
Kemminer, Robin; Lange, Jannick; Kempkes, Jens Peter; Tierney, Kevin; Weiß,
Dimitri

Article — Published Version

Configuring Mixed-Integer Programming Solvers for
Large-Scale Instances

Operations Research Forum

Suggested Citation: Kemminer, Robin; Lange, Jannick; Kempkes, Jens Peter; Tierney, Kevin; Weiß,
Dimitri (2024) : Configuring Mixed-Integer Programming Solvers for Large-Scale Instances,
Operations Research Forum, ISSN 2662-2556, Springer International Publishing, Cham, Vol. 5, Iss. 2,
https://doi.org/10.1007/s43069-024-00327-7

This Version is available at:
https://hdl.handle.net/10419/316971

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 http://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s43069-024-00327-7%0A
https://hdl.handle.net/10419/316971
http://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

https://doi.org/10.1007/s43069-024-00327-7

RESEARCH

Configuring Mixed-Integer Programming Solvers
for Large-Scale Instances

Robin Kemminer1 · Jannick Lange1 · Jens Peter Kempkes1 · Kevin Tierney2 ·
Dimitri Weiß2

Received: 6 April 2023 / Accepted: 30 April 2024 / Published online: 30 May 2024

Abstract
Algorithm configuration techniques automatically search for parameters of solvers
and algorithms that provide minimal runtime or maximal solution quality on specified
instance sets. Mixed-integer programming (MIP) solvers pose a particular challenge
for algorithm configurators due to the difficulty of finding optimal, or even feasible,
solutions on the large-scale problems commonly found in practice. We introduce
the OPTANO Algorithm Tuner (OAT) to find configurations for MIP solvers and
other optimization algorithms. We present and evaluate several critical components of
OAT for solving MIPs in particular and show that OAT can find configurations that
significantly improve the solution time of MIPs on two different datasets.

Keywords Algorithm configuration · Mixed-integer programming · Large-scale
problem instances

B Kevin Tierney
kevin.tierney@uni-bielefeld.de

Robin Kemminer
robin.kemminer@optano.com

Jannick Lange
jannick.lange@optano.com

Jens Peter Kempkes
jens.peter.kempkes@optano.com

Dimitri Weiß
dimitri.weiss@uni-bielefeld.de

1 OPTANO GmbH, Technologiepark 18, Paderborn 33100, NRW, Germany

2 Decision and Operation Technologies, Bielefeld University, Universitätsstraße 25, Bielefeld 33615,
NRW, Germany

123

Operations Research Forum (2024) 5: 48

© The Author(s) 2024

http://crossmark.crossref.org/dialog/?doi=10.1007/s43069-024-00327-7&domain=pdf

1 Introduction

The performance of algorithms and solvers varies greatly depending on the settings of
the parameters controlling the behavior of the approach [1]. In particular, parameter
settings that work well for a particular dataset of instances may work poorly on a
different dataset, especially in terms of special problem structures or instance sizes.
To ensure good performance of an algorithm, either in terms of runtime or solution
quality, it is critical that algorithm parameters be configured or tuned for the types of
instances the algorithm is expected to solve in practice.

Searching for high-quality parameter settings by hand is a time-consuming
endeavor, hence several tools have been developed to automatically determine good
parameter settings for a solver or algorithm given a dataset of instances. These tools
use a variety of methods ranging from fractional factorial design [2], local search [3,
4], genetic algorithms [5–7], Bayesian optimization [8, 9], and racing [10] (see [1] for
a full overview). Most algorithm configurators support configuring for one or both of
the following settings: (1) minimization of target algorithm runtime or (2) maximiza-
tion of solution quality. Some target algorithms, such as mixed-integer programming
solvers, require a mixture of configuring for runtime and solution quality to find high
quality solutions [6] to effectively tune their parameters for a given dataset.

Mixed-integer programming (MIP) solvers can tackle a wide range of problem
types and thus ought to be configured for the instance set they are meant to solve.
Indeed, with this in mind, IBM CPLEX, Gurobi, and FICO Xpress, three of the most
well-known general MIP solvers, have built in parameter tuning capabilities [11–
13]. Moreover, MIP solvers have been a focus of the algorithm configuration (AC)
community for some time, with early results providing speed-ups of up to 52x on the
CPLEX solver [14] and recent results showing there are still performance gains to be
had in tuning these approaches [15, 16].

Most of the successes of AC solvers on MIP have involved small-scale problems;
however, in industry, problems with tens of thousands or even millions of variables
must be solved on a regular basis. These extremely large problems post a challenge to
configurators. On the one hand, when tuning for runtime, many instances will likely
not finish in the given timeout, leading to wasted executions and poor performance
of the configurator. On the other hand, when tuning for solution quality, many MIP
runs may not find feasible solutions, meaning a mechanism for comparing these failed
executions is required to provide the configurator with a search trajectory.

This paper introduces the OPTANO Algorithm Tuner (OAT), a general algorithm
configurator that has a special focus on addressing large-scale MIP instances. The
contributions are as follows:

• We describe OAT, an AC tool based on the GGA algorithm.
• We investigate a dominance racing mechanism to shorten configuration times on
MIP without sacrificing overall performance.

• We further show on a real world problem that configuring smaller copies of large
instances (i.e., instances of reduced size, but similar structures to large instances)
is effective for finding good configurations for the large instances.

123

48 Page 2 of 14 Operations Research Forum (2024) 5: 48

We make OAT freely available under the MIT license at https://github.com/
OPTANO/optano.algorithm.tuner.

This paper is organized as follows: We discuss the current state-of-the-art for con-
figuring MIP solvers in Section2. In Section3, we describe OAT, which forms the
experimental basis for this work followed by the extensions of OAT specifically for
configuring MIP solvers. We evaluate the extensions computationally in Section4 and
show that OAT can find high-quality configurations for a large-scale, real-world MIP
dataset. Finally, we discuss future work and conclude in Section5.

2 RelatedWork and Background Information

We provide a general overview of AC, including offline and realtime AC, and discuss
its application to configure MIP solvers. For further details about AC and related
problem settings, we refer interested readers to [1].

2.1 Offline Automated AC

We first formalize the offline AC problem and adopt the notation in [3]. The goal of
AC is to optimize the performance of a parameterized algorithm A. To achieve this,
the configurator searches for high-quality parameter configurations θ in the space of
all possible configurations � of A. The quality of a configuration is measured by a
performance metric m on a set of problem instances � ⊆ �̂, where �̂ represents the
full distribution of problem instances and � the sample the AC approach is provided,
such thatm : �̂×� → R. The general process of algorithm configuration is depicted
in Fig. 1.

Offline AC aims at finding a high quality configuration θ∗ that performs well over
any possible set � drawn from �̂. To this end, a set of problem instances �, called
the training set, is drawn from �̂ is provided to the AC method that is representative
of �̂. The configuration space � is searched for high quality configurations θi on the
training set, where the aim is to minimize

∑
π∈�̂

m(π, θ) in the runtime scenario,
whereas in the solution quality scenario, this term is maximized.

Fig. 1 The information flow of offline automated AC

123

Page 3 of 14 48Operations Research Forum (2024) 5: 48

https://github.com/OPTANO/optano.algorithm.tuner
https://github.com/OPTANO/optano.algorithm.tuner

Several well-known approaches have been developed for offline AC using both
model-based (i.e., machine learned models to predict/evaluate configurations) and
non-model-based approaches. ParamILS [3], a non-model-based approach, employs
an iterated local search combined with an adaptive capping mechanism to avoid wast-
ing CPU time on poorly performing configurations. The AC method on which our
approach in this paper is based,GGA[5, 7], uses a genetic algorithmwith a tournament-
based racing mechanism, while irace [10] also uses racing, but in a statistical fashion.
GPS [4] exploits parameter configuration landscape structures and examine sparame-
ters in a semi-independent way. Model-based configurators include SMAC [8], which
is based on a Bayesian optimization paradigm that uses a random forest to predict the
performance metric of a given configuration, and GGA++ [6], which uses a random
forest with a modified tree building mechanism to predict configuration performance.

2.2 Algorithm Configuration for MIP

The AC community has long targeted the MIP setting due to the long runtimes of
solving MIP instances and the industrial relevance of MIPs. Several commercial MIP
solvers include configuration procedures, such as CPLEX [11], Gurobi [12], and FICO
Xpress [13], although we note that these have not been shown to be more effective
than any AC method in the literature.

ParamILS is used to configure the solvers CPLEX, Gurobi, and LpSolve in [14],
resulting in significant speedups on seven different instance sets. Several MIP set-
tings are included in the AClib [17], allowing developers of AC methods to test on
standard benchmarks. ACmethods have also been used to configure MIPs in instance-
specific settings, i.e., a specific configuration θ is assigned to each instance in P̂i , e.g.,
in [18] using the Hydra method [19] and in [20] using the instance-specific algorithm
configuration (ISAC) approach. We further note that online/dynamic approaches for
configuringMIPparameters exist, e.g.,DASH[21] (see also dynamicAC(DAC), [22]).

3 OPTANO Algorithm Tuner

OAT is a general algorithm configurator distributed as a.NET nuget package that can
be used as a standalone configurator or integrated directly into solvers or algorithms
written in.NET. The goal of OAT is to provide a configurator that has state-of-the-art
performance combined with the reliability expected of software running in produc-
tion. While OAT is originally based on GGA [5] and GGA++ [6], it has since been
extended to include search strategies based on JADE [23] and active CMA-ES [24].
OAT is inherently distributed and can run its target algorithm in parallel across mul-
tiple machines to reduce the overall wall-clock time of the configuration process. In
addition, OAT supports configuring in multiple sessions, allowing the configuration
process to be restarted should it be interrupted by, e.g., a system failure or reaching
a resource limit. Finally, OAT includes numerous ideas from the literature, including
parameter tree customization (fromGGA), non-numeric evaluationmetrics (GGA++),
and adaptive capping strategies (ParamILS). We first describe how OAT works and

123

48 Page 4 of 14 Operations Research Forum (2024) 5: 48

describe how it distributes jobs across cores, which differs from previous distributed
versions of GGA. Then, we introduce its MIP-specific enhancements, namely the new
evaluation metric and short-circuit domination rule.

3.1 OAT’s Configuration Process

OAT is based on the genetic algorithm-based GGA and GGA++ configurators from
a methodological standpoint, however not an engineering one. The function of
OAT consists of three phases: (1) initialization, (2) the main loop, and (3) conver-
gence/termination. The main loop iterates until OAT either reaches the maximum
number of generations (as specified by the user), a maximum number of evaluations
of the target algorithm, or runs out of time. Figure2 provides an overview of the
function of OAT, and we refer readers to [5] and [6] for further details.

Fig. 2 Overview of the GGA approach [5] used in OAT

123

Page 5 of 14 48Operations Research Forum (2024) 5: 48

Initialization Considering the previously introduced formalization of algorithm con-
figuration, OAT needs the following four inputs to start its search. First, it needs a list
of instances, I , that will be investigated, potentially associated with random seeds.
Second, OAT must be told how to invoke the target algorithm, either on the command
line or through an interface into other.NET code. Third, the target algorithm param-
eters to be configured must be specified. OAT takes a structured view of parameters
as in GGA, accepting a parameter tree defining relations between parameters (see
part 1(c) of Fig. 2). For example, Gurobi [12] contains several parameters relating to
the presolver that can be adjusted to change its behavior. Another parameter turns the
presolver on and off, meaning that the parameters relating to the presolver depend on
the parameter to turn it on and off. This information is used during search to generate
new configurations. Thus, the dependent parameters are placed lower below the pre-
solver on/off parameter, and the recombination procedure takes this into account when
creating new individuals. Finally, OAT’s own internal parameters can be changed from
their default values, relating to how its search strategy functions.1

Given the inputs outlined above, OAT initializes a population consisting of the
default configuration(s) and randomly generated configurations, partitioned into two
groups, representing the competitive (C) configurations that will be run on the target
algorithm, and non-competitive (N) configurations, which act as a diversity store.

Main Loop This phase consists of up to n generations, in which configurations from
the C population are assessed in races and the winners are recombined with non-
competitive configurations. At the beginning of each generation, a subset of instances
are sampled from the instance pool. This subset linearly increaseswith each generation
until either all instances are used or a user-specified maximum value is reached. All
configurations of the competitive population must be evaluated on the currently active
subset of instances.We note that some configurationsmay have already been evaluated
on some of the instances in previous generations; these configurations need not be
evaluated on the same instances again. If the size of the competitive population is
larger than the number of available CPUs,2 the configurations are split into mini-
tournaments equal to the number of available CPUs. In the pure runtime setting,
mini-tournaments are executed until a fixed percentage of the configurations have
solved all instances; in the case of Fig. 2, only one configuration can win the race. The
rest of the configurations are subsequently terminated when they have used the same
amount of CPU time as the winning configuration(s). The mechanism by which OAT
distributes mini-tournaments is described in more detail below. In the case of MIP, we
slightly modify this procedure and describe this in Sections3.2 and 3.3.

After all planned evaluations for the current generation are completed, the pop-
ulation is updated based on the performance of the configurations. Several options
are available to do this, such as the GGA crossover mechanism in GGA, the genetic

1 We note that “tuning the tuner” poses a significant challenge; thus, these parameters are set to values that
have worked well for GGA and GGA++ in the past.
2 We assume the target algorithm is single threaded in our descriptions; however, OAT also supports
configuring multithreaded target algorithms.

123

48 Page 6 of 14 Operations Research Forum (2024) 5: 48

engineering algorithm of GGA++, as well as approaches based on JADE and active
CMA-ES. Figure2 shows the GGA crossover mechanism in which the winners of
the mini-tournaments are recombined with randomly chosen members of the non-
competitive population. The crossover procedure constructs a new configuration by
randomly choosing components from the two parents. We refer to [5] for the full
details of this algorithm and of the subsequent mutation operator. A specified per-
centage of the population is replaced every generation (usually one third) through
the recombination procedure in the hope of generating high-quality configurations.
Model-based recombination is also possible in OAT using the GGA++ recombination
strategy, see [6] for details.

Termination The main loop of OAT runs until one of three conditions is reached. The
first condition is whether the maximum number of generations is achieved (usually
75 or 100). The second condition is whether a maximum number of evaluations of
the target algorithm is exceeded. Finally, the third condition is whether the maximum
wall-clock time of the configurator is exceeded. Note that GGA supports a conver-
gence criterion that checks whether the population is improving or not, but this is not
implemented yet in OAT.

Increasing Mini-Tournament CPU Utilization The mini-tournaments as described
above must be efficiently distributed across the available CPU resources. A key engi-
neering advancement of OAT over previous GGA configurators is that it attempts
to maximally utilize available CPU resources. While OAT runs mini-tournaments to
race competitive configurations, it distributes mini-tournaments across multiple nodes
according to a priority queue of configuration-instance-seed tuples that must still be
run, leading to less wasted CPU capacity than, e.g., GGA andGGA++. OAT prioritizes
configurations that it believes are likely to finish first so that the finishing time can be
used in the short-circuit evaluation of other configurations according to the formula

priority(c) = 100

(
timeouts(c)

|Ig|
)

+ 10

(
running(c)

|Ig|
)

+ runtime(c)

κ|Ig| ,

where c is a configuration being evaluated in the current generation, g, timeouts(c)
provides the number of timeouts the configuration c has had in the current generation
so far, Ig is the instance subset being considered in the current generation, running(c)
describes the number of instance-seed pairs c is currently running on, runtime(c)
gives the total runtime of c so far in the current generation, and κ is the timeout as
previously defined.

The proposed mechanism runs configuration-instance-seed tuples with a low value.
The intuition is that a low priority score corresponds first to configurations with a low
number of timeouts, following that configurations that have not yet seen much CPU
time are favored, and finally, the total runtime expended should be a low percentage
of the total CPU time allotment for the configuration. In this way, configurations are
preferred that are likely to finish the mini-tournaments first, allowing us to dominate
poor-performers before they waste CPU resources (see Section3.3).

123

Page 7 of 14 48Operations Research Forum (2024) 5: 48

3.2 MIP EvaluationMetric

The evaluation metric tells OAT how to interpret and aggregate the performance of the
target algorithm on a subset of the training instances. One of the main considerations
when developing a runtime evaluation metric is how to deal with timeouts. While
many configurators simply use the average performance of a configuration over a set
of instances, this does not significantly discourage timeouts from occurring. Hence,
many configurators also support the so-called PAR10 score, which extends the average
by multiplying timeouts by a factor of 10.

While PAR10 effectively penalizes timeouts, when an instance set contains many
difficult instances, it often does not offer effective search guidance. To improve on
this, in the gray-box configuration schemes [25] and [16], we analyze intermediate
output of the target algorithm to assist in ranking or otherwise scoring timeouts. In
the case of CPPL, ties between configurations that do not finish are broken using the
quality of the feasible solution found (if one was found).

In contrast to realtime configuration, where only a single instance is solved per
iteration, in offline configuration, breaking times is somewhatmore complicated. Espe-
cially in the first few iterations of configuration, timeouts are very likely as the search
process has not yet identified good configurations. Hence, it is critical to have an effec-
tive mechanism for comparing configurations even if none find optimal solutions to
the instances being solved. Thus, tominimize the runtime of solvingMIPs, we propose
the following simple ranking scheme. Assume we are given two configurations A and
B that are run on n instances and the following rules are applied in order:

1. If A finds more feasible solutions than B, A is better.
2. Otherwise, if A has less timeouts than B, A is better.
3. Otherwise, if A has a lower average MIP gap over the timeout runs than B, A

is better.
4. Otherwise, if A has a lower average runtime than B, A is better.

Since the runtime is a floating point value, and there is generally some noise in its
measurement, this ranking is all but guaranteed to return a total order over the available
configurations. Note that the focus of the ranking is on feasibility and not optimality.
The reason for this is that companies solvingMIPs in practice would much rather have
feasible solutions for all of the instances they are investigating than optimal solutions
on a few and no solution at all on the rest. However, while our motivation for these
rule set is a practical one, we show later that there is also a computational benefit to the
rules, as these rules help guide the configurator’s search towards areas of the search
space with configurations effective at finding optimal solutions.

3.3 Dominance Racing

Running MIPs is computationally expensive; thus, if we detect that a particular con-
figuration is dominated, we can stop running it and use the available resources to run
something else. GGA and GGA++ accomplish this in the average or PAR10 runtime
setting through their racing mechanism, which ensures that configurations that are
dominated are stopped before wasting CPU resources. However, when using a rank-

123

48 Page 8 of 14 Operations Research Forum (2024) 5: 48

ing mechanism for MIP, we need to adjust the domination criteria to avoid wasting
CPU time.

The goal of our short circuit evaluation is to ensure that configurations with no
chance of winning their mini-tournament are stopped as soon as this is detected. Given
a mini-tournament, once one of the configurations finishes an instance, we can then
check if any other configurations in themini-tournament are dominated. Let the current
best configuration of the tournament be A, and without loss of generality, another
configuration in the mini-tournament that is not yet finished be B. Let all unfinished
instances3 of A be considered timeouts for the purpose of the domination, and let
all unfinished instances of B be represented as optimal solutions found immediately.
Then, using our ranking mechanism, rank A and B. If B is ranked worse than A, we
know that B will never be better than A and can be eliminated from consideration.

4 Experimental Results

We evaluate OAT on a set of synthetic MIP instances that model the frequency assign-
ment problem from [26] followed by a real-world instance set modeling a strategic
network planning problem for a customer of OPTANO GmbH. We address the fol-
lowing two research questions:

• RQ1: Does the dominance racing allow OAT to find the same or better configura-
tions in less wall-clock time than without dominance racing?

• RQ2: Can OAT find high-quality configurations for small datasets of long-
running MIPs?

In the following, we configure OAT using the GGA++ search strategy on the target
algorithmGurobi 8.1 on two IntelXeonE5-2680processorswith 12 cores each running
at 2.5 GHz and 256 GB of RAM.

4.1 RQ1: Effectiveness of Dominance Racing

We examine the effectiveness of the dominance racing mechanism using the pro-
posed ranking method and with the standard PAR10 metric on a dataset of synthetic
instances representing the frequency assignment problem [26]. We configure OAT for
100 generations and increase the number of instances in each generation linearly until
generation 75, after which all instances are run in each generation. We allowGurobi to
use a single thread. The dataset of instances is split into 25 training instances assigned
to 2 seeds each, and a test set of 25 instances with 10 seeds each to try to avoid errati-
cism/variability in solving the instances [27] from influencing the results. The timeout
for Gurobi is set to 300s. We repeat this experiment three times.

Table 1 shows the average results over three runs of OAT to tune the synthetic
frequency assignment problem instances, using PAR10 with and without the domi-
nance racing mechanism, and the ranking metric with it. RR stands for runtime racing,

3 With unfinished instances, we refer to any instance that the configuration has not yet been run on or is
not finished running on.

123

Page 9 of 14 48Operations Research Forum (2024) 5: 48

Table 1 Average target algorithm evaluations and runtime ofOAT, SMACand grbtune over three executions
of OAT and 72 executions of SMAC and grbtune (leading to an equivalent total CPU-time allotmenta),
along with the resulting performance of the configurations on Gurobi on average over these executions. The
evaluation time of Gurobi with its default parameters on the instance set is also provided

Gurobi (Target Algorithm)
Config. (OAT) After 72h [s] After 100g [s]

Evals. Wall [h] Train Test Train Test

Default - - 288.7 308.8 288.7 308.8

grbtune - - 377.7 395.7 - -

SMAC (PAR10) - - 155.9 145.1 - -

OAT (PAR10 + RR) 82031 187.5 93.4 82.8 73.9 71.4

OAT (PAR10 + DR) 48656 92.9 72.5 71.4 72.5 71.4

OAT (Ranking + DR) 43788 84.0 74.3 76.1 70.5 74.5

aWe use the single-core version of SMAC and grbtune; hence, we run it 72 times to have an equivalent
CPU-time allotment to our three executions of OAT on 24 cores

which is the type of racing used by GGA++ in which a tournament is stopped once
enough configurations finish. By definition, this is a special case of dominance racing
(DR).While dominance racing is more aggressive than runtime racing, it also does not
eliminate any run of a potential tournament winner. Since the results of PAR10 give
a strong impression and these experiments are computationally intensive, we refrain
from combining ranking with runtime racing, but focus on ranking with dominance
racing. Dominance racing is able to cut the overall wall-clock time to configure with
OAT by nearly half, without sacrificing any performance on the test set using both
PAR10 and the ranking metric after 100 generations. If OAT is stopped after 72h, the
performance of DR is superior to not using it on both the training and test sets. It is
thus clear that many of the target algorithm executions made are actually avoidable.
Combining the ranking metric with DR leads to even faster configuration than using
PAR10; however, the test performance both after 72h and 100 generations shows signs
of overfitting. We note that DR itself cannot result in overfitting, so this is potentially
due to the rankingmechanism being overly aggressive. Finally, we note that regardless
of the configuration of OAT, large gains over the default parameters are visible.

OAT performs well compared to SMAC and grbtune thanks to the addition of RR
and DR, which we are unable to add to these configurators. We note that grbtune, the
built in parameter tuner of Gurobi, actually finds configurations that perform worse
than the default configuration on average. In about half the runs of grbtune, the default
configuration was returned. However, in the other half, poorly performing configura-
tions were returned that did not generalize to the test set. As the implementation of
grbtune is private, we are unable to suggest why this is the case.

The three configurations found by OAT agree with default parameters of Gurobi
roughly one third of the time. Note, however, that which parameters are the same
as the defaults vary between the configurations greatly. The agreement between the
three configurations ranges from 26% of the parameters the same up to 40%. Note
that there is only one floating point parameter, and it is different for all configurations.
Furthermore, the parameters with large integer ranges tend to be significantly different

123

48 Page 10 of 14 Operations Research Forum (2024) 5: 48

Table 2 Runtime until the first solution is found in minutes on the large instance test set

Default All instances LOO

Average 42.7 1.9 4.9

Median 11.5 2.0 6.0

from each other. The key insight from this analysis is that even configurations with
significantly different configurations can have similar performance. While Gurobi
includes many parameters that can be set to “automatic” values (i.e., Gurobi uses a
heuristic to decide its value in an instance-specific way), our configurations only use
this option between 21 and 28% of the time.

4.2 RQ2: Configuring Large-Scale MIPs

We now configure a small dataset of large-scale, real MIP instances from a project at
OPTANO GmbH. The instances represent a strategic network planning problem for
production and delivery for a customer who cannot be named. The instances contain
over 470,000 variables, over 50,000 of which are integer. Furthermore, the instances
have over 2.5 million non-zeros, making them practically impossible to solve to opti-
mality even given days of computation time. Due to the strategic nature of the problem,
there are only three instances available, and they are extremely hard to solve. The goal
is to find a good configuration to solve these three instances as well as future instances
that the customer may need solved.

To configure this dataset, we first create three small-scale copies of the three
instances. While we are unable to propose a general method for doing this, on many
problems, it is possible to create smaller copies that maintain the original structure of
the instance. For the network planning problem at hand, we generate smaller instances
by restricting the degrees of freedom in the optimization model. For example, we
decide a priori which demands will be served and which machines will be used for
those demands. Thus, we will configure the small instances and apply the resulting
configurations on the larger instances.

Due to the small size of the dataset, we attempt to mitigate the effect of randomness
on our results so that we can draw some limited conclusions about tuning small-scale
copies of MIPs. To this end, we use leave-one-out (LOO) cross validation and perform
four different configurations of the small instances, one including all three instances,
and three more with all combinations of two out of three instances. Validation is
performed on the large instances; in this way, we simulate the situation where a new
large instance is encountered after configuration is completed. We assign four random
seeds to each training instance and assign 10 to each large instance in the test set. We
again configure Gurobi 8.1, but this time allow Gurobi to use two threads as this is
how the customer’s environment is set up. We configure for 50 generations and use
the entire set of instance seed pairs in all generations. The timeout is set to 30s.

We configure and evaluate the four settings as discussed and aggregate the results
in Table 2, which shows the average time in minutes until the first solution is found on

123

Page 11 of 14 48Operations Research Forum (2024) 5: 48

Fig. 3 Visualizations over the course of solving the instances of the test set

the test set. We note that the default parameters were not particularly robust, with two
out of thirty instance-seed pairs requiring almost 8h to find a first solution, which is
unacceptable for implementing the model for the customer. The configurations found
by OAT are significantly more robust, with the maximum time needed to find a first
solution only 4.0min (all instances) resp. 9.0min (LOO).

Figure 3a and b provide information over the course of the execution of the instances
of the test set. In Fig. 3a, the configuration tuned on all three instances lowers the
MIP gap the fastest, but then levels out. Surprisingly, the LOO configurations catch up
before the three hour mark and lower theMIP gap further, althoughwe note this is very
likely just noise. Nonetheless, the fact that configuring on two out of three instances has
similarly to configuring on all three instances is promising information for the many
real-world domains where often very few instances are available. Furthermore, Fig. 3b
shows that the all configurations found generatemore solutions than the default Gurobi
configuration.While the number of solutions alone is not an indication of quality (they
could all be bad), in general, when solving MIPs, finding solutions is good for users
who can receive intermediate feedback at multiple intervals.

5 Conclusion and FutureWork

We introduced OAT, a general-purpose algorithm configuration tool with special
mechanisms for configuring MIP solvers. We show that using the proposed ranking
mechanism and short-circuit domination rule significantly reduces the time required
to configure MIPs on a synthetic dataset. Furthermore, we confirm that OAT is capa-
ble of configuring a real-world strategic network design problem that has since been
deployed at a customer of OPTANO. There are still many open research questions for
future work, such as how to automatically reduce the size of large MIP instances so
that they can be effectively tuned or how to further avoid wasting time on unpromising
configurations by, e.g., applying machine learning models.

123

48 Page 12 of 14 Operations Research Forum (2024) 5: 48

Acknowledgements The authors thank Sebastian Milz for his support of our industrial test case. The
authors would also like to thank the Paderborn Center for Parallel Computation (PC2) for the use of the
Noctua cluster.

Author Contributions RK and JL coded OAT under the supervision of JPK and KT. DW supported the
writing of the paper, which was mainly carried out by KT and RK. All authors read and approved the
final manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL. The authors are supported in part
by the funding program Zentrales Innovationsprogramm Mittelstand (ZIM) (Grant No. ZF4622601LF8)
of the German Federal Ministry for Economic Affairs and Climate Action, and the project Maschinelle
Intelligenz für die Optimierung von Wertschöpfungsnetzwerken (MOVE) (Grant No. 005-2001-0042) of the
“it’s OWL” funding of the Ministry of Economics, Innovation, Digitalization and Energy of the German
state of North Rhine-Westphalia.

Code Availability The source code of the OPTANO Algorithm Tuner is available at https://github.com/
OPTANO/optano.algorithm.tuner.

Declarations

Ethics Approval Not applicable.

Consent to Participate Not applicable.

Consent for Publication Not applicable.

Competing Interest The authors declare no competing interests.

123

Page 13 of 14 48Operations Research Forum (2024) 5: 48

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Schede E, Brandt J, Tornede A, Wever M, Bengs V, Hüllermeier E, Tierney K (2022) A survey of
methods for automated algorithm configuration. J Artif Intell Res 75:425–487

2. Adenso-Díaz B, Laguna M (2006) Fine-tuning of algorithms using fractional experimental designs
and local search. Oper Res 54:99–114

3. Hutter F, Hoos HH, Leyton-Brown K, Stützle T (2009) Paramils: an automatic algorithm configuration
framework. J Artif Intell Res(JAIR), p 267–306

4. PushakY,HoosH (2020)Golden parameter search: exploiting structure to quickly configure parameters
in parallel. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), p
245–253. https://doi.org/10.1145/3377930.3390211

5. Ansótegui C, Sellmann M, Tierney K (2009) A gender-based genetic algorithm for the automatic
configuration of algorithms. In: Principles and Practice of Constraint Programming - CP 2009, p
142–157. https://doi.org/10.1007/978-3-642-04244-7_14

6. Ansótegui C, Malitsky Y, Samulowitz H, Sellmann M, Tierney K (2015) Model-based genetic algo-
rithms for algorithm configuration. In: International Joint Conferences on Artificial Intelligence
Organization (IJCAI)

https://github.com/OPTANO/optano.algorithm.tuner
https://github.com/OPTANO/optano.algorithm.tuner
https://doi.org/10.1145/3377930.3390211
https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.1007/978-3-030-80223-3_2

123

48 Page 14 of 14 Operations Research Forum (2024) 5: 48

7. Ansótegui C, Pon Farreny J, Sellmann M, Tierney K (2021) PyDGGA: distributed GGA for automatic
configuration, p 11–20. https://doi.org/10.1007/978-3-030-80223-3_2

8. Hutter F,HoosHH,Leyton-BrownK(2011)Sequentialmodel-based optimization for general algorithm
configuration. In: Learning and Intelligent Optimization (LION), p 507–523

9. Lindauer MT, Eggensperger K, Feurer M, Biedenkapp A, Deng D, Benjamins C, Sass R, Hutter F
(2022) SMAC3: a versatile Bayesian optimization package for hyperparameter optimization. J Mach
Learn Res 23:54–1549

10. López-IbáñezM, Dubois-Lacoste J, Stützle T, Birattari M (2016) The irace package: iterated racing for
automatic algorithm configuration. Oper Res Perspect, p 43–58. https://doi.org/10.1016/j.orp.2016.09.
002

11. IBM. IBM CPLEX User’s manual for CPLEX. https://www.ibm.com/docs/en/icos/22.1.1?
topic=optimizers-users-manual-cplex. Accessed 27 Apr 2023

12. Gurobi. Gurobi optimization documentation. https://www.gurobi.com/documentation/. Accessed: 27
Apr 2023

13. FICO. Fico FICO Xpress optimization help. https://www.fico.com/fico-xpress-optimization/
docs/latest/solver/optimizer/HTML/GUID-3BEAAE64-B07F-302C-B880-A11C2C4AF4F6.html.
Accessed 27 Apr 2023

14. Hutter F, Hoos HH, Leyton-Brown K (2010) Automated configuration of mixed integer program-
ming solvers. In: Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CPAIOR), p 186–202. Springer

15. Mesaoudi-Paul E, Weiß D, Bengs V, Hüllermeier E, Tierney K et al (2020) Pool-based realtime algo-
rithm configuration: a preselection bandit approach. In: International Conference on Learning and
Intelligent Optimization, p 216–232. Springer

16. Weiß D, Tierney K (2022) Gray box realtime algorithm configuration. In: Learning and Intelligent
Optimization. Springer

17. Hutter F, López-Ibánez M, Fawcett C, Lindauer M, Hoos HH, Leyton-Brown K, Stützle T (2014)
AClib: a benchmark library for algorithm configuration. In: Learning and Intelligent Optimization: 8th
International Conference, LION 8, p 36–40. Springer

18. Xu L, Hutter F, Hoos HH, Leyton-Brown K (2011) Hydra-MIP: automated algorithm configuration
and selection for mixed integer programming. In: RCRA Workshop on Experimental Evaluation of
Algorithms for Solving Problems with Combinatorial Explosion at the International Joint Conference
on Artificial Intelligence (IJCAI), p 16–30

19. Xu L, Hoos H, Leyton-Brown K (2010) Hydra: automatically configuring algorithms for portfolio-
based selection. In: Proceedings of the AAAI Conference on Artificial Intelligence 24:210–216

20. Kadioglu S, Malitsky Y, Sellmann M, Tierney K (2010) ISAC - instance-specific algorithm configura-
tion 215:751–756. https://doi.org/10.3233/978-1-60750-606-5-751

21. Liberto GD, Kadioglu S, Leo K, Malitsky Y (2016) Dash: dynamic approach for switching heuristics.
Eur J Oper Res 248(3):943–953. https://doi.org/10.1016/j.ejor.2015.08.018

22. Biedenkapp A, Bozkurt HF, Eimer T, Hutter F, Lindauer M (2020) Dynamic algorithm configuration:
foundation of a new meta-algorithmic framework. In: ECAI 2020, p 427–434. IOS Press

23. Zhang J, Sanderson AC (2009) Jade: adaptive differential evolution with optional external archive.
IEEE Trans Evol Comput 13(5):945–958

24. Jastrebski GA, Arnold DV (2006) Improving evolution strategies through active covariance matrix
adaptation. In: 2006 IEEE International Conference on Evolutionary Computation, p 2814–2821. IEEE

25. ElMesaoudi-Paul A,WeißD, BengsV,Hüllermeier E, TierneyK (2020) Pool-based realtime algorithm
configuration: a preselection bandit approach. Lecture Notes in Computer Science, vol. 12096, p 216–
232. Springer. https://doi.org/10.1007/978-3-030-53552-0_22

26. Anderson LG (1973) A simulation study of some dynamic channel assignment algorithms in a high
capacity mobile telecommunications system. IEEE Trans Veh Technol 22(4):210–217. https://doi.org/
10.1109/T-VT.1973.23553

27. Fischetti M, Monaci M (2014) Exploiting erraticism in search. Oper Res 62(1):114–122

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/j.orp.2016.09.002
https://www.ibm.com/docs/en/icos/22.1.1?topic=optimizers-users-manual-cplex
https://www.ibm.com/docs/en/icos/22.1.1?topic=optimizers-users-manual-cplex
https://www.gurobi.com/documentation/
https://www.fico.com/fico-xpress-optimization/docs/latest/solver/optimizer/HTML/GUID-3BEAAE64-B07F-302C-B880-A11C2C4AF4F6.html
https://www.fico.com/fico-xpress-optimization/docs/latest/solver/optimizer/HTML/GUID-3BEAAE64-B07F-302C-B880-A11C2C4AF4F6.html
https://doi.org/10.3233/978-1-60750-606-5-751
https://doi.org/10.1016/j.ejor.2015.08.018
https://doi.org/10.1007/978-3-030-53552-0_22
https://doi.org/10.1109/T-VT.1973.23553
https://doi.org/10.1109/T-VT.1973.23553

	Configuring Mixed-Integer Programming Solvers for Large-Scale Instances
	Abstract
	1 Introduction
	2 Related Work and Background Information
	2.1 Offline Automated AC
	2.2 Algorithm Configuration for MIP

	3 OPTANO Algorithm Tuner
	3.1 OAT's Configuration Process
	3.2 MIP Evaluation Metric
	3.3 Dominance Racing

	4 Experimental Results
	4.1 RQ1: Effectiveness of Dominance Racing
	4.2 RQ2: Configuring Large-Scale MIPs

	5 Conclusion and Future Work
	Acknowledgements
	References

