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On Pendular Voting

Abstract

“Pendular  Voting”  presents  a  novel  two-stage  voting  procedure:  A  randomly  chosen 
citizen group votes on a proposal replacing the status quo. Depending on the outcome, a
“counterproposal”  ensues,  that  is  closer  to/further  away  from  the  status  quo  than  the 
original  proposal.  All  citizens  vote  pairwise  on  the  status  quo,  initial  proposal,  and 
counterproposal  (majority  voting), the  middle  alternative  being  the  default  outcome in
case  of  cyclical  collective preferences. We analyze the process  on a  one-dimensional
policy   space, allowing   for   uncertainty   about   preference   distribution.  Manipulation
may  only  occur  in  the  first   stage,  without  impacting  the  final   outcome.  Pendular
Voting  can  engineer  outcomes  closer  to  the  median  voter’s  preferences  than  standard
procedures, even with selfish agenda setters.

JEL-Codes: C720, D700, D720.

Keywords: democracy, manipulation, information sharing, referendum.



1 Introduction

How should democratic procedures be designed if voters have differing preferences and

there is aggregate uncertainty about the distribution of these preferences as well as about

which alternative is the Condorcet Winner, if it exists?

In such a situation, good democratic procedures should achieve two goals: First, they

should facilitate accurate revelation and aggregation of information about the consequences

of policy proposals. Second, they should allow adopting policies that concur with the true

preferences of the population. For instance, if a Condorcet Winner exists, it should be

discovered and then should prevail against any other feasible alternative, including the

status quo.

Achieving these objectives in a voting procedure with many participants is difficult for

several reasons: First, a large number of policy proposals can be made for a given issue,

but in mass voting, only few are put up for a vote. This is the case in the so-called

“elite referenda” such as the Brexit referendum, which have increased in the past few

decades,1. It is also the case in direct democracies like Switzerland, in which at most, two

proposals from a large set of possible proposals on an issue are put to a vote. Second,

there is uncertainty about the underlying distribution of preferences in the electorate,

and thus there is ambiguity. Third, once a proposal has been adopted, it is often quite

difficult to reverse this policy, even if more information is revealed. This is obvious if the

policy involves physical or human capital investments such as infrastructure investments

in highways, bridges, public buildings or in the use of environmental resources. This

irreversibility extends to many other policies as well. A particularly pertinent example is,

again, the Brexit referendum: The delays and procedural complications in implementing

Brexit have shown how difficult it is to join and to leave a political union, or merely to

terminate a set of interconnected, multilateral treaties. Such decisions are only reversible

at a high cost. There are many other examples of collective decisions with a high degree

1See Lee and Pérez-Velasco (2023)
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of irreversibility.2

How should we design good voting systems in such environments? In particular, how can

we induce information revelation before proposals are made, and can proposals be adjusted

in the light of new information before final, irreversible collective decisions are taken?

In this paper, we introduce a new procedure called “Pendular Voting” and examine to

which extent it can resolve these issues. The voting procedure works as follows: A selfish

agenda-setter chooses a proposal meant to replace a given status quo. In a first stage,

only a (small) random sample of the population votes on the proposal. The result of

the first stage is made public and may therefore reveal information about the underlying

distribution of preferences in the electorate, and in particular about the median voter’s

most preferred policy. Depending on the outcome of the first stage, a third alternative

(next to the proposal and the status quo) is added: This alternative is either closer to or

more distant from the status quo. In the model, it is constructed algorithmically, with

fixed increments—positive or negative—to the initial proposal, depending on the outcome

of the first stage.3

After the first-round voting, a second stage takes place: The entire electorate expresses

pairwise preferences over the status quo, the initial proposal, and the newly added third

alternative, by majority voting and with a suitable default procedure in case of cycles. In

particular, if there is a cycle, the middle alternative is chosen.

We investigate the manipulability of this voting procedure by the randomly-selected sample

of voters and the possibilities for the agenda-setter to exploit the procedure in a simple

model in which citizens have single-peaked preferences over a one-dimensional policy space,

but the distribution of preferences is initially unknown and thus, in particular, the median

voter’s position is unknown. We study how close the outcome will be to the median voter’s

most preferred policy.

2If waiting can reveal the information, then waiting before adopting an irreversible alternative may be
desirable (see Gersbach (1993) for a first assessment whether a majority benefits from a “wait and see”
choice).

3In practice, this proposal could be designed by an expert commission.
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We allow groups with the same preferences to coordinate voting and look for perfect

Bayesian equilibria and group strategy proofness.

Our main insight is as follows. In the second stage, citizens vote sincerely, and we obtain

the Condorcet Winner among the alternatives: status quo, original proposal from the first

stage, and second proposal generated after the first stage. In the first stage, strategic voting

could occur, but it does not affect the determination of the second proposal and thus does

not affect the voting outcome in the second stage either. The reason is that manipulation

attempts are countered by manipulation of the groups.

In terms of outcomes, we obtain the following results. When the agenda-setter is benev-

olent, Pendular Voting engineers outcomes that are closer to the median voter’s most

preferred policy in all circumstances. When the agenda-setter is purely self-interested in

implementing his/her preferred policy, Pendular Voting leads in expectation to better out-

comes in terms of distance to the median voter. In order to realize these improvements,

the third proposal, constructed after the first round, and thus the increment to the initial

proposal, must be chosen appropriately.

This paper makes the following contributions to the literature. First, the concept of Pen-

dular Voting allows to further explore one of the fundamental questions in democracy

research: How can information revelation be accomplished in democratic procedures? This

question has been extensively analyzed in the literature, see for instance Austen-Smith

and Banks (1996) and Feddersen and Pesendorfer (1997). More recent contributions are

Bierbrauer and Hellwig (2016) and Britz and Gersbach (2020). When information about

an underlying state of nature is dispersed among agents, there are complex incentives

which may or may not lead agents to reveal, share, and aggregate their private informa-

tion through a democratic procedure. In this context, Britz and Gersbach (2020) study a

situation where groups of citizens coordinate their messages to strategically misrepresent

information before a vote. Moreover, if there are turnout costs, an individual agent may

free-ride on the information provided by other agents. Feddersen and Pesendorfer (1997)

suggest that if some agents have information of lower quality than others, they may strate-
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gically decide to abstain and thus keep such information to themselves. Callander (2008)

studies an election where citizens reap benefits from voting for the winning candidate. In

the present paper, we investigate how voting processes can be organized when there is not

only private information about individual preferences but also about the distribution of

these preferences. Ideally, a multi-stage voting process could work as follows: In an initial

stage, information is revealed. Then, a proposal is made in light of this information, and

finally, a decisive vote takes place.

Third, Pendular Voting may mitigate some of the problems faced by modern democracies,

both in direct democracies and representative democracies. In Switzerland’s direct democ-

racy, for instance, any citizen can, in principle, propose a change to the constitution. If the

proposal is backed by a certain number of citizens in a signature collection process, it must

be put to a popular vote.4 This rule has been in force for more than a century, and there

are ongoing discussions about whether the parameters are still appropriate in the times of

social media and internet campaigns, as well as with population growth. Pendular Voting

might be a way to assess with a random sample of citizens in which direction a proposal

should be adjusted; for instance, how an extreme proposal might be moderated.

The Brexit referendum is a good example how Pendular Voting could improve democratic

decision-making: While the referendum allowed only two options (leave the European

Union vs. remain in the European Union), the voting campaigns showed that there were

many more options in reality, such as various forms of a “negotiated” Brexit, a free trade

zone, or a “no-deal” Brexit. Looking back, it is clear that Brexit will ultimately occur

but that the negotiations on relations with the EU will take quite long. Brexiteers and

Remainers cite various opinion polls which deliver contradictory information about the

British public’s preferences over these options. Applying Pendular Voting could have led

to a timely discovery of the underlying preferences, to a more precise and meaningful for-

mulation of the referendum question, and ultimately to greater certainty that the outcome

corresponds to the preferences of the population.

4For a more detailed discussion of the direct democratic system in Switzerland, see Gersbach et al.
(2024).
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Introducing the possibility of adding proposals to the model, however, leads to important

information manipulation and exploitation risks, which are not examined in Gersbach et al.

(2021)’s study of Assessment Voting, that also uses a procedure with so-called “Assessment

Groups”, but only for binary collective decisions, without any second proposal.

First voters may not express their true preferences in the initial stage. For instance, voters

may want to feign support for an extreme policy because they hope that this will lead to a

continuation of the status quo. This is similar to the problem of holding “open primaries’.

For instance, in the primaries to a US presidential election, supporters of the Democrat

Party may want to vote for a very extreme Republican candidate, in the hope that the

extreme candidate wins the nomination, but then goes on to lose the election. Second, even

if information is truthfully revealed in the first stage, a selfish agenda-setter may exploit

this information. S/he may propose an alternative that wins against the status quo and

is implemented irreversibly. However, a majority may prefer a large set of alternatives to

the proposal that is undertaken. As we will show, with Pendular Voting, we can eliminate,

or at least restrain, these attempts and we can ensure that the scheme improves outcomes

in terms of the expected distance between the outcome and the median voter’s preferred

policy.

Our paper is also part of the broadening literature on learning in dynamic collective deci-

sions. Strulovici (2010) examined how long a committee invests in learning until a majority

takes a final decision. The duration of learning in committees with heterogeneous members

is characterized in Chan et al. (2018).

Our paper is organized as follows: We formally introduce the model setup in Section 2. In

Section 3, the Pendular Voting procedure is introduced. We study equilibrium behavior

in the second stage of the voting procedure in Section 4. In Section 5, we characterize

the extent of information revelation through Pendular Voting. We show that either the

Pendular Voting procedure cannot be manipulated or if it does, it has no consequences

for the final outcome. We complete this section by characterizing the equilibria under

Pendular Voting and by providing conditions where manipulation could occur. In Section
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6 and 7, we demonstrate that Pendular Voting leads to welfare gains in expectation, both

with a benevolent and with a selfish agenda-setter. In the latter case, the results hold in

expectation. In Section 8, we compare Pendular Voting to two-round agenda-setting and

voting where the winner of the first round is the status quo in the second round. Section

9 concludes.

2 The Model

A society collectively decides to choose a one-dimensional linear policy θ ∈ [0, 1].5 It is

convenient to define the notation:

α+(θ) = min{θ + µ2, 1},

α−(θ) = max{θ − µ1, 0},

for some fixed values 1 > µ1, µ2 > 0. Later, we will consider µ1 and µ2 as parameters of

institutional design. They are taken as given in the Pendular Voting procedure and will

be considered small in general. In particular, we will assume throughout that µ1 ≤ 1−µ2.

This allows us to classify the different possible values of α+ and α− into three cases:

• 0 ≤ θ ≤ µ1: then α− = 0 and we can equivalently take µ1 = θ, with α+ = θ + µ2.

• µ1 ≤ θ ≤ 1− µ2: α− = θ − µ1 and α+ = θ + µ2.

• 1− µ2 ≤ θ ≤ 1: α− = θ − µ1 but α+ = 1 or alternatively µ2 = 1− θ.

With this convention, our definitions of α+ and α− can be assumed to be α+ = θ+µ2 and

α− = θ − µ1, where µ2 will become 1− θ if 1− µ2 ≤ θ ≤ 1 and where µ1 will become θ if

0 ≤ θ ≤ µ1.

Furthermore, we will take the status quo as zero. The society consists of a continuum of

citizens with mass one, that is, modeled as a probability space. Each citizen is privately

5The model can be extended to a multidimensional policy space in the following way. Once θ is selected,
counterproposals are selected on the line θ̄0 and thus the space of admissible policy proposals becomes a
one-dimensional policy space.
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informed about his/her type, which is some point z in the same space as the policy θ and is

also normalized, so that z ∈ [0, 1]. It is convenient to refer to a citizen of type z as citizen

z. Hence, the citizen type is modeled as a random variable Z on the probability space of

the population and takes values in [0, 1].

Citizen z’s utility from policy θ is given by a continuous utility function u(z, θ) which

is symmetric around a single peak at z. That is, we assume, on the one hand, that

uz : θ ∈ [0, 1] 7→ u(z, θ) ∈ [0, 1] has a unique maximum occurring at θ = z and is such that

uz is strictly increasing for θ ≤ z and strictly decreasing for z ≤ θ. On the other hand, we

assume that | θ′ − z |=| θ′′ − z | implies u(z, θ′) = u(z, θ′′). We denote this condition by

saying that uz are “single-peaked and symmetric”.

There is uncertainty at both the individual and aggregate levels, which we model as in

Britz and Gersbach (2020). For this, we assume that there is a given distribution of

different possible states of nature. Each state of nature determines a distribution of the

population, which in our model is reflected in the distribution of the citizen type Z. We

denote the random variable describing the state of nature by N and use k to index the

different possible states of nature. Thus, there is a family of probability distributions of

the citizen type Z associated with each state of nature k. We use fk and Fk to denote the

probability density function and the cumulative distribution function, respectively, of the

probability distribution associated with state k. We will assume that the density functions

are all non-zero:

fk > 0.

Regardless of their type, citizens have a common prior belief: the distribution of the state

of nature N and the distribution of the citizen type Z, conditioned on the state of nature

k. Z can hence be understood as a random variable with Bayesian distribution, depending

on the state of nature.

As we say, for each state of nature k, the citizen type Z follows a distribution Fk, and each

distribution has a median that we denote by ẑk (note this median is well-defined and given

by the equation Fk(ẑk) = 1/2, in virtue of the distributions being absolutely continuous
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with non-zero density function fk > 0). We will also denote by ẑ the random variable

associated to the citizen type of the median voter, taking values ẑ ∈ [0, 1] (which is a

function of the state of nature k ∈ N).

We will not make further assumptions on the distribution of these variables, which thus

remain fairly general. It is only in the last sections (Sections 7 and 8) that we assume

additionally that ẑ follows a uniform distribution over the interval [0, 1].

Yet, we are always working with absolutely continuous distributions for the state of nature

N and the citizen type Z, conditioned on N . Nevertheless, this ensures—except in special

cases6—that the probability of the event of an exact draw between any two given groups,

whose preferences are not exactly equal, is zero. This natural assumption will ensure that

we do not have to deal with draws separately in the Pendular Voting procedure.

3 The Pendular Voting Procedure

In this section, we give the formal description of the Pendular Voting procedure.

3.1 Preliminaries

An agenda-setter makes a proposal θ ∈ [0, 1]. We allow for two different cases: The agenda-

setter may be a benevolent social planner who seeks to implement the Condorcet Winner

or s/he may pursue his/her own interests. We will study these two cases in Section 8. Since

we are looking for ways to improve democratic procedures, we do not consider utilitarian

welfare but rather set the goal to implement the Condorcet Winner. That also deter-

mines the definition of benevolence of the agenda-setter. We thus work with the following

definition of social welfare:

Definition 1. The social welfare loss or henceforth simply welfare of a voting procedure

is the expected distance between its outcome and the preferred policy of the median voter.

We will sometimes also speak of the welfare of a voting procedure for a given state of

6A special cases is a uniform distribution of types and a proposal θ = 1
2 .
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nature as the distance between the outcome and the median voter’s preferred policy.

Since utility functions are single-peaked and symmetric over a one-dimensional policy space,

a policy winning in a majority voting contest (i.e., preference by a majority) against another

policy is equivalent to the former policy being closer to the median voter’s type ẑ than the

latter. We hence easily obtain:

Fact 1. Given two different voting procedures and a fixed state of nature, a welfare increase

of the second over the first takes place if and only if the outcome of the second is preferred

by a majority to the outcome of the first.

Another consequence of the previous observation is the fact that the median voter’s type ẑ

beats every other alternative in a face-to-face majority voting. For clarity, we denote this

as:

Definition 2. A Condorcet alternative is a proposal that would not loose against any other

proposal in the policy space in a majority voting contest.

In our case, since the median voter’s type is uniquely defined in virtue of the non-zero

density function of the population distribution, there is a unique Condorcet alternative.

We have:

Fact 2. Given a continuous set of citizens whose type is given by an absolutely contin-

uous distribution F with nowhere zero density function and assuming the citizens’ utility

functions are single-peaked and symmetric, then the Condorcet alternative and the median

voter’s type coincide and are given by

ẑ = F−1

(
1

2

)
.

3.2 The Pendular Voting game

The Pendular Voting procedure consists of a two-stage game.7

7We limit ourselves to a two-stage game that generates three binary votes on three alternatives, proposal,
counterproposal, and status quo. Mass voting with three alternatives and majority rule already turns out
to be complex, as we need a cycle breaker. Further rounds would amplify this complexity and there is no
obvious direction how further rounds could improve outcomes.
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Stage 1.

Once the agenda-setter has made the proposal θ, a randomly sample of size λ of the

population is drawn. We assume that λ is small, but large enough, so that it can be

assumed to follow the same distribution as the general population. Each member of the

sample group may vote in favor of θ or in favor of the status quo 0. The share of sample

group members who vote in favor of θ is denoted by δ. We define

β(θ, δ) =

α+(θ) if δ ≥ 1/2,

α−(θ) if δ < 1/2.

Here, β(θ, δ) is an additional proposal determined by votes in the first round.

Stage 2.

In the second stage, the entire population votes. Each voter is asked to submit his/her

pairwise preferences over the three alternatives {0, θ, β(θ, δ)}. The outcome is then deter-

mined as follows: If a majority pairwise prefers any alternative against the other, i.e., if

there is a Condorcet Winner, then the outcome is that alternative. The remaining possi-

ble outcomes of the voting to be treated are the two “cyclic” or “non-Condorcet” results

(where an arrow x → y means that y wins against x):

θ β(θ, δ) θ β(θ, δ)

0 0

To define the outcome in these two cases, we rename {0, θ, β(θ, δ)} as x0, x1, and x2, such

that 0 = x0 ≤ x1 ≤ x2. Then citizens are casting three pairwise votes:

x0 ↔ x1,

x0 ↔ x2,

x1 ↔ x2.

In the Pendular Voting procedure, we define the following rule: In a cyclic outcome, the

intermediate option x1 wins, i.e.:

10



x2 x1

x0

x1 wins.

x2 x1

x0

x1 wins.

Since we assumed that exact draws occur with probability zero, we do not deal with them

in the model.

The crucial feature of the procedure is that the second, decisive voting round is always a

three-way ballot including the initial proposal and the status quo. The third alternative

on the ballot is determined by the result of the first voting round, that is, random sample

group members essentially determine which third alternative to include on the final ballot.

We next describe the equilibrium concept. We look for Bayesian perfect Nash equilibria

with the following properties: We assume that citizens with the same preferences vote

in the same way and we require that an equilibrium be robust to deviations of groups

of voters with the same preferences. Hence, we are looking for Bayesian perfect Nash

equilibria among groups of voters.8

Allowing groups of citizens to coordinate their deviation is an approach which concurs with

recent developments in the literature. The papers by Bierbrauer and Hellwig (2016) as well

as Britz and Gersbach (2020) bring together mechanism design and voting games to study

public good provision problems. Bierbrauer and Hellwig (2016) show that, under certain

robustness conditions, mechanisms which solve such problems must belong to a class they

call “voting mechanisms’. Their requirement of robust coalition-proofness is based on the

idea that citizens with concurring preferences may coordinate their strategies. Britz and

Gersbach (2020) allow citizens with the same preference ranking to coordinate their votes

in a democratic mechanism.

In addition, we require that an equilibrium be robust to deviations by an entire coalition

8We note that the assumption that all citizens with the same preferences vote in the same way is no
loss of generality. For formal proofs that deviations of groups of voters with the same preferences are also
Nash equilibria if deviations by individual voters are considered, see Tsakas and Xefteris (2023). We also
simplify the exposition and assume that exact ties regarding voting outcomes do not occur. This avoids
the necessity to deal with ties. One may add the tie-breaking rule that in case of a tie, one of the two
involved alternatives is selected randomly, assigning equal probability 1

2 to each. This would not alter our
results.
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of groups of citizens and this requirement is applied to both stages. Hence, we require

strong equilibria by Aumann (1959). Henceforth, we simply call strong perfect Bayesian

equilibria among groups of citihens “equilibria.”

4 Second Stage

4.1 The equilibria

In this section, we establish the following claim. At the second stage of the Pendular

Voting procedure, there exists an equilibrium in which all groups of citizens find it optimal

to vote sincerely, that is, in accordance with their true preferences. We call this the “honest

equilibrium”. The rules as described in the previous section can be restated as follows.

Definition 3. Cycle-breaker: If any alternative wins two of the three pairwise votes, then

it becomes the outcome of the voting procedure. If each of the three votes is won by a

different alternative, i.e. if there is a cyclic outcome, then the intermediate alternative x1

becomes the outcome of the voting procedure.

We will show that this condition guarantees that there exists an equilibrium in which

all citizens vote sincerely. In principle, there are six ways to rank–order the alternatives

{x0, x1, x2} by some preference order ≿:

x2 ≿ x1 ≿ x0,

x1 ≿ x2 ≿ x0,

x1 ≿ x0 ≿ x2,

x0 ≿ x1 ≿ x2,

x0 ≿ x2 ≿ x1,

x2 ≿ x0 ≿ x1.

Note that the last two preference orders above are inconsistent with our assumption on

single-peaked preferences. Hence, we can restrict attention to the following four preference
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orders:

x2 ≿ x1 ≿ x0,

x1 ≿ x2 ≿ x0,

x1 ≿ x0 ≿ x2,

x0 ≿ x1 ≿ x2.

Recall that we are assuming that all citizens which share one of these four preference orders

can coordinate their votes. Thus, we have to look for profitable deviations by each of the

four groups, assuming that the remaining three groups vote sincerely.

Whenever two out of the three proposed policies 0 = x0 ≤ x1 ≤ x2 are equal, the pairwise

voting degenerates into a binary and final choice. In that case, there is no place for

manipulation and all voters will be honest, since the population will then just be divided

into two groups and the optimal strategy consists in voting for the preferred option. Hence,

we can suppose that all alternatives are distinct, 0 = x0 < x1 < x2. Now we are ready to

show that citizens vote sincerely.

Proposition 1. In the second stage of the Pendular Voting procedure, there is an equilib-

rium in which all citizens vote sincerely.

The proof of Proposition 1 is given in the appendix. From now on, we will assume that

the honest equilibrium takes place. Any other potential equilibrium would involve at least

two groups voting strategically, but would produce the same outcome.9

4.2 Implications

The key implication of the above result is the following. Suppose that the honest equi-

librium at the second stage of the Pendular Voting procedure takes place and that the

Condorcet alternative qualifies for it. It is then certain that this alternative will also be

9In Gersbach et al. (2023)), a more general treatment of this problem is examined. There, the boundaries
are identified when a procedure, consisting in three pairwise majority decisions, is either group-strategy-
proof or not, and it is assessed which other equilibria might exist and whether these equilibria yield the
same outcome.
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the outcome of the entire procedure, since it will win any pairwise competition. Further-

more, Theorem 1, combined with our assumption of symmetric, single-peaked preferences

u(z, θ) with peak at z for citizens of type z, allows us to summarize the situation as follows:

Corollary 1. Consider a state of nature where the median voter is of type ẑ. In the honest

equilibrium, the outcome of the second round of Pendular Voting is determined as follows:

• If the group x2 ≿ x1 ≿ x0 is a majority, or equivalently if the median voter prefers

x2 over the rest, or equivalently if (x1 + x2)/2 < ẑ, then x2 wins.

• If the group x0 ≿ x1 ≿ x2 is a majority, or equivalently if the median voter prefers

x0 over the rest, or equivalently if ẑ < x1/2, then x0 wins.

• In any other case, or equivalently if the median voter prefers x1 over the rest, or

equivalently if x1/2 < ẑ < (x1 + x2)/2, then x1 wins.

In particular, the outcome is always the median voter’s preferred policy out of the three

proposals, i.e, the Condorcet Winner.

Hence, the question is: How can we ensure that the alternatives present in the second

round are as close as possible to the preferred choice of the median voter?

The purpose of the Pendular Voting procedure is to perform better in this respect than a

benchmark scenario in which the agenda-setter uses only his/her prior belief to choose a

proposal that is then voted upon. We now briefly consider that benchmark scenario.

Proposition 2. Given a state of nature with median voter’s type ẑ, if the agenda-setter

chooses a proposal θ < 2ẑ, then the proposal is accepted by a majority. Otherwise, the

status quo prevails.

Proof of Proposition 2. In line with the arguments used to prove Proposition 1, the rea-

soning behind this statement is as follows. Under symmetric, single-peaked preferences

u(z, θ), an alternative wins against another in a majority voting contest if and only if the

former is closet to the median voter’s type ẑ than the latter. Thus, proposal θ wins against

the status quo if and only if it is closer to ẑ than 0, i.e., if |θ − ẑ| < |0 − ẑ| = ẑ, which is
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equivalent to θ < 2ẑ.

5 First Stage: Information Revelation through Pen-

dular Voting

5.1 Manipulability in Pendular Voting

We take a proposal θ as given by the agenda-setter, and verify under which conditions the

Pendular Voting procedure reliably implements the choice from {0, α−(θ), θ, α
+(θ)} which

is closest to the median voter. We recall again that we assess social welfare based on the

median voter’s preference as in Definition 1. This makes sense in such a type of model

when discussing democratic procedures: Indeed, a democratic procedure should satisfy

a requirement such as “stability to majority voting”, which is similar to assessing social

welfare based on the median voter’s preferences.

For clarity, we consider in the following a given proposal θ and denote the other possible

proposals α− and α+ correspondingly, so that the four possibilities are {0, α−, θ, α
+}. In

order to group and classify all the different possible citizens based on their preferences, we

define the following groups:

• Z3 := {z ∈ [0, 1] : (θ + α+)/2 < z)}, with preferences α+ ≿ θ ≿ α− ≿ 0.

• Z2 := {z ∈ [0, 1] : (θ + α−)/2 < z < (θ + α+)/2)}, with preferences θ ≿ α+ and

θ ≿ α− ≿ 0. They are further subdivided in:

– Z3
2 := {z ∈ Z2 : (α− + α+)/2 < z}, with preferences θ ≿ α+ ≿ α− ≿ 0.

– Z2
2 := {z ∈ Z2 : α+/2 < z < (α−+α+)/2}, with preferences θ ≿ α− ≿ α+ ≿ 0.

– Z1
2 := {z ∈ Z2 : z < α+/2}, with preferences θ ≿ α− ≿ 0 ≿ α+.

• Z1 := {z ∈ [0, 1] : α−/2 < z < (θ + α−)/2)}, with preferences α− ≿ θ ≿ α+ and

α− ≿ 0. They are further subdivided in:

– Z3
1 := {z ∈ Z1 : α+/2 < z}, with preferences α− ≿ θ ≿ α+ ≿ 0.
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– Z2
1 := {z ∈ Z1 : θ/2 < z < α+/2} with preferences α− ≿ θ ≿ 0 ≿ α+.

– Z1
1 := {z ∈ Z1 : z < θ/2}, with preferences α− ≿ 0 ≿ θ ≿ α+.

• Z0 := {z ∈ [0, 1] : z < α−/2)}, with preferences 0 ≿ α− ≿ θ ≿ α+.

Clearly, this classification is exhaustive and exclusive, except that limiting cases (i.e., z =

α−/2) have been excluded. This has no significance, since such limiting cases have zero

mass and hence play no role. Note further that the broad classification Z3, Z2, Z1, Z0,

according only to the most preferred alternative, does not suffice, since it would not yield

homogeneous groups. Among the groups Z2 and Z1, there is space for disagreement between

the second and third most preferred options. It is based on those disagreements that the

finer subgroups are obtained. However, whenever this subdivision is not relevant, we will

argue with the coarser group division, Z0, Z1, Z2 or Z3.

5.2 The main theorem

In this subsection, we characterize the equilibrium across both stages. To do so, we first

consider the following “naive” equilibrium candidate: At the first stage of the voting

procedure, Z0 ∪Z1 vote No and Z2 ∪Z3 vote Yes. This equilibrium candidate is such that

citizens of a type above a certain threshold vote Yes and the others vote No.

We are interested in manipulation in the sense that one of the four groups as defined above

has an incentive to deviate from the aforementioned equilibrium candidate. Indeed, we

are going to claim that Z1, Z2, and Z3 have, in principle, no incentive to make such a

deviation, and we examine the conditions under which Z0 has an incentive to deviate. The

examination of the circumstances and of the consequent outcome of the procedure when

this manipulation occurs will produce a Bayesian Nash Equilibrium. This equilibrium can

be understood as a two-mode equilibrium: if conditions for manipulation do not take place,

then all groups find it optimal to vote sincerely in both rounds. If, however, conditions

for manipulation are satisfied, in terms of specific relationships between the masses of the

different groups, then group Z0 finds it optimal to deviate in round 1 if the other groups

were to vote sincerely. In response to Z0’s deviation, Z2 and Z3 will then also deviate, so
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as to prevent the members of Z2 from being successful in their manipulation.

We note that our result does not rely on any assumption about the beliefs of the group

members or about the underlying state of nature.

However, we do assume that voting behavior is coordinated within each of the eight sub-

groups for best responses on the equilibrium path and for deviations. This is a conservative

assumption that biases our results in favor of manipulation, and could therefore reduce the

benefits of Pendular Voting. As discussed in Subsection 3.2, all equilibria in our paper are

also Bayesian perfect Nash equilibria if deviations by individuals are considered.

We obtain:

Theorem 1. Consider the first stage of the Pendular Voting procedure and define the

condition Manipulation to occur whenever Z0∪Z1
1 forms a majority and neither Z0 nor Z1

is a majority. Assume that the honest equilibrium takes place at the second stage. Then,

the following set of strategies at the first stage is a Bayesian Nash Equilibrium:

If Not Manipulation

Z0 ∪ Z1 vote No,

Z2 ∪ Z3 vote Yes.
If Manipulation

Z1 ∪ Z2 ∪ Z3 vote No,

Z0 votes Yes.

The proof of Theorem 1 is given in the appendix.

Several remarks are in order. First, if manipulation occurs, then Z0 is not a majority. We

thus see that, for the Bayesian Nash Equilibrium described above and under Manipulation

conditions, No will win at the first stage and hence α− will be the outcome. That is, if

Manipulation occurs, α− is guaranteed to be the outcome of the Pendular Voting procedure.

Second, this implies that manipulation may happen in equilibrium, but it does not affect

which proposal is made in the second round. The manipulation by Z0 is offset by the

manipulation of groups Z2 and Z3. These groups fear that if α+ is chosen as a second

proposal, they will end up with the status quo 0 in the second round.

We can also extract as an interesting corollary the fact that:

Corollary 2. In the Pendular Voting procedure, the only group that could be tempted to
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manipulate is Z0. It will do so if and only if it believes to be in a state of nature where

Z0 ∪ Z1
1 forms a majority but where neither Z0 nor Z1 is a majority.

In particular, the strategy where Z0∪Z1 votes No and Z2∪Z3 votes Yes will be a Bayesian

Nash Equilibrium if there are no states of nature where Z0 ∪ Z1
1 forms a majority.

Theorem 1 differs from existing results in the literature on strategic voting or truthful

mechanisms: The literature typically aims at establishing results on “strategy-proofness”

by demonstrating the existence of an equilibrium in which all agents reveal their private

information truthfully. Theorem 1, however, does not claim that the Pendular Voting

procedure is strategy-proof. Yet, it shows that manipulation—if it occurs—does not affect

which second proposal is made after the first stage.

Corollary 2 says that only members of one particular group, called Z0, may have incentives

to vote strategically. Whether or not the members of Z0 want to manipulate in this way

depends on their probabilistic belief about the underlying state of nature. These results,

however, hold true regardless of these beliefs.

6 Welfare, Outcome Characterization, and Manipu-

lation

In this section, we dive deep into the properties of Pendular Voting and provide a first

round of welfare results.

6.1 The no-welfare-loss result

As an intermediate step towards welfare results, we now formulate the no welfare loss

result.

Recall from the previous section that we are comparing the Pendular Voting procedure

to a benchmark procedure in which citizens simply choose between the proposal and the

status quo, without any preliminary proposal assessment. A key implication of Theorem

1 is that, whenever the Pendular Voting procedure is manipulated, its outcome is always
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α−. If the Pendular Voting procedure is not manipulated, it may still be the case that

the outcome of Pendular Voting coincides with that of the benchmark procedure. Finally,

there is a case where the Pendular Voting procedure is not manipulated, and yet leads

to a different outcome than the benchmark procedure. In that case, the outcome under

Pendular Voting is a welfare improvement in the sense that this outcome is preferred by a

majority to that of the benchmark procedure:

Proposition 3. Moving from the benchmark procedure to the Pendular Voting procedure,

while holding the proposal constant, never leads to a welfare loss, regardless of the state.

Proof of Proposition 3. We have to verify that the outcome of Pendular Voting is always

either the same outcome or an outcome preferred to the one of the benchmark procedure.

The only possible pairwise preferences at the second round that could contradict this

corollary are the non-Condorcet, cyclic outcomes. There are four possibilities:

α+ θ α+ θ θ α− θ α−

0 0 0 0

From these four, the only outcome that contradicts the corollary is the first, where 0 is

preferred by a majority to the outcome θ. However, this is a limit case that occurs with

probability zero. To see that, we note that, on the one hand, for 0 to win against θ,

as before, Z0 ∪ Z1
1 must be a majority. On the other hand, for α+ to win against 0,

Z3 ∪ Z3
2 ∪ Z2

2 ∪ Z3
1 must be a majority. Since they are disjoint, each of them must be

exactly equal to half the citizenry, so that by our assumption on limit cases, this occurs

with probability zero.

It is important to note that Theorem 1 and Corollary 3 hold, regardless of the prior or

posterior beliefs held by any of the citizens.
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6.2 Explicit outcome characterization

We now make full use of Theorem 1 and of the corresponding remark to characterize the

outcome of the Pendular Voting procedure as follows:

Corollary 3. Consider the Bayesian Nash Equilibrium of the Pendular Voting procedure

given by Theorem 1 for the first stage, in combination with the honest equilibrium of The-

orem 1 for the second stage; then:

• The outcome is 0 if and only if Z0 is a majority.

• The outcome is α+ if and only if Z3 is a majority.

• The outcome is α− if and only if Z0∪Z1 is a majority but Z0 itself is not a majority.

• The outcome is θ if and only if none of the above holds.

The proof of Corollary 3 is given in the appendix.

As a more convenient formulation of the previous result, we note that under the Bayesian

Nash Equilibrium described in Theorem 1, we can explicitly obtain the outcome of the

Pendular Voting procedure as a function of the proposed policy θ and the median voter’s

preferences. We will denote this function by ΩPV
θ

: [0, 1] → [0, 1], mapping the type of the

median voter’s type ẑ to the outcome of the Pendular Voting procedure, given that the

policy θ was proposed and assuming that the equilibrium of Theorem 1 takes place.

Corollary 4. The outcome of the Pendular Voting procedure as a function of the median

voter’s type ẑ, given the proposed policy θ and under the equilibrium of Theorem 1, is given

by:

ΩPV
θ

(ẑ) =



0, if 0 ≤ ẑ <
θ − µ1

2
,

θ − µ1, if
θ − µ1

2
≤ ẑ < θ − µ1

2
,

θ, if θ − µ1

2
≤ ẑ < θ +

µ2

2
,

θ + µ2, if θ +
µ2

2
≤ ẑ ≤ 1.

Proof of Corollay 4. It is a simple matter of translating the conditions of the characteri-

zation of the outcome of the Pendular Voting procedure described in the previous result
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into inequalities satisfied by ẑ using Corollary 1.

6.3 Welfare improvements by Pendular Voting

We provide some simple facts about the welfare properties of Pendular Voting.

Corollary 5. The Pendular Voting procedure selects the proposal closest to the median

voter’s type among the four possible outcomes {0, θ − µ1, θ, θ + µ2} under the equilibrium

of Theorem 1. In particular, it maximizes social welfare.

This corollary is very interesting as it describes an emerging property of Pendular Voting:

at no point is it prescribed in the procedure rules that a competition for social welfare

takes place between the four outcomes, but instead, it arises from the interaction between

the two rounds and the voter type distribution. Furthermore, the values of the design

parameters µ1 and µ2 (which, we recall, are adjusted accordingly if θ approaches either 0

or 1, so that µ1 ≤ θ and µ2 ≤ 1 − θ) permit to tweak and spread the proposals to cover

more policy space.

We compare this with the outcome of the single-round benchmark procedure:

ΩB
θ
(ẑ) =


0, if 0 ≤ ẑ <

θ

2
,

θ, if
θ

2
≤ ẑ ≤ 1.

We can see the functions associated to the outcome of both procedures in Figure 1.

Of course, we recover the benchmark procedure when µ1 = µ2 = 0: ΩPV
θ

(ẑ) = ΩB
θ
(ẑ). We

thus see how the Pendular Voting procedure makes the outcome of the voting system more

flexible and closer to the median voter’s preferences. In fact, the following comparison

can be made: the outcome of the Pendular Voting and the benchmark procedure coincide,

except when:

• θ−µ1

2
≤ ẑ ≤ θ

2
, where ΩPV

θ
(ẑ) = θ − µ1 while ΩB

θ
(ẑ) = 0;

• θ
2
≤ ẑ ≤ θ − µ1

2
, where ΩPV

θ
(ẑ) = θ − µ1 while ΩB

θ
(ẑ) = θ;

21



Figure 1: Comparison between the Pendular Voting and the benchmark outcomes as a
function of the type of the median voter, for the case θ = 0.6, µ1 = 0.1, µ2 = 0.2.

• θ + µ2

2
≤ ẑ ≤ 1, where ΩPV

θ
(ẑ) = θ + µ2 while ΩB

θ
(ẑ) = θ.

In all three cases, it can be easily verified that Pendular Voting strictly decreases (for

positive µi) the distance between the outcome and the median voter’s type, i.e., |ΩPV
θ

(ẑ)−

ẑ| < |ΩB
θ
(ẑ) − ẑ|, as we also proved by different means in Corollary 3. However, now we

can characterize the states where the increase is strictly positive:

Corollary 6. For every proposed policy θ and with probability 1, Pendular Voting does not

decrease social welfare with respect to the single-round benchmark procedure, and strictly

increases it whenever θ−µ1

2
< ẑ < θ − µ1

2
or θ + µ2

2
< ẑ ≤ 1.

Proof of Corollary 6. We compare |ΩPV
θ

(ẑ)−ẑ| ≤ |ΩB
θ
(ẑ)−ẑ| and note where the inequality
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is strict.

In Figure 1 we can see graphically how Pendular Voting manages to approximate the

type of the median voter better than the single-round procedure, thanks to the flexibility

introduced by the design parameters µ1, µ2. In Figure 2, we also see that the distance

between the outcome and the median voter’s type |ΩA
θ
(ẑ) − ẑ| is, for either A = PV,B,

piecewise linear and continuous, since whenever there is a change in ΩA
θ
(ẑ), the change is

symmetric with respect to the median voter’s type ẑ.

Figure 2: Comparison between the Pendular Voting and the benchmark procedures’ social
welfare (i.e, distance between the outcome and the median voter’s type), for the case
θ = 0.6, µ1 = 0.1, µ2 = 0.2.

6.4 Manipulation and beliefs

The results in the previous subsection are true regardless of the values of the increments

µ1 and µ2. As said before, we note that the entire discussion so far is independent of the

beliefs held by individual groups in the population.

In this subsection, we derive additional results by considering the beliefs of group Z0 and the

occurrence of manipulation. For simplicity, we assume in this subsection that µ1 = µ2 = µ.
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Corollary 2 states that a deviation by group Z0 can only be profitable if the state of nature

is such that all of the following conditions are simultaneously satisfied:

1. Z0 ∪ Z1
1 constitutes a majority, i.e. a majority prefers 0 to θ.

2. Z0 alone does not constitute a majority.

3. Z1 alone does not constitute a majority.

The complementary cases of these three conditions are expressed by the three inequalities

below, assuming to be in a state of nature with median voter of type ẑ and distribution

function F .

θ ≤ 2ẑ

θ ≥ 2ẑ + µ

F

(
θ − 1

2
µ

)
− F

(
1

2
θ − 1

2
µ

)
≥ 1

2
. (1)

The first inequality describes the case where a majority prefers θ to the status quo, so that

in particular, no manipulation is possible. The second describes the case where Z0 has a

majority, while if the third inequality is satisfied, a majority belongs to Z1. In these cases,

manipulation is again impossible. We obtain:

Corollary 7. Manipulation of the Pendular Voting procedure does not occur if group Z0

does assign sufficiently low probability that Inequality (1) holds. Moreover, manipulation

does not occur if group Z0 assigns sufficiently low probability to states of nature where

2ẑ < θ < 2ẑ + µ.

One clarifying remark is in order: While we assume that groups of citizens with the same

preferences vote in the same way, they are unable to determine their own size. Otherwise,

they would know the state of nature. We stress that the assumption that groups can coor-

dinate their votes is “conservative” in nature: If we obtain welfare results that are robust

to manipulations by large groups, then they would certainly be robust to manipulations

by smaller subsets of these groups.
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So far, we have not made any assumptions regarding the distribution of the median voter’s

type or about the states of nature. A natural assumption is to use first-order dominance

ordering. Hence, let us assume that we can index the states of nature either discretely

or as a continuum, and then order them in such a way that higher indices of states of

nature correspond to a distribution shifted towards 1. That is, for the discrete case with

states of nature indexed by k ∈ N = 0, 1, . . . , we assume that for any z ∈ (0, 1), we have

F0(z) > F1(z) > . . ., while for the continuous case where k ∈ N = [0, 1], we assume that

d
dk
Fk(z) < 0 for z ∈ (0, 1).

Consider then the case where θ+µ ≤ 2ẑ0, so that by the first-order dominance ordering we

just described, we have θ + µ ≤ 2ẑk for all states of nature (note that d
dk
Fk(z) < 0 implies

d
dk
ẑk > 0). This means that each of the three proposals α−, θ, and α+ is preferred to the

status quo by a majority, and this is true in each state k ∈ N . Therefore, group Z0 never

finds it optimal to vote strategically, and hence, no manipulation is possible.

Corollary 8. Suppose that θ + µ ≤ 2ẑk for every state of nature k. Furthermore, suppose

that there are some states k ∈ N such that ẑk > θ + µ/2 occurs with positive probabil-

ity. Then, moving from the benchmark procedure to the Pendular Voting procedure, while

holding the proposal θ constant, leads to a welfare gain with strictly positive probability.

The two necessary conditions in the corollary above boil down to a requirement that the

proposal θ, which we are holding fixed here, should not be “too high’. Later on, we will

argue that an agenda-setter, regardless of his/her motivation, never has any incentive

to make an excessively high proposal in the first place. Hence, the interpretation of the

corollary is that switching from the benchmark procedure to the Pendular Voting procedure

can indeed be expected to lead to a welfare gain.

One may wonder if the choice between the status quo, the initial proposal, and the upward

and downward corrections could not be done more efficiently on a single, four-way ballot

paper. There are several problems with this approach, however: First and foremost, our

voting rule for the final voting round is designed for the case of a three-way ballot and it

does not easily generalize to a four-way ballot. As one can verify, in a four-way ballot, there
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is a total of 16 possible outcomes, of which only 8 have a Condorcet Winner. The remaining

8 outcomes, equivalent to the cyclic outcomes in the three-way ballot, are difficult to treat.

In particular, the same approach as in the second stage of Pendular Voting, i.e., choosing

the middle alternative as the default winner of non-Condorcet outcomes, does not work for

four-way ballots, since there are two middle alternatives, instead of the previous unique

middle alternative, and there is no clear criterion allowing to choose between these two.

Second, a four-way ballot would require the elicitation of six, instead of three, pairwise

preferences, which can be interpreted as an efficiency loss.

We stress that the arguments behind the main results in this paper do not rely on any

notion of probabilistic beliefs by the citizens, except that all states occur with strictly

positive probability.

7 The Agenda-setter’s Choice

So far, our analysis has led to strong results on welfare gain of the Pendular Voting pro-

cedure, relative to the benchmark procedure, under the premise that the proposal made is

the same under both procedures. In a nutshell, social welfare increases with the Pendular

Voting procedure, compared to the benchmark. The size of the welfare gain depends on µ

and goes to zero as µ goes to zero.

After this analysis, a natural follow-up question is this: Suppose that the Pendular Voting

procedure is used, and the agenda-setter anticipates the conditions for its manipulability.

Would the agenda-setter then want to make the same proposal as in the benchmark proce-

dure? If the agenda-setter does make it indeed, we have shown that a welfare gain can be

realized. But what happens if the agenda-setter re-optimizes even his/her original proposal

in anticipation of proposal assessment?

7.1 Information about the underlying distribution

We first study the Pendular Voting procedure, assuming that the agenda-setter has access

to precise information about the underlying voter type distribution. Since the outcome of
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the procedure is determined exclusively by the median voter’s type ẑ, we simply assume

that the agenda-setter has access to the value of ẑ. In all that follows we assume that the

the equilibrium of Theorem 1 takes place.

We will consider the cases of a benevolent and a selfish agenda-setter, the former aiming to

maximize social welfare and the latter aiming to maximize the policy outcome. However,

the analysis for the benevolent case is trivial: a benevolent agenda-setter with access

to ẑ will simply put forward the proposal θ := ẑ. Since ẑ is the Condorcet Winner, this

ensures that the outcome will be the median voter’s type and thus social welfare is trivially

maximized.

The interesting case is that of a selfish agenda-setter. In particular, we assume that the

agenda-setter wants to maximize the outcome policy and has a utility function that is

linear or affine on ΩPV
θ

(ẑ).

Lemma 1. The optimal strategy in Pendular Voting with a selfish agenda-setter aiming to

maximize the policy outcome and with knowledge of ẑ is to propose:

θ
PV

AS = arg maxxg(x)

where g is the function of three possible arguments given by the association:

ẑ − µ2

2
7→ ẑ +

µ2

2

ẑ +
µ1

2
7→ ẑ +

µ1

2

2ẑ + µ1 7→ 2ẑ.

If 0 ≤ ẑ ≤ µ2/2, then the first association disappears, while if 1− µ2/2 ≤ ẑ ≤ 1, then the

first association is substituted by

ẑ − µ2

2
7→ 1.

Additionally, if (1− µ1)/2 ≤ ẑ < 1− µ1/2, then the last association is substituted by

1 7→ 1− µ1,
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and if 1− µ1/2 ≤ ẑ, then the last two associations are substituted by

1 7→ 1.

We note that we always have µ2/2 ≤ 1− µ2/2 and (1− µ1)/2 ≤ 1− µ1/2.

With this lemma, we can now obtain the optimal strategy for a selfish agenda-setter and

the final outcome after his/her proposal.

Proposition 4. The optimal strategy and subsequent outcome of Pendular Voting for a

selfish agenda-setter maximizing the policy outcome and with knowledge of ẑ are given in

Table 1.

The proof of Proposition 4 is in the appendix. As expected, a selfish agenda-setter always

manages to induce an outcome greater than ẑ. This must be possible since, with access to

the median voter’s type ẑ, at worst, s/he may always propose the Condorcet Winner and

induce an outcome at least equal to or greater than ẑ.

Another interesting remark is that in the limit, where the design parameters µ1 and µ2

tend to 0, the optimal strategy degenerates to the strategy of a selfish agenda-setter under

the benchmark procedure of a single-round with two options, i.e.:

• If ẑ ≤ 1/2, then θ
PV

AS = 2ẑ = ΩPV

θ
PV
AS

(ẑ).

• If ẑ ≥ 1/2, then θ
PV

AS = 1 = ΩPV

θ
B
AS

(ẑ).

We finally obtain:

Corollary 9. The expected social welfare of Pendular Voting with a selfish agenda-setter

aiming to maximize the policy outcome and with knowledge of ẑ is given by:

Eẑ[|ΩPV

θ
PV
AS

(ẑ)− ẑ|] =



1

8
[3µ2

1 + 4µ1µ2 − 4µ1 + 2] , if 0 ≤ µ1 ≤ µ2,

1

8
[7µ2

1 − 4µ1 + 2] , if µ2 ≤ µ1 ≤ 1/2,

1

8
[−µ2

1 + 4µ1] , if 1/2 ≤ µ1,
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µ1 ẑ θ
PV

AS ΩPV

θ
PV
AS

(ẑ)

0 ≤ µ1 ≤ µ2

ẑ ∈
[
0,

µ1

2

]
ẑ +

µ1

2
ẑ +

µ1

2

ẑ ∈
[
µ1

2
,
1− µ1

2

]
2ẑ + µ1 2ẑ

ẑ ∈
[
1− µ1

2
, 1− µ1 −

µ2

2

]
1 1− µ1

ẑ ∈
[
1− µ1 −

µ2

2
, 1− µ2

2

]
ẑ − µ2

2
ẑ +

µ2

2

ẑ ∈
[
1− µ2

2
, 1
]

1 1

µ2 ≤ µ1 ≤
1

2

ẑ ∈
[
0,

µ1

2

]
ẑ +

µ1

2
ẑ +

µ1

2

ẑ ∈
[
µ1

2
,
1− µ1

2

]
2ẑ + µ1 2ẑ

ẑ ∈
[
1− µ1

2
, 1− 3µ1

2

]
1 1− µ1

ẑ ∈
[
1− 3µ1

2
, 1− µ1

2

]
ẑ +

µ1

2
ẑ +

µ1

2

ẑ ∈
[
1− µ1

2
, 1
]

1 1

1/2 ≤ µ1

ẑ ∈
[
0, 1− µ1

2

]
ẑ +

µ1

2
ẑ +

µ1

2

ẑ ∈
[
1− µ1

2
, 1
]

1 1

Table 1: Optimal proposal θ
PV

AS and outcome ΩPV

θ
PV
AS

(ẑ) of Pendular Voting for a selfish

agenda-setter maximizing the policy outcome with knowledge of the median voter’s type
ẑ.
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and the expected outcome is:

Eẑ[Ω
PV

θ
PV
AS

(ẑ)] = Eẑ[|ΩPV

θ
PV
AS

(ẑ)− ẑ|] + 1

2
.

In particular, the optimal design parameters in this situation, i.e., those maximizing the

expected social welfare, are:

µ∗
1 =

2

7
, µ∗

2 ∈
[
0,

2

7

]
.

With this choice of parameters, the expected outcome and social welfare are

Eẑ[Ω
PV

θ
PV
AS

(ẑ)] =
19

28
, Eẑ[|ΩPV

θ
PV
AS

(ẑ)− ẑ|] = 5

28
.

More details on the calculation of Corollary 9 are given in the appendix.

It is understood that the multiple values of µ∗
2 mean that all of them induce the maximum

expected social welfare.

As we say, the optimal strategy for the benchmark procedure is to propose θ
B

AS = 2ẑ if

ẑ ≤ 1/2 and θ
B

AS = 1 otherwise; and would give an expected outcome and social welfare:

Eẑ[Ω
B

θ
B
AS

(ẑ)] =
3

4
, Eẑ[|ΩB

θ
B
AS

(ẑ)− ẑ|] = 1

4
.

We see that Pendular Voting strictly improves social welfare for the optimal design param-

eters.

7.2 No information about the underlying distribution

In the following, we model the assumption of no information about the underlying voter

type distribution by assuming that the median citizen type ẑ ∈ [0, 1] follows an absolutely

continuous distribution, denoting by G(z) := P[ẑ ≤ z] the distribution function.

Proposition 5. Under the equilibrium introduced in Theorem 1, the expectation of the

final outcome of the Pendular Voting procedure Eẑ[Ω
PV
θ

(ẑ)] as a function of the proposed
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policy θ is given by

µ2 + θ − θG

(
θ

2

)
− µ2G

(
θ +

µ2

2

)
, if 0 ≤ θ < µ1,

µ2 + θ −
(
θ − µ1

)
G

(
θ − µ1

2

)
− µ2G

(
θ +

µ2

2

)
− µ1G

(
θ − µ1

2

)
, if µ1 ≤ θ < 1− µ2,

1−
(
θ − µ1

)
G

(
θ − µ1

2

)
−

(
1− θ

)
G

(
1 + θ

2

)
− µ1G

(
θ − µ1

2

)
, if 1− µ2 ≤ θ ≤ 1.

The proof of Proposition 5 is given in the appendix. We next apply this formulas to the

uniform distribution in order to obtain explicit formulas.

7.3 Uniform distribution

We will obtain concrete formulas for the case of a median voter’s type that is uniformly

distributed over [0, 1]. First, however, we make the observation that the assumption that

the median voter’s type follows an absolutely continuous distribution with infinitely dif-

ferentiable density function is not merely natural, but follows easily from the assumption

mentioned in Section 6. The uniform distribution is the simplest of such an absolutely

continuous distribution.

To see it, consider a continuum of states of nature normalized to N = [0, 1] and ordered

so that d
dk
Fk(z) < 0. If the state of nature k follows an absolutely continuous distribution

with infinitely differentiable density function, the monotonocity of the distribution func-

tions of the voter type with respect to k implies that the median voter’s type also follows

an absolutely continuous distribution, with infinitely differentiable density function (also

assuming that Fk all have strictly positive density functions, i.e., that d
dz
Fk(z) > 0). This

can be seen by noting that, in that case, d
dk
ẑk > 0 (recall that the median voter’s type is

given by ẑk := F−1
k (1/2)). Hence, we can apply the Inverse Function Theorem to obtain

the state of nature in terms of the median voter’s type, and thus the differentiable density

function of ẑ.

Let us suppose now that the median voter’s type is uniformly distributed in the interval

[0, 1] and let us apply Proposition 5. We obtain:
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Proposition 6. Assume that the median citizen type ẑ is uniformly distributed in [0, 1].

Then, under the Bayesian Nash Equilibrium of the Pendular Voting procedure introduced

in Theorem 1, the expected outcome as a function of the proposed policy θ is

Eẑ[Ω
PV
θ

(ẑ)] =

−θ
2

2
+ θ (1− µ2) + µ2

(
1− µ2

2

)
, if 0 ≤ θ < 1− µ2,

1

2
, if 1− µ2 ≤ θ ≤ 1.

Proof of Proposition 6. We substitute G(z) = z in the formulas obtained in Proposition 5

to obtain:

• µ1 < θ < 1− µ2:

Eẑ[Ω
PV
θ

(ẑ)] = µ2 + θ − (θ − µ1)
2/2− µ2

(
θ + µ2/2

)
− µ1

(
θ − µ1/2

)
= µ2 + θ − θ

2
/2− µ2

(
θ + µ2/2

)
.

• 0 ≤ θ ≤ µ1: we have to substitute µ1 = θ, and hence nothing changes:

Eẑ[Ω
PV
θ

(ẑ)] = µ2 + θ − θ
2
/2− µ2

(
θ + µ2/2

)
.

• 1− µ2 ≤ θ ≤ 1: substituting µ2 = 1− θ:

Eẑ[Ω
PV
θ

(ẑ)] = 1− θ
2
/2− (1− θ)(1 + θ)/2 = 1/2.

We see that the expected outcome is indistinct of the first design parameter µ1 for a

uniformly distributed median voter.

In order to maximize social welfare in the next subsections, we are also interested in the

expectation of the distance to the median voter, i.e. in Eẑ[|ΩPV
θ

(ẑ)− ẑ|] and its comparison

with Eẑ[|ΩB
θ
(ẑ)− ẑ|]. For a uniformly distributed median voter, this is the area in Figure

1 under the graph of |Ωi
θ
(ẑ)− ẑ|, i = PV,B, and the objective is to choose the parameters
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µ1, µ2 that minimize this area.

Proposition 7. Assume that the median citizen type ẑ is uniformly distributed in [0, 1].

Then, under the Bayesian Nash Equilibrium of the Pendular Voting procedure introduced

in Theorem 1, the expected distance to the median voter’s type as a function of the proposed

policy θ is

Eẑ[|ΩPV
θ

(ẑ)−ẑ|] =



(
θ

2

)2

+
(µ2

2

)2

+
1

2

(
1− θ − µ2

)2
, if 0 ≤ θ < µ1,(

θ − µ1

2

)2

+
(µ1

2

)2

+
(µ2

2

)2

+
1

2

(
1− θ − µ2

)2
, if µ1 ≤ θ < 1− µ2,(

θ − µ1

2

)2

+
(µ1

2

)2

+

(
1− θ

2

)2

, if 1− µ2 ≤ θ ≤ 1.

Proof of Proposition 7. The same procedure as before yields the result, arguing directly to

compute and add the area of the triangles in Figure 2.

We can compare this to the benchmark procedure, where

Eẑ[|ΩB
θ
(ẑ)− ẑ|] =

(
θ

2

)2

+
1

2

(
1− θ

)2
,

which coincides with the evaluation at µ1 = µ2 = 0.

7.4 Benevolent agenda-setter and uniform distribution

A benevolent agenda-setter trying to minimize the expected distance between the outcome

of Pendular Voting and the median voter, i.e. trying to maximize social welfare, will choose

the optimal value θ
PV

∗ of the proposed policy such that Eẑ[|ΩPV
θ

(ẑ)− ẑ|] is minimized for

fixed parameters µ1, µ2. Obtaining the local minimums of Eẑ[|ΩPV
θ

(ẑ) − ẑ|], as given by

Proposition 6, and since µ1 ≤ 1− µ2, we always have that µ1 ≤ θ
PV

∗ ≤ 1− µ2 and is given

by

θ
PV

∗ =
2 + µ1 − 2µ2

3
.

33



A computation shows that value of the expected outcome is

Eẑ[Ω
PV

θ
PV
∗

(ẑ)] =
1

18
(4− µ1 − µ2)(2− µ1 + µ2),

and the value of the expected distance to the median voter’s type is then

Eẑ[|ΩPV

θ
PV
∗

(ẑ)− ẑ|] =
(µ1

2

)2

+
(µ2

2

)2

+
3

2

(
1− µ1 − µ2

3

)2

.

If we again minimize this expression in terms of the design parameters, one easily finds

that the optimal parameters µ∗
1, µ

∗
2, i.e., those that maximize social welfare by minimizing

the above expression, are:

µ∗
1 = µ∗

2 =
2

7
.

Thus, these are the parameters to choose for Pendular Voting if we believe that the median

voter’s type is uniformly distributed and that the agenda-setter is benevolent. Note in

particular that µ∗
1 ≤ 1− µ∗

2. With this choice of parameters, we see that

θ
PV

∗ =
4

7
,

and thus we obtain

Eẑ[Ω
PV

θ
PV
∗

(ẑ)] =
24

49
,

together with

Eẑ[|ΩPV

θ
PV
∗

(ẑ)− ẑ|] = 1

14
.

If we compare to the benchmark procedure (i.e., µ1 = µ2 = 0), now θ
B

∗ = 2/3,

Eẑ[Ω
B

θ
B
∗
(ẑ)] =

4

9

and

Eẑ[|ΩB

θ
B
∗
(ẑ)− ẑ|] = 1

6
,

we see that Pendular Voting strictly improves the expected social welfare also for a benev-

olent agenda-setter. We summarize these results in the following proposition:
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Corollary 10. Consider the equilibrium described in Theorem 1 for the Pendular Vot-

ing procedure and suppose that the agenda-setter is benevolent and tries to maximize the

expected social welfare. Then, the design parameters that maximize social welfare are

µ∗
1 = µ∗

2 =
2

7
.

With this choice of parameters, the benevolent agenda-setter will choose the proposal

θ
PV

∗ =
4

7
,

and the expected outcome and social welfare are:

Eẑ[Ω
PV

θ
PV
∗

(ẑ)] =
24

49
, Eẑ[|ΩPV

θ
PV
∗

(ẑ)− ẑ|] = 1

14
.

Interestingly, the optimal design parameters almost coincide with those found in the pre-

vious subsection to be optimal for a selfish agenda-setter with knowledge of ẑ.

7.5 Selfish agenda-setter and uniform distribution

We now look at the case where the agenda-setter is selfish and will act according to his/her

own interests. As a tie-breaking rule, when the agenda-setter is indifferent between several

proposals that are optimal from his/her perspective, s/he selects the one among these

proposals that delivers the highest social welfare.

We assume that the agenda-setter wants to maximize the outcome policy with a linear

Bayesian utility function Eẑ[Ω
PV
θ

(ẑ)]. Then, s/he will propose a policy θ maximizing the

above second-order piece-wise polynomial. Noting that the maximum of the first part is

attained precisely at 1− µ2, with a value of precisely 1/2, we see that any choice θ ∈ [1−

µ2, 1] will provide the maximum expected outcome, with an expectation Eẑ[Ω
PV
θ

(ẑ)] = 1/2.

Thus, according to our tie-breaking rule, we assume that the agenda-setter will choose

θ
PV

AS = 1− µ2. If this is the case, the expected distance to the median voter’s type is

Eẑ[|ΩPV

θ
PV
AS

(ẑ)− ẑ|] =
(
1− µ1 − µ2

2

)2

+
(µ1

2

)2

+
(µ2

2

)2

.
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Thus, the optimal parameters µ∗
1, µ

∗
2, i.e., those that maximize social welfare by minimizing

the above expression, are:

µ∗
1 = µ∗

2 =
1

2
,

that verify µ1 ≤ 1− µ2. These optimal design parameters are interpreted as follows: since

it is always the case that either θ ≤ 1/2 or θ ≥ 1/2, then one of the special cases of the

definitions where either α− = 0 or α+ = 1 are always active. Depending on which is active,

then the possible outcomes are the status quo, θ and θ ± 1/2.

If these were the values of the design parameters, the selfish agenda-setter would propose

θ
PV

AS = 1/2, with an expectation Eẑ[Ω
PV

θ
B
PV

(ẑ)] = 1/2 as well as

Eẑ[|ΩPV

θ
PV
AS

(ẑ)− ẑ|] = 1

8
.

We compare this to the benchmark procedure, where the agenda-setter would choose θ
B

AS =

1 with also an expectation Eẑ[Ω
B

θ
B
AS

(ẑ)] = 1/2 but with

Eẑ[|ΩB

θ
B
AS

(ẑ)− ẑ|] = 1

4
.

We summarize these results in the following proposition:

Corollary 11. Consider the equilibrium described in Theorem 1 for the Pendular Voting

procedure and suppose that the agenda-setter is selfish and tries to maximize the expected

outcome. Then, the design parameters that maximize social welfare are

µ∗
1 = µ∗

2 =
1

2
.

With this choice of parameters, the selfish agenda-setter will choose the proposal

θ
PV

AS =
1

2
,
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and the expected outcome and social welfare are:

Eẑ[Ω
PV

θ
PV
AS

(ẑ)] =
1

2
, Eẑ[|ΩPV

θ
PV
AS

(ẑ)− ẑ|] = 1

8
.

8 Comparison to Two Rounds of Proposal-making

In this section we compare Pendular Voting to a similar voting procedure in which the

citizenry votes between two alternatives that challenge the status quo. The difference with

Pendular Voting is the way in which the two challenger alternatives are obtained: these are

individually proposed by two different agenda-setters. The two proposals are made consec-

utively, such that the first agenda-setter makes his/her proposal with no other information

but the second agenda-setter makes his/her proposal knowing the first proposal. Then, the

voting procedure takes place following the same rules as in the second round of Pendular

Voting: each voter submits his/her pairwise preferences over the three alternatives and the

winner is the Condorcet Winner if one exists, or the middle alternative if not.

The agenda-setters may or may not have information about the underlying distribution

F . We will represent this by the agenda-setter having access to the position of the median

voter’s type ẑ or not. In the latter, they will instead take decisions modeling it as a random

variable as in the previous section. The same procedure will be used by the first agenda-

setter to model the second agenda-setter. Additionally, agenda-setters may either have

selfish interests or not.

We denote the proposal made by the first agenda-setter by xa1 and the proposal made by the

second agenda-setter by xa2. We denote the outcome of this single-round procedure with

two agenda-setters by Ω2AS
(xa1, xa2)

(ẑ), as a function of ẑ for fixed xa1 and xa2. If xa1 ≤ xa2,

this is given by:

Ω2AS
(xa1, xa2)

: [0, 1] → [0, 1] : z 7→ Ω2AS
(xa1, xa2)

(z) =


0, if z ∈ [0, xa1/2),

x1, if z ∈ [xa1/2, (xa1 + xa2)/2),

x2, if z ∈ [(xa1 + xa2)/2, 1].
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Similarly, if xa2 ≤ xa1, the same definition applies after exchanging xa1 for xa2. We do not

concern ourselves with dealing with exact draws, i.e., ẑ = x1/2 or ẑ = (x2 + x1)/2, but

instead fix the outcome arbitrarily in this zero-probability events.

8.1 Selfish agenda-setters

We first consider the case where both agenda-setters are selfish, i.e., their objective is to

induce an outcome that is as close as possible to their respective most preferred policy or

utility peak, that we denote by θa1 for the first and θa2 for the second.

8.1.1 Information about the underlying distribution

We first consider a procedure where the agenda-setters have access to the position of

the median voter’s type ẑ. We begin by computing the optimal strategy for the second

agenda-setter with this information and given the proposal xa1. For that, we introduce the

following function. For fixed a, b ∈ [0, 1] such that a ≤ b, we define:

k(a, b) : [0, 1] → [0, 1] : x 7→ k(a, b)(x) :=


a, if x ∈ [0, a],

x, if x ∈ [a, b],

b, if x ∈ [b, 1].
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Figure 3: The graph of the function k(a, b)(x).

Proposition 8. The optimal proposal x∗
a2 for the second agenda-setter, given his/her peak

θa2, the proposal xa1 of the first agenda-setter, and the position of the median voter’s type

ẑ, is given by:

• If ẑ ≤ 1/2:

x∗
a2 =


k(xa1, 2ẑ−xa1)(θa2), if xa1 ∈ [0, ẑ],

k(2ẑ−xa1, xa1)(θa2), if xa1 ∈ [ẑ, 2ẑ],

k(0, 2ẑ)(θa2), if xa1 ∈ [2ẑ, 1].

• If ẑ ≥ 1/2:

x∗
a2 =


k(xa1, 1)(θa2), if xa1 ∈ [0, 2ẑ − 1],

k(xa1, 2ẑ−xa1)(θa2), if xa1 ∈ [2ẑ − 1, ẑ],

k(2ẑ−xa1, xa1)(θa2), if xa1 ∈ [ẑ, 1].

Furthermore, after this proposal, the strategy of the second agenda-setter ensures that the

outcome coincides with his/her proposal with probability one, i.e.,

Ω2AS
(xa1, x∗

a2)
= x∗

a2.
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Observe that x∗
a2 is a function of ẑ, xa1 and θa2.

Proof of Proposition 8. We show how to argue for the case ẑ ≤ 1/2 and 0 ≤ xa1 ≤ ẑ, the

other possibilities being entirely analogous. It is just a matter of tracing back the outcome

Ω2AS
(xa1, xa2)

(ẑ) that is as close as possible to θa2, based on the proposal xa2. If the proposal is

such that xa2 < xa1 or xa2 > 2z−xa1, then the outcome will be xa1 since it will be closer to

ẑ than xa2. On the complementary case, then xa2 is closer to ẑ and thus Ω2AS
(xa1, xa2)

(ẑ) = xa2.

Hence, if θa2 < xa1, then the closest outcome the second agenda-setter can hope for is

given by x∗
a2 = xa1; if θa2 > 2z − xa1, it is the symmetric point x∗

a2 = 2z − xa1, and if

xa1 ≤ θa2 ≤ 2z−xa1 then the outcome will be exactly x∗
a2 = θa2. The particular case where

θa2 = 2z − xa1 and x∗
a2 = 2z − xa1 is a situation where there would be a perfect draw,

since both proposals are equidistant to ẑ. Here we assume that the outcome is arbitrarily

chosen to benefit the second agenda-setter, since otherwise, s/he would choose a proposal

x∗
a2 := 2z − xa1 − ε for ε > 0 arbitrarily small.

The next step is to compute the optimal strategy for the first agenda-setter, based on the

known optimal strategy that the second will follow and thus based on the outcome of the

procedure as a function now of ẑ, θa2 and the proposal xa1, denoted

ω(θa2, xa1, ẑ) := Ω2AS
(xa1, x∗

a2)
(ẑ),

where, as we said, x∗
a2 is a function of ẑ, xa1 and θa2. We model the lack of information of

the first agenda-setter over the peak of the second agenda-setter by assuming that θa2 is

uniformly distributed over [0, 1]. The optimal proposal x∗
a1 is then such that

x∗
a1 = arg minxa1

Eθa2 [|ω(θa2, xa1, ẑ)− θa1|],

where Eθa2 denotes the expectation operator over the θa2 probability space. In particular,

it is a function of θa1 and of ẑ:

x∗
a1 = x∗

a1(θa1, ẑ).

Of course, this optimal proposal may degenerate into several values of xa1 that all attain
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the minimum expected distance to the peak θa1. We have:

Proposition 9. The optimal proposal x∗
a1 for the first agenda-setter, given his/her peak

θa1, the position of the median voter’s type ẑ, and assuming that θa2 is uniformly distributed

over [0, 1], is given by:

• If ẑ < 1/2:

x∗
a1 =


ẑ, if θa1 ∈ [0, ẑ],

{2ẑ − θa1, θa1}, if θa1 ∈ [ẑ, 2ẑ),

{0} ∪ [2ẑ, 1], if θa1 ∈ [2ẑ, 1].

• If ẑ = 1/2:

x∗
a1 =

[θa1, 1− θa1], if θa1 ∈ [0, 1/2],

[1− θa1, θa1], if θa1 ∈ [1/2, 1].

• If ẑ > 1/2:

x∗
a1 =


θa1, if θa1 ∈ [0, 2ẑ − 1],

{θa1, 2ẑ − θa1}, if θa1 ∈ [2ẑ − 1, ẑ],

ẑ, if θa1 ∈ [ẑ, 1].

When several values are provided, it is understood that each of them induces the minimum

expected distance to θa1.

Proof of Proposition 9. As we discussed above, the first agenda-setter’s objective is to

choose xa1 minimizing the function, for fixed θa1 and ẑ:

E(θa1, xa1, ẑ) := Eθa2 [|ω(θa2, xa1, ẑ)− θa1|],

assuming θa2 ∼ U([0, 1]). The function ω(θa2, xa1, ẑ) is given in Proposition 8. For the

computation, we first note that for fixed xa1 and ẑ, we only need to do the following

computation:

Ey[|k(a, b)(y)− θ|],

for the adequate values of a, b, and θ, and where y ∼ U([0, 1]). A trivial computation
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shows:

g(a, b)(θ) := Ey[|k(a, b)(y)− θ|] =



−θ +

(
b+

a2 − b2

2

)
, if θ ∈ [0, a],

θ2 − θ +

(
b− a2 + b2

2

)
, if θ ∈ [a, b],

θ +

(
−b+

−a2 + b2

2

)
, if θ ∈ [b, 1].

Thus, we can succinctly express the expectation to minimize as:

• If ẑ ≤ 1/2:

E(θa1, xa1, ẑ) =


g(xa1, 2ẑ−xa1)(θa1), if xa1 ∈ [0, ẑ],

g(2ẑ−xa1, xa1)(θa1), if xa1 ∈ [ẑ, 2ẑ],

g(0, 2ẑ)(θa1), if xa1 ∈ [2ẑ, 1].

• If ẑ ≥ 1/2:

E(θa1, xa1, ẑ) =


g(xa1, 1)(θa1), if xa1 ∈ [0, 2ẑ − 1],

g(xa1, 2ẑ−xa1)(θa1), if xa1 ∈ [2ẑ − 1, ẑ],

g(2ẑ−xa1, xa1)(θa1), if xa1 ∈ [ẑ, 1].

In order to minimize for fixed ẑ and θa1, we first have to express the intervals of constant

polynomial behavior of the function in terms of θa1, with xa1 as indeterminate.

The result, simplifying the notation of the variables, is shown in Table 2 and represented in

Figure 4. In the last column, we indicate whether the function is increasing, decreasing, or

constant in that interval. Of course, when z = 1/2, some of the increasing and decreasing

intervals may become constant, but only then, i.e., otherwise, it is either strictly increasing

or decreasing. Now we verify the value of the function at the distinct candidates for the

minimum value that arise after evaluating the increasing and decreasing behavior, and

obtain the claim.

In Figure 4, one can also see the non-intuitive behavior that the procedure may have:

the probability of obtaining a more favourable outcome for the first agenda-setter has

a markedly non-monotonic behavior, and at many points, a proposal further away from
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z θ x E(θ, x, z) Growth

z ≤ 1

2

θ ∈ [0, z]

x ∈ [0, θ] −x2 − (−2z + 1)x+ (θ2 − θ + 2z − 2z2) ↘

x ∈ [θ, z] (2z − 1)x+ (−θ + 2z − 2z2) ↘

x ∈ [z, 2z − θ] (−2z + 1)x+ (−θ + 2z2) ↗

x ∈ [2z − θ, 2z] −x2 + (2z + 1)x+ (θ2 − θ − 2z2) ↗

x ∈ [2z, 1] (θ2 − θ + 2z − 2z2) →

θ ∈ [z, 2z]

x ∈ [0, 2z − θ] −x2 + (2z − 1)x+ (θ2 − θ + 2z − 2z2) ↘

x ∈ [2z − θ, z] (−2z + 1)x+ (θ − 2z + 2z2) ↗

x ∈ [z, θ] −(−2z + 1)x+ (θ − 2z2) ↘

x ∈ [θ, 2z] −x2 + (2z + 1)x+ (θ2 − θ − 2z2) ↗

x ∈ [2z, 1] (θ2 − θ + 2z − 2z2) →

θ ∈ [2z, 1]

x ∈ [0, z] (−2z + 1)x+ (θ − 2z + 2z2) ↗

x ∈ [z, 2z] (2z − 1)x+ (θ − 2z2) ↘

x ∈ [2z, 1] (θ − 2z + 2z2) →

z ≥ 1

2

θ ∈ [0, 2z − 1]

x ∈ [0, θ] −x2/2 + (θ2 − θ + 1/2) ↘

x ∈ [θ, 2z − 1] x2/2 + (−θ + 1/2) ↗

x ∈ [2z − 1, z] (2z − 1)x+ (−θ + 2z − 2z2) ↗

x ∈ [z, 1] (−2z + 1)x+ (−θ + 2z2) ↘

θ ∈ [2z − 1, z]

x ∈ [0, 2z − 1] −x2/2 + (θ2 − θ + 1/2) ↘

x ∈ [2z − 1, θ] −x2 + (2z − 1)x+ (θ2 − θ + 2z − 2z2) ↘

x ∈ [θ, z] (2z − 1)x+ (−θ + 2z − 2z2) ↗

x ∈ [z, 2z − θ] (−2z + 1)x+ (−θ + 2z2) ↘

x ∈ [2z − θ, 1] −x2 + (2z + 1)x+ (θ2 − θ − 2z2) ↗

θ ∈ [z, 1]

x ∈ [0, 2z − 1] −x2/2 + (θ2 − θ + 1/2) ↘

x ∈ [2z − 1, 2z − θ] −x2 + (2z − 1)x+ (θ2 − θ + 2z − 2z2) ↘

x ∈ [2z − θ, z] (−2z + 1)x+ (θ − 2z + 2z2) ↘

x ∈ [z, θ] (2z − 1)x+ (θ − 2z2) ↗

x ∈ [θ, 1] −x2 + (2z + 1)x+ (θ2 − θ − 2z2) ↗

Table 2: Explicit expression E(θ, x, z) of the expected distance between the outcome and
the first agenda-setter’s peak θ, given its proposal x and the median voter’s type z. The
last column shows its growth behavior with respect to x.
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Figure 4: The graph of E(θa1, x, ẑ) for different values of θa1 and ẑ (red). In blue, we see
the value of θa1, and in dashed blue, the symmetric point 2ẑ − θa1. In green, we see ẑ, in
dashed green, 2ẑ − 1, and in dash-point green, 2ẑ.

44



his/her peak θa1 leads to better odds of the outcome being closer to the peak.

Combining this result with Proposition 8, we can obtain the strategy that will be played

out by both agenda-setters, depending on their peaks:

Corollary 12. The outcome of the single-round procedure with two agenda-setters with

information about ẑ, and the optimal strategies of each agenda-setter, is given by:

ẑ θa1 x∗
a1 x∗

a2 = Ω2AS
(x∗

a1, x∗
a2)

ẑ <
1

2

θa1 ∈ [0, ẑ] ẑ ẑ

θa1 ∈ [ẑ, 2ẑ] {2ẑ − θa1, θa1} k(2ẑ−θa1, θa1)(θa2)

θa1 ∈ [2ẑ, 1] {0} ∪ [2ẑ, 1] k(0, 2ẑ)(θa2)

ẑ =
1

2

θa1 ∈
[
0,

1

2

]
[θa1, 1− θa1] k(x∗

a1, 1−x∗
a1)

(θa2)

θa1 ∈
[
1

2
, 1

]
[1− θa1, θa1] k(1−x∗

a1, x∗
a1)

(θa2)

ẑ >
1

2

θa1 ∈ [0, 2ẑ − 1] θa1 k(θa1, 1)(θa2)

θa1 ∈ [2ẑ − 1, ẑ] {θa1, 2ẑ − θa1} k(θa1, 2ẑ−θa1)(θa2)

θa1 ∈ [ẑ, 1] ẑ ẑ

We are interested specifically in the case of a first agenda-setter with peak θa1 = 1. This

will allow us to compare this procedure to Pendular Voting with a selfish agenda-setter

who tries to maximize the outcome as in Section 7. One further identifies θ ≡ xa1 to match

notations. We compare Pendular Voting’s social welfare, under the case with access to

the position of ẑ, with the expected social welfare of the single-round procedure with two

agenda-setters and where the peak of the second agenda-setter is uniformly distributed in

[0, 1].

Corollary 13. The optimal strategies that will be played out by each agenda-setter, given

that θa1 = 1, that they know the position of ẑ, and assuming θa2 ∼ U([0, 1]), are:
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ẑ x∗
a1 x∗

a2 = Ω2AS
(x∗

a1, x∗
a2)

ẑ < 1/2 {0} ∪ [2ẑ, 1] k(0, 2ẑ)(θa2)

ẑ = 1/2 [0, 1] k(x∗
a1, 1−x∗

a1)
(θa2)

ẑ > 1/2 ẑ ẑ

Under optimal play, the expected outcome is

Eθa2 [Ω
2AS
(x∗

a1, x∗
a2)

] =


2ẑ(1− ẑ), if ẑ <

1

2
,

ẑ, if ẑ ≥ 1

2
,

while the social welfare is

Eθa2 [|Ω2AS
(x∗

a1, x∗
a2)

− ẑ|] =


ẑ(1− ẑ), if ẑ <

1

2
,

0, if ẑ ≥ 1

2
.

After averaging over ẑ as well, we obtain

Eẑ, θa2 [Ω
2AS
(x∗

a1, x∗
a2)

(ẑ)] =
13

24
, Eẑ, θa2 [|Ω2AS

(x∗
a1, x∗

a2)
(ẑ)− ẑ|] = 1

12
.

Comparing this result with Corollary 9, we see that Pendular Voting does not necessarily

improve social welfare versus a single-round procedure with two agenda-setters. In partic-

ular, the expected social welfare was 5/28 for Pendular Voting. This can be interpreted as

follows: under perfect knowledge of ẑ, the strategies can be fine-tuned to obtain the best

outcome feasible given ẑ, and this requires the proposals to approximate ẑ to some degree.

On the other hand, without any knowledge of ẑ, the strategies are blind and disregard the

position of ẑ, ending up in proposals that are further away from it.

8.1.2 No information about the underlying distribution

In this subsection, we replicate the analysis carried out in the previous subsection, but

modeling the lack of information about the distribution of the population by assuming
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that the median voter’s type ẑ follows a uniform distribution in [0, 1], as in Section 7.

We begin by computing the expected distance between the outcome Ω2AS
(xa1, xa2)

(ẑ) of the

single-round procedure with two agenda-setters and the peak θa2 of the second agenda-

setter, from his/her point of view, given the proposal xa1 made by the first agenda-setter

and as a function of his/her proposal xa2.

Proposition 10. The expected distance between the outcome Ω2AS
(xa1, xa2)

(ẑ) and θa2, for

fixed xa1 and xa2 and assuming ẑ ∼ U([0, 1]), is given by:

xa2 θa2 Eẑ[|Ω2AS
(xa1, xa2)

(ẑ)− θa2|]

xa2 ≤ xa1

θa2 ∈ [0, xa2] θa2xa2 +

(
−1

2
x2
a1 + xa1 − θa2

)
θa2 ∈ [xa2, xa1] (θa2 − xa1)xa2 +

(
−1

2
x2
a1 + xa1 + xa1θa2 − θa2

)
θa2 ∈ [xa1, 1]

(
1

2
x2
a1 − xa1 + θa2

)

xa1 ≤ xa2

θa2 ∈ [0, xa1] −1

2
x2
a2 + xa2 + (θa2xa1 − θa2)

θa2 ∈ [xa1, xa2] −1

2
x2
a2 + xa2(1− xa1 + θa2) + (θa2xa1 − θa2)

θa2 ∈ [xa2, 1]
1

2
x2
a2 − xa2 + (θa2)

Proof of Proposition 10. Consider the case xa2 ≤ xa1. We then compute:

Eẑ[|Ω2AS
(xa1, xa2)

(ẑ)− θa2|] =
∫ 1

0

|Ω2AS
(xa1, xa2)

(z)− θa2|dz.

The three cases that appear in the piece-wise expression arise from the three regions where

the argument of the absolute value has different sign. From there, it is a simple computa-

tion. The case xa1 ≤ xa2 is obtained by swapping xa2 for xa1.

Proposition 11. The optimal proposal for the second agenda-setter, assuming that ẑ is

uniformly distributed over [0, 1], is to propose its own peak θa2 regardless of the proposal

xa1 of the first agenda-setter, i.e.:

x∗
a2 = θa2.
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Proof of Proposition 11. Rewriting the intervals of the piece-wise expression of previous

proposition in terms of xa2, we obtain:

θa2 xa2 Eẑ[|Ω2AS
(xa1, xa2)

(ẑ)− θa2|] Growth

θa2 ≤ xa1

xa2 ∈ [0, θa2] −(xa1 − θa2)xa2 +

(
−1

2
x2
a1 + xa1 + xa1θa2 − θa2

)
↘

xa2 ∈ [θa2, xa1] θa2xa2 +

(
−1

2
x2
a1 + xa1 − θa2

)
↗

xa2 ∈ [xa1, 1] −1

2
x2
a2 + xa2 + (θa2xa1 − θa2) ↗

xa1 ≤ θa2

xa2 ∈ [0, xa1]

(
1

2
x2
a1 − xa1 + θa2

)
→

xa2 ∈ [xa1, θa2]
1

2
x2
a2 − xa2 + (θa2) ↘

xa2 ∈ [θa2, 1] −1

2
x2
a2 + xa2(1− xa1 + θa2) + (θa2xa1 − θa2) ↗

The last column describes the behavior of the expression in that region, which immediately

allows to identify the unique value that minimizes it, arguing as in the proof of Proposition

9 (the same convention for the upward or downward pointing arrows is used, where again

the function is strictly monotone except in the boundary values, where it might not be).

Corollary 14. The optimal strategy for the single-round procedure with two agenda-setters,

assuming that ẑ is uniformly distributed over [0, 1], is for each agenda-setter to propose

his/her own peak:

x∗
a1 = θa1, x∗

a2 = θa2.

Proof of Corollary 14. To find the optimal strategy for the first agenda-setter, we need

to compute the expectation of the distance between his/her peak θa1 and the outcome,

depending on the proposal xa1 and the optimal response x∗
a2, i.e., Eẑ, θa2 [|Ω2AS

(xa1, x∗
a2)

(ẑ)−θa1|].

Furthermore, since x∗
a2 = θa2, the expression to minimize can be written as:

Eẑ, θa2 [|Ω2AS
(xa1, θa2)

(ẑ)− θa1|] = Eθa2

[
Eẑ[|Ω2AS

(xa1, θa2)
(ẑ)− θa1|]

]
.
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Furthermore, from the result of the previous proposition we see that setting x∗
a1 := θa1

will minimize, for every θa2, the integrand Eẑ[|Ω2AS
(xa1, θa2)

(ẑ)− θa1|], regarded as a function

of xa1, θa2 and θa1, for fixed θa2 and θa1. Since the minimum x∗
a1 := θa1 does not depend

on θa2, we can simply evaluate the expression at x∗
a1 := θa1 before taking the expectation

over θa2, and this directly yields the argument, also minimizing the averaged expression

Eẑ, θa2 [|Ω2AS
(xa1, θa2)

(ẑ) − θa1|]. This is due to the fact that if for some function f : R2 → R,

we have f(x0, y) ≤ f(x, y), for all x and y, then EY [f(x0, Y )] ≤ EY [f(x, Y )] for all x and

any random variable Y , such that both integrals exist.

We conclude by making the comparison with Pendular Voting. As before, we take θa1 = 1,

i.e., the agenda-setter maximizes the policy outcome. After each agenda-setter makes

his/her optimal proposals, i.e., their peaks, according to Corollary 14, the outcome is

Ω2AS
(1, θa2)

(ẑ):

• If ẑ ≤ 1/2:

Ω2AS
(1, θa2)

(ẑ) =

θa2, if θa2 ∈ [0, 2ẑ],

0, if θa2 ∈ [2ẑ, 1].

• If ẑ ≥ 1/2:

Ω2AS
(1, θa2)

(ẑ) =

1, if θa2 ∈ [0, 2ẑ − 1],

θa2 if θa2 ∈ [2ẑ − 1, 1].

To be able to compare this with Pendular Voting, we take the expectation over θa2, noting

that ẑ is assumed to be uniformly distributed, to find:

Eθa2 [Ω
2AS
(1, θa2)

(ẑ)] =


2ẑ2, if ẑ ≤ 1

2
,

−2ẑ2 + 4ẑ − 1, if ẑ ≥ 1

2
,

and

Eθa2 [|Ω2AS
(1, θa2)

(ẑ)− ẑ|] = −ẑ2 + ẑ.

Similarly, one computes:

Eẑ, θa2 [Ω
2AS
(1, θa2)

(ẑ)] =
1

2
,
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and

Eẑ, θa2 [|Ω2AS
(1, θa2)

(ẑ)− ẑ|] = 1

6
.

Combining everything, we obtain:

Corollary 15. The optimal strategies that will be played out by each agenda-setter, given

that θa1 = 1 and assuming that ẑ ∼ U([0, 1]) and also θa2 ∼ U([0, 1]), are x∗
a1 = 1 and

x∗
a2 = θa2. Under optimal play, the expected outcome and social welfare are:

Eθa2 [Ω
2AS
(1, θa2)

] =


2ẑ, if ẑ <

1

2
,

−ẑ2 + 4ẑ − 1, if ẑ ≥ 1

2
,

Eθa2 [|Ω2AS
(1, θa2)

− ẑ|] = ẑ(1− ẑ),

as well as

Eẑ, θa2 [Ω
2AS
(x∗

a1, x∗
a2)

(ẑ)] =
1

2
, Eẑ, θa2 [|Ω2AS

(x∗
a1, x∗

a2)
(ẑ)− ẑ|] = 1

6
.

Compared to Corollary 11, we see that Pendular Voting performs better on average, with

an expected social welfare of 1/8 for the optimal design parameters. It is interesting to

note that while social welfare in Pendular Voting is protected for values of ẑ around 1/2,

the opposite occurs now.

8.2 Benevolent versus selfish agenda-setter

We now consider the case where the first agenda-setter is selfish and tries to induce the

outcome closest as possible to his/her peak θa1, but the second agenda-setter, on the con-

trary, is altruistic or benevolent and tries to maximize social welfare with the information

from the first outcome in the first round.

In a real setting, the benevolent agenda-setter may take the form of an appointed expert

committee whose objective is to counterbalance new proposals and regulate the procedure

to maximize social welfare and avoid manipulation of the procedure by a potentially selfish

agenda-setter.
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8.2.1 Information about the underlying distribution

As we discussed in Subsection 7.1, this is a trivial case: a benevolent agenda-setter with

access to ẑ proposes xa2 := ẑ, so that the outcome is automatically ẑ and social welfare is

maximal.

8.2.2 No information about the underlying distribution

We begin by computing the expected social welfare given the two proposals of the agenda-

setters, and then optimizing it for fixed xa1 by choosing the appropriate xa2. To obtain

a unique solution, we introduce a tie breaking rule. Assume that if there are multiple

solutions leading to the same social welfare, then the benevolent agenda-setter will choose

the one which is closer the expected Condorcet winner E[ẑ] = 1/2.

Proposition 12. The expected social welfare of the single-round procedure with two agenda-

setters is given by:

Eẑ[|Ω2AS
(xa1, xa2)

(ẑ)− ẑ|] =


x2
a1

2
+

3x2
a2

4
− xa1xa2

2
− xa2 +

1

2
, if xa1 ≤ xa2,

x2
a2

2
+

3x2
a1

4
− xa1xa2

2
− xa1 +

1

2
, if xa2 ≤ xa1.

Thus, the optimal strategy for a benevolent second agenda-setter is to propose:

x∗
a2 =


2 + xa1

3
, if xa1 ∈ [0, y∗),

xa1

2
, if xa1 ∈ [y∗, 1],

where we make the definition

y∗ :=
2(4−

√
6)

5
≃ 0.620.

Proof of Proposition 12. The case where xa2 ≤ xa1 follows from the case xa1 ≤ xa2 by

exchanging the proposals. For the latter, looking at the area between Ω2AS
(xa1, xa2)

(ẑ) and the
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graph of f(ẑ) = ẑ, one computes:

Eẑ[|Ω2AS
(xa1, xa2)

(ẑ)− ẑ|] =
∫ 1

0

|Ω2AS
(xa1, xa2)

(z)− z|dz =
x2
a1

4
+

(xa1 − xa2)
2

4
+

(1− xa2)

2

=
x2
a1

2
+

3x2
a2

4
− xa1xa2

2
− xa2 +

1

2
.

The next step is to find the minimum of this function, regarded as a polynomial in xa2.

One sees that the minimum of the polynomial of the region where xa1 ≤ xa2 is xa1/2,

within that same region, while the local minimum of the polynomial of the region where

xa2 ≤ xa1 is (2+xa1)/3, again within the same region. Thus, we only need to compare the

value at each of these local minimums, that is:

Eẑ[|Ω2AS
(xa1, xa1/2)

(ẑ)− ẑ|] = 5

8
x2
a1 − xa1 +

1

2
,

versus

Eẑ[|Ω2AS
(xa1, (2+xa1)/3)

(ẑ)− ẑ|] = 5

12
x2
a1 −

1

3
xa1 +

1

6
.

The former is strictly greater than the latter if and only if

5

2
x2
a1 − 8xa1 + 4 > 0.

The roots of this polynomial are
2(4±

√
6)

5
,

and since 2(4 +
√
6)/5 > 1, we conclude that this inequality is satisfied if and only if

xa1 ≤ y∗ := 2(4−
√
6)/5.

This result can be interpreted by saying that a benevolent agenda-setter will make proposals

in the direction opposite to the proposal made by the first agenda-setter, with the objective

of covering more policy space and thus improving social welfare on average and given

his/her lack of knowledge of ẑ.

With the optimal strategy of the second agenda-setter being known, the first agenda-setter

will act accordingly to minimize the expected distance to his/her peak θa1.
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Proposition 13. Assuming optimal play by a benevolent agenda-setter in a single-round

procedure and that ẑ ∼ U([0, 1]), the optimal proposal of the first agenda-setter with peak

θa1 is given by:

x∗
a1 =



y∗, if θa1 ∈ [0, y∗],

θa1, if θa1 ∈
[
y∗,

2

3

]
,

{θa1, 2θa1 − 3}, if θa1 ∈
[
2

3
,
2 + y∗

3

]
,

θa1, if θa1 ∈
[
2 + y∗

3
, 1

]
,

where two values symbolize that both are optimal.

Proof of Proposition 13. With the result of the previous proposition, we can compute the

expected distance between θa1 and the outcome after the benevolent agenda-setter reacts

to the proposal xa1. We obtain:

xa1 θa1 Eẑ[|Ω2AS
(xa1, x∗

a2)
(ẑ)− θa1|]

xa1 ≤ y∗

θa1 ∈ [0, xa1]
1

2
θa1xa1 +

1

6
(xa1 − θa1)(2 + xa1) +

2

9
(2 + xa1 − 3θa1)(1− xa1)

θa1 ∈
[
xa1,

2 + xa1

3

]
1

2
θa1xa1 −

1

6
(xa1 − θa1)(2 + xa1) +

2

9
(2 + xa1 − 3θa1)(1− xa1)

θa1 ∈
[
2 + xa1

3
, 1

]
1

2
θa1xa1 −

1

6
(xa1 − θa1)(2 + xa1)−

2

9
(2 + xa1 − 3θa1)(1− xa1)

xa1 ≥ y∗

θa1 ∈
[
0, xa1

2

] 1

4
θa1xa1 +

1

4
(xa1 − 2θa1)xa1 +

1

4
(xa1 − θa1)(4− 3xa1)

θa1 ∈
[xa1

2
, xa1

] 1

4
θa1xa1 −

1

4
(xa1 − 2θa1)xa1 +

1

4
(xa1 − θa1)(4− 3xa1)

θa1 ∈ [xa1, 1]
1

4
θa1xa1 −

1

4
(xa1 − 2θa1)xa1 −

1

4
(xa1 − θa1)(4− 3xa1)

In order to minimize this quantity over xa1, we first have to express the intervals of constant

polynomial behavior in terms of θa1.
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The result is shown in Table 3 and represented in Figure 5. In the last column, we indicate

whether the function is increasing, decreasing, or neither but instead concave, in that

particular interval. As in the proof of Proposition 9, this allows to find the minimum

points and obtain the claim.

In particular, unlike the case where the agenda-setter has access to ẑ, in this case a selfish

agenda-setter aiming to maximize the policy outcome will propose x∗
a1 = 1, against which

the second benevolent agenda-setter reacts proposing x∗
a2 = 1/2. This situation coincides

with the Pendular Voting procedure with optimal design parameters for a selfish agenda-

setter with no information about ẑ. The outcome of both is the preferred alternative out

of {0, 1/2, 1}, and thus:

Corollary 16. Consider a single-round procedure where ẑ ∼ U([0, 1]) and where the second

agenda-setter aims to maximize social welfare. Then, the optimal proposal for a selfish first

agenda-setter trying to maximize the outcome is x∗
a1 = 1, that of the benevolent agenda-

setter is x∗
a2 = 1/2, and the expected outcome and social welfare are :

Eẑ[Ω
2AS
(x∗

a1, x∗
a2)

(ẑ)] =
1

2
, Eẑ[|Ω2AS

(x∗
a1, x∗

a2)
(ẑ)− ẑ|] = 1

8
.

In particular, Pendular Voting with a benevolent agenda-setter performs better, with a

social welfare of

Eẑ[|ΩPV

θ
PV
AS

(ẑ)− ẑ|] = 1

14
.

9 Discussion and Conclusion

We have provided a first analysis of Pendular Voting. The paper is connected with the

voting literature in general, and also with an emerging strand of literature on new forms

of democracy. The insights in this paper further could, on the one hand, help provide a

theoretical foundation for the concept of a “counterproposal” (or “second proposal”) for

referenda in representative democracies or direct democracies. When a policy proposal

to change the constitution is put to a popular vote, Pendular Voting induces a second
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θa1 xa1 Eẑ[|Ω2AS
(xa1, x∗

a2)
(ẑ)− θa1|] Growth

θa1 ∈
[
0,

y∗

2

] xa1 ∈ [0, θa1]
1
18
[−7x2

a1 + xa1(24θa1 − 10) + (−6θa1 + 8)] ↘

xa1 ∈ [θa1, y
∗) 1

18
[−x2

a1 + xa1(2 + 18θa1) + (−18θa1 + 8)] ↗

xa1 ∈ [y∗, 1] 1
2
[−x2

a1 + xa1(θa1 + 2)− 2θa1] ↗

θa1 ∈
[
y∗

2
,
1

2

] xa1 ∈ [0, θa1]
1
18
[−7x2

a1 + xa1(24θa1 − 10) + (−6θa1 + 8)] ↘

xa1 ∈ [θa1, y
∗) 1

18
[−x2

a1 + xa1(2 + 18θa1) + (−18θa1 + 8)] ↗

xa1 ∈ [y∗, 2θa1]
1
2
[−2x2

a1 + xa1(3θa1 + 2)− 2θa1] Concave

xa1 ∈ [2θa1, 1]
1
2
[−x2

a1 + xa1(θa1 + 2)− 2θa1] ↗

θa1 ∈
[
1

2
, y∗

] xa1 ∈ [0, θa1]
1
18
[−7x2

a1 + xa1(24θa1 − 10) + (−6θa1 + 8)] Concave

xa1 ∈ [θa1, y
∗) 1

18
[−x2

a1 + xa1(2 + 18θa1) + (−18θa1 + 8)] ↗

xa1 ∈ [y∗, 1] 1
2
[−2x2

a1 + xa1(3θa1 + 2)− 2θa1] Concave

θa1 ∈
[
y∗,

2

3

] xa1 ∈ [0, y∗) 1
18
[−7x2

a1 + xa1(24θa1 − 10) + (−6θa1 + 8)] Concave

xa1 ∈ [y∗, θa1]
1
2
[x2

a1 − 2xa1 + 2θa1] ↘

xa1 ∈ [θa1, 1]
1
2
[−2x2

a1 + xa1(3θa1 + 2)− 2θa1] Concave

θa1 ∈
[
2

3
,
2 + y∗

3

] xa1 ∈ [0, 3θa1 − 2] 1
18
[x2

a1 − 2xa1 + (18θa1 − 8)] ↘

xa1 ∈ [3θa1 − 2, y∗) 1
18
[−7x2

a1 + xa1(24θa1 − 10) + (−6θa1 + 8)] Concave

xa1 ∈ [y∗, θa1]
1
2
[x2

a1 − 2xa1 + 2θa1] ↘

xa1 ∈ [θa1, 1]
1
2
[−2x2

a1 + xa1(3θa1 + 2)− 2θa1] ↗

θa1 ∈
[
2 + y∗

3
, 1

] xa1 ∈ [0, y∗) 1
18
[x2

a1 − 2xa1 + (18θa1 − 8)] ↘

xa1 ∈ [y∗, θa1]
1
2
[x2

a1 − 2xa1 + 2θa1] ↘

xa1 ∈ [θa1, 1]
1
2
[−2x2

a1 + xa1(3θa1 + 2)− 2θa1] ↗

Table 3: Explicit value of the expected distance between the outcome and θa1, given the
proposal xa1. The last column shows its growth behavior with respect to xa1.
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Figure 5: The graph of Eẑ[|Ω2AS
(xa1, x∗

a2)
(ẑ)− θa1|] for different values of θa1 (red). In blue, we

see the value of θa1, in green y∗, and in a horizontal dashed black line, we see the minimum
value. For the relevant case, the value of 3θa1−2 is represented by a dashed blue line. Each
of the 6 row represents, correspondingly, examples of each of the 6 cases described in Table
3: θa1 ∈ [0, y∗/2], θa1 ∈ [y∗/2, 1/2], θa1 ∈ [1/2, y∗], θa1 ∈ [y∗, 2/3], θa1 ∈ [2/3, (2 + y∗)/3],
and θa1 ∈ [(2 + y∗)/3, 1].
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proposal—more moderate or strengthened, compared to the initial proposal—that opens

up the possibility for a citizenry to select an alternative that is closer to the (potentially

unknown) median voter’s position.

Several issues can be taken up in future research about Pendular Voting. For instance,

there are institutional issues as to who should construct the counterproposal. While the

model prescribes an algorithm that constructs the counterproposal, in practice, an expert

commission, a citizen council or a subcommittee of the parliament might be appropriate

to take over the task. Moreover, while in most cases, a metric to determine moderate or

more extreme counterproposals, compared to the status quo, is available, there may also be

cases in which this definition is more subtle. Yet, even if the policy space is n-dimensional

(n > 1), once a proposal is made, taking the line from the status quo to the proposal

produces a one-dimensional policy space on which a counterproposal can be constructed,

and the Pendular Voting procedure and our results can be applied.

Moreover, numerous further issues deserve thorough investigation. For instance, one might

consider alternative ways to construct the three alternatives. When the initial proposal

obtains a large support, one could construct two new proposals and discard the status

quo. Moreover, if the initial proposal obtains only a small share of votes, the process may

be terminated in order to save the information and administrative costs associated to the

execution of mass voting processes, if the chance that the status quo wins is close to one.

Finally, one might also apply Pendular Voting for committee decisions when the size of the

group is smaller. In such cases, the entire group votes in both stages and the first stage

signals whether the initial proposal should be moderated or strengthened.
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Appendix

Proof of Lemma 1. We recall from Corollary 4 that the outcome of Pendular Voting is given by:

ΩPV
θ

(ẑ) =



0, if 0 ≤ ẑ <
θ − µ1

2
,

θ − µ1, if
θ − µ1

2
≤ ẑ < θ − µ1

2
,

θ, if θ − µ1

2
≤ ẑ < θ +

µ2

2
,

θ + µ2, if θ +
µ2

2
≤ ẑ ≤ 1.

If we rewrite this expression with θ as the main variable, we obtain:

ΩPV
θ

(ẑ) =



θ + µ2, if 0 ≤ θ ≤ ẑ − µ2

2
,

θ, if ẑ − µ2

2
< θ ≤ ẑ +

µ1

2
,

θ − µ1, if ẑ +
µ1

2
< θ ≤ 2ẑ + µ1,

0, if 2ẑ + µ1 < θ ≤ 1,

where if ẑ ≤ µ2/2, the first case disappears, and similarly if ẑ ≥ (1− µ1)/2 or ẑ ≥ 1− µ1/2, the

last or two last cases disappear, correspondingly.

Thus, if the agenda-setter knows in advance the position of the median voter’s type ẑ, s/he will

propose the argument that maximizes ΩPV
θ

(ẑ). Since ΩPV
θ

(ẑ) is piece-wise linear with slope 1 or

0, it is a matter of finding the argument that maximizes the correspondence:

ẑ − µ2

2
7→ ẑ +

µ2

2
,

ẑ +
µ1

2
7→ ẑ +

µ1

2
,

2ẑ + µ1 7→ 2ẑ.

This covers the case where all intervals in the piece-wise definition of ΩPV
θ

(ẑ) are none-empty or

not a single point. If ẑ ≤ µ2/2, then the first interval [0, ẑ − µ2/2] becomes trivial, and thus we

do not consider the first association ẑ−µ2/2 7→ ẑ+µ2/2. Similarly, if (1−µ1)/2 ≤ ẑ < 1−µ1/2,

then the last interval [2ẑ+µ1, 1] is cut short, so that the maximum value of this segment is given

by

1 7→ 1− µ1,

and if 1− µ1/2 ≤ ẑ, then the last two associations are substituted by the single one

1 7→ 1.

The additional case where ẑ ≥ 1−µ2/2 comes from the definition of α+, since then α+ = ẑ+µ2/2
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would be greater than 1 and thus α+ = 1. A similar phenomenon occurs if ẑ ≤ µ1/2 since then

α− ≤ 0 for θ = ẑ + µ1/2, but this case is not relevant when maximizing the outcome.

Proof of Proposition 4. These explicit functional expressions are obtained by verifying which of

the values in the formula for θ
PV
AS given in the previous lemma maximize the function g at each

interval of definition of ΩPV
θ

(ẑ).

For this, it is useful to note that since µ1+µ2 ≤ 1 from our initial model assumptions, we always

have µ2/2 ≤ (1 − µ1)/2, and if µ1 ≥ 1/2, it must also be that µ2 ≤ 1/2. Additionally, one has

µ1/2 ≤ (1− µ1)/2 if and only if µ1 ≤ 1/2 and if and only if (1− µ1)/2 ≤ 1− 3µ1/2.

Proof of Proposition 1. We will prove that out of the four groups considered above, each finds it

optimal to be honest in the second stage of the Pendular Voting procedure under the assumption

that the other three groups also vote honestly. We first observe that we can assume that, at all

times, the group under consideration is not a majority, since otherwise, it wins by being honest

and the result follows automatically.

1. Group x2 ≿ x1 ≿ x0: If this group is not a majority, x2 looses against x1, so x2 never wins.

This group will not lie between x0 and x1, since it can only hurt its own interests to do so:

either there will be a cycle, in which case x1 wins, or x2 looses against both x1 and x0, in

which case x1 ↔ x0 decides the final outcome. Thus, all groups are honest in x1 ↔ x0 and

the only possibility that x0 wins against x1 is that the group with preferences x0 ≿ x1 ≿ x2

is a majority, in which case, again, its voting is irrelevant.

2. Group x1 ≿ x2 ≿ x0: Again, we assume that all groups are a minority. In that case, it is

not convenient for the group at hand to lie between x1 and x0. To see this, we note first

that, in the (maybe dishonest) scenario where x0 wins over x1, the group would not lie

on the other pairwise choices: lying between x0 and x2 could only make x0 win, and lying

between x2 and x1 could only make x2 win or play no role.

Thence, if this group is dishonest when voting between x1 and x0, then it is honest in the

remaining choices. Since the other groups are not a majority either, x1 wins over x2 and

the only possible advantageous outcome of having been situated between x0 and x1 would

have been the clockwise cycle

x2 x1

x0.

If this occurs, having said the truth would either have made no difference or changed the

outcome to one where x1 wins again. Hence lying didn’t accomplish anything.
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In this way, we can assume that x1 wins over x0. Since the group with preferences x2 ≿

x1 ≿ x0 is a minority, the group at hand simply tells the truth as to its preference between

x2 and x1 to make the latter win. (In this case, the voting between x2 and x0 plays no role,

so being honest is also optimal here).

3. Group x1 ≿ x0 ≿ x2: the argument is entirely symmetric to that of the previous group,

after exchanging x0 and x2.

4. Group x0 ≿ x1 ≿ x2: again, the argument is entirely symmetric to that of the first group,

after exchanging x0 and x2.

Proof of Theorem 1. We first consider the strategy profile where groups Z0 and Z1 vote No and

groups Z2 and Z3 vote Yes, as in the case of Not Manipulation. Then, we verify whether any

group has a profitable deviation from that strategy profile. We show first that groups Z3, Z2,

and Z1 have no such deviation. Then, we show that group Z0 may have an incentive to deviate,

and identify the conditions under which such manipulation is optimal.

1. Consider Z3’s voting decision in the first round. In states where Z3 itself is a majority,

Z3 can have its most preferred option α+ if and only if it qualifies for the second round.

Thus, voting Yes at the first stage is optimal for Z3. We will show that Z3’s choice is

inconsequential in any state of nature where Z3 is not a majority. It is straightforward that

Z3’s choice is inconsequential in those states where Z0 ∪ Z1 has a majority. Now consider

states where neither Z3 nor Z0 ∪Z1 builds a majority. Then, α+ could never win against θ

in the second round. But since Z2∪Z3 is a majority, neither 0 nor α− could win against θ in

the second round either. So θ is the outcome, regardless of what happens in the first voting

round, and so group Z3 has no incentive to deviate. In other words, under the assumption

that neither of Z0∪Z1, Z2, Z3 has a majority, by voting Yes or No in the first stage, Z3 can

contribute to one of the two following possible outcomes:

Yes No

α+ θ

0

θ wins.

θ α−

0

θ wins.

Since both result in θ winning, Z3’s vote is irrelevant and there is no incentive to manipulate.

2. Consider Z2’s voting decision in the first round. The same argument as the one used for

Z3 can be now used. Again we can rule out the cases where either of Z0 ∪ Z1, Z2, Z3 has a

majority, and hence we face the same two possibilities as above. Hence again Z2’s vote is

irrelevant and there is no incentive for Z2 to deviate.
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3. Consider Z1’s voting decision in the first round. It is inconsequential in all states in which

either Z2 ∪ Z3 or Z0 is a majority, and trivial if Z1 is a majority, so we consider the

complementary case. Suppose that Z1 votes No. Then α− qualifies for the second round.

Since Z2 ∪ Z3 is a minority, θ cannot win the second round. Since Z0 is also a minority, 0

cannot win either, and the outcome is α−. Now suppose Z1 switches from No to Yes and

is able to sway the outcome of the first round to Yes. Then, α+ qualifies for the second

round. Again because Z2 ∪ Z3 is a minority, α+ cannot win in the second round, and thus

the outcome is either 0 or θ. But Z1 prefers α− to 0 or θ. Hence, whatever the state, Z1

cannot gain from the deviation. As before, the two possible outcomes depending on the

first stage are:

Yes No

α+ θ

0

undecided: θ or 0.

θ α−

0

α− wins.

4. Consider Z0’s voting decision at the first stage. We assume again that Z2 ∪ Z3, Z1 and

Z0 are not a majority. Then, the two possible outcomes are the ones depicted above, the

same as for 3. If No wins the first stage, then, reasoning as above, the outcome is α−. If,

however, Z0 switches from No to Yes, then α+ qualifies for the second round and again,

because Z2 ∪ Z3 is a minority, α+ cannot win in the second round, so the outcome must

be either 0 or θ. If a majority prefers θ to 0, then θ is the Condorcet Winner and it wins.

The groups that prefer θ to 0 are Z3, Z2, Z
3
1 and Z2

1 , while Z1
1 and Z0 prefer 0. Hence,

if Z3, Z2, Z
3
1 , Z

2
1 combined are a majority, Z0 will vote No to avoid that θ wins. Finally,

the case where Z1
1 ∪ Z0 is a majority remains. In that case, the outcome will again be θ

unless 0 is the Condorcet Winner, winning against α+. But the groups that prefer 0 to

α+ are Z0, Z
1
1 , Z

2
1 and Z1

2 . Since we are in the case where Z1
1 ∪ Z0 is a majority, 0 beats

α+ and thus 0 is the final outcome. This means that Z0 finds it optimal to deviate if no

group is a majority and if Z1
1 ∪Z0 is a majority, i.e., given the Manipulation conditions as

defined above (and of course assuming that the other groups vote according to the “naive”

equilibrium).

In this way, we see that manipulation can occur at the first round and that the proposed strategy

where Z0 and Z1 vote No and Z2 and Z3 vote Yes does not provide any equilibrium. However,

we have characterized the states where manipulation occurs, and we can now repeat the analysis

carried out under these circumstances. Indeed, assume thatManipulation conditions hold: Z0∪Z1
1

forms a majority but neither Z0 nor Z1 is a majority. Then, as before, the only possible outcomes

are:

62



Yes No

α+ θ

0

0 wins.

θ α−

0

α− wins.

Hence, conditioned on Z0 ∪ Z1
1 being a majority but neither Z0 nor Z1 being one, 0 always wins

if Yes wins in the first round and α− wins if No does.

This allows us to complete the previous set of strategies to the case whereManipulation conditions

hold. The equilibrium is given by choosing the optimal strategy for each group underManipulation

conditions: between 0 ↔ α−, the only group preferring 0 is Z0; thus, it is optimal for Z0 to vote

Yes and for the rest, Z1 ∪ Z2 ∪ Z3, to vote No.

Proof of Corollay 3. We analyze each possible outcome:

• α+ will be the outcome if and only if Yes is the result of the first stage and α+ is the

Condorcet Winner, which can only occur if Z3 is a majority (recall Corollary 1).

• 0 will be the outcome if and only if it is the Condorcet Winner, and we analyze the case

where Yes and No is the outcome at the first stage separately. If No wins, 0 is preferred

to α− if and only if Z0 is a majority. If Yes wins, then 0 must win over θ, so that Z0 ∪ Z1
1

must be a majority. If Z0 or Z1 were a majority, they would have voted No, so we are in

the manipulation conditions. But then, 0 is never the outcome, and hence the only option

is that Z0 is a majority.

• α− will be the outcome if and only if No wins and, in the second stage, we have one of the

following outcomes:

θ α− θ α− θ α−

0 0 0

The first cycle will never happen, since it requires that 0 wins over α− and hence that Z0

is a majority, in which case 0 would win. The other cycle will only happen if both disjoint

subgroups Z0 ∪ Z1
1 and Z3 ∪ Z2 are majorities, so that we can discard it, as it will almost

never occur, as we argued before. Hence α− only wins under the second outcome, i.e. if it

is the Condorcet Winner.

If manipulation conditions hold (a particular case of Z0 ∪Z1 being a majority but not Z0),

α− is the outcome. If not, the outcome where α− is the Condorcet Winner occurs at the

conditions that Z0 ∪Z1 is a majority (so that No wins; thus α− wins automatically against

θ) and Z0 is not the majority (so that α− wins against 0). All in all, all the cases where
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α− is the final outcome are summed up as: Z0 ∪ Z1 is a majority but Z0 is not a majority

on its own.

Proof of Proposition 5. It is a direct computation based on the outcome function obtained in

Corollary 4, in combination with the definitions of the parameters α+ = min{θ + µ2, 1}, α− =

max{θ−µ1, 0}. We first verify which values the max and min in these expressions take, and then

obtain the expected outcome, computing the probability that each possible outcome wins. Since

µ1 ≤ 1− µ2, the three cases to consider are:

• 0 ≤ θ ≤ µ1: then α− = 0 and we can equivalently take µ1 = θ, with α+ = θ + µ2,

• µ1 < θ < 1− µ2: α− = θ − µ1 and α+ = θ + µ2,

• 1− µ2 ≤ θ ≤ 1: α− = θ − µ1 but α+ = 1 or alternatively µ2 = 1− θ.

Hence, we can just assume that α+ = θ + µ2 and α− = θ − µ1 and choose µi adequately in each

case. We want to compute:

Eẑ[Ω
PV
θ

(ẑ)] = α+P[α+ wins] + θP[θ wins] + α−P[α− wins] + 0P[0 wins]

= (θ + µ2)P[α+ wins] + θP[θ wins] + (θ − µ1)P[α− wins]

= θP[0 does not win] + µ2P[α+ wins]− µ1P[α− wins]

= θ(1− P[0 wins]) + µ2P[α+ wins]− µ1P[α− wins].

By Corollary 4, these probabilities are:

• 0 wins when Z0 is a majority:

P[0 wins] = P[Z0 is majority] = P[ẑ ≤ α−/2] = G((θ − µ1)/2).

• α+ wins when Z3 is a majority:

P[α+ wins] = P[Z3 is majority] = P[ẑ ≥ (θ + α+)/2] = 1−G(θ + µ2/2).
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• α− wins when Z0 ∪ Z1 is a majority but not Z0:

P[α− wins] = P[Z0 ∪ Z1 is majority but not Z0]

= P[Z0 ∪ Z1 is majority]− P[Z0 is not majority]

= P[ẑ ≤ (θ + α−)/2]− P[α−/2 ≤ ẑ]

= G(θ − µ1/2)−G((θ − µ1)/2).

Combining everything, we obtain:

• µ1 ≤ θ ≤ 1− µ2:

Eẑ[Ω
PV
θ

(ẑ)] = θ(1−G((θ − µ1)/2)) + µ2(1−G(θ + µ2/2))

− µ1(G(θ − µ1/2)−G((θ − µ1)/2))

= µ2 + θ −
(
θ − µ1

)
G
(
(θ − µ1)/2

)
− µ2G

(
θ + µ2/2

)
− µ1G

(
θ − µ1/2

)
.

• 0 ≤ θ ≤ µ1: substituting µ1 = θ:

Eẑ[Ω
PV
θ

(ẑ)] = µ2 + θ − µ2G
(
θ + µ2/2

)
− θG

(
θ/2

)
.

• 1− µ2 ≤ θ ≤ 1: substituting µ2 = 1− θ:

Eẑ[Ω
PV
θ

(ẑ)] = 1−
(
θ − µ1

)
G
(
(θ − µ1)/2

)
− (1− θ)G

(
(1 + θ)/2

)
− µ1G

(
θ − µ1/2

)
.

Proof of Corollary 9.

We provide a detailed characterization of all possible welfare realizations.

• If 0 ≤ µ1 ≤ µ2:

|ΩPV

θ
PV
AS

(ẑ)− ẑ| =



µ1

2
, if ẑ ∈

[
0,

µ1

2

]
,

ẑ, if ẑ ∈
[
µ1

2
,
1− µ1

2

]
,

1− µ1 − ẑ, if ẑ ∈
[
1− µ1

2
, 1− µ1 −

µ2

2

]
,

µ2

2
, if ẑ ∈

[
1− µ1 −

µ2

2
, 1− µ2

2

]
,

1− ẑ, if ẑ ∈
[
1− µ2

2
, 1
]
.
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• If µ2 ≤ µ1 ≤ 1/2:

|ΩPV

θ
PV
AS

(ẑ)− ẑ| =



µ1

2
, if ẑ ∈

[
0,

µ1

2

]
,

ẑ, if ẑ ∈
[
µ1

2
,
1− µ1

2

]
,

1− µ1 − ẑ, if ẑ ∈
[
1− µ1

2
, 1− 3µ1

2

]
,

µ1

2
, if ẑ ∈

[
1− 3µ1

2
, 1− µ2

2

]
,

1− ẑ, if ẑ ∈
[
1− µ2

2
, 1
]
.

• If 1/2 ≤ µ1:

|ΩPV

θ
PV
AS

(ẑ)− ẑ| =


µ1

2
, if ẑ ∈

[
0, 1− µ1

2

]
,

1− ẑ, if ẑ ∈
[
1− µ1

2
, 1
]
.

With these realizations, we can calculate the expected welfare and obtain the formulas of the

corollary.
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