—1} Fm(x,-ﬁ;

r=1

N -1
<o lMi@,.*rl (Mg +m) {Z"r CL *D’)l} '

r=I1
s —1
. |:an (M.~ +D,)_1} (M +D,~)_1] (10)
r=1

forxie X;,i=1,...,s.
For support points of £ equality holds in (10).

Theorem 2 Approximate designs £* = (&f, ..., &)) are D-optimal for estimation of
the mean parameters B iff

s —1
m; tr F(i)(xi) Mi(fl’*)_l (Mi(éi*)—l +D[)_1 |:an (Mr(gr*)—l +Dr)—l:|
r=1

(MmiEH™ + Dl-)_l M; (si*)‘} Fm(xff}
P -1
<tr {M;(E)! (Mi(si*)il +Di>_l |:an (M’(é’*)il +Dr)_lj|
r=1
) (Mi(gi*)_l +Di>_1} (11)

forxie Xj,i=1,...,s.
For support points of £ equality holds in (11).
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870 M. Prus, L. Filova

Example T We consider the two-groups model of general form (1) with the regression
functions F;)(x) = (1, x), x € &;:

Yijn = Bij1 + Bijoxin + €ijn, j=1,...,ni, h=1,....m;, i=12, (12)

on the design regions &; = [0, 1]. The covariance structures of random effects and
observational errors are given by D; = diag(d; 1, diz) and £; = 1 for both groups. For
this model the left hand sides of the optimality conditions (10) and (11) are parabolas
with positive leading terms. Therefore, D- and L-optimal approximate group-designs
have the form

0 1
Si=<1—wi1 wil)’ (13)

where w;| denotes the weight of observations in point 1 for the i-th group and may
depend on the choice of the design criterion as well as on model parameters. The
moment matrices are given by

ey [ Miomiy
M; (&) = (m“ mH), (14)
where m;1 = w;;m;. Optimal designs for random intercept and random slope have

been considered in more detail in Prus (2022).

3 Equi- and invariance considerations for construction of optimal
designs

Equi- and invariance of design criteria play an important role for determining optimal
designs in fixed effects models (see e.g. Heiligers 1992 or Schwabe 1996, ch. 3). Prus
and Schwabe (2016) investigated the related properties of designs, which are optimal
for prediction of individual random parameters in single-group mixed effects models.
Here we extend those results to multiple-group models.

We consider a one-to-one transformation g of the experimental regions A; for all
i = 1,...s simultaneously with g(&;) = Xig . We assume the regression matrices
F ;) to be defined on both ; and X’¥. We also assume the existence of a non-singular
p X p matrix Qg such that

Fi)(g(x) = Qe Fi(x), YxeXi, i=1,....s, (15)
ie. all F(i) are linearly equivariant with respect to the transformation g (see e.g.

Schwabe 1996, ch. 3). We denote by $ig the following transformation of an approximate
design §&;:

Wily, +-y Wik;

i

£ = <g(xil)’~-’g(xik,-)>’ (16)
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Computational aspects of experimental designs... 871

where the weight w;y is the same for both &; and f;‘ig and only the design points x;; are
transformed. Then we obtain the next property of the moment matrices:

M;(E) =QMi(6)Q), i=1,....5. (17)

Further we use the notations D = (Dy,...,Dy) and X = sz 14i for the tuple
of covariance matrices and the Cartesian product of the experimental regions, respec-
tively, in all groups. For the covariance matrix (5) the following relation can be easily
verified:

Coves(Df) = Q, ' Cov:(D)Q, ", (18)

where &% = (¢f,..., &), D¢ = (Df,..., DY), Df = Q,'D;Q," and Q, " =
(Q;)_1 . We use the notation Cove (D) [instead of Cove as in formula (5)] to emphasize
the dependence on the covariance matrices D of random effects.

Then the equivariance of the D- and L-criteria with respect to a transformation g
can be established.

Theorem 3 [f the approximate designs &* are D-optimal for the estimation of B
on the experimental regions X under the dispersion matrices D, then the induced
approximate designs E% are D-optimal for the estimation of B on the experimental
regions X& = x7_, Xig under the induced dispersion matrices DS.

Proof From the definition of the D-criterion for the estimation of 8 and formula (18)
we obtain

$p(§%, D¥) = —2In|det(Qg)| + ¢p (£, D),
which proves the optimality of &% on X8 for & optimal on X. O

Theorem 4 [If the approximate designs &* are L-optimal for the estimation of By
on the experimental regions X under the dispersion matrices D with respect to the
transformation matrix V, then the induced approximate designs §*% are L-optimal
for the estimation of B on the experimental regions X8 under the induced dispersion
matrices D8 with respect to the induced transformation matrix Vg = QgVQ;.

Proof Using formulas (6) and (18) it can be easily verified that

¢L(Eg9 Dg’ Vg) = ¢L(§9 D5 V)7
which proves the optimality of &% on X&. O

Corollary 1 The A-criterion for the estimation of B is equivariant with respect to a
transformation g if Qg is orthogonal, i.e.:

Q,Q, =Q;Q, =1,. (19)
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872 M. Prus, L. Filova

To verify the equivariance of the / M S E-criterion we assume, besides the trans-
formed regression matrices F(;), the original regression matrices F;) to be linearly
equivariant with respect to the transformation g:

Fi)(gx) =Q, Fy(x), Vxe X, i=1,...,s. (20)

Then if the measure v; is transformed to its image vig , we obtain
N
Ve=> a / F i) (x) 'Fi) (x) vf (dx) = Q,VQ, .
o1 A

Corollary 2 The I M S E-criterion for the estimation of By is equivariant with respect
to a transformation g if condition (20) is satisfied.

Example 1 (continued). We consider again the two-groups linear regression model
(12) on X; = [0, 1] with diagonal covariance structure of random effects. For the
IM S E-criterion we chose the uniform weighting v; = Ajo,1], i = 1, 2, where A¢; ]
denotes the Lebesgue measure on [c1, c2]. Let & be D-, A- or I M S E-optimal group-
designs of form (13) with the optimal weight of observations w}, (which generally
depends on the choice of the design criterion).

Now we consider the linear transformation g(x) = ax,a > 0, for which we obtain
Qg = diag(1, a). Then the D-, A- or I M S E-optimal group-designs in model (12) on
Xig = [0, a] for Df’ = diag(d;, diz/az) and vl{g = %)»[o,a] are given by

0 a
*8 _
5 _<1_w?1 w;kl>' @D

Same behavior of optimal designs has been established for the prediction of random
effects in single-group model in Prus and Schwabe (2016).

Further we consider a finite group G of transformations g : X; — & of the
experimental regions X onto themselvesforalli = 1, .. .s simultaneously. We assume
the equivariance condition (15) to be satisfied and the dispersion matrices to be
invariant: Df =Dj,forallg € G,i =1, ..., s.Forthelinear criteria we additionally
assume the invariance of the transformation matrices: Vg = V. Then the D- and L-
criteria are invariant with respect to all g € G and the following statement can be
formulated:

Theorem 5 [f the approximate designs S:k are D- or L-optimal for the estimation of
B, then the symmetrized designs §* =&, &) for & = % dec &8 are also
D- or L-optimal for the estimation of B.

Proof Let the designs £* be D-optimal for the estimation of 8. Then it follows from
Theorem 3 and the invariance of the dispersion matrices that the induced designs &**
are also D-optimal, i.e.

¢p(E8*, D) =¢p(E*, D), Vged.

@ Springer



Computational aspects of experimental designs... 873

From the convexity of the criterion we obtain

¢pE", D) < ¢p(E*, D),

which implies the D-optimality of the designs & "
For the linear criterion the proof is similar. O

The invariance of the A-criterion is straightforward if condition (19) is satisfied for
allg € G.

Corollary 3 If the approximate designs &* are A-optimal for the estimation of Bo and
condition (19) is satisfied for all g € G, then the symmetrized designs E are also
A-optimal for the estimation of B,.

For the I M S E-criterion we require the invariance of the weighting measures: v;.g =

v;, which leads to Vy = V.

Corollary 4 Ifthe approximate designs §* are I M S E-optimal for the esnmatlon of By
and condition (20) is satisfied for all g € G, then the symmetrized designs 3;' are also
I M S E-optimal for the estimation of B.

Example 2 We consider the multiple-group model of the form (1) with the regression
functions F;y(x) = (1, x, x%)ona symmetric design region X; = [—a,al],a > O,
i=1,...,s

Yijn = Biji + Bijoxin + Bij3xi, + €ijne j=1.....n;, h=1,....m;.
(22)

For this model the left hand sides of the optimality conditions (10) and (11) for the L-
and D-criterion, respectively, are polynomial functions of degree four. Consequently,
the corresponding optimal group-designs &; are supported by not more than three
design points including the two endpoints of the experimental region:

« [ —a 0; a
Si= <w;kl 1 —wf) —wj w?kz)’ @3

where 0; € (—a, a) may differ for different design criteria or for different groups. We
assume covariance structures of random effects and observational errors to be given
by

dinn 0 di13
Di=| 0 d» O (24
diiz 0 dis3

and X; = 1 for all groups. For the I M S E-criterion we chose the uniform weighting
measure v; = %)\[,a,a] foralli =1,...,s
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874 M. Prus, L. Filova

Further we consider the group of transformations G = {gi1, g2} with g;(x) =
—x and g>(x) = x. Then we obtain Q,, = diag(l, —1, 1) and Qy, is equal to the
identity matrix. Hence, the dispersion matrices D; and the measures v; are invariant
and conditions (19) and (20) are satisfied for both g; and g,. Then by Theorem 5 and
Corollary 3 group-designs of the general form

[ —a 0 a

= (wjl 1= 2wj, w?l) @
are D-, A- and I M S E-optimal for the estimation of the mean parameters f. The
optimal weights of observations w| at points x = a and x = —a generally depend

on the design criterion, the variance parameters, the group sizes, the numbers of
observations and the length of the interval (see Sect. 6 for examples of the designs).

Further we consider some examples of multiple polynomial regression. For models
without random effects optimal designs for multiple polynomial regression have been
discussed, e.g., in Galil and Kiefer (1977) and Heiligers (1992).

Example 3 We consider the multiple-group bi-linear model with the regression func-
tions F;y(x) = (1, x1, x2) on a design region X; = [—a, a]z, a>0,i=1,...,s:

Yijn = Bij1 + BijoXim + Bij3Xin2 + €ijn,  j=1.....n;, h=1,...,m;.(26)

For this model the left hand sides of the optimality conditions (10) and (11) for the L-
and D-criterion, respectively, are convex paraboloids. Therefore, the only admissible
support points for optimal designs are x;; = (a, a), xi2 = (a, —a), xi3 = (—a, a),
Xi4 = (—a, —a):

£ = <Xi1 Xi2 Xi3 Xi4 > ’ @7

* * * *
Wi Wi Wiz Wiy

where Zi:l wir = 1. For the I M SE-criterion we use the product measure v; =
%)\[_a,a] X ﬁ)\[_a’a] foralli =1,...,s.

Further we assume the same covariance structures of random effects and observa-
tional errors as in Example 2 of quadratic regression and we consider the group of
transformations G = {g1, g2} with g1(x) = (—xl,xz)T and g (x) = (xl,xz)T. We
obtain Q,, = diag(l, —1, 1) and Q, is equal to the 3 x 3 identity matrix. Then the
dispersion matrices D; and the weighting measures v; are invariant and conditions
(19) and (20) are satisfied for both g; and g> and, consequently, group-designs of the
general form

Xil Xi2 Xj3 Xi4

-
5= (wfl wh wi wfz) 8

with w?, = %(1 —2uw})) are D-, A- and I M S E-optimal for the estimation of the mean
parameters . Only the optimal weights of observations w}; have to be determined.

@ Springer



Computational aspects of experimental designs... 875

Note that besides the choice of the design criterion these numbers may also depend
on the model parameters (see Sect. 5 for illustrative examples).

For the particular case with diagonal covariance structure of random effects:
di13 = 0, we consider the group of transformations G = {g1, g2, g3, g4} with g3(x) =
(x1, —x2) " and g4(x) = (—x1, —x2) T, for which we obtain Qg = diag(1,1,-1)
and Qg, = diag(l, —1, —1). The dispersion matrices D; and the measures v; are
invariant and conditions (19) and (20) are satisfied for all transformation in G. Then
the balanced group-designs

s« [ Xi1 Xi2 X3 Xig
§i _<1/4 1/4 1/4 1/4) (29)
are D-, A- and I M S E-optimal.

Example 4 We consider the multiple-group bi-quadratic model with the regression
functions F;) (x) = (1, x1, x2, x1x2, xlz, x22) on adesignregion X; = [—a, al*,a > 0:

2 2
Yijn = Bij1i + Bijoxint + BijaXin2 + BijaXiniXin2 + Bijsxiny + BijeXina +€ijn - (30)

forj =1,...,n;,h =1,...,mjandi = 1,...,s. For this model the left hand
sides of the optimality conditions (10) and (11) are quadric surfaces in (x1, x3), for
which the projections on both x; = 0 and x, = 0 are polynomials of degree four.
Then the only admissible support points for L- and D-optimal designs are x;1 = (a, a),
xi2 = (a, —a),x;3 = (—a, a),xj4 = (—a, —a),x;5 = (0;1, a),Xije = (0;2, —a),Xj7 =
(a, 0i3), xis = (—a, 0;4) and x;9 = (0;5, 0;6), Where 0;; € (—a,a),l =1, ...,6. For
the I M S E-criterion we use the same weighting measures as in Example 3.

Further we assume the following simple covariance structure of the random effects
and the observational errors: D; = diag(d;y,...dig) and X¥; = 1,i = 1,...s. Then
we consider the same group of transformations G as in the previous example and
we obtain Qg, = diag(l, —1,1, —1, 1, 1), Qg, is equal to the 6 x 6 identity matrix,
Qg, = diag(l, 1, -1, —1,1,1) and Q,, = diag(1, —1, —1, 1, 1, 1). Then conditions
(19) and (20) are satisfied and dispersion matrices D; and the measures v; are invariant
forall g; € G. Therefore, D-, A- and I M S E-optimal designs have the general form

& <xz-1 Xi2 Xi3 Xi4 Xis Xie Xi7 Xi8 xz-9> 31)
i * * * * * * * * * ,
Wi Wi Wi Wi Wip Wip Wiz Wiz Wiy

where w¥ = 1—4w}; — 2w}, —2w}; and all o;; = 0,i.e. x;5 = (0, a), x;6 = (0, —a),
xi7 = (a,0), x;s = (—a, 0) and x;9 = (0, 0). The weights of observations w},, wf;
and w, depend on the choice of the design criterion and on the model parameters and
have to be optimized.

Then we additionally assume the conditions d;» = d;3 and d;5 = d;¢ to be satisfied
and consider the extended group of transformations G| = G U {gs} with g5(x) =
(x2, x1) T, for which we obtain Qg = block-diag(1, P, 1, P), where P is the (2 x 2)
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876 M. Prus, L. Filova

permutation matrix:

01
P= .
10
The dispersion matrices D; and the measures v; are also invariant with respect to

g5 and conditions (19) and (20) are satisfied. Then the general form (31) of optimal
designs simplifies to

£ = (xil Xi2 Xi3 Xi4 Xi5 Xi6 Xi7 X8 X9 ) (32)
i * * * * * * * * * % .
W Wi Wi wi wy wih wih wi 1= 4w +wp))

Note that similar behavior has been established for optimal designs for Kiefer’s
® ,-criteria in fixed effects models (see Galil and Kiefer 1977). However, designs
obtained in that work depend on the choice of the design criterion only. In the model
under investigation optimal designs may also depend on the variance parameters, the
group sizes and the numbers of observations per observational unit.

4 Computing the multiple-group mixed models designs

In this Section, we will show how to compute efficient exact designs for model
(1). To this end, let’s discretize each (possibly continuous) experimental region A,
i =1,...,s,into k; points x;1, ..., xjx, and denote the corresponding numbers of
measurements in these points by m;, ..., m;, € Np, as is customary in optimal
design algorithms. Similarly to the notation adopted in Sect.2, we define the k;-
dimensional vectors m; = (m;1, ..., m;;) and the Zle k; = u-dimensional vector
m = (ml,...,ms).
Now, consider the optimization problem presented in Harman et al. (2016):

miny, (m)
subject to Am < b.

Here, we minimize the function ® on the set of permissible designs determined by
the linear inequality Am < b, where A € R¥** and b € R* are such that the elements
of A are nonnegative and the elements of b are positive. These kinds of constraints are
called resource constraints, i.e., we can view each measurement as consuming some
amount of each of the k resources, limit on which are given by the vector b.

The method described in Harman et al. (2016) is related to the Detmax procedure,
employing a tabu search principle. The algorithm is based on excursions in the set of
all feasible designs. More precisely, from a design & we can either make a forward
step to one of its upper neighbours or a backward step to one of its lower neighbours.
These excursions are directed by the attribute of each design (which can be, e.g.,
its criterion value), a tabu list of the attributes of already visited designs and a local
heuristic evaluation of the design that roughly estimates how promising a design is as
a part of an excursion leading to an efficient design.
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Note that although the algorithm is primarily developed for D-optimality in the
standard linear regression model, it can be easily adapted for different criteria that are
monotonous on the set of all approximate designs, which enables us to compute D-
and L-efficient exact designs in model (1).

To show this, we rewrite the covariance matrix (5) in the following form:

Cove = [(nj ®1,) (M + D)_l (1, ® H,,)]_] : (33)

where Mg = diag (Ml En, ..., 1\~/IS (gﬂ) is the block-diagonal matrix with the blocks

M; (&) = n; M; (&) and D = diag(D;, . .., Dy) is the block-diagonal matrix with the
blocks ]~),~ = niiD,-, 1 is the vector of length s with all entries equal to 1 and "®”
denotes the Kronecker product.

Then the L- and D-criteria defined by (6) and (7) can be written as the function of
the design vector w in the following way:

oL&) =tr<[(]lj®llp) (Mg‘ +D>_1 (1 ®]Ip)]lv> (34)
and
¢p(§) = —Indet [(]IST ® H,,) (Mg1 + D)f1 (I, ® ]I,,)} ) (35)

Note that both criteria (34) and (35) are monotonically decreasing with respect to
Me.

gFurther, model (1) can be viewed as a one-group model on X' = x}_,; &; with
marginal constraints (see, e.g., Cook and Thibodeau 1980) that constrict the number
of observations in each group to Zi': { min = m;. This can be formulated in the form
of resource constraints by putting A = diag(]l,;rl, e, ]1,1) andb = (mq, ..., mS)T.

Hence, the optimization problem to solve is

ming ¢ (m)

. . T T (36)
subject to diag(1 e ]lks)m <b,
where by ¢ we denote either of the optimality criteria in (34) or (35).

Note that the algorithm used here is heuristic, i.e., it does not guarantee that the
resulting design is optimal, although it is demonstrated in Harman et al. (2016) that it
is usually highly efficient. Therefore, in the following sections, we will call the designs
obtained by the algorithm as efficient exact designs.

Further, we will demonstrate that it is of great practical use that the matrix A and the
vector b can be modified so that they incorporate additional linear resource constraints
on the weights, such as the limit on the number of measurements in particular points
or cost constraints (see Sect. 6 for an example of such constraints), simply by adding
suitable rows to the matrix A and elements to the vector b.
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m_ij/m_i

d
010 015 020 025 030 035 040
L L L L L

—1‘0 —0‘5 0‘0 0‘5 \‘0 —1‘0 —0‘5 0‘0 0‘5 I‘U
m_ij/m_i d
Fig.1 The dependence of the number of observations in the point (1, 1) on the parameter d in the exact D-
efficient designs in bilinear model (26) on [—1, 1]2 with total numbers of observations in the groups given
by m = (10, 20, 40) (left) and m = (20, 20, 20) (right). The three lines denote the number of observations
in the point (1, 1) normalized by m; for the first (full line), second (dashed line) and third (dotted line)
group

5 Bi-linear regression

Let’s consider the model of bi-linear regression (26) with three groups, A; = [—1, 1]2,
Y,=1,n=(,1,1)and

10d
Di=1010],i=1,2,3.
do1

As the analytical results in Example 3 show, the approximate optimal designs are
supported on the four vertices of the square [—1, 1]> and the number of observations
is identical in the points (1, 1), (—1, 1) and in the points (—1, —1), (1, —1). This
phenomenon was confirmed also for the exact D-efficient designs by our algorithm.

In this example, we will numerically illustrate the dependence of efficient designs
on the parameter d in the matrices D;, i = 1, 2, 3. To this end, let’s consider that
in all three groups, the parameter d is the same. Figure 1 shows how the numbers of
observation in the point (1, 1) change with d varying from -1 to 1 for two different
settings: m = (10, 20, 40) (left) and m = (20, 20, 20) (right). We can see that in both
cases, the number of observations in (1, 1) decreases with increasing d.

Now, suppose that

0
10),i=1,2,3, (37
01

where d; € {—0.5, 0, 0.5} are not necessarily the same between groups. In Table 1 we
show the behavior of the numbers of observation for several selected dy, da, d3 in the
case m = (20, 20, 20).
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Table 1 Exact D-efficient designs in bilinear model (26) on [—1, 1]2 with total numbers of observations
in the groups given by m = (20, 20, 20) with d; € {—0.5,0, 0.5}

(dy,d, d3) (=1.-1 1,1 (=1.-1) 1.1 (-=1.-1 1, D

(0,0,0) 5 5 5 5 5 5
(0,0,0.5) 4 6 4 6 7 3
(0,0.5,0.5) 4 6 7 3 7 3
(0.5,0.5,0.5) 6 4 6 4 6 4
(0,0, —0.5) 6 4 6 4 3 7
(0,0.5, —0.5) 5 5 7 3 3 7
(—0.5,0.5, —0.5) 3 7 8 2 3 7

6 Quadratic regression on a symmetric interval

Consider the two-groups model of the form (1) with the regression functions F ;) (x) =
(1, x, xz)T, x € Aj, and the design region &; = [—1,1],i =1,2:

YijhZﬂijl+ﬁij2xih+ﬂij3xi2h+€ijh, j:l,...,n,', h=1,...,mi. (38)

The covariance structures of random effects and observational errors are given by
D; = diag(d;1, di», di3) and X; = 1 for both groups.

The corresponding approximate optimal group-designs &; are supported by three
design points —1, 0, 1 (see Sect. 3):

. (-1 0 1
= <w;ﬁ1 1= 2w} wyy ) 59

This result was heuristically confirmed to hold also for the exact designs: we dis-
cretized the design region into g points —1 = x; < x2 < --- < x;, = 1 and confirmed
that for all cases considered below, the support points are indeed —1, 0 and 1.

The exact D- and I M S E-efficient designs for this case and several particular m =
(m1, my) are given in Table 2 in the Appendix.

We can see that for the criterion of D-optimality and the values of the diagonal
of the matrix D; equal to either (1, 1, 1) or (1, 1, 0), half of the measurements is in
the point 0 and the remaining half is distributed equally among the points —1 and
1. For (dy, d2, d3) equal either to (0, 1, 1) or (1, 0, 0), the measurements are heavily
concentrated in the support point 0, but the designs are still nonsingular. The case
(1, 0, 1) shows opposite phenomenon with the measurements being concentrated in
the points —1 and 1. For the remaining cases, the pattern is not so clear and the weights
depend more on m, sometimes even resulting in singular designs.

For the IM SE criterion, we get results identical to D-optimality if the diagonal
of D; is (1, 1, 1). For the rest of the cases, the situation is more varied and we refer
reader to Table 2 for details.

From practical point of view, it may not be desirable to only have three support
points for each group. Therefore, additional constraints on the design were suggested,
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where it is prescribed that, for each group, maximum one half of the measurements
can be taken at —1, 0 or 1. Formally, these constraints can be written in the form
AWy < pD (see Sect. 4 for details), where

-
M _ (a9 2x2g (D) _ (M1/2

A <0,;r Cq) eR , b my2) (40)

where ¢, = (1,0,...,0,1,0,...,0,1) € R? with 1 on the positions corresponding

to the points —1,0, 1. The D- and I M SE-efficient designs for the discretization
X; ={—1,-0.8,...,0.8, 1} of the interval [—1, 1] with the step 0.2 (i.e. ¢ = 11) are
given in Tables 3 and 4. Note that for both criteria, the tendency is to distribute the
measurements as close as possible to the original support points —1, 0 and 1.

Another type of constraint that is often used in practical situations, is the cost
constraint: this is natural, for example, in clinical trials, where taking a measurement
at a point x consumes a certain number of time, personal or material resources and the
total cost of the experiment is limited. In our case, let the measurement at the point
x cost |x| + 0.1 units, and, for group j, let the maximum admissible cost be m ; /4.
This leads to adding the constraints APy < bD with the following AP pD o the
problem (36):

A1) 1
A® = <”q +0.11, 0 T) e R p@ = i <Z;) (41)

where u, = (1,0.8,...,0.8, 1).

Again, we computed D- and I M S E-efficient designs with respect to this constraint
for the discretization X; = {—1, —0.8, ..., 0.8, 1}. Now, the designs are supported on
—1,0 and 1, but, compared to the unconstrained designs, much more measurements
are made at the point 0, which is "cheap’: the results are summarized in Table 5.

Finally, it is also feasible and possible to consider both types of constraints together,
resulting in A®w < b3 with

A p(D)
AG (A(2>) e R4, pB) — (b(2)> . 42)

The resulting D- and I M S E-efficient designs for this constraint are given in Tables
6and 7.

Note that in some cases, the additional constraints on the designs were saturated
for a number of measurements that is lower than the maximum attainable number
of measurements given by (m, mg)T. This is demonstrated in a more detailed way
in Fig.2, where we again consider the D-efficient design with (m1, m>) = (20, 40)
and the cost constraints (41), but now the cost 5® can vary between 0 and m; for
the i-th group. All the designs are supported in the points —1, 0 and 1 and the figure
shows that when the maximum allowed cost is too low, the total maximum number of
measurements is (sometimes significantly) lower than the corresponding m; .
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0 10 20 30 40
cost

Fig.2 The numbers of measurements in the point O (full line), —1 (dashed line) and 1 (dot-dashed line) for
the second group in the D-efficient design in model (38) with (m1, my) = (20, 40) and constraints of the
type (41) with the maximum cost 5@ in the second group varying between 0 and 40

7 Discussion

In the paper, we have considered equi- and invariance properties of approximate opti-
mal designs in multiple-group mixed models. We have used these properties to fix the
support points and, consequently, to reduce the number of unknown variables in first-
and second-order models on a symmetric square. As we currently have no universal
computational tool for approximate designs, these results can be used to determine
optimal designs analytically in a few isolated and easy cases, as shown in the examples
in Sect. 3.

However, from practical point of view, it is more important to be able to compute
efficient exact designs, possibly even with some additional constraints given by the
experimental conditions. We have shown a modified version of the algorithm of Har-
man et al. (2016) is a useful tool for such computations, even in the cases where there
are several nontrivial constraints on the design.

In the models considered here, covariance matrix of random effects is assumed to be
known. A natural question that arises while reading this work is how to perform in the
situation where no prior knowledge about variances and covariances is available. In
this case an estimation can be used. However, the quality of obtained designs depends
on the accuracy of the estimation. For some particular structures of the covariance
matrix it may happen that optimal designs turn out to be independent on the variance
parameters (consider, for example, compound symmetry structure in Prus and Piepho
2021).
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Appendix

See Tables 2, 3, 4,5, 6 and 7.

Table 2 Exact D- and I M S E-efficient designs in quadratic model on the interval [—1, 1] with respect to
the numbers of observations m; for D; = diag(dy,d>,d3),i =1,2

criterion D IMSE
(dy,dy,d3) myp mp —1 0 1 -1 0 1 -1 0 1 -1 0 1
(1,1, 1) 20 80 5 10 5 20 40 20 5 10 5 20 40 20
50 50 12 25 13 13 25 12 13 25 12 12 25 13
80 20 20 40 20 S 10 5 20 10 20 5 10 5
40 160 10 20 10 40 80 40 10 20 10 40 80 40
100 100 25 50 25 25 50 25 25 50 25 25 50 25
160 40 40 80 40 10 20 10 40 80 40 10 20 10
(1,1,0) 20 80 5 10 5 20 40 20 9 2 9 15 49 16
50 50 12 25 13 13 25 12 13 25 12 12 25 13
80 20 20 40 20 5 10 5 15 49 16 9 2 9
40 160 10 20 10 40 80 40 19 2 19 31 98 31
100 100 25 50 25 25 50 25 25 50 25 25 50 25
160 40 40 80 40 10 20 10 31 98 31 19 2 19
©,1,1) 20 80 2 16 2 1 78 1 10 0 10 13 54 13
50 50 1 48 1 1 48 1 12 26 12 13 24 13
80 20 1 78 1 2 16 2 13 54 13 10 0 10
40 160 2 36 2 1 158 1 20 0 20 27 106 27
100 100 1 98 1 1 98 1 25 50 25 25 50 25
160 40 1 158 1 2 36 2 27 106 27 20 O 20
(1,0, 1) 20 80 8 4 8 40 1 39 4 12 4 25 30 25
50 50 25 1 24 24 1 25 13 25 12 12 25 13
80 20 39 1 40 8 4 8 25 30 25 4 12 4
40 160 18 4 18 80 1 79 8 25 7 49 61 50
100 100 50 1 49 49 1 50 25 50 25 25 50 25
160 40 80 1 79 18 4 18 49 61 50 8 25 7
(1,0,0) 20 80 2 16 2 1 78 1 1 19 0 26 28 26
50 50 1 48 1 1 48 1 13 25 12 12 25 13
80 20 1 78 1 2 16 2 26 28 26 1 19 0
40 160 2 36 2 1 158 1 1 38 1 53 54 53
100 100 1 98 1 1 98 1 25 50 25 25 50 25
160 40 1 158 1 2 36 2 53 54 53 1 38 1
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Table 2 continued

criterion D IMSE

(dy,dy,d3) my mpy —1 0 1 -1 0 1 -1 0 1 -1 0 1

0,1,0) 20 80 10 0 10 19 42 19 10 0 10 16 48 16
50 50 12 26 12 13 24 13 25 12 13 13 25 12
80 20 19 42 19 10 0 10 16 48 16 10 0 10
40 160 18 4 18 38 84 38 20 0 20 32 9% 32
100 100 25 50 25 25 50 25 25 50 25 25 50 25
160 40 38 84 38 18 4 18 32 9% 32 20 0 20

0,0,1) 20 80 9 2 9 19 42 19 10 0 10 17 46 17
50 50 12 26 12 13 24 13 12 26 12 13 24 13
80 20 19 42 19 9 2 9 17 46 17 10 0 10
40 160 18 4 18 38 84 38 20 0 20 35 91 34
100 100 25 50 25 25 50 25 25 50 25 25 50 25
160 40 38 84 38 18 4 18 34 91 35 20 0 20

Table 3 Exact D-efficient designs in quadratic model on the interval [—1, 1] with constraints given by 40

and numbers of observations m; for D; given by 37 withd; = 0.5,i = 1,2

mi my —1 —-02 0.2 1 -1 —-02 0 0.2 1
20 40 4 5 2 5 4 8 10 4 10 8
40 20 10 4 10 4 5 2 5 4
25 100 5 7 2 6 5 21 26 9 24 20
100 25 21 27 9 23 20 5 6 2 7 5

Table 4 Exact I M S E-efficient designs in quadratic model on the interval [—1, 1] with constraints given
by (40) and numbers of observations m; for D; given by (37) withd; =0.5,i = 1,2

m o —1 —02 0.2 1 -1 02 0 02 1
20 40 5 0 s 5 9 10 1 10 10
40 20 10 1 10 0 5 5 0 5 5
25 100 6 6 0o 7 6 23 26 3 24 24
100 25 24 25 325 2 6 6 0o 7 6
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Table5 Exact D- (left) and I M S E-efficient (right) designs in quadratic model on the interval [—1, 1] with
constraints given by (41) and numbers of observations m; for D; given by (37) withd; = 0.5,i = 1,2

(my,my) —1 0 1 -1 0 1 -1 0 1 -1 o0 1
(20,40) 2 7 1 3 34 3 2 6 2 4 23 3
(40,20) 3 34 3 2 17 1 4 23 3 2 6 2
(25,100) 3 4 3 8 74 8 3 4 3 9 52 9
(100,25) 8 74 8 3 4 3 8 63 9 3 4 3

Table 6 Exact D-efficient

, -1 -02 0 02 1 -1 =02 0 02 1
designs in quadratic model on (my, m2)

the interval [—1, 1] with (20,40) 2 3 7 0 1 3 3 14 3 3
constraints given by (42) and

numbers of observations m; for (40,20) 3 0 133 4 2 0 6 0 2
D; given by (37) withd; = 0.5,  (25,100) 3 5 7 1 2 8 7 34 6 8
i=12 (10025) 8 7 34 6 8 2 4 8 5 2

Table 7 Exact I M S E-efficient designs in quadratic model on the interval [—1, 1] with constraints given
by (42) and numbers of observations m; for D; given by (37) withd; =0.5,i = 1,2

(my, my) —1 —02 0 0.2 1 —1 02 0 0.2 1
(20,40) 2 6 0 2 4 0 2 3

(40,20) 4 0 2 0 4 2 0 6 0

(25,100) 3 1 7 2 3 8 2 3 0 12
(100,25) 9 1 35 0 11 3 2 7 1 3
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