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Abstract
We consider force-majeure supply disruptions in a dynamic, multi-product manufac-
turing supply chainwith time-dependent parameters.We present a linear programming
model that captures a specific force-majeure scenario with respect to several objective
functions that can be combined in a multi-objective framework, e.g., minimization of
loss, maximization of shortage-free time, or prioritization of mitigation types. Solving
this model yields an optimal mitigation plan that describes how to best (re-)allocate
supply and production operations. Supported mitigation options include plant-side
safety stock, supplier-side inventories, and additional production thus reflecting the
manufacturing setting of a large-scale industrial player. We describe a workflow for
increasing the resilience of supply chains based on risk profiles generated by our
approach.

Keywords Supply chain disruptions · Force-majeure scenarios · Mitigation · Risk
analysis · Business continuity planning

Mathematics Subject Classification 90B06

1 Introduction

Disrupted supply chains are an omnipresent challenge in the purchasing of raw mate-
rials and pre-products. Companies therefore proactively protect themselves against
potential delivery delays and failures by diversifying their supplier base, qualify-
ing more capacity than required (capacity-to-demand ratio C-to-D > 1), building up
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safety stocks, and maintaining mitigation plans. Nevertheless, it is difficult to prepare
for major incidents. Although these certainly occur from time to time, it is generally
impossible to determine the probability of occurrence of a specific event. From the
recent past, examples of such events include the following:

• During the corona pandemic, there were massive production losses due to factory
closures of suppliers,which resulted, for example, in a shortage of parts forGerman
car manufacturers [1]. Also, the distribution of overseas containers was disrupted
during the pandemic. Transports were delayed; on some routes, costs rose dra-
matically. See [2–4] for further analysis of the impact of the corona pandemic on
supply chains.

• Due to the Ever Given accident in the Suez Canal in 2021, there was a considerable
backlog on the canal, resulting in significantly longer shipping times [5].

• The Huthi rebels’ attacks on cargo ships in the Red Sea in 2024 forced vessels to
take the much longer route around the Cape of Good Hope.

• Natural disasters like earthquakes, storms, floods, fires, and explosions but also
political upheavals and strikes regularly lead to considerable supply losses [6].
Climate change will further exacerbate this situation [7].

The continuous optimization of a supply chain, including the associated mitigation
plans, is therefore a prerequisite for the success of manufacturing companies. The
procurement of pre-products can be switched to other suppliers at short notice, and
delays can be bridged with safety stocks.

In this paper, we develop a rigorous mathematical optimization model to simulate
failure scenarios in a supply chain. Our work is motivated by, but not limited to, a
manufacturer of fast consumer goods that produces goods at several manufacturing
sites. The manufacturer requires critical rawmaterials for production, which it obtains
from various specially selected and qualified suppliers.

The following parameters are included in our optimization model: production
ramp-up times, transportation times, safety stocks, and the possibility to interchange
materials. We primarily minimize the remaining shortage and secondarily maximize
the time to shortage, i.e., the time it takes until a shortage arises.

By aggregating the results of many simulated failure scenarios, critical suppliers
and production sites can be identified and mitigation plans can be adapted. We outline
how such an analysis and associated decision-making process might look like.

With the help of our optimization model, intuitive best practices can be verified:

1. A broadly positioned supplier base with suppliers close to and further away from
the production sites is an advantage.

2. Material on the transportation routes (material in transit) postpones delivery fail-
ures and enables other suppliers to ramp-up production.

3. A capacity-to-demand ratio significantly greater than 1 is a prerequisite to com-
pensate for failures at all.

We deliberately neglect the costs of contingency plans in our model and focus only
on their valuation in relation to supply delays and shortages. The decision of how
much mitigation plans may cost and what supply risk a company should bear is the
subject of management discussions beyond the model presented below.
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Fig. 1 Matrix of types of
disruption with the most relevant
area for this study highlighted:
low-frequency, high-impact
disruptions

1.1 RelatedWork

Mathematical optimization of supply chains considering risks is an active area of
research; see the survey by Suryawanshi and Dutta [8] for an overview of different
optimization approaches and the survey by Katsaliaki et al. [9] regarding the treatment
of supply chain disruptions. We focus on force-majeure scenarios affecting the supply
side, such as temporary supplier shutdowns, lost shipments, port strikes, and hurricanes
(affecting a complete region), but also a rapid increase of demand. These events are
generally of low frequency and high impact, thus occupying the upper left area in the
diagram of Fig. 1.

Low-impact, low-frequency events are usually handled by a sufficient allocation
of buffers and stocks and do not require a scenario-based analysis. High-frequency
events allow for probabilistic models, like, e.g., Monte Carlo simulation approaches,
that are able to reflect the simultaneous appearance of multiple problems [10, 11].
For optimizing the robustness of supply chains subject to these stochastic deviations,
stochastic programming techniques can be used [12, 13] which require however a
large running time. It should be noted that the high-impact, high-frequency area ought
to be empty in any healthy supply chain.

Predicting the actual impact of some given scenarios allows to base the riskmanage-
ment of a supply chain on a quantitative basis, unlike many traditional approaches that
take into account qualitative information from experts [14]. A scenario is characterized
by two main properties: its probability of occurrence and its potential impact [15]. An
estimation of probabilities for scenarios is outside the scope of this paper, but can be
achieved using a systems approach [16], by simulation or with statistical models.

The assessment of risks in supply chains is often done on a qualitative basis.
Lockamy [17] presents an approach for assessing disaster risks in supply chains with
Bayesian models. A framework for the managerial handling of force-majeure risks
is presented by Kleindorfer and Saad [18]. Craighead et al. [19] discuss the effects
of various supply chain characteristics on the severity of supply disruptions and the
relation to mitigation capabilities. The survey by Golan et al. [20] describes various
approaches to analyze the resilience of a supply chain.

The resilience of a supply chain often needs to be optimized simultaneously with
other goals. Mari et al. [21] propose an optimization model that incorporates both
resilience and sustainability in the form of carbon emissions of the supply chain. The
optimization model by Elluru et al. [22] combines location with routing decisions to
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create disaster-resilient supply chains. Margolis et al. [23] combine the two objectives
of minimizing costs and maximizing the resilience of a supply chain into a multi-
objective optimization model. Chen et al. [24] integrate considerations of the product
life cycle into their mixed-integer programming model for disruption recovery.

The existence of a rigorous method to compute mitigation plans is important for
multiple stages of supply chain operation and planning. Obviously, in case of an actual
failure, it allows to quickly generate both a preview of the impact and suggestions for
most efficient counteractions. Ivanov et al. [25] give a survey on the literature of
methods for planning the recovery from disruptions in a supply chain. A case study
details the effects of disruption scenarios and corresponding countermeasures based
on a linear programming model by Ivanov et al. [26]. The case study of Balster
and Friedrich [27] discusses a model for the food supply chain and corresponding
mitigation measures for several disruption scenarios.

Especially, business continuity planning at a strategic scope benefits from the ability
to assess the supply chain’s vulnerability to specific scenarios. Such an assessment
can, on the one hand, guide successive development towards a more resilient supply
chain by showing the impact of potential adjustments (such as supplier selection or
the allocation of inventories) on the supply chain’s robustness [28]. On the other hand,
it allows to compare (and then balance) the protection level across plants, regions,
or material classes, helping to reduce the cost of unnecessary robustness created by
large over-capacities. An optimization approach by Parajuli et al. [29] for computing
protection decisions in an attacker-defender model takes mitigation as a lower-stage
problem.

For various use cases, specialized models for optimizing the resiliency of supply
chains have been proposed. Ali and Nakade [30] establish a mixed-integer program
(MIP) that chooses distribution center locations and order quantities so as to minimize
expected (pre-mitigation) shortage. The same authors consider a single-period set-up
with mitigation from a single local supplier [31]; here, a MIP minimizes the expected
cost of a set of scenarios, assuming all failures can bemitigated completely. Ziegenbein
and Baumgart [32] consider time-varying supply and demand, but again nomitigation.
You et al. [33] assume probabilistic demand and freight rate ratio, as opposed to the
scenario-based approach in our work.

Recently, the concept of resilience of a supply chain has been extended to the
concept of viability that also takes long-term disruptions and the ecosystem around
the supply chain into consideration [34].

1.2 Our Results

In this work, we present a rigorous mathematical framework for quantitative what-if
analysis of force-majeure scenarios in a supply chain.

Our approach allows to compute mitigation plans that are (Pareto-) optimal for
the respective scenarios, subject to several objective functions, e.g., minimizing
post-mitigation losses, maximizing shortage delay, or minimizing mitigation effort.
We present an extensible framework for finding the optimal mitigation plan for a
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scenario, centered around a time-expanded flow network that is solved with a linear
program (LP).

The framework supports a supply chain with multiple materials, supplier sites, and
manufacturing plants (receivers), as well as time-varying demands by these manufac-
turing plants and order quantities. Potential mitigation options include a short-term
increase of raw-material production and the use of supplier-side inventory, both sub-
ject to various delivery constraints. Also, we properly take the mitigating effect of
significant shipping times into account: the corresponding material in transit acts as
an implicit inventory on road, rail, or sea that delays the impact of disruptions on the
manufacturing plants. In addition, we present a detailed handling of plant-side safety
stock that arises from shipments arriving a certain time before the planned consump-
tion. These basic features can be extended by, e.g., multiple end products, material
interchangeability, or a multi-tier supply chain.

We present and model multiple objective functions that quantify several goals.
These are as follows:

• The loss value, representing the weighted sum of the shortage remaining after the
mitigation. In this way, loss of profits can be modeled.

• The shortage delay, i.e., the time until shortage occurs. By maximizing it, the time
available to restructure the supply chain can be increased.

• Mitigation efforts and costs that are incurred by choosing a mitigation plan. By
measuring and optimizing the simplicity of the mitigation plan, organizational
costs can be reduced.

Since these goals are often contradicting, a multi-objective problem ensues.
We also describe the effects of the various types of mitigation types in a case study.

Our mitigation model can also be used to assess a whole set of scenarios, leading to
a risk profile which highlights the vulnerable parts of the supply chain. We illustrate
the use of these results in an integrated planning process to allow decision-makers to
improve the robustness of their supply chains.

1.3 Failure-Aware Supply Chain Optimization

The flow chart in Fig. 2 illustrates how our proposed optimization model can be used
in the overall decision-making process to create a failure-aware supply chain. In this
paper, we focus on the precise modeling of the failure scenarios, the simulation of the
resulting shortage, and the optimization of the corresponding mitigation measures.

• For the definition of failure scenarios, decision-makers should monitor the politi-
cal, economical, societal, and natural disaster risks to ensure all currently relevant
scenarios are captured.

• The simulation of shortage needs a precise model of the material dependencies
and transportation times with the supply chain.

• Since the optimal choice of the mitigation measures depends on the local situation
at multiple locations and is time-dependent, a time-expanded graph model is used.

• The optimized resulting shortage after considering mitigation in different failure
scenarios can be used to inform needed changes on the supply chain structure.
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Fig. 2 Integrated decision process using the optimization model

1.4 Organization of the Paper

The remainder of this work is organized as follows. In Section 2, we formally define
what amitigation plan is in the context of a given disruptive scenario.We then describe
in Section 3 an LP based on a minimum cost flow network that can easily find an
optimal ex-post strategy. To simplify notation and because every supply chain has
its individual characteristics, requiring not every potential mitigation option, Sections
2 and 3 contain what we think is the core of our approach. Supplementary to that,
Section 4 lists several additional features by which that core model can be augmented,
if needed. Numerical results are presented in Section 5. In Section 6, we describe
the use of the model in an integrated workflow to increase the resilience of supply
chains based on risk profiles. Section 7 contains a conclusion and possible topics for
future research.

2 ProblemDescription

In the following, N = {0, 1, ...} denotes the natural numbers, R the real numbers, and
the nonnegative real numbers are written as R+ = {x ∈ R : x ≥ 0}.
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2.1 Supply Chain Model

We consider a manufacturing company that operates a set P of manufacturing plants,
producing some end products not further specified here (but see Section 4.2 for how
to include end products).

For doing so, the plants require a continuous supply of rawmaterials.We investigate
the supply chain of a set of materials M . As an example, imagine the pigment supply
chain of a candy-producing company, where each type of candy contains exactly one
type of pigment.

Each plant has a production plan that determines the required amount of each raw
material for each time step. In practice, the production plan is created from the fore-
casted end product demands and depends on the specific raw-material requirements
of each end product. Since our model does not include the end product layer, by the
term demand, we always refer to the raw-material demand of some plant.

Definition 1 (Demand, Horizon). For each plant p ∈ P and material m ∈ M , the
(raw-material) demand of m at p at time t is denoted by d(t,m, p) ∈ R

+. Here, t
is assumed to be contained in a suitable horizon T = {0, ..., th} ⊂ N that covers the
time period under investigation.

Materials are delivered by a set of supplier sites S, each of which is capable of
producing some subset of M . Shipping times introduce a delay between the delivery
at a supplier site and the arrival at the destination plant.

Definition 2 (Shipping Time). For a supplier s ∈ S, material m ∈ M , and plant
p ∈ P , δ(s,m, p) ∈ N is the shipping time (distance) required for shipping m from s
to p.

In addition to shipping times, it is common to schedule a delay between arrival and
consumption at a plant, in order to hedge against ordinary fluctuations of shipping
times or minor demand fluctuations. We call this the safety-stock delay.

Definition 3 (Safety-Stock Delay). The scheduled safety-stock delay is denoted by
σ(s,m, p) ∈ N. It defines the number of time steps that a shipment of materialm ∈ M
from supplier s ∈ S to plant p ∈ P should arrive prior to planned consumption.

Note that the safety-stock delay (a time span) entails the storage of a specific amount
of safety-stock volume (an amount) at the plants. The interdependency of the “time”
and “volume” notion, respectively, of safety stock is covered in Section 2.3.3. We
use the time span as the leading input since it is easier to interpret for managers and
because this allows a better-integrated modeling with the shipping times.

Within the time horizon T , it is assumed that supply orders have been placed to
exactly cover the plants’ demands.

Definition 4 (Order Quantities). For time point t ∈ T , supplier s ∈ S, material
m ∈ M , and plant p ∈ P , the order quantity of material m ordered from s by p that
is planned to be consumed at time t is denoted by oC(t, s,m, p). The volume that is
planned to arrive at time t is oA(t, s,m, p), and finally, the volume planned to depart
from supplier s at time t is oD(t, s,m, p).
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Note that this notation of order quantities reflects the time shift due to shipping
times and safety-stock delays, yielding the relation

oD(t, s,m, p) = oA(t + δ(s,m, p), s,m, p)

= oC
(
t + δ(s,m, p) + σ(s,m, p), s,m, p

)
.

We assume that the ordered quantities match the demands exactly and just-in-time
(after taking safety-stock delays into account), that is,

∑

s∈S
oC(t, s,m, p) = d(t,m, p) (1)

for all t ∈ T ,m ∈ M , and p ∈ P . In particular, this implies that shipments arrive con-
tinuously at each time step, as opposed to being shipped in larger, less frequent bulks.

2.2 Force-Majeure Scenarios

Most examples of force-majeure scenarios given in Section 1 have in common that they
lead to a certain part of planned arriving order quantities oA failing. We model these
scenarios by specifying the amount of supply material that is missing at the plant
at each time point. This allows to model all types of failures, including short-term
complete disruptions and long-term supply reductions. In the literature, supply chain
risks are often analyzed by using such a scenario-based approach (see for example the
risk model of Klibi and Martel [35]).

Definition 5 (Scenario). A (force-majeure) scenario is specified by a time “now”
t∗ ∈ T , together with failure volumes (named pre-mitigation shortage) at plants,

f (t, s,m, p) for t ∈ T ′, s ∈ S,m ∈ M, and p ∈ P, (2)

with 0 ≤ f ≤ oA. T ′ = [t∗, ..., th] ⊂ T is the scenario horizon, i.e., the “future”
subset of T for which decisions can yet be made.

The actual arriving volume is denoted by ôA = oA − f .

Example 6 Assume the production of supplier s∗ is interrupted during the inter-
val TF ⊂ T , e.g., due to a fire. Then, the failure volumes are given by
f (t, s,m, p) = oD(t − δ(s,m, p), s,m, p) if s = s∗ and t − δ(s,m, p) ∈ TF hold,
and are zero otherwise. In other words, the failed arrivals at the plants are exactly the
failed departures of the affected supplier, shifted by the respective shipping time. The
time t∗ could be set to the start of TF , but also earlier or later, depending on when the
company gets notified about the failure and can start to arrange for mitigations.

Remark 7 The framework presented in the sequel can easily be extended to also incor-
porate other types of scenarios, such as short-notice increase of demand (which would
make the actual demand a part of the scenario) or delay of shipments (inwhich case the
actually arriving volume exceeds the planned volume as soon as the shipment arrives).
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For the sake of a clear presentation, however, we restrict the formal discussion on the
most relevant case of failing supply.

2.3 Mitigation Options

In order to avoid throttling or even stopping of production at affected plants, several
means of mitigating supply failures are available: using safety stock, shipping supplier
inventory, and short-term additional production at suppliers. We model each of these
mitigation options separately, additionally to the corresponding business constraints
limiting their use in terms of time and volume.

It might take some time to set up a (previously inactive) supply relation in order to
shipmitigation volume across it, and some relationsmight (temporarily) not be feasible
at all for, e.g., political or regulatory reasons. The following concept of qualification
can represent both.

Definition 8 (Qualification). For t ∈ T , s ∈ S, m ∈ M , and p ∈ P , q(t, s,m, p) ∈
{0, 1} specifies whether supplier s is qualified to dispatch a shipment of material m to
plant p at time t .

Example 9 Assume that five time steps of paperwork are required to establish a supply
relation for material m from supplier s to plant p. Then, q(t, s,m, p) = 0 holds for
the time points t ∈ {t∗, ..., t∗ + 4} whereas q(t, s,m, p) = 1 for t ∈ {t∗ + 5, . . . }.

We assume that positive planned order quantities always imply a qualified supply
relation, i.e., it has to hold q(t, s,m, p) = 1 for the corresponding time point t ∈ T ,
supplier s ∈ S, material m ∈ M and plant p ∈ P .

When shipping mitigation volumes, it may make sense to use alternative means of
transport such as faster boats or air freight. This emergency shipping is usually more
expensive but faster.

Definition 10 (Emergency Shipping Time). For s ∈ S, m ∈ M , and p ∈ P , the
emergency shipping time for shipping materialm from supplier s to plant p is denoted
by δE(s,m, p) ∈ N.

2.3.1 Additional Production

If a supplier site has some remaining capacity, it might be able to quickly produce
additional material that can be shipped to affected plants in order to replace failed vol-
umes, subject to Definitions 8 and 10. Additionally, the production itself can consume
time, and the additional production is in general subject to several capacity constraints.

Definition 11 (Production Time). For supplier s ∈ S andmaterialm ∈ M , πT(s,m) ∈
N is the number of time steps it takes after a corresponding request was made, until s
can start delivery of additionally produced material m, due to production time.

Definition 12 (Capacity Constraints). A capacity constraint C consists of a supplier
sC ∈ S, a time window TC ⊆ T ′, a number of materials MC ⊆ M , and a limit
uC ∈ R

+, stating that the total additional production within the time window TC of
materials among MC at supplier sC must not exceed the amount uC .
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In the above definition, MC might represent a set of materials for which shared
equipment or raw material is used in production.

From the above, we see that plant p can receive additional production of materialm
from supplier s at time t using the emergency shipping time only if

q(t − δE(s,m, p), s,m, p) = 1

and t − δE(s,m, p) ≥ t∗ + πT(s,m)
(3)

are fulfilled. Additionally, all capacity constraints must be satisfied by the total addi-
tional production.

2.3.2 Inventory

The manufacturing company can contract suppliers to proactively keep inventory
of material at their sites. Such supplier-side inventory differs from safety stock in
two important aspects when it comes to mitigation: On the one hand, keeping the
inventory at the suppliers is a form of risk pooling, because it can be shipped to a
multitude of plants using already-established shipping lanes (we assume that plant-to-
plant shipping of safety stock is infeasible). On the other hand, safety stock is available
immediately in the event of a shortage, while inventories need to be dispatched and
shipped. In general, a robust supply chain will combine both approaches, keeping just
enough safety stock to guarantee a desired level of robustness while pooling as much
inventory as possible at supplier sites.

Definition 13 (Inventory). In a scenario, i(s,m) denotes the amount of (supplier-side)
inventory of material m ∈ M at supplier s ∈ S available at the start of the scenario
horizon t∗. In addition, for each s ∈ S and m ∈ M , there is an inventory dispatching
time iT(s,m), denoting that the inventory can be sent no earlier than t∗ + iT(s,m).

In conjunction with Definitions 8 and 10, we obtain that plant p can receive inven-
tory of material m from supplier s at time t only if the supply relation is qualified at
departure time and the needed departure is after the start of the failure, formally

q (t − δE(s,m, p), s,m, p) = 1

and t − δE(s,m, p) ≥ t∗ + iT(s,m),
(4)

and the total inventory of m shipped from s must not exceed the amount i(s,m).

2.3.3 Safety Stock

Due to safety-stock delay (Definition 2), a plant p generally has more material m on
hand than required for immediate usage, which is an opportunity for failuremitigation.
We assume the initial safety-stock level is given as an input and cannot be changed by
the optimizer. This is motivated by the fact that the mitigation can only be executed
when the failure already occurred. The short response time does not allow to organize
a plan to adjust the general safety-stock levels, also because of limited storage space.
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A direct optimization of safety stock and inventory levels to reduce shortage risks and
reduce inventory costs is outside of the scope of this paper.

Because the safety-stock volume depends on the demand, which in general is fluc-
tuating, the planned safety-stock volume fluctuates as well, i.e., there are scheduled
increases and decreases (by usage). Our model, however, should let only unsched-
uled safety-stock usage account for mitigation volume; hence, it needs to distinguish
between the two.

Let a time point t ∈ T ′, a plant p ∈ P , a material m ∈ M , and a supplier s ∈ S be
given. By

σV(t, s,m, p) (5)

we denote the (planned) safety-stock volume at plant p of materialm available at time
t , resulting from shipments from supplier s. We assume in this notation that the safety-
stock volume is measured beforematerial arrives and is consumed within time period
t , i.e., σV(t, s,m, p) does not include oA(t, s,m, p), but the amount σV(t, s,m, p)
can be consumed at time t .

The planned change of safety-stock volume from t to t+1 is the difference between
arriving and consumed volume:

σ�(t, s,m, p) = σV(t + 1, s,m, p) − σV(t, s,m, p)

= oA(t, s,m, p) − oC(t, s,m, p).
(6)

For fixed values of t , s, m and p, we split up σ� into its positive and negative part,

σ+
� = max{σ�, 0}

and σ−
� = max{−σ�, 0} (7)

such that σ� = σ+
� − σ−

� . These can be interpreted as planned safety-stock volume
increase (by additional arrival) or decrease (by consuming safety stock instead of
arrived volume), respectively. Note that at most, one of σ+

� and σ−
� is positive.

Rearranging Eqs. (6) and (7) yields

oA = (
oC − σ−

�

) + σ+
� =: oAC + σ+

� . (8)

We assume here that the safety stock is a (supplier-specific) First-In First-Out buffer
that receives the part σ+

� of incoming arrivals and emits the part σ−
� into the plant’s

consumption. The remaining part oAC of the arrival is immediately fed into the plant’s
consumption, bypassing the buffer. This model is visualized in Fig. 3.

Remark 14 We assume that, for technical reasons, a plant p cannot increase its safety-
stock volume of material m from supplier s at time t by more than σ+

� (t, s,m, p).
As a consequence, the volume oAC must be consumed immediately. Furthermore, in
case of failures, the safety stock can neither be replenished with materials from other
suppliers nor with emergency shipping from the same supplier.
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Fig. 3 The interplay of arrivals,
consumption, and planned
safety-stock volume changes.
Arrows indicate flows of
material within the plan from
arrival to consumption

The initial safety-stock volume is assumed to equal the planned consumption of
the following σ(s,m, p) time periods:

σV(t∗, s,m, p) =
σ(s,m,p)−1∑

i=0

oC(t∗ + i, s,m, p). (9)

In a failure situation with ôA ≤ oA, we assume that filling the safety stock takes
priority over immediate consumption, because that way, the flexibility is maximized.
Hence, the actually arriving part of σ+

� is defined as σ̂+
� = min{ôA, σ+

� }, and the
remaining actually arriving volume for immediate usage is ôAC = ôA − σ̂+

� , such that

ôA = ôAC + σ̂+
� (10)

holds, which parallels Eq. (8).

2.3.4 Mitigation Plans

The main task of this paper is to compute a mitigation plan for a specific scenario,
which is a detailed allocation of mitigation actions for compensating failures. We
formalize this in the following definition.

Definition 15 (Mitigation Plan). Let a supply chain (as stated in Section 2.1) and
a scenario (Definition 5) be given. A mitigation plan for the scenario is the triple
μ = (μπ , μi , μσ ), each being a function from T ′ × S × M × P to R, where

• μπ is the mitigation by additional production,
• μi the mitigation by supplier-inventory,
• μσ is the safety-stock usage.We splitμσ into the planned partμP

σ = max{μσ , σ−
� }

and the unplanned part μU
σ = μσ − μP

σ .

By Remark 14, ôAC is always consumed immediately, such that

μC = ôAC + μπ + μi + μσ (11)

gives the total consumed volume for a given mitigation plan; we speak of post-
mitigation shortage whenever this volume is smaller than the demand.

Definition 16 (Post-mitigation Shortage). For time t ∈ T ′, material m ∈ M , and
plant p ∈ P , the post-mitigation shortage is fμ(t,m, p) = d(t,m, p) − ∑

s∈S
μC(t, s,m, p).

123

54   Page 12 of 35 Operations Research Forum (2024) 5:54



The actual safety-stock volume at time t ≥ t∗ is

σ̂V(t, s,m, p) = σV(t∗, s,m, p) +
t−1∑

τ=t∗

(
σ̂+

� (τ, s,m, p) − μσ (τ, s,m, p)
)
. (12)

In our optimizationproblem,we impose someconstraints on themitigation to ensure
it is feasible to execute in practice. These requirements are given in the following
definition.

Definition 17 (Valid Mitigation Plan). A mitigation plan μ = (μπ , μi , μσ ) is called
valid if it satisfies the following conditions.

1. The inventory arrivals μi are compatible with the supply relation qualification
requirement for inventory Eq. (4) and do not exceed available inventory: for sup-
plier s ∈ S and material m ∈ M , the inequality

∑
t,p μi (t, s,m, p) ≤ i(s,m)

holds.
2. The additional production is compatible with the supply relation qualification

requirement for additional production Eq. (3) and adheres to the capacity con-
straints: for each capacity constraint C in the scenario:

∑

m∈MC

∑

t∈TC

∑

p∈P

(
μπ(t − δE(sC ,m, p), sC ,m, p)

)
≤ uC . (13)

3. The safety-stock volume σ̂V as defined in Eq. (12) is (pointwise) nonnegative.
4. The post-mitigation shortage is nonnegative, i.e., mitigation must not overcom-

pensate failures.

2.4 Optimization Objectives

Our goal is to compute Pareto-optimal mitigation plans, subject to a subset or a com-
bination of the following objectives. By including multiple objective functions, our
model allows a decision-maker to choose the most relevant criteria depending on the
situation of the company and the characteristics of themarket. The available objectives
in the model are chosen to represent the different main criteria supply chain managers
use to evaluate a mitigation plan.

This subsection informally discusses several relevant objective functions. A formal
treatment based on the network representation of a scenario in Section 3.8 explains
how these objectives can be included in the optimization model.

2.4.1 Minimize Loss Value

The main objective is to minimize the value loss caused by post-mitigation shortage.
We achieve that by minimizing a weighted sum of post-mitigation shortage values. A
reasonable weight could be the average profit gained by selling the end products pro-
duced from one unit of the failing material in the market targeted by the affected plant.

123

Page 13 of 35    54Operations Research Forum (2024) 5:54



Note that, for the above approach to be reasonable, we require that each end product
has only one raw material m ∈ M as an ingredient. In our example, this requirement
would be violated in the case that the candy company produces a certain type of
gummy bears using a color mixture of two different pigments A and B, both of the
same quantity. Then, a simultaneous shortage of both A and B has the same impact
on the plant’s production as the shortage of only one of the two, but a weighted-sum
objective function would count that failure twice, thus overstating the loss. In Section
4.2, we show how to properly handle multiple ingredients for end products.

2.4.2 Maximize Shortage Delay

The more time the company has to react to a force-majeure incident, the more likely
it is that mitigation options beyond the scope of the model described here can be
employed (shifting production plans; increasing sales prices to reduce demand…).
According to this criterion, an optimal mitigation plan maximizes the time span until
the first post-mitigation shortage occurs.

2.4.3 Minimize Mitigation Effort and Cost

We assume that organizing additional production is more complex and expensive than
shipping inventory, which in turn comes at a higher expense than using safety stock
that already is at the plant. Hence, an optimal mitigation plan should use the least
complex mitigation options possible and in addition use the more expensive options
as late as possible (for the same reasons as detailed in Section 2.4.2).

Moreover, a mitigation plan’s complexity can be considered increasing in the num-
ber of involved suppliers. Consequently, that number should be as small as possible.

3 Computation of Optimal Mitigation Plans

In this section, we show how an optimal mitigation plan, as described in the previous
section, can be computed. To that end, we describe, for a given scenario (Definition 5),
a time-expanded flow network N = (G, l, u, emax, emin), from which we then derive
in Section 3.6 amulti-objective linear program that delivers an optimalmitigation plan.

It should be noted that this “detour” is not strictly necessary: from the definition
of a valid mitigation plan in Definition 17, a linear programming formulation can be
derived without the intermediate network. However, the network model is much easier
to create, makes the implementation less error-prone because it reduces the need of
indexing, and also simplifies a consistent augmentation of the model, some examples
of which are given in Section 4.

After introducing general graph and network-flow notation, the following sections
describe the different types of vertices and arcs that together form the complete net-
work. These components represent the different entities in the supply network such
as suppliers, plants and shipping lanes and model their relevant properties. Unless
otherwise mentioned, we assume throughout this sections that t , s, m and p denote
elements from T ′, S, M , and P , respectively.
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3.1 Graph and Network Flow Notation

We represent the flow of materials in the supply network as a flow in a mathematical
graph. A flow network consists of a directed graph G = (V , A) with A ⊆ V × V
together with lower and upper arc capacity bounds l : A → R

+ and u : A → R
+

∪ {∞} as well as vertex excess bounds emin, emax : V → R ∪ {−∞,∞}. Let
δ+(v) = {(s, t) ∈ A : s = v} denote the set of outgoing arcs of a vertex v ∈ V
and δ−(v) = {(s, t) ∈ A : t = v} the sets of arcs going into v.

Definition 18 A feasible flow is a map ϕ : A → R
+ such that

1. each vertex v ∈ V fulfills

emin(v) ≤ eϕ(v) ≤ emax(v), (14)

where eϕ(v) = ∑
a∈δ−(v) ϕ(a) − ∑

a∈δ+(v) ϕ(a) is the actual excess at v;
2. for each arc a ∈ A it holds l(a) ≤ ϕ(a) ≤ u(a).

Note that, in textbooks on network flows, one usually requires emin ≡ emax =: e
and partitions the vertices into sinks (e > 0), sources (e < 0) and flow-conserving
vertices (e = 0). While a network in the above, more general sense can be converted
into a classical one by introducing auxiliary vertices and arcs, we find it more natural
to think of variable excess vertices in the first place.

In the following, we assume l(a) = 0 and u(a) = ∞ for all a ∈ A, unless otherwise
stated.

3.2 ConsumptionVertices

For each time point t , material m, and plant p, the network N contains a consumption
vertex vCt,m,p, with variable excess

emin(vCt,m,p) = 0 and emax(vCt,m,p) = d(t,m, p). (15)

A consumption vertex is a sink that absorbs at most the nominal demand; if it receives
less, there is a positive post-mitigation shortage.

3.3 Arrival and Safety-Stock Vertices

In this section, we introduce the part of the network that adds the actually arriving
volumes, ôA, which are split into the actually arriving volume for immediate usage
ôAC and the actually arriving volume for safety stock σ̂+

� as in Eq.10.
Note that the actually arriving volumes “encode” are the failure scenario (see Def-

inition 5). Hence, this is the only part of the network that depends on the scenario.
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3.3.1 Arrivals for Immediate Usage

For t, s,m, p as above, the flow network contains the arrival vertex vACt,s,m,p with fixed
excess emin = emax = −ôAC(t, s,m, p) and an arc to vCt,m,p. This ensures that the
part ôAC of the total arriving volume is used immediately to fulfill the plant’s demand,
as required by Remark 14.

Note that the above forces any feasible flow to be exactly ôAC(t, s,m, p) on the
arc (vACt,s,m,p, v

C
t,m,p), and one could hence omit that vertex and edge instead reduce

the demand of vCt,m,p by ôAC(t, s,m, p). However, some of the extensions outlined in
Section 4 add a degree of freedom in how the arriving volume is used at p. Therefore,
we include this part of the network in our general model.

3.3.2 Safety Stock

Safety-stock vertices model the capacity for safety-stock usage. The flow on the cor-
responding arcs tells decision-makers how much safety stock should be used. For
t, s,m, p as above, add a safety-stock vertex vσ

t,s,m,p with emin = −σ̂+
� (t, s,m, p)

and emax = 0. Then, add two parallel arcs from vσ
t,s,m,p to vCt,m,p,

• aσ−
t,s,m,p with u(aσ−

t,s,m,p) = σ−
� (t, s,m, p) for planned safety-stock usage μP

σ ,
• aσ

t,s,m,p for unplanned safety-stock usage μU
σ .

This construction allows to distinguish between planned (flow on aσ−) and unplanned
(flow on aσ ) safety-stock consumption, respectively. In particular, it allows to impose
penalty costs on the latter only; see Section 3.8.3.

Furthermore, because safety stock is allowed to be kept across periods, we add
holding arcs aσ -hold

t,s,m,p from vσ
t,s,m,p to vσ

t+1,s,m,p if t + 1 ∈ T ′.
Finally, the initial safety-stock volume at t∗ has to be considered. To that end, for

each s ∈ S, m ∈ M , and p ∈ P , the network contains an initial safety-stock vertex
vσ -init
s,m,p with variable excess emin = −σV(t∗, s,m, p) and emax = 0 and an arc to

vσ
t∗,s,m,p .

3.4 Additional ProductionVertices

The use of additional production from a supplier is represented by the flow from
production vertices to the plants. For time t , supplier s, and material m, when t ≥ t∗
+ πT(s,m), we add to V a production vertex vπ

t,s,m with emin = −∞ and emax = 0.
For each t ∈ T ′ and p ∈ P such that q(t, s,m, p) = 1 and t ≥ t∗ + πT(s,m)

hold, we add an arc aπ
t ′,s,m,p = (vπ

t,s,m, vCt ′,m,p) with t
′ = t + δE(s,m, p), that carries

potential mitigation production from s to p. Note that capacity constraints are handled
separately below (see Section 3.6).

3.5 Inventory Vertices

The limits to use inventory are encoded in inventory vertices and their outgoing arcs.
For each supplier s and material m, there is an inventory vertex vis,m in V with emin
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Fig. 4 Sketch of the flow network for one single plant p and material m showing the progression of time
from left to right. The incoming edges (and their source vertices) are shown for a single supplier only.
Supply vertices (nonpositive excess) are marked with a −, demand nodes (nonnegative excess) with a +

= −i(s,m) and emax = 0. For each time point t ∈ T ′ and plant p ∈ P such that
q(t − δE(s,m, p), s,m, p) = 1 and t − δE(s,m, p) ≥ t∗ + iT(s,m) are fulfilled, we
include the arc ait,s,m,p = (vis,m, vCt,m,p) that delivers potential mitigation inventory
from s to p in our set of arcs A.

See Fig. 4 for a sketch of the network’s structure.

3.6 The Linear Program

From the network N = (G = (V , A), l, u, emin, emax) that was constructed in the
previous sections, one can derive an LP by the following procedure:

• For each arc a ∈ A, introduce a variable xa representing the flow ϕ(a)with bounds
l(a) ≤ xa ≤ u(a).

• For v ∈ V , add an excess variable xv to the LP together with constraints

xv =
∑

a∈δ−(v)

xa −
∑

a∈δ+(v)

xa, (16a)

emin(v) ≤ xv ≤ emax(v), (16b)

which ensures that the flow-conservation condition Eq. (14) holds.

The capacity constraints from Definition 12 need to be treated separately because they
are not inherently represented in the flow network. Obviously, for each such constraint,
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the condition Eq. (13) translates into the inequalities

∑

m∈MC

∑

t∈TC

∑

a∈δ+
(
vπ
t,sC ,m

)
ϕ(a) ≤ uC on the flow values, or (17a)

∑

m∈MC

∑

t∈TC

∑

a∈δ+
(
vπ
t,sC ,m

)
xa ≤ uC on the respective LP variables. (17b)

3.7 Obtaining theMitigation Plan

Once have computed an optimal flow in the network, we need to create the corre-
sponding mitigation plan that can be used to reduce shortages as much as possible.
The following definitions explain this conversion.

Definition 19 Let ϕ be a feasible flow in N . Then, we define the mitigation plan
induced by ϕ as follows: For t, s,m, p as above, we set

1. μπ(t, s,m, p) = ϕ(aπ
t,s,m,p),

2. μi (t, s,m, p) = ϕ(ait,s,m,p), and
3. μσ (t, s,m, p) = μP

σ (t, s,m, p)+μU
σ (t, s,m, p)with unplanned partμU

σ (t, s,m,

p) = ϕ(aσ
t,s,m,p) and planned part μP

σ (t, s,m, p) = ϕ(aσ−
t,s,m,p).

Proposition 20 If ϕ is a feasible flow in N that also satisfies Eq. (17a), the mitigation
plan μ induced by ϕ is valid. Conversely, for every valid mitigation plan μ, there is a
feasible flow in N inducing it that satisfies Eq. (17a).

Proof Let ϕ be a feasible flow in N that satisfies Eq. (17a) andμ the inducedmitigation
plan. Item 1 and the first condition of Item 2 of Definition 17 are obviously fulfilled by
construction, because the graph contains exactly one dedicated edge for each entry of
μπ(t, s,m, p) andμi (t, s,m, p) for which Eqs. (3) and (4), respectively, are satisfied.
The second condition of Item 2, namely Eq. (13), is equivalent to Eq. (17a) and fulfilled
by assumption.

Also, Item 4 is satisfied by the excess bounds of the consumption vertices Eq. (15)
and the fact that the part ôAC of the arriving flow is necessarily consumed, asmentioned
in Section 3.3.1.

As for the safety stock (Item 3), observe that the flow on a holding arc aσ -hold
t,s,m,p repre-

sents exactly the available safety stock at time t + 1. Therefore, the flow-conservation
constraint Eq. (14) of a safety-stock vertex vσ

t,s,m,p reads

μP
σ (t, s,m, p) + μU

σ (t, s,m, p) + σ̂V(t + 1, s,m, p)

= σ̂V(t, s,m, p) + σ̂+
� (t, s,m, p),

which by recursion and the construction of vσ -init equals Eq. (12). Because
l(aσ -hold

t,s,m,p) = 0 holds, this implies a nonnegative safety-stock volume, i.e., Item 3
of Definition 17.

The converse which is omitted here for brevity follows exactly the same arguments.

�
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3.8 Objectives

In this section, we show how to minimize the objectives from Section 2.4 with the LP
described above. The choice of the suitable objective functions allows decision-makers
to obtain a mitigation plan that follows their most relevant business needs. In practice,
decision-makers will choose a subset of these objectives which are either ranked, lead-
ing to a lexicographic optimization problem, or left uncomparable, in which case there
is a Pareto set of non-dominated solutions. For the theory of multi-objective optimiza-
tion and solution techniques, we refer to Ehrgott [36]. Note that recent MIP solvers
such as Gurobi [37] offer native support for weighted and lexicographic optimization
with multiple objectives.

3.8.1 Minimize Lost Value

By the design of the network, a feasible flow ϕ fulfills the relation

fμ(t,m, p) = d(t,m, p) − eϕ(vCt,m,p),

i.e., the post-mitigation shortage is the gap between demand and flow into a consump-
tion vertex. Thus, the total loss (as defined in Section 2.4.1) with weights λ(m, p) ≥ 0
for the loss of material m at plant p is given by

∑

t,m,p

(
λ(m, p)(dt,m,p − xvCt,m,p

)
)

(18)

which is a suitable linear expression for minimization in the LP.

3.8.2 Maximize Shortage Delay

Direct modeling of the shortage delay (Section 2.4.2) requires the introduction of the
indicator variables x f

t ∈ {0, 1} for t ∈ T ′ describing whether a shortage is occurring
at time t with the meaning x f

t > 0 ⇔ fμ(t,m, p) > 0 for any m, p. To that end, add
a constraint

∑

m,p

fμ(t,m, p) ≤ Mtx
f
t for all t ∈ T ,

where Mt = ∑
m,p d(t,m, p). This constraint forces fμ(t,m, p) = 0 whenever

x f
t = 0. Further, introduce an integer variable xSD giving the shortage delay. Together
with the additional constraints

xSD ≤ t − t∗ + (1 − x f
t )|T ′| for t ∈ T ′,

the objective
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max xSD (19)

will maximize the shortage delay.
In practice, however, one will rarely use such an objective. First, the introduction

of multiple integer variables turns the problem into a mixed-integer program (MIP),
which in general is computationally tractable only for small instances. Furthermore,
the objective value Eq. (19) is independent of all shortages occurring after the earliest.
Instead, our approach is to penalize early shortages in the course of minimizing loss
value as described in Section 3.8.1. This can be accomplished by adding a penalty
factor ε(t − t∗) with a small constant ε > 0 to each term in Eq. (18).

3.8.3 Mitigation Cost

Using the flow-induced mitigation expressions from Definition 19, it is straightfor-
ward to obtain linear functionals for total (unplanned) safety-stock μU

σ , additional
production μπ , or inventory usage μi that can be minimized with any desired trade-
off weights or lexicographic hierarchy.

For the case that a decision-maker is able to attach actual cost figures to each miti-
gation option, they can also be combined with Eq. (18) into a single cost-minimizing
objective.

3.8.4 Number of Suppliers

Minimizing the number of suppliers involved in mitigation requires similar modeling
as maximizing the shortage delay in Section 3.8.2: for each supplier s ∈ S, introduce
a binary variable xSs ∈ {0, 1} which is 1 if and only if s takes part in mitigation. Then,
add a constraint

∑

t,m,p

(μi (t, s,m, p) + μπ(t, s,m, p)) ≤ MxSs

for each supplier, where M = ∑
t,s,m,p f (t, s,m, p) is an upper bound for the miti-

gation. Now, the objective min
∑

s∈S xSs will minimize the number of active suppliers.

3.8.5 Well-Shaped Mitigation Plans

Depending on the input data, the optimal solution with respect to the abovementioned
objective functions might not be unique, as shown in the following example.

Example 21 Let a scenario consist of a single plant p, a single material m of which
p requires 1 unit a day, and a single supplier s with shipping time δ(s,m, p) = δE
(s,m, p) = 2 and order quantities oA(s,m, p, t) = 1 for all time points t . The supplier
has inventory i(s,m) = 3 with iT(s,m) = 2.

Assume production at s fails from t∗ until t∗ + 9 with a safety stock of σ(s,m, p)
= 4. Then, f (t, s,m, p) = 1 for t ∈ [t∗+2, t∗+11], and the earliest inventory arrival
from s is t∗ + 4. If we choose to lexicographically minimize as primary objective the
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total loss (with loss factor λ(m, p) = 1), as a secondary objective the shortage delay,
andwith lower priority safety-stock usage and inventory usage, then all of the following
mitigation plans are optimal:

2 3 4 5 6 7 8 9 10 11
s s i i i s s f f f
s s s s i i i f f f
s s i s i s i f f f

where the first line denotes the offset from t∗ and each row corresponds to a mitigation
plan, where the symbols s, i , and f stand for safety stock, inventory, and failure,
respectively.

Multiple optimal solutions are generally undesirable because they lead to unpre-
dictable results. Moreover, in practice, one favors mitigation plans in which the
higher-prioritized mitigation options are used earlier. By default, we consider safety
stock to have higher priority than inventory. In the above example, this would mean
that the second plan in the table is most preferable.

In the following, we develop a single objective function that combines the prioriti-
zation of mitigation options with respect to both volume and time, i.e., prefers to use
higher-prioritized mitigation options both more and earlier than the ones with lower
priority.

It assumes that the post-mitigation shortage has already been fixed by a higher-
ranked lexicographic objective, such that only the distribution of mitigation options is
yet to be decided on.

Let
 = (ω0, ..., ω|
|−1) ∈ {i, σ, π}|
| be anorderingof (a subset of) themitigation
options, declaring their priority (where ω0 has the highest priority). For example, if
all three mitigation options are available and ranked as safety stock(σ ), additional
production(π ), and inventory (i), then 
 = (σ, π, i) with |
| = 3.

The mitigation-prioritizing objective is the minimization of

c
(μ) =
|
|−1∑

i=0

∑

t∈T ′

∑

s∈S

∑

m∈M

∑

p∈P

ξi,tμωi (t, s,m, p) (20)

where ξi,t = i |
||T ′| + (|
| − i)(t − t∗).
While there are edge cases in which that objective does not strictly minimize the

amounts of mitigation volumes in lexicographic order of priorities, we can prove the
following that guarantees that there are at least no “obvious” ways to improve the
optimal solution.

Lemma 22 Let μ = (μπ , μi , μσ ) be a mitigation plan that minimizes Eq. (20). Then:

1. It is not possible to replace a single mitigation entry with a higher-prioritized mit-
igation type, without making additional changes to the mitigation plan. Formally,
there are no t, s,m, p, x > 0 and ωi , ω j ∈ 
 with i < j such that the mitigation
plan μ̄ that equals μ, except that
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μ̄ωi (t, s,m, p) = μωi (t, s,m, p) + x

and μ̄ω j (t, s,m, p) = μω j (t, s,m, p) − x

are different, is valid.
2. It is not possible to swap a single mitigation entry with an earlier one that has

the same loss factor but lower priority, without making additional changes to the
plan. Formally, there are no t < t ′, s, s′ ∈ S, m,m′ ∈ M, p, p′ ∈ P such that
λ(m, p) = λ(m′, p′), x > 0 and ωi , ω j ∈ 
 with i < j such that the mitigation
plan μ̄ that equals μ, except that

μ̄ωi (t, s,m, p) = μωi (t, s,m, p) + x,

μ̄ω j (t, s,m, p) = μω j (t, s,m, p) − x,

μ̄ωi (t
′, s′,m′, p′) = μωi (t

′, s′,m′, p′) − x,

and μ̄ω j (t
′, s′,m′, p′) = μω j (t

′, s′,m′, p′) + x

are different, is valid.

Proof For the first item, observe that, by Eq. (20),

c
(μ̄) − c
(μ) = x(ξi,t − ξ j,t ) = x( j − i)(t − t∗ − |
||T ′|),

where we have inserted the definition of ξi,t . By the assumptions, x and j − i are
positive, and |
| · |T ′| ≥ |T ′| > t − t∗, such that the expression is negative. In other
words, μ̄ would improve on the objective value of μ, which is impossible by the
optimality assumption of μ.

As for the second part, we can similarly compute

c
(μ̄) − c
(μ) = x(ξi,t − ξ j,t + ξ j,t ′ − ξi,t ′) = x(t ′ − t)(i − j),

which is negative by the assumptions; hence, the contradiction follows like for
part one. 
�

3.8.6 Avoiding Supplier Switches

Similarly to the problem addressed in the previous section, another unwanted effect
may occur if several suppliers have the same emergency distance δE to a plant. In that
case, there might be a large number of patterns of alternating inventory or additional
supply from several suppliers, all of which are optimal with respect to the objec-
tives discussed so far. In practice, however, unnecessary switches between suppliers
are highly dissatisfactory. This issue can be solved by adding another lexicographic
objective. To that end, we first compute, for each plant p and material m, a determin-
istic supplier ranking rp : S → N that assigns a different priority to each supplier.
The ranking should reflect the “probability” that a supplier will be able to mitigate the
plant; as a simple yet useful heuristic, we order the suppliers by δE(s,m, p) and break
ties randomly.
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Then, the minimization of

∑

t∈T ′

∑

s∈S

∑

m∈M

∑

p∈P

rp(s)(μπ(t, s,m, p) + μi (t, s,m, p))

removes avoidable supplier switches from the optimal solution.

4 Extensions

We list some extensions of our model in the following, that can be added on a case-
by-case basis depending on the application.

4.1 Interchangeability

Assume that, for some materialsm,m′ ∈ M , it is possible to replace one unit ofm′ by
rm,m′ units ofm. For example, bothm and m′ could be pigments of the same color but
different efficiency, such that rm,m′ units of m can color the same amount of material
as 1 unit of m′. Note that interchangeability is not necessarily symmetric: it could be
possible to replace a lower-quality material by its higher-quality counterpart, but not
vice versa.

In the flow network, this can be accomplished by adding, for each arc (v, vCs,m,p)

of the original network where the vertex v is any predecessor of vCs,m,p , an additional
arc a = (v, vCs,m′,p). If rm,m′ �= 1 holds for any interchangeable pair (m,m′), then a
is assigned a gain factor of γ (a) = 1/rm,m′ and the problem turns into a generalized
flow problem (see Ahuja et al. [38]). The only adjustment then required to handle gain
factors can by achieved by modifying the excess constraint, i.e., replacing Eqs. (16a)
and (16b) by

xv =
∑

a∈δ−(v)

γ (a)xa −
∑

a∈δ+(v)

xa .

4.2 Multiple End Products and Recipes

Assume the company produces a set of end products E . Let r : E × M → R
+ be the

recipe function i.e., the required units of material m ∈ M for producing one unit of
the end product e ∈ E is given by r(e,m). We now show how to include end products
in the model, assuming that their production is possible only when all ingredients are
at hand in the necessary quantities and that each end product has an individual loss
factor when it comes to minimizing lost value.

First, we replace M by E in the definition of demand (Definition 1), i.e., d(t, e, p)
gives the demand for end product e ∈ E at plant p for time t .We also replace condition
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Eq. (1) by the following:

for t ∈ T ,m ∈ M, p ∈ P :
∑

s∈S
oC(t,m, p) =

∑

e∈E
d(t, e, p) · r(e,m).

In the network model, we introduce a new type of vertices.

Definition 23 (Multiplication Vertices). Amultiplication vertex is a vertex v, together
with a function dv : δ−(v) → R

+.

Let

N =
(
G = (V ∪ V M , A), l, u, emin, emax, {dv}v∈V M

)

be a flownetwork,where V M are themultiplication vertices. For a flowϕ to be feasible,
we require in addition to Definition 18 for v ∈ V M that

∑

a′∈δ+(v)

ϕ(a′) = dv(a) · ϕ(a) for all a ∈ δ−(v),

i.e., the total out-flow of v is a scalar multiple of the flow on every single in-arc of v.
Now, we add an end-product-specific layer below the consumption vertices in the

network model described in Section 3. For t ∈ T ′ and p ∈ P:

• For each m ∈ M , set the consumption vertices’ excess to zero: l(vCt,m,p) = 0.
• For e ∈ E , add an end product demand vertex vdt,p,e with l(v

d
t,p,e) = −d(t, e, p)

and u(vdt,p,e) = 0.
• For e ∈ E , add a multiplication recipe vertex vR

t,p,e ∈ V M and arcs aR
t,m,p,e

= (vCt,m,p, v
d
t,p,e) for m ∈ M , with dv(aR

t,m,p,e) = r(e,m).

This part of the network is depicted in Fig. 5. It can be easily verified that a flow in the
network is feasible if and only if all ingredients for the end products are available in
the required amounts.

Fig. 5 The end product layer of
the network for three materials
and two end products at a single
time step t and plant p. The
multiplication vertices are drawn
as squares
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4.3 Multi-echelon Supply Chains

A multi-echelon supply chain is a supply chain in which there exists more than one
level of pre-products. In such a setting, the first-tier suppliers S1 = S aremanufacturers
themselves, receiving raw materials from a set of second-tier suppliers S2. Including
these in the analysis is important for two reasons: Firstly, ramp-up time and capacity
restrictions of second-tier suppliers can lead to a more detailed model of when direct
suppliers can deliver how much of additional production, replacing the simplified
parameters in Section 2.3.1. Secondly, it is valuable to study the scenario of a failing
second-tier supplier; especially if that second-tier supplier ships to multiple direct
suppliers, such an analysis can reveal hidden dependencies in the supply chain.

Without going into details, it is obvious that our network-based model can be
extended to a multi-echelon case by “stacking” a similar-shaped network on top of
the additional production vertices. Depending on the visibility and data quality of the
second level, it might however make sense to reduce the model detail, e.g., by omitting
the safety-stock part in the second level.

5 Numerical Experiments

In this section, we consider some case studies to illustrate the model described in
Section 3. To that end, we generate random supply chains, using the open source
scgen supply chain generator developed by one of the authors [39].

5.1 Used Software

We implemented the optimization model and the corresponding data processing and
visualization in the programming language C#, Version 9 [40]. For the corresponding
user interface, the frameworkWinForms was used. We extended our software with the
custom functionality to automatically run the experiments described below and output
the results in a comma-separated-value format. The results were then visualized using
TikZ/PGF within Latex.

5.2 Experiment Set-up

The parameters of random supply chain generation are carefully chosen such as to
obtain non-trivial scenarios. Specifically, the goal is to have, with high probability,
both positive post-mitigation shortage and positive volumes for each of the mitigation
options from Section 2.3. That way, the scenarios are intuitively neither too easy nor
too hard.

The supply chain generator is parameterized with the total number of sites N
= |S ∪ P|, the supplier-to-plant ratio rSP = |S|/|P|, the average degree of plant
vertices dP and three ratio parameters safety-stock ratio rss ≥ 0, capacity ratio rcap,
and inventory ratio rinv which are explained below. For simplicity, we do not consider
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any of the extensions from Section 4; in particular, there is no material interchange-
ability, and hence, it suffices to consider a single material, i.e., M = {m}.

For the resulting values of |S| and |P|, we generate random order quantities for a
horizon T = {0, ..., 11} of 12 months as follows. For each plant p ∈ P , a demand
d(p) is sampled uniformly from [1000, 5000] and then assigned to each month:
d(t,m, p) = d(p) for all t ∈ T . On average, thus, d(t,m, p) equals 3000. Next,
each potential supply relation (s, p) ∈ S × P is set active with probability dP/|S|,
such that each plant is supplied from dP suppliers on average. Separately for each
plant p and time step t , the demand d(t,m, p) is distributed among the active suppli-
ers according to weights ws,p sampled uniformly from (0, 1]:

oA(t, s,m, p) = ws,pd(t,m, p)
∑

(s,p) active ws,p
.

Shipping times are uniformly sampled between 2 and 30 days, leading to an average
of 16 days. The safety-stock delay is then sampled uniformly from {0, ..., �32rss�} such
that it equals rss times the shipping time on average.

Based on the random supply chain model described above, we next generate force-
majeure scenarios as follows. First, the time discretization is refined to a day-based
scale (assuming each month has 30 days). We assume an arbitrary single supplier
ŝ ∈ S fails to ship for 30 days during the sixth month of the horizon; this avoids the
influence of boundary effects. Note that the size of the relevant scenario horizon is
therefore bounded by 30 + 30 · (1 + rss), i.e., the failure period plus the maximum
delay due to shipping and safety stock.

Based on the above construction, the total failure volume caused by the failing
supplier amounts to F = 3000/rSP . Each non-failing supplier s ∈ S \ {ŝ} is assigned
inventory i(s,m) sampled uniformly from [0, 2rinvF/(|S| − 1)], such that the total
available inventory equals rinvF on average. Likewise, for each non-failing supplier,
we constrain the additional production on the scenario horizon to a random value taken
uniformly from [0, 2rcapF/(|S| − 1)].

Finally, for all suppliers s ∈ S, we set the production time πT(s,m) = 10 and
inventory dispatching time iT(s,m) = 1. Qualifications q(t, s,m, p) are configured
in such a way that inactive relations can be used after 4 days (cf. Example 9), and the
emergency shipping time is set to δE(s,m, p) = min{δ(s,m, p), 10} for all s ∈ S and
p ∈ P .

The resulting LP is optimized with respect to three objective functions, using
Gurobi’s built-in support for lexicographic optimization: with highest priority, the
total loss is minimized, where the loss factor is λ(m, p) = 1 for all plants p ∈ P and
materials m ∈ M , and early shortages are penalized as described at the end of Sec-
tion 3.8.2. Then, we prioritize mitigation types in the order of increasing complexity
safety stock, inventory, and additional production, using the objective function from
Section 3.8.5. Finally, supplier switches are penalized by the objective function given
in Section 3.8.6.

For our experiments, the parameters are set as |N | = 90, rSP = 1/2, dP = 5,
rcap = 0.3, rinv = 0.3, and rss = 0.1.
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Fig. 6 Optimal mitigation plan for an example force-majeur scenario with a single supplier failing to deliver
for 30 days. The plot contains the total amount of mitigation on each day aggregated over all affected plants

5.3 Discussion of Experiments

An example mitigation plan is shown in Fig. 6. The figure shows the total amount of
mitigation safety stock, inventory usage, additional production, and post-mitigation
shortage for each day after the first delivery failure.

Because the x-axis of the plot is givenwith respect to arrival times, there is no effect
in the first few days, corresponding to the minimum shipping time from the failing
supplier to a plant it supplies. Different shipping times between the failing supplier
and the affected plants lead to a characteristic hill-like shape of the pre-mitigation
shortage, which is the sum of all mitigation and post-mitigation shortages.

Furthermore, Fig. 6 shows that there are in general two reasons for post-mitigation
shortage to occur: First, on days 11–14, some plants ran out of safety stock before
supplier-side inventory could arrive from the closest supplier. To avoid such, one needs
to increase safety-stock targets and/or decrease set-up and (emergency) shipping times
for remote mitigations.

Secondly, starting from day 36, the global inventory and production capacity have
been used up; this effect is independent of lead times and can be avoided only by
increasing inventories and production capacities.

In order to analyze structural effects, we now consider average mitigation plans
when running 100 scenarios using different random supply chains based on the above
parameters. The results are shown in Fig. 7a,where the average pre-mitigation shortage
has been normalized to 1 (or 0, for the time periods inwhich no pre-mitigation shortage
occurred in any random sample).

Figure7a exhibits a peculiar spike in safety-stock usage around day 30. This is due
to the fact that order volumes (and hence also safety-stock levels) are changed on a
monthly basis in our random supply chain model. Therefore, on average, half of the
plants increase their safety-stock levels at the turn of the month (cf. Section 2.3.3),
leading to a potential re-fill of previously empty stocks.
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Fig. 7 Average mitigation plans for 100 random supply chains with different mitigation configurations,
showing the relative usage of the different mitigation options inventory, safety stock, and additional pro-
duction

Figures7b to d show the effect of disabling production, inventory, and safety stock,
respectively, as mitigation options. Because production has the lowest priority in our
setting, removing that option does not influence the general shape, as can be seen from
Fig. 7b. Without supplier-side inventories, Fig. 7c shows that additional production
tends to arrive earlier; however, due to production ramp-up times, a larger early pre-
mitigation shortage cannot be avoided. Lastly, Fig. 7d shows the situation without any
safety stocks. Here, we observe post-mitigation immediately with the first missing
shipment.

Note the double spikes in both the inventory and production mitigation curves,
which amount to the emergency shipping time plus inventory dispatching (or produc-
tion ramp-up) time for mitigation, both with and without inactive link set-up time,
depending on whether the respective supplier is active or not for the affected plant.

123

54   Page 28 of 35 Operations Research Forum (2024) 5:54



Fig. 8 Average LP solution time for a random supply chain with N sites in total, for three different ratios
of the number of suppliers and the number of plants |S|/|P| = {1:1, 2:1, 1:2}

5.4 Performance

In this section, we give some performance results of the model described in Section
3, when solved with the commercial Gurobi LP solver (version 8.1) [37]. For this, we
generate random supply chains of varying sizes in a similar way as described above.

Figure8 shows the average LP running time depending on the size of the supply
chain. The experiments were conducted on a Gurobi compute server installation that
is installed on a virtual machine equipped with 7 GB RAM and a 4-core Intel Xeon
CPU at 3.00 GHz. As can be seen from the figure, the algorithm performs very well,
with a running time remaining in the order of 1 s even for large supply chains with
100 sites. This allows to quickly evaluate multiple scenarios, even in an interactive
application. Not surprisingly, increasing the number of plants has the greatest effect
on running time, because it is the plant layer of the network that contains the most
vertices and arcs.
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Fig. 9 Schematic workflow for
increasing the resilience of a
supply chain by integrated
planning and modeling

6 The Integrated PlanningWorkflow

Apart from the usage of a mitigation plan during an actual failure scenario or for busi-
ness continuity planning, our approach can also be used for improving supply chain
planning to reduce risks. The survey by Heckmann et al. [41] describes alternative
approaches for measuring and optimizing risks in supply chains. Our model forms
the basis of an integrated planning process that can be used to improve the resilience
of supply chains. A customized software tool implementing the model supports this
process with optimization and analysis capabilities. This software is used by a global
producer of fast-moving consumer goods. Figure9 illustrates the corresponding work-
flow.

The risk assessment is supported by tools that use our mitigation model to evaluate
the severity of various scenarios. For this, a list of disruption scenarios is defined. Our
model allows to quickly compute optimal mitigation plans in each of these scenarios.
This enables the supply chain planner to directly distinguish between scenarios with
sufficient available mitigation and un-mitigable disruptions. Structural problems in the
supply chain can be identified efficiently in this way. Since the impact of a disruption
can be also analyzed on a local basis, proper enhancements of the mitigation options
canbe found, for example, an increase of the inventories at some sites.After performing
such improvements to the plan, the risks can be evaluated again to analyze the impact of
these changes. This can be iterated until a suitable plan is found that satisfies the desired
balance between resilience and other factors like costs or organizational simplicity.
Due to the automatic risk assessment tool, the time needed for such an iteration can
be significantly reduced compared to traditional methods. Thus, more iterations can
be performed, leading to more resilient supply chains.

At the end of the workflow, we find a suitable supply chain plan with an acceptable
risk. Other parts of the organization outside of the upstream supply chain can then
be adapted accordingly, e.g., relating to insurances against risks and contracts with
clients. For example, the production of plant sites that are facing a larger amount
of supply risk should not be assigned to consumer markets where high reliability is
required. The computed optimal mitigation plans can also be shared with operational
teams for preparation and training. The availability of such plans reduces the time
needed to react to a disruption which improves the execution of the mitigation and
facilitates an efficient coordination.
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Fig. 10 A risk profile showing the impact of disruption scenarios on various plants after taking into account
the mitigation. Each case corresponds to one of the automatically generated disruption scenarios

6.1 Risk Profiles

To enable a quick overview on the local impact of a set of possible scenarios, we
suggest to use risk profiles.A risk profile consists of the impact of a failure at each of the
supply chain parts. After the user identifies an acceptable level of risk, a color-coded
summary indicates whether this acceptable threshold is surpassed. The acceptable
level of risk includes the maximal duration of the shortage until a proper mitigation
is available. Further, the time until a first shortage occurs at a plant is taken into
account. In this way, situations are identified where the shortage has an impact on
the production too quickly after a disruption to react properly. An instance of a risk
profile is shown in Fig. 10. Based on this risk profile, the critical disruption scenarios
can be identified. Additionally, the elements of the supply chain which have a high
amount of risk in many disruption scenarios are highlighted. A color-coded scheme
is used depending on user-defined thresholds for the severity of disruption scenarios,
to allow a quick overview. Using this information, the decision-maker can decide on
the placement of additional inventories or safety stocks to increase the shortage delay
to an acceptable level. This is a significant improvement over the standard analysis of
disruption scenarios which only considers whether supply chain elements are affected

Fig. 11 A detailed risk view on the impact of disruption scenarios on the various parts of the supply chain.
For each element of the supply chain, only the scenarios affecting the relevant part are considered. The
color-coding distinguishes between good, acceptable, and problematic outcomes at the respective part of
the supply chain after taking an optimal mitigation in the corresponding scenario
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but does not take mitigation into account. The distinction allows to precisely identify
the places where action needs to be taken.

To plan concrete measures to improve the resilience, a detailed view on the impact
of the considered disruption scenarios on the parts of the supply chain in Fig. 11 can
be used. This visualization illustrates for each of the supply chain parts how many
disruption scenarios lead to a strong negative impact on the supply chain even after
taking an optimal mitigation. In this way, the responsiblemanagers can be informed on
the supply chain parts for which current mitigation options are too often insufficient.
The automatic analysis ensures that no important element of the supply chain is ignored
in this process.

In summary, these tools enable a strategic improvement of the resilience of the
supply chain configuration for a large range of potential scenarios.

7 Conclusion and Outlook

Long-term disruptions to supply chains are omnipresent challenges in the procurement
of raw materials and primary products. There are many reasons for this, ranging from
geopolitical tensions and social upheaval to natural disasters. The resulting delivery
delays and supply shortages can cause critical effects and put affected companies
in substantial difficulties. Companies therefore generally address these challenges
proactively with a whole range of possible mitigation plans that they can execute if
the worst comes to worst.

In this publication, we developed a rigorous mathematical optimization model for
optimizing mitigation plans. On the one hand, our approach minimizes the amount
of shortage and, on the other hand, maximizes the time until a shortage occurs. This
allows further situation-dependent actions to be called up in an emergency. Our model
describes failure scenarios as an extended flow problem in time-expanded graphs and
translates these into a linear program. A numerical study proves that our approach
solves realistic problem instances in an acceptable time.

With the help of the model, network planners can identify critical suppliers and
production sites thatwould be affected bydelivery failures in possible failure scenarios.
We have also presented a concept for aggregating failure scenarios. Network planners
can use this to optimize their supply chain structure. However, this step is not the focus
of our considerations.

Decisions about supply chain structures are often based on empirical knowledge
and gut feelings. Sometimes, this is due to a lack of data. In such situations, however,
our quantitative approach can be used to identify blind spots and improve the quality
of the data in dialog with network partners so that more informed data-based decisions
can be made overall.

7.1 FutureWork

A natural direction of future research is to optimize the parameters of the mitigation
plans given the results of simulated failure scenarios.
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This includes an optimization of inventory levels aswell as a risk-aware purchasing,
defining the planned order quantities in such a way that cost-minimization in the
nominal case and loss value in the scenarios are properly balanced.

Amethod for optimization of the order quantities to minimize the worst-case risk in
a given set of scenarios, with mitigation taken into account, is proposed by Ackermann
et al. [42]. This model for the risk can be combined with the detailed optimization
model for various costs by Ackermann et al. [43].

Such an approach to perform a bicriteria optimization of both costs and risks in
supply chains is described by Diessel and Ackermann [44]; the underlying model
however can be extended to include all mitigation options discussed above.

Additionally, in such a risk optimizationmodel, the safety stock and inventory levels
can be directly optimized to ensure that sufficient mitigation options are available in
the case of a shortage.

The power of the model can be extended by allowing also random variables with
a known probability distribution as input data into the model. By using techniques
from stochastic optimization, this could increase the accuracy in comparison to the
scenario-based approach we proposed in Section 6.1. Especially for parameters with
a known variance, such as transportation time, this could be valuable.
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