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The Economics of Fleet-Wide Emission Targets and
  Pooling in the EU Car Market

Abstract

To support the green transition in the automotive sector, the EU has introduced CO2  emission 
performance  standards,  also  known  as  the  excess  emissions  premium  (EEP)  regulation,  which 
will tighten until 2035. Manufacturers exceeding their average fleet emission targets must pay a 
penalty. The regulation also allows pooling of fleets, enabling manufacturers to combine fleets.
We analyze how this affects market outcomes. The EEP creates a positive externality of electric 
on  conventional  cars.  Pooling  eases  compliance  but  may  weaken  competition  among  existing 
market players, while simultaneously encouraging the entry of electric-only manufacturers into 
the EU.

JEL-Codes: D040, L110, L500.

Keywords: green regulation, automotive industry, excess emissions premium.



1 Introduction

“The legacy carmakers [...] effectively have funded the growth of their biggest EV
competitor.”

Steve Greenfield, Founder and CEO of Automotive Ventures1

The European Green Deal mandates the largest transformation the automotive industry—
often referred to as the ’jewel of the European economy’ (Cornet et al., 2023)—has ever expe-
rienced. Precisely, it aims for transport-related greenhouse gas emissions to be cut by 90% by
2050, as part of its goal to reach climate neutrality. In the course of the Green Deal and to in-
centivize car manufacturers to reduce the number of conventional vehicles and—at the same
time—increase their electric vehicles sales, the European Union amended the CO2 emission per-
formance standards, also referred to as the excess emissions premium (EEP) regulation. This reg-
ulation establishes carbon dioxide (CO2) emissions performance standards for new passenger
cars and vans (European Parliament and Council, 2019). It imposes excess emissions penalties
on car manufacturers whose annually registered car fleet exceeds a specified average emissions
target per vehicle—a target that becomes progressively stricter over time. The regulation also
admits the possibility of pooling—a regulatory mechanism that allows car manufacturers to col-
lectively meet emission standards by averaging emissions across their pooled fleets. Instead of
eachmanufacturer having to complywith the emission limits individually, they can form a pool
with other manufacturers and have their emissions assessed collectively.2 Some manufacturers
worry about spending billions on excess emissions penalties due to this regulation, while firms
like Tesla face the prospect of earning billions by agreeing to pool. Even though automakers
are strongly affected by the EEP regulation, its consequences for domestic car manufacturers,
consumers, and market outcomes have not been analyzed so far.3

We fill this gap by theoretically investigating the effects of the EEP regulation. We begin by
analyzing a car manufacturer with monopoly power in electric and conventional vehicle mar-
kets. We assume that demand in thesemarkets is downward-sloping and independent. Notably,
while independent demand allows us to precisely identify the effects of the EEP regulation, our
main results also hold for interdependent demand as we show in Appendices B and C and
explain below. The monopolist faces constant marginal costs, which may differ between con-
ventional and electric vehicles. We then introduce the EEP regulation. Electric vehicles have,
by definition of the EEP regulation, zero emissions, while conventional vehicles have strictly
positive emissions levels. The emission target t ≥ 0 is set by the regulator and is expected to
become progressively stricter until 2035, at which point t = 0will apply. If the target is not met,

1See https://www.cbtnews.com/how-tesla-is-banking-billions-in-regulatory-emissions-credits/.
2The regulation distinguishes between open and closed pools: closed pools refer to linked car manufacturers,

such as those within the Volkswagen group, whereas open pools involve independent manufacturers pooling to-
gether their car fleets. While we do not explicitly distinguish between the two, our main application concerns
open pools. For details on this distinction, see, e.g., https://circabc.europa.eu/sd/a/f9dce50e-8b82-4771-9f
7a-547e11e265be/FAQ%20open%20pools%20May%202018.pdf (accessed on Feb 10, 2025).

3So far, firms like Tesla have already earned billions by selling carbon credits to competitors in other re-
gions with similar regulations, such as China: https://www.globalfleet.com/en/manufacturers/global/an
alysis/teslas-dominance-over-carbon-credit-market-explained and https://carboncredits.com/teslas
-739-million-carbon-credit-revenue-fuels-q3-earnings-surge/ (both accessed on Feb 10, 2025).
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an excess emissions premium must be paid, corresponding to the extent by which a manufac-
turer’s average emissions per car in its fleet exceed the target. To characterize the equilibrium,
we first denote by t∗ > 0 the lowest emission target such that the benchmark monopoly profit
(i.e., the profit in absence of the EEP regulation) can be obtained. For stricter emission targets
t < t∗ we distinguish between two solutions: First, the Violated Emission Target (VET) solu-
tion, where themanufacturer’s average fleet emissions per vehicle exceed the European Union’s
emission target, leading to the payment of an excess emissions premium, and second the Ful-
filled Emission Target (FET) solution, where quantities are adjusted such that the target is just
met, avoiding any penalties. Intuitively, for t < t∗, selling an electric car exerts a positive exter-
nality on the sale of conventional vehicles as it lowers the regulatory costs of conventional cars’
excess emissions. The strength of this externality diminishes as regulation becomes stricter, be-
cause each electric vehicle provides less emissions leeway for conventional cars when the target
is tightened. This allows us to show that for t smaller than but close to t∗, we obtain the FET
solution and for a strict regulation with t close to zero the VET solution. This also holds for the
case of interdependent demands.

We also investigate the emission target expansion path, that is, how the optimal quantities of
conventional and electric vehicles change when the regulation becomes progressively stricter.
Interestingly, the output of electric vehicles is not monotonic with respect to the strictness of
the regulation. When the EEP regulation just starts to be binding, so when t is reduced below
t∗, then there is a clear incentive to expand the output of electric cars to relax the constraint
on conventional cars. However, as the regulation becomes stricter, the positive externality of
electric vehicle sales on conventional vehicle sales becomes smaller and ultimately disappears
at t = 0. Thus, interestingly, a stricter regulation can increase the price and decrease the sales of
electric cars. Notably, this effectmaynot necessarily holdwith amore general demand structure.

We next introduce an entrant car manufacturer that, unlike the incumbent manufacturer
producing both conventional and electric vehicles, exclusively sells electric cars. The entrant
firm is assumed to produce at constant marginal costs that do not exceed those of the incum-
bent manufacturer. Here, we analyze the case of pooling, which we model as an unconditional
lump-sum payment between the two manufacturers. This approach prevents any direct effect
of pooling on output, ensuring compliance with regulatory constraints of pooling under Ar-
ticles 101 and 102 TFEU, which prohibit its use as a cartelization device. We first analyze the
case that the two manufacturers do not compete for consumers. Pooling enables the incumbent
firm to relax its emissions constraint, thereby expanding its sales of conventional cars. We next
assume that the firms compete à la Cournot in the market for electric vehicles. In this setting,
pooling softens competition. With pooling, the incumbent manufacturer faces less pressure
to sell electric vehicles and therefore reduces its sales. In response, the entrant firm increases
its output. As a result, in equilibrium, pooling partially reallocates market shares to the entrant
firm. The firms’ joint surplus increases, but prices rise, and the overall output of electric vehicles
decreases. Furthermore, pooling may incentivize market entry, leading to what we term ’entry
for pooling,’ where new entrants might only enter the market to take advantage of the potential
benefits of pooling. Our core results also hold for interdependent demands (under mild ad-
ditional assumptions that own-price elasticities dominate cross-price elasticities), namely, that

3



pooling decreases the output of electric cars and increases the output of conventional cars.
Altogether, we show that pooling softens competition, even though explicit quantity agree-

ments are prohibited by cartel laws. Our analysis suggests that electric car manufacturers are
the primary beneficiaries of the pooling option. This is reflected in estimates suggesting that
Tesla might earn more than one billion euros in the EU in 2025 solely from pooling arrange-
ments with the conventional manufacturers Stellantis, Toyota, Ford, Mazda and Subaru.4 Fur-
thermore, pooling could encourage the entry of foreign electric car manufacturers, enabling
them to profit from pooling their fleets with conventional car manufacturers and thereby shift-
ing rents from conventional car production to these new entrants. Incumbent carmanufacturers
then effectively fund their competitors in the market for electric vehicles. Only the payments
from pooling their fleets with incumbent carmakers could make entry into the European mar-
ket profitable for electric vehicle manufacturers, many of whom have not entered the European
market yet.5

Our results are not restricted to the EEP regulation in Europe but also have implications for
related regulations implemented in other regions. California was the first region to implement
a related program, the “Zero-Emission Vehicle (ZEV) Program,” as early as 1990.6 In China, a
regulation allows car manufacturers to earn carbon credits for selling electric vehicles.7 Simi-
larly, South Korea mandates that automakers maintain average greenhouse gas (GHG) emis-
sions below a specified standard, with penalties for non-compliance or the option to purchase
credits from other companies.8 Switzerland, for example, has introduced a comparable regu-
lation for importers.9 For a discussion of the exact regulatory differences in California, China,
and the EU see Rokadiya and Yang (2019). Tesla has already earned billions from its emission
credits under regulations in countries outside of Europe, as noted in the introductory quote by
Steve Greenfield. With EU regulations becoming increasingly stringent, incumbent carmakers’
funding of Tesla (and other EVmanufacturers) can be expected to become evenmore important.
In 2025, Tesla is projected to generate over 1 billion EUR in revenue from pooling agreements
with Stellantis and other partners, whileMercedes is expected to pay approximately 300million
EUR to Volvo for fleet pooling.10

Related Literature. We contribute to the literature on environmental regulation in the carmar-
ket (e.g. Axsen et al., 2020; Barahona et al., 2020; Yan and Eskeland, 2018; Leard et al., 2023;
Durrmeyer and Samano, 2018; Reynaert and Sallee, 2021; Lin and Linn, 2023), and in particu-

4See, e.g., https://www.autonews.com/tesla/ane-tesla-emissions-pool-1-billion-profit/.
5For an overview of Chinese electric vehicle manufacturers, see, for instance, https://licarco.com/news/bes

t-chinese-ev-manufacturers (accessed on Feb 10, 2025).
6See https://ww2.arb.ca.gov/our-work/programs/zero-emission-vehicle-program/about (accessed on

Feb 10, 2025).
7See https://electrek.co/2023/07/06/china-revises-ev-credits-automakers-offset-opportunities-p

roduction/ (accessed on Feb 10, 2025).
8See https://carboncredits.com/tesla-can-trade-carbon-credits-in-south-korea-valued-at-145m/

(accessed on Feb 10, 2025).
9See https://www.bfe.admin.ch/bfe/en/home/efficiency/mobility/co2-emission-regulations-for-new

-vehicles/passenger-cars/calculation-of-penalties-passenger-cars.html?utm_source=chatgpt.com (ac-
cessed on Feb 10, 2025).

10See https://www.handelsblatt.com/unternehmen/industrie/co2-ausgleich-konkurrenten-zahlen-tesl
a-wohl-ueber-eine-milliarde-euro/100099396.html.
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lar to the literature on emission standards for cars (Kwoka Jr, 1983; Lin and Linn, 2023; Rey-
naert, 2021). Kwoka Jr (1983) theoretically analyzed the Corporate Average Fuel Economy
(CAFE) regulation, introduced in the US in 1975, which mandated minimum fleet-wide fuel
efficiency standards for automakers to reduce fuel consumption and dependence on foreign oil.
He showed that to meet these efficiency standards, car manufacturers adjust the mix of their
products by raising the prices for large cars and lowering the prices for small cars. As a conse-
quence, the regulation’s objective of lowering aggregate fuel consumption may not be achieved,
as total car output could increase. Such rebound effects of this regulation have also been em-
pirically documented, for instance, by Goldberg (1998) using a structural model to study the
effects of this regulation on the types of conventional cars sold, their sales, prices, and fuel con-
sumption. Extending the work of Kwoka Jr (1983), Holland et al. (2009) analyze low-carbon
fuel standards and their effects on reducing high-carbon fuel production while increasing low-
carbon fuel production, possibly leading to higher net carbon emissions. They showed that
this regulation cannot be efficient and run simulations to calculate welfare losses. Regarding
the EU, Reynaert (2021) empirically analyzed the extent to which carbon emissions premia led
to conventional car models with lower emission levels. Lin and Linn (2023) first demonstrate
in a differentiated product market model that standards can impact virtually any product at-
tribute. They show that the European carbon emissions standards for passenger vehicles have
not only reduced both fuel consumption and emissions but also unintentionally decreased vehi-
cle quality. Our paper differs from this literature by focusing not on the effects of regulation on
different conventional car models, but rather on the interplay between conventional and electric
car production, as shaped by the EEP regulation and the pooling option.

2 EU regulation on CO2 emission performance standards

We first introduce the EU regulation on CO2 emission performance standards, which has as its
core the excess emissions premium (Section 2.1), before we discuss it in more detail and derive
some of its properties that are important for our subsequent analysis (Section 2.2). Pooling
rules are discussed later in the paper, in Section 4.1

2.1 The excess emissions premium

Article 8 of EU Regulation 2019/631 defines the excess emissions premium (EEP) as the total
penalty a car manufacturer must pay to the EU at the end of the year, whenever the average CO2

emissions of a manufacturer’s fleet exceeds its specific emission target in a given year. Precisely,
the EEP themanufacturer must pay—for each of its new vehicles registered in that year—equals
95 EUR per g of CO2 per km of target exceedance, which gives the following sum in EUR per
year (European Parliament and Council, 2019, p. 10):11

“EEP = (excess emissions × EUR 95) × number of newly registered vehicles.” (1)
11The formula applies to all car manufacturer selling passenger cars in the EU. A similar formula applies to light

commercial vehicles.
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Here, “(...) ‘excess emissions’ means the positive number of grams per kilometre by which a
manufacturer’s average specific emissions of CO2 (...) exceeded its specific emission target in
the calendar year”. Thus, the EEP regulation, and hence, the EEP formula (1) only applies to
those manufacturers whose excess emissions are positive, while for any car manufacturer with
average emissions below the emission target, the EEP is zero. Throughout the paper, we assume
that the total number of cars sold is equal to the “number of newly registered vehicles” of the
respective manufacturer per calendar year.12

To formalize the EEP, suppose a car manufacturer sells two goods i = 1, 2 in quantities q1
and q2, so that q1 + q2 is the number of newly registered vehicles of the manufacturer. Good
1 represents electric cars with an emissions level x1 being set to zero, and good 2 represents
conventional (fossil fuel) cars with an emissions level x2 > 0.13 The average emissions of the
manufacturer’s car fleet are given by

x :=
q2

q1 + q2
· x2, (2)

which is the weighted arithmetic mean of the emissions levels of the cars sold by the manufac-
turer. Let t ≥ 0 denote the emission target. The excess emissions are given by the difference of
the manufacturer’s average emissions and the emission target:

x− t =
−tq1 + (x2 − t)q2

q1 + q2
. (3)

The EEP critically depends on whether or not the car manufacturer fulfills the emission target.
Formally, this requires

x− t ≤ 0, (4)

which can be rewritten as
−tq1 + (x2 − t)q2 ≤ 0, (5)

which we call the emission target constraint. If (5) holds, we say that the emission target is fulfilled,
if it holds with equality, we say that the emission target is binding, and if it does not hold, we say
that the emission target is violated. We also parameterize themultiplier “EUR 95” in (1) bym > 0,
which we call the price for excess emissions.

Taken together, we can now represent the EEP formula (1) via the EEP function

S := S(q1, q2) =

{
m (−tq1 + (x2 − t)q2) if − tq1 + (x2 − t)q2 > 0

0 if − tq1 + (x2 − t)q2 ≤ 0.
(6)

Simplifications. We have simplified the EEP regulation in two key ways. In the actual reg-
ulation: i) a manufacturer’s emission target t is adjusted upward when the average weight of

12To get the dimensions of the EEP formula right, we here summarize the dimensions of the variables: dim(average
emissions) = dim(emissions target) =

g CO2/km
car , dim (“EUR95”) = euros

g CO2/km
, and dim(number of newly registered

vehicles) = (car), which gives dim(EEP) = euros
g CO2/km

(
g CO2/km

car − g CO2/km
car

)
(car) = (euros).

13The EEP regulation only refers to emissions “at the tailpipe” and neither considers emissions caused by the
production of cars or the generation of electricity. Consequently, electric cars have zero emissions and conventional
cars have strictly positive emissions.
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its fleet exceeds the EU-wide average; and ii) a manufacturer’s average emissions value can be
reduced by up to 7 g CO2/km if the manufacturer undertakes eco-innovations (Article 11).

Abstracting from these specificities of the EU regulation, our EEP formula closely mirrors
the actual EEP regulation whenever the manufacturer sells only a single type of conventional
car with a weight equal to the EU average and does not apply for allowances based on claimed
eco-innovations.14

Current calibration. For the years 2020–2024, the EU-widefleet targets is 95 gCO2/km(NEDC),
equivalent to approximately 115.1 gCO2/km (WLTP), whereWLTP is the new certification pro-
cedure used to assess the emission levels of car engines. From 2025 onwards, stricter targets will
apply: 93.6 g/km until 2029, 49.5 g/km from 2030 to 2034, and 0 g/km from 2035 (all measured
with WLTP).

In 2023, 98 out of 101 manufacturers—either individually or as members of a pool—met
their binding targets. Only three manufacturers, each responsible for fewer than 1,600 vehi-
cles newly registered in Europe, exceeded their respective emission targets. The electric-only
car manufacturers Tesla, BYD, and Polestar were individual manufacturers not part of pooling
agreements. This is expected to change, as the pool with the lowest average CO2 emissions was
made up of Kia, BMW, and Stellantis, which reported emissions above 100gCO2/km (WLTP),
which would also violate the 2025 emission targets.15

2.2 Properties

We here discuss some straightforward properties of the EEP function S when S > 0 holds. We
define the (marginal) regulatory costs of good i as ∂S/∂qi. These are

∂S

∂q1
= −mt and ∂S

∂q2
= m(x2 − t) > 0 for t ≥ 0. (7)

Thus, ceteris paribus, a marginal output increase of electric cars (good 1) reduces the EEP by
−mt, whereas a marginal increase of sales of conventional cars (good 2) increases the EEP by
m(x2 − t). Put differently, electric vehicle sales exert a positive externality on the production of
conventional vehicle as it lowers their regulatory costs.

The emission target t is the critical policy variable. The regulatory costs of both goods de-
pend on t with ∣∣∣∣ ∂2S

∂q1∂t

∣∣∣∣ = ∂2S

∂q2∂t
= m for t > 0.

Thus, a stricter emission target, that is, a reduction of t > 0 affects the marginal reduction of the
EEP resulting from an additional electric car sale and the marginal increase of the EEP due to
an additional conventional car sale by exactly the same magnitudem.

14By assuming just one type of conventional car, the excess emissions premium also incentivizes changes in the
composition of conventional car types by making it more attractive to produce and sell cars with lower emissions.
However, the effects of such substitution are limited compared to those resulting from electric cars (with the emission
value of zero), which is why we abstract from them in this paper.

15For details on how car manufacturers’ emission levels compare to their targets see https://www.eea.europa.e
u/en/analysis/indicators/co2-performance-of-new-passenger.
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The distinctive feature of the EEP regulation is that it directly affects a manufacturer’s in-
centives to produce both electric and conventional cars, setting it apart from traditional market
interventions such as an excise tax on conventional cars, a subsidy for electric cars, or a binding
emissions ceiling for newly registered cars.16

According to the EEP regulation, the current emission target is 95 g CO2/km, and this value
is reduced in 2025 by 15 percent, in 2030 by 55 percent and and finally by 100 percent (i.e., t = 0)
in 2035. Hence, the EEP function (6) reduces to

S(q1, q2)|t=0 = mx2q2. (8)

that is, the EEP from 2035 onwards then equals a standard excise taxmx2 per conventional car.

3 Monopoly Model

We now analyze the monopoly problem without the EEP regulation (Section 3.1) and with the
EEP regulation (Section 3.2) in place. In Section 3.3 we analyze comparative statics of market
outcomes regarding the emission target.

Consider a monopolist selling two types of cars, i = 1, 2, namely, electric (good i = 1)
and conventional cars (good i = 2). Production cost of good i is given by Ci(qi) = ciqi for
qi ≥ 0. The inverse market demands are assumed to be independent and are given by pi(qi) for
i = 1, 2. Each inverse demand function is at least twice continuously differentiable and strictly
downward sloping with ∂pi

∂qi
< 0. Let pi := limqi→0 pi(qi) < ∞ be the choke price of good i,

that is, the lowest price at which demand is zero. We assume that the choke price exceeds the
sum of marginal production costs and marginal regulatory costs, no matter how strict the EEP
regulation is. At t = 0 the marginal regulatory costs are maximal for good 2, namely, mx2,
whereas the marginal regulatory costs of good 1 are negative (see Eq. (7)). Thus, we assume
p1 > c1 and p2 > c2 +mx2.

3.1 Benchmark without EEP

If there is no EEP regulation, the monopolist maximizes his profit π = π(q1, q2) by solving

max
q1,q2

π(q1, q2) :=

2∑
i=1

qi(pi(qi)− ci), (9)

which yields the first-order conditions

π′
1 :=

∂π

∂q1
= 0 and π′

2 :=
∂π

∂q2
= 0. (10)

We invoke the standard assumption that each product’s marginal profit (or, equivalently, mar-
ginal revenue) is strictly downward sloping, which implies that the second-order conditions of

16Such a regulatory intervention, targeting either only conventional cars or electric cars directly, could also have
cross-market effects when a manufacturer’s demands and/or costs are interdependent. However, the cross-market
effect would then be indirect and absent if demands and costs are independent.
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the monopolist’s maximization problem hold; i.e., π′′
i := ∂2π

∂q2i
< 0 for i = 1, 2. Thus, Eq. (10) has

a unique (interior) solution with the following properties (asterisks indicate optimal values in
the benchmark case):

Lemma 1 (Monopoly Benchmark). The monopolist’s problem (9) has a unique solution with p∗i > ci,
q∗i > 0, for i = 1, 2 and π(q∗1, q∗2) > 0. Moreover, dp

∗
i

dci
> 0, dq

∗
i

dci
< 0, dp

∗
i

dcj
= 0, dq

∗
i

dcj
= 0, and dπ(q∗1 ,q

∗
2)

dci
< 0

for i, j = 1, 2 and i ̸= j.

Proof. See Appendix.

Lemma 1 states that each product’s optimal output q∗i (and price p∗i ) only depends on its
ownmarginal costs, ci, and not on the other good’s marginal costs, cj (i ̸= j). Clearly, this inde-
pendence is a direct result of our assumption that the demands for the goods are independent.

Next, we analyze how the EEP regulation affects the monopoly solution. As we will see,
the optimal production levels of the goods could then become interdependent even though both
demands and costs are independent of each other.

3.2 Solution with the EEP

With the EEP regulation in place, the monopolist’s new profit function, Π, is the difference of
his profits in the absence of an EEP, π, and the EEP function, S, which gives

Π := Π(q1, q2) := π(q1, q2)− S(q1, q2). (11)

Using (6), the monopolist’s problem can then be written as

max
q1,q2

Π(q1, q2) =

{
π(q1, q2)−m (−tq1 + (x2 − t)q2) if − tq1 + (x2 − t)q2 > 0

π(q1, q2) if − tq1 + (x2 − t)q2 ≤ 0.
(12)

To characterize the solution of (12), we proceed in two steps. In Step 1, we solve for the fulfilled
emission target (in short: FET) solution, that is, we solve the preceding maximization problem
under the assumption that the emission target is fulfilled. In Step 2, we solve for the violated
emission target (in short: VET) solution, where we solve the preceding maximization problem
under the assumption that the emission target is violated. In Step 3, we determine under which
conditions the FET and the VET solution are optimal, respectively.

Before we start, let t∗ denote the lowest emissions target such that the benchmark monopoly
profit is just obtainable. This means that the emission target (5) is binding in the monopoly
solution (q∗1, q

∗
2) so that t∗ satisfies −t∗q∗1 + (x∗2 − t∗)q∗2 = 0. This yields

t∗ =
q∗2

q∗1 + q∗2
· x2. (13)

Due to x2 > 0, such a t∗ < x2 exists. Then, for t ≥ t∗, the solution to (12) is given by the
benchmark solution (q∗1, q

∗
2). We thus proceed with the analysis of the case where t < t∗ holds,

so that the maximal profit level π(q∗1, q∗2) cannot be reached.

9



Step 1. Fulfilled emission target (FET). Assuming that the emission target is fulfilled, we
first analyze the case where 0 < t < t∗. The second-order conditions of the benchmark problem
ensure that the profit function π(q1, q2) is strictly concave, which implies that the emission target
(5) must be binding in the FET solution. Thus, the monopolist’s constrained maximization
problem is given by

max
q1,q2

π(q1, q2) s.t. − tq1 + (x2 − t)q2 = 0. (14)

The corresponding Lagrange function is

L(q1, q2, λ) = π(q1, q2)− λ (−tq1 + (x2 − t)q2) , (15)

where λ ≥ 0 is the Lagrange multiplier. The solution to (14), that is, (q̂1, q̂2, λ̂)—with hats
denoting optimal values in the FET case—fulfills the first-order conditions

∂L

∂q1
= π′

1 + λt = 0, (16)

∂L

∂q2
= π′

2 − λ(x2 − t) = 0, (17)

∂L

∂λ
= tq1 − (x2 − t)q2 = 0. (18)

Eliminating λ, the optimal quantities (q̂1, q̂2) of the FET solution satisfy17

− π′
1

π′
2

∣∣∣∣
−tq1+(x2−t)q2=0

=
t

x2 − t
> 0, (19)

so that the ratio of marginal profits obtained from the two goods (in absolute terms) is equal to
the ratio of the emission target to the excess emissions per conventional car. Inspecting the first-
order conditions (16)-(18), we can rule out λ̂ = 0, because then the benchmark solution (q∗1, q

∗
2)

would follow from (16) and (17), which violates the emission target (or, equivalently, (18)).
Thus, we have λ̂ > 0, which implies that π′

1 < 0 (see (16)) and π′
2 > 0 (see (17)) hold the FET

solution. In the optimum, the manufacturer obtains a negative marginal profit of electric car
sales which is achieved by increasing the output level above the level of the benchmark solution;
that is, we have q̂1 > q∗1 . Likewise, the marginal profit of conventional car sales is positive since
the output level is decreased below the level of the benchmark solution; i.e., we have q̂2 < q∗1 .

We now consider the case t = 0. Then the emission target can be only fulfilled if q̂2 = 0.
In this case the EEP is zero and the optimal quantity for good 1 follows from Lemma 1 with
q̂1 = q∗1 .

Finally, themonopolist’s profit is always lower in the constrained solutions than in the bench-
mark solution; that is, π(q̂1, q̂2) < π(q∗1, q

∗
2) for all 0 ≤ t < t∗. This follows from the strict con-

cavity of the profit function π(q1, q2).
17From now on we use the following notation for the first and second partial derivatives of the profit function π

with respect to qi: π′
i :=

∂π
∂qi

and π′′
i := ∂2π

∂q2i
for i = 1, 2.
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Interpretation of λ. As usual, the Langragemultiplier can be interpreted as the shadow price
of the excess emission target. Let π̂ stand for the optimal profit level in the FET solution for given
values of the parameters x2 and t, which is given by

π̂ := π̂(x2, t) = π(q̂1, q̂2)− λ̂(−tq̂1 + (x2 − t)q̂2) = L(q̂1, q̂2, λ̂),

where q̂1, q̂2, and λ̂ all depend on t. The effect of a small change of the emission target t on the
car manufacturer’s optimal profit level then follows from

dπ̂

dt
=
(
π′
1 + λ̂t

)
︸ ︷︷ ︸

=0

∂q̂1
∂t

+
(
π′
2 − λ̂(x2 − t)

)
︸ ︷︷ ︸

=0

∂q̂2
∂t

− λ̂ (−q̂1 − q̂2)−
∂λ̂

∂t
(−tq̂1 + (x2 − t)q̂2)︸ ︷︷ ︸

=0

(20)

= λ̂ (q̂1 + q̂2) , (21)

where we used (16)-(18). Thus, we have

λ̂ =
dπ̂
dt

q̂1 + q̂2
.

We see that λ̂ mirrors the opportunity costs (per car) induced by a marginal change of the
emission target. So, if the excess emission target becomes stricter by a small amount, it reduces
the profit of the car manufacturer by λ̂ times the total number of cars sold. Using the equa-
tion system (16)-(18), it is easily verified that dλ̂

dc1
> 0 and dλ̂

dc2
< 0, meaning that λ̂ increases

(decreases) with the marginal production costs of electric (conventional) cars. Intuitively, the
lower the marginal costs of conventional cars, the more conventional cars the manufacturer
wants to sell, which must—ceteris paribus—increase the shadow price of the excess emissions
constraint. Conversely, the lower the marginal costs of electric cars, the easier it is to fulfill the
emission target, which must reduce the shadow price of the excess emission target.

Step 2. Violated emission target (VET). Assuming that the emission target is violated, we
again first analyze the case where 0 < t < t∗. Then, the first-order conditions

∂Π

∂q1
= π′

1 +mt = 0 and (22)

∂Π

∂q2
= π′

2 −m(x2 − t) = 0 (23)

must hold, where the solution (q̃1, q̃2)—with tilde denoting optimal values in the VET case—
fulfills q̃1 > q∗1 and 0 < q̃2 < q∗2 , becausem > 0. These conditions give rise to the same condition
as in (19); namely,

−π′
1

π′
2

=
t

x2 − t
> 0. (24)

We finally analyze the case t = 0. The optimal solution follows directly from (22) and (23)
evaluated at t = 0. It then follows that q̃1 = q∗1 and 0 < q̃2 < q∗2 , where here q̃2 > 0 follows from
the assumption p2 > c1+mx2. Finally, the monopolist’s profit is lower in the VET solution than
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in the benchmark solution, because

Π(q̃1, q̃2) = π(q̃1, q̃2)− S(q̃1, q̃2) < π(q̃1, q̃2) < π(q∗1, q
∗
2). (25)

Step 3. Comparison of FET vs. VET. Suppose 0 < t < t∗ and the manufacturer implemented
the FET solution (q̂1, q̂2) with q̂1 > q∗1 and 0 < q̂2 < q∗2 . When does the monopolist benefit from
switching to the VET solution? Violating the emission target increases the profit if and only if
there are dq1 and dq2 so that

dΠ =
(
π′
1 +mt

)
dq1 +

(
π′
2 −m(x2 − t)

)
dq2 > 0 and (26)

−tdq1 + (x2 − t)dq2 > 0 (27)

hold; that is, there must be small output changes dq1 and dq2 that must strictly increase the
firm’s profit (26) and that lead to a violation of the emission target (27).

Whether the monopolist prefers VET over FET depends on the relation of m and the La-
grange parameter λ̂ in the FET solution. Note that form = λ̂we have dΠ|q1=q̂1,q2=q̂2

= 0, so that
in this case (q̂1, q̂2) solves the first-order conditions (22)-(23) but the emission target is fulfilled.
Thus, we have that (q̂1, q̂2) is the unique profit-maximizing solution whenever m = λ̂. Now
suppose m ̸= λ̂, in which case ∂Π

∂qi
̸= 0 for i = 1, 2. Assume firstm < λ̂. Then we have

dΠ =
(
π′
1 +mt

)︸ ︷︷ ︸
(−)

dq1 +
(
π′
2 −m(x2 − t)

)︸ ︷︷ ︸
(+)

dq2 and

−tdq1 + (x2 − t)dq2 > 0;

Here, with dq1 < 0 and dq2 > 0, the profit can be strictly increased and the emission target is
violated, so that the VET solution (q̃1, q̃2)—as given by (22) and (23)—is the unique solution to
(12).

Assume, next, thatm > λ̂. Then we have

dΠ =
(
π′
1 +mt

)︸ ︷︷ ︸
(+)

dq1 +
(
π′
2 −m(x2 − t)

)︸ ︷︷ ︸
(−)

dq2 > 0 and

−tdq1 + (x2 − t)dq2 > 0

Here, the profit level cannot be increased in the direction where the emission target is violated.
In particular, moving in the direction of dq1 > 0 and dq2 < 0 would increase profits but is not
admissable because then the emission target holds strictly. Due to the tangency conditions (19)
and (24) being identical, there cannot exist other marginal changes of the output levels dq1 and
dq2 that both violate the emission target and where dΠ|q1=q̂1,q2=q̂2

> 0. Thus, the FET solution
(q̂1, q̂2) is the unique solution to (12) form > λ̂.

For t = 0 electric cars cannot cross-subsidize conventional cars anymore. It then follows
that the output level of electric cars is equal to the benchmark level (i.e., we have q̂1 = q̃1 = q∗1),
whereas the output of conventional cars is only strictly positive in the VET solution (i.e., we
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have q̃2 > q̂2 = 0). By assumption on the choke price, it follows that the VET solution is optimal
at t = 0.

Writing Π̂ = π̂ = Π(q̂1, q̂2), Π̃ = Π(q̃1, q̃2), Ŝ = S(q̂1, q̂2), and S̃ = S(q̃1, q̃2), we can summa-
rize those results as follows.

Proposition 1. The monopolist’s problem under the EEP regulation (12) has a unique solution depend-
ing on t and m.

i) If t ≥ t∗, the benchmark monopoly solution (Lemma 1) applies and the EEP regulation does not
affect the solution.

ii) If 0 < t < t∗, the solution depends onm and the Lagrangian parameter λ̂ under the FET solution:

a) FET solution: If m ≥ λ̂, then the solution follows from (16)-(18) and is given by (q̂1, q̂2),
with q̂1 > q∗1 , 0 < q̂2 < q∗2 . Moreover, Π̂ = π̂ < π∗ and Ŝ = 0.

b) VET solution: If m < λ̂, then the solution follows from (22)-(23) and is given by (q̃1, q̃2),
with q̂1 > q̃1 > q∗1 and q̂2 < q̃2 < q∗2 . Moreover, Π̃ < π∗ and S̃ = m(−tq̃1+(x2−t)q̃2) > 0.

iii) If t = 0, then the solution follows from (22)-(23) and is given by (q̃1, q̃2), with q̃1 = q∗1 and
0 < q̃2 < q∗2 . Moreover, Π̃ < π∗ and S̃ = mx2q̃2 > 0.

If the EEP regulation is sufficiently strict, either the FET or VET solution will apply. When
the price for excess emissions, m, is relatively high, the FET solution applies. In this case, the
car manufacturer avoids paying the EEP penalty by strongly increasing the production of elec-
tric cars and reducing the production of conventional cars. Conversely, if the price for excess
emissions is relatively low, the VET solution applies. The latter case holds for m < λ̂ and is il-
lustrated in Figure 1. Relative to the benchmark solution, sales of electric vehicles are increased
and conventional car sales decreased, but both quantity distortions are smaller in the VET so-
lution than in the FET solution. Notably, distortions in both the FET and VET solutions can be
so large that electric vehicles are sold below cost, depending on the profitability of conventional
cars and the price of excess emissions.

3.3 The emission target expansion path

How does the monopoly solution change when the emission target t becomes successively
stricter, that is, t becomes lower as stipulated in the EEP regulation? For t ≥ t∗, we obtain
the benchmark solution q∗1 > 0 and q∗2 > 0. As soon as t falls below t∗, we have, no matter
whether the FET or the VET solution applies, that the output of conventional cars is reduced
and the output of electric cars is increased relative to the benchmark solution. A stricter emis-
sion target reduces the car manufacturer’s profit in the FET solution (see (21)) as well as in the
VET solution (see (25)). In the following, we analyze how a stricter regulation affects the FET
and the VET solution, respectively.
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Figure 1: The figure shows the profit in the electric car market, π1 := (p1 − c1)q1, in Panel A and the
profit in the conventional car market, π2 := (p2− c2)q2, in Panel B. It illustrates part ii.b) of Proposition
1 when m < λ̂ holds and the VET solution (q̃1, q̃2) is optimal. In the electric car market (Panel A) the
VET solution implies an output level, q̃1, above the benchmark solution, q∗1 , but below the FET solution,
q̂1. In the conventional car market (Panel B) the VET solution, q̃2, implies an output level above the FET
solution, q̂2, but still below the benchmark level, q∗2 .

FET solution with a stricter regulation. The FET solution (q̂1, q̂2) solves (18) and (19) from
which we get dq̂2

dt > 0 for t ∈ (0, t∗), whereas the corresponding derivative for good 1, dq̂1
dt , can

be positive, negative or zero over t ∈ (0, t∗). Consequently, a stricter emission target, t, always
reduces the number of conventional cars produced but could lead to an increase or decrease
in the production of electric cars. Yet, the latter ambiguity is resolved at the boundaries of
the interval (0, t∗) over which the emission target constraint is binding. To see this note first
that the unconstrained output level of good 1, q∗1 , is optimal at t = t∗ and t = 0 with π′

1 = 0

holding. A small reduction of t below t = t∗ and a small increase of t above t = 0 must then
both increase the optimal output of electric cars beyond the unconstrained monopoly level (i.e.,
q̂1 > q∗1 for t ∈ (0, t∗)). This follows directly from the optimality condition (19), which requires
a strictly negative marginal profit for electric cars because the marginal profit of conventional
cars is strictly positive.

Another feature of the FET solution is that the monopolist’s optimal production quantities
and his profit function are all continuous at t = t∗. Lemma 2 summarizes our results.

Lemma 2. Suppose the FET solution over (0, t∗). The firm’s optimal outputs and maximal profit then
depend on t as follows:

i) Output of good 1: dq̂1
dt |t=t∗ < 0 and dq̂1

dt |t=0 > 0, and dq̂1
dt

>
=
<

0 otherwise, with limt↗t∗ q̂1 =

limt↘0 q̂1 = q∗1 .

ii) Output of good 2: dq̂2
dt > 0, with limt↗t∗ q̂2 = q∗2 , and limt↘0 q̂2 = 0.
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iii) Profit: dπ̂
dt > 0 with limt↗t∗ π̂ = π∗.

Proof. See Appendix.

VET solutionwith a stricter regulation. Let us next turn to the VET solution, (q̃1, q̃2), as given
by (22) and (23), which yields

dq̃1
dt

= −m

π′′
1

> 0 and dq̃2
dt

= −m

π′′
2

> 0 for all t ∈ (0, t∗).

Thus, when the emission target becomes stricter, both the output of electric and conventional
cars must decrease. As we know that the output of electric cars is always larger in the VET
solution than in the benchmark solution (i.e., q̃1 > q∗1 for all 0 < t < t∗), this result clearly
points at a discontinuity at t = t∗. In fact, there must be a jump in the firm’s profit function
at t = t∗ when approaching t∗ from below. This follows from noticing that the firm’s marginal
costs of good 1 and good 2 change from c1 and c2 to c1 − mt and c2 + m(x2 − t), respectively,
when t is reduced slightly below t∗. Thus, we have limt↗t∗ q̃1(t) > q∗1 and limt↗t∗ q̃2(t) < q∗2 .
The induced (discrete) change of the marginal costs when t is reduced slightly below t∗ leads
to a (discrete) change of the output levels which in turn must reduce the firm’s profit by a
non-marginal amount.

But how does the firm’s maximal profit level change over (0, t∗) when the VET solution
applies? We get

dΠ(q̃1, q̃2, t)

dt
=

∂Π(q̃1, q̃2, t)

∂t
= m(q̃1 + q̃2) > 0, (28)

where we used (22) and (23). Thus, a more restrictive emission target always reduces the max-
imal profit of the firm in the VET solution. We summarize those results for the VET solution as
follows.

Lemma 3. Suppose the VET solution holds over (0, t∗). The firm’s optimal outputs and maximal profit
then depend on t as follows:

i) Output of good 1: dq̃1
dt > 0, with limt↗t∗ q̃1 > q∗1 and limt↘0 q̃1 = q∗1 .

ii) Output of good 2: dq̃2
dt > 0, with limt↗t∗ q̃2 < q∗2 .

iii) Profit: dΠ(q̃1,q̃2,t)
dt > 0, with limt↗t∗ Π(q̃1, q̃2, t) < π∗.

From Lemmas 1 and 2 it follows that a slight reduction of t below t∗ must always induce
the FET solution because here the firm’s maximal profit is continuous at t = t∗, whereas the
maximal profit level in the VET solution is strictly below π∗ when t approach t∗ from below.
Conversely, for t close to zero, the VET solution must apply because at t = 0 we have π̃ > π̂

and π̃ and π̂ are continuous at t = 0. Taken those results together, we can describe the emission
target expansion path as follows.

15



Proposition 2 (Emission Target Expansion Path). When t is reduced below t∗, the firm first applies
the FET solution. As t approaches zero, the firm applies the VET solution, as it does at t = 0. As t
becomes stricter, the firm’s profit decreases. The output of electric cars increases when t is reduced below
t∗ and decreases as t approaches 0.

Proposition 2 builds on the insight gained in Proposition 1 that the type of the optimal so-
lution (either FET or VET) critically depends on the comparison of the Lagrange multiplier, λ̂,
and the value of m. It demonstrates that the output of electric vehicles is not monotonic with
respect to the strictness of the regulation. When the EEP regulation starts to become binding
(i.e., λ̂ is small and the FET solution is optimal), there is a clear incentive to expand the output
of electric cars to relax the constraints on conventional cars. However, as the regulation becomes
stricter, the positive externality of electric vehicle sales on conventional vehicle sales becomes
smaller and ultimately disappears at t = 0. Thus, a reduction of the emission targetmust reduce
electric car sales when it becomes sufficiently restrictive.

While so far we have assumed independent demand functions to clearly show the effects
of the EEP regulation and disentangle them from standard substitution effects, interdependent
demand functions are clearly more realistic. In Appendix B, we thus analyze this case. Here,
we derive an analogue of Proposition 1 for interdependent demands. We also investigate the
emission target expansion path for the case of interdependent demands and find one difference:
that the output of electric cars may decrease for a strict regulation with t close to zero, which
must not hold true with this more general demand structure.

4 The Pooling Problem for Two Car Manufacturers

So far we have analyzed how the EEP affects a monopoly producing both conventional and
electric cars. In this section we analyze the pooling option as stipulated in the EEP regulation.
As in the monopoly version of our model, we assume an incumbent car manufacturer I , which
produces both conventional and electric cars. In addition we suppose a second entrant firm
E, which only produces electric cars. In the European context we can interpret firm I as a
conventional car manufacturer, as for instance, Volkswagen or BMW, and firmE as a new electric
car manufacturer, as for instance, Tesla or BYD. To proceed parsimoniously, we use the same
notation for firm I as in the monopoly part of our model. For instance, q1 and q2 stand for the
production quantities of electric and conventional cars of firm I , respectively, and π for firm I’s
profit from selling electric and conventional cars. Variables belonging to firm E are indexed by
the subscript E; for instance, qE and πE stand for the production quantity and the profit of firm
E, respectively.

We start our analysis with a formalization of the pooling option as put forward in the EEP
regulation. We then analyze pooling for the case where firms I and E do not compete in the
electric car market (we call this the no-competition case) and for the case where they compete in
the electric car market (we call this the competition case). Assuming an EEP regulation in place,
we compare the equilibrium outcomeswith andwithout pooling. We show that pooling is valu-
able for the firms whenever the excess emission target is binding for the incumbent firm. In the
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no-competition case, pooling relaxes the EEP constraint of the conventional manufacturer and
thus creates a joint surplus, meaning that joint profits are higher with than without pooling. In
the competition case, an additional incentive to pool is caused by the fact that the EEP regu-
lation tends to intensify competition in the electric car market because of the conventional car
manufacturer’s incentive to “cross-subsidize” his conventional car sales by expanding electric
car sales. In this setting, pooling not only relaxes the emissions constraint of the conventional
car manufacturer but also induces a less competitive equilibrium outcome in the electric car
market.

4.1 Formalization of Pooling

The EEP regulation allows car manufacturers to pool their fleets. If the firms do not pool their
fleets under an EEP regulation, then firm I’s emissions constraint is given by (5) as in the
monopoly version of our model. Firm E’s emissions constraint can be written as

−tqE ≤ 0, (29)

which is never binding because firm E only produces electric cars which have zero CO2 emis-
sions at the tailpipe.

By the EEP regulation, a firm that strictlymeets its own emissions target is not only exempted
from any EEP obligations but it also becomes the owner of emissions credits. Thus, if firm E

sells qE > 0 cars in the EU and if an EEP is in place with t > 0, then firm E becomes the
holder of “emissions credits” amounting to tqE > 0, which can be pooled with the conventional
car manufacturer I . While the EEP regulation allows for either full pooling or no pooling of
emission credits, our formal analysis benefits from also including the concept of partial pooling,
where only a fraction of the obtained emission credits is pooled. Let α ∈ [0, 1] be the share of
E’s total sales quantity which the firms agree to pool with firm I’s total car sales q1 + q2. Given
such a pooling agreement, the joint emission target constraint of firms I and E is given by

−tq1 + (x2 − t)q2 − αtqE ≤ 0. (30)

The EEP regulation stipulates the following pooling rules.

Assumption 1 (Pooling Rules of the EEP Regulation). Suppose firms I and E agree to pool firm I’s
total car sales q1 + q2 with the share α of firm E’s electric car output qE . The EEP is then as follows:

i) Firm E is always exempted from the EEP regulation.

ii) If the joint emission target is fulfilled, firm I pays no EEP.

iii) If the joint emission target is violated, then the EEP firm I has to pay is given by S(q1, q2, αqE) =
m (−tq1 + (x2 − t)q2 − αtqE).

Because of the pooling option, firm E’s emissions credits allow to relax the emission target
for the incumbent firmwhen it is constrained by the EEP regulation. We now consider I’s profit
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maximization problem under a pooling agreement with firm E, when firm E holds emissions
credits tqE > 0 and shares α of it with firm I . In this case, firm I solves

max
q1,q2

Π =

{
π −m (−tq1 + (x2 − t)q2 − αtqE) if − tq1 + (x2 − t)q2 − αtqE > 0

π if − tq1 + (x2 − t)q2 − αtqE ≤ 0.
(31)

For any α > 0, pooling relaxes firm I’s emissions constraint because the joint emissions con-
straint (30) is less restrictive than his own excess emissions constraint (5). In addition, pooling
reduces firm I’s EEP in case of a violation of the joint emissions constraint by the amount of
mαtqE . Thus, if firm I is constrained by the EEP regulation, then —ceteris paribus— pooling
must increase firm I’s profit, Π.

In the following, we assume α = 1 if the firms agree to pool their fleets; that is, firm E

pools its entire electric car output with firm I’s total sales quantity. If no pooling agreement is
reached, we have α = 0.

We analyze a pooling agreement under two assumptions. First, the pooling agreement has
to be concluded before the sales period starts, and second, it only specifies a lump-sum payment
from one firm to the other that cannot be conditioned on any payoff-relevant variable. The joint
surplus of pooling, JSP (α = 1), of firms I and E is given by the sum of the parties’ profit gains
from pooling:

JSP (α = 1) := Π(α = 1)−Π(α = 0) + πE(α = 1)− πE(α = 0), (32)

whereΠ(α = 1) and πE(α = 1) are firm I’s and firmE’s profits in case of pooling andΠ(α = 0)

and πE(α = 0) are the firms profits if they do not pool their fleets. Here all profits represent
anticipated values that the firms expect to realize at the end of the sales period. In accordance
with the Nash bargaining solution, we posit that if the joint surplus of pooling (32) is strictly
positive, then the firms agree to pool their fleets and they split the surplus with the use of an
unconditional lump-sumpayment, T , such that each party is strictly better offwith thanwithout
pooling. If T > 0, then firm I makes a payment to firmE, and if T < 0, thenE makes a payment
to I .

Assumption 2 (Pooling Agreement). If JSP (α = 1) > 0, then firms I and E conclude a pooling
agreement with α = 1, which specifies a lump-sum payment T such that each party is strictly better off
with pooling than without pooling.

As a consequence, the lump-sum payment of a pooling agreement itself cannot affect each
of the firms’ optimal output decisions because it leaves all first-order conditions and the excess
emissions constraints untouched. Assumption 2 thus guarantees that the pooling agreement
cannot be abused as a cartelization device, which is explicitly required in Article 6, Paragraph
5, of the EEP regulation (EC 2019): “Manufacturers may enter into pooling arrangements provided
that their agreements comply with Articles 101 and 102 TFEU (...).”

We begin our analysis with the no-competition case, where the demands of the firms’ cars
in the electric car market are independent and then turn to the competition case where firms
compete in the electric cars market.

18



4.2 No-Competition Case

Suppose that the demands of the electric cars of firms I and E are independent of each other.
Firm I’s inverse demand of its electric cars is given by p1 = p1(q1), and let pE = pE(qE) stand for
the inverse demand of firm E’s electric cars. Firm E’s cost function is CE(qE) = cEqE , where
cE ≥ 0 stands for the marginal production costs of electric cars of firm E. In the absence of
an EEP regulation, firm I’s optimal production plan (q∗1, q

∗
2) is given by Lemma 1 and firm E’s

optimal output q∗E is given by

q∗E = arg max
qE≥0

πE = (pE(qE)− cE) qE , (33)

wherewe assume that the second-order condition, ∂2πE

∂q2E
< 0 holds and that q∗E > 0. As demands

are independent, firms’ optimization problems are also independent of each other in the absence
of an EEP regulation.

Lemma 4 (No-Competition Case without EEP). In the no-competition case without an EEP, the
optimal production quantities of firm I , (q∗1, q∗2), are given by Lemma 1, and the optimal production
quantity of firm E, q∗E , is given by (33).

Now suppose an EEP is in place and assume that t < t∗, where t∗ is given by (13). Thus,
firm I’s benchmark solution (q∗1, q

∗
2) is effectively constrained by the EEP regulation if there is

no pooling. Firm I then realizes either the FET solution (q̂1, q̂2) or the VET solution (q̃1, q̃2) (see
Proposition 1). As firm E produces only electric cars, it is exempted from the EEP regulation.

Lemma 5 (No-Competition Case with EEP). Suppose t < t∗. In the no-competition case with an
EEP, the optimal production quantities of firm I are either given by the FET solution (q̂1, q̂2) or the VET
solution (q̃1, q̃2), as stated in Proposition 1. The optimal production quantity of firm E, q∗E , is given by
(33).

Now, suppose that the two firms agree to pool their fleets. Note that such an arrangement
does not affect firm E’s optimal production plan, q∗E , because we assumed that such an agree-
ment only specifies a lump-sumpayment. If both firms pool their fleets, then the joint emissions
constraint is given by (30) with α = 1. Let tPN be the target value such that the joint emissions
constraint is binding in the unconstrained solution (Lemma 5); that is,

−tq∗1 + (x2 − t)q∗2 − tq∗E = 0 at t = tPN ,

where the superscript PN indicates a pooling agreement in the no-competition case. Clearly,
we have tPN < t∗ because q∗E > 0 and t > 0.18

In the following, we analyze two cases depending on whether or not pooling allows the
incumbent firm I to realizes the unconstrained monopoly solution (Lemma 1). In Case 1, we
suppose a relatively high value of the emission target t such that pooling allows firm I to real-
ize the unconstrained monopoly solution; that is, we assume tPN ≤ t < t∗. In Case 2 we con-
sider stricter values of the emission target t so that firm I could not realize the unconstrained

18Here and in the following, we ignore the case t = 0 where pooling is useless.
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monopoly solution even though pooling relaxes the emissions constraint; that is, we assume
0 < t < tPN .

Case 1 (tPN ≤ t < t∗). If pooling allows firm I to realize the unconstrained monopoly solu-
tion, the effects of pooling are as follows.

Proposition 3 (Pooling in theNo-Competition Case for tPN ≤ t < t∗). Suppose an EEP regulation
is in place that allows for pooling, and assume tPN ≤ t < t∗. In the equilibrium of the no-competition
case, firms I and E reach a pooling agreement with α = 1, which has the following effects:

i) Firm I’s output of electric cars is reduced from either q̂1 or q̃1 to q∗1 .

ii) Firm I’s output of conventional cars is increased from either q̂2 or q̃2 to q∗2 .

iii) Firm I’s profit is increased from either π̂ or Π̃ to π∗.

iv) Firm E’s output and profit are not affected and remain at q∗E and π∗
E , respectively.

v) The joint surplus of pooling is strictly positive, JSP (α = 1) > 0, and firm I makes a strictly
positive payment to E with T > 0.

From Proposition 1, we know that firm I always distorts the output of good 1 (good 2)
upward (downward) in the EEP-constrained solution when compared with the unconstrained
solution (Lemma 1). The results stated in Proposition 3 then follow directly from the fact that
pooling relaxes firm I’s excess emissions constraint such that it is not binding anymore (i.e, it
restores the unconstrained solution according to Lemma 1), whereas firmE’s optimal output is
not affected by the pooling agreement. It is then also immediate that firm I’s profitmust increase
and that firm E’s profit is not affected by pooling. Thus, pooling creates a strictly positive joint
surplus and firm E gets a strictly positive payment T from firm I . Notably, if the VET solution
holds without pooling, then pooling reduces the EEP penalty to zero.

Case 2 (0 < t < tPN). In this case, pooling does not allow firm I to realize the unconstrained
benchmark solution (q∗1, q

∗
2) but, instead, firm I will remain in an EEP-constrained solution,

which is either FET or VET according to Proposition 1. Still, the effects of pooling are qualita-
tively similar to the results stated in Proposition 3. To see this, note first that a pooling agreement
does not affect firm I’s production plan if the VET solution is optimal with and without pool-
ing. This follows directly from inspecting the first-order conditions (22) and (23). As pooling
also does not affect the optimal output of firmE, we get that all output levels (q̃1, q̃2, q∗E) remain
untouched by pooling. Yet, pooling still creates a strictly positive joint surplus by reducing the
EEP the incumbent has to pay by the amount ofmtq∗E .

Next, suppose that firm I is in the FET solutionwhen there is no pooling. Then, firm I solves
(14), so that the optimal quantities (q̂1, q̂2) follow from (16)-(18). With a pooling agreement in
place, firm I solves again (14) with the only difference that the less restrictive joint emissions
constraint (30) applies. This is true for both a pooling agreement with α = 1 and any partial
pooling agreement with α < 1. Thus, under any pooling agreement with α ≤ 1, firm I’s
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optimal quantities of good 1 and good 2 and the value of the Lagrange multiplier in the FET
solution—which we denote by (q̂1(α), q̂2(α), λ̂(α))—fulfill (16), (17), and the joint emissions
constraint (30) holds with equality. Totally differentiating this equation system with respect to
α and applying Cramer’s rule, we get

dq̂1(α)

dα
< 0, dq̂2(α)

dα
> 0, and dλ̂(α)

dα
< 0. (34)

Thus, if the FET solution holds with and without pooling, then a pooling agreement with α = 1

can only reduce the output of good 1 and increase the output of good 2, while it strictly increases
firm I’s profits. Notably, the Lagrange multiplier is monotonically decreasing in α and becomes
minimal at α = 1; namely, when a pooling agreement is concluded. Using Proposition 1, we
know that the VET (FET) solution applies if and only if m < λ̂(α) (m ≥ λ̂(α)). Thus, if m <

λ̂(α = 1), the VET solution holds with and without pooling. However, if m < λ̂(α = 0) and
m > λ̂(α = 1), then the VET solution holds without pooling, whereas the FET solution holds
with pooling. In the former case, pooling has no effect on firm I’s optimal output levels, whereas
it must decrease the output of good 1 and increase the output of good 2 in the latter case. We
thus have established the following result.

Proposition 4 (Pooling in the No-Competition Case for 0 < t < tPN). Suppose an EEP regulation
is in place that allows for pooling, and assume 0 < t < tPN . In the equilibrium of the no-competition
case, firms I and E reach a pooling agreement with α = 1, which has the following effects:

i) If m > λ̂(α = 1), firm I’s output of electric cars is reduced from either q̂1 or q̃1 to q̂1(α = 1),
whereas it is not affected and stays at q̃1 if m ≤ λ̂(α = 1).

ii) Ifm > λ̂(α = 1), firm I’s output of conventional cars is increased from either q̂2 or q̃2 to q̂2(α = 1),
whereas it is not affected and stays at q̃2 if m ≤ λ̂(α = 1).

iii) Firm I’s profit is increased from either π̂ or Π̃ to Π(α = 1).

iv) Firm E’s output and profit are not affected and remain at q∗E and π∗
E , respectively.

v) The joint surplus of pooling is strictly positive, JSP (α = 1) > 0, and firm I makes a strictly
positive payment to E with T > 0.

Proof. See Appendix.

4.3 Competition Case

Suppose consumers regard the electric cars of firm I and firm E as perfectly substitutable. Let
the inversemarket demand for electric cars be the same as in themonopoly version of ourmodel.
Thus, the inversemarket demand for electric cars is given by p1(Q1), which depends on the total
supply of electric carsQ1 := q1+qE . We suppose Cournot competition so that the firms set their
supply quantities simultaneously. In the absence of an EEP regulation, firm I’s problem is given
by

max
q1,q2≥0

π := π(q1, q2, qE) := (p1(Q1)− c1)q1 + (p2(q2)− c2)q2 (35)
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and firm E’s problem by

max
qE≥0

πE := πE(q1, q2) := (p1(Q1)− cE)qE . (36)

We assume that firm E’s marginal production costs cE do not exceed I’s marginal production
costs, c1, of producing electric cars; i.e., cE ≤ c1. This assumption can be justified by the fact
that Tesla (or more recently BYD) has much higher electric car sales volumes than incumbent
conventional car producers such as Volkswagen or BMW.19

If no EEP regulation is in place, the Cournot Nash equilibrium (q∗∗1 , q∗∗E , q∗∗2 ) solves the first-
order conditions following from (35) and (36), which are given by

π′
1 :=

∂π(q1, qE)

∂q1
= p1 + q1

∂p1
∂Q1

− c1 = 0, (37)

π′
2 :=

∂π(q2)

∂q2
= p2 + q2

∂p2
∂q2

− c2 = 0, and (38)

π′
E :=

∂πE(q1, qE)

∂qE
= p1 + qE

∂p1
∂Q1

− cE = 0. (39)

We assume that the equation system (37)-(39) has a unique and interior solution (q∗∗1 , q∗∗E , q∗∗2 ).
Uniqueness is guaranteed by assuming that (in addition to second-order conditions) each firm’s
marginal profit (or, equivalently, marginal revenue) is decreasing in the other firm’s output and
that it reacts stronger to its own output than to the other firm’s output (see Vives, 1999).

Assumption 3 (Unique Equilibrium). In addition to standard second-order conditions, π′′
1 := ∂2π

∂q21
<

0 and π′′
E := ∂2πE

∂q2E
< 0, the following holds:

i) π′′
1E := ∂2π

∂q1∂qE
< 0 and π′′

E1 :=
∂2πE
∂qE∂q1

< 0.

ii) π′′
1 − π′′

1E < 0 and π′′
E − π′′

E1 < 0.

Note that part ii) of Assumption 3 also ensures that firms’ best-response functions in the
electric market are strictly downward sloping with a slope between −1 and 0. In addition to
Assumption 3, we also rule out a “corner” equilibrium outcome, where only the more efficient
firm (here, firm E) is active in the electric car market. This holds if firm E’s marginal profit
(39) is strictly negative at the “limit quantity”, q′E , where p1(q′E) = c1 holds. This is ensured by
assuming that the difference between the firms’ marginal costs c1− cE is not too large. We thus
formulate the following lemma.

Lemma 6 (Competition Case Without EEP). The benchmark duopoly without an EEP has a unique
(interior) equilibrium (q∗∗1 , q∗∗E , q∗∗2 ), which satisfies (37)-(39).

19In our analysis below this assumption ensures a pooling outcome when the incumbent and the entrant firm
compete in the electric car market. We regard it as realistic because electric car manufacturers such as Tesla or BYD
benefit from their technological leadership and scale economies in the production of electric cars. However, this
competitive advantage could disappear if the EU imposes significant import tariffs which raise marginal supply
costs of firms like BYD that export their cars into the EU.
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We thus have a standard Cournot equilibrium in the electric car market (q∗∗1 , q∗∗E ). In the
conventional car market, firm I realizes the monopoly solution, q∗∗2 = q∗2 , as stated in Lemma 1,
because the demand and production costs of fuel cars are independent of the electric carmarket.

Now suppose an EEP is in place. Firm I’s excess emissions constraint is given by (5). Let t∗∗

such that firm I’s excess emission target is binding in the benchmark duopoly solution (q∗∗1 , q∗∗2 );
i.e., we have

−tq∗∗1 + (x2 − t)q∗∗2 = 0 at t = t∗∗.

In the following we assume t < t∗∗, so that the benchmark solution (q∗∗1 , q∗∗2 ) violates firm I’s
excess emission target. FirmE’s excess emission target is given by (29), which is never binding.
Thus, if there is no pooling, then firm I’s benchmark solution (q∗∗1 , q∗∗2 ) is effectively constrained
by the EEP regulation. In analogy to the monopoly version of our model, we get either a FET
equilibrium (q̂1, q̂2, q̂E) or a VET equilibrium (q̃1, q̃E , q̃2).

FET equilibrium with EEP (no pooling). If the incumbent finds the FET solution optimal,
then the unique Cournot Nash equilibrium (q̂1, q̂2, q̂E) (in short: FET equilibrium) follows from

(q̂1, q̂2) = argmax
q1,q2

π s.t. (5) and (40)

q̂E = argmax
qE

πE . (41)

Using the Lagrange function, L := L(q1, q2, λ), to solve firm I’s problem, we get the first-order
conditions

∂L

∂q1
= π′

1 + λt = 0, (42)

∂L

∂q2
= π′

2 − λ(x2 − t) = 0, (43)

∂L

∂λ
= tq1 − (x2 − t)q2 = 0, (44)

while firm E’s first-order condition (39) is not affected by the EEP regulation. Note that the
output levels in the FET equilibrium, (q̂1, q̂2, q̂E), fulfill the equations (39) and (42)-(44), and
that the optimal value of the Lagrange multiplier λ̂ is part of the FET equilibrium outcome.
Comparing (42)-(44) with firm I’s first-order conditions in the duopoly benchmark (37)-(38),
it is obvious that the output of good 1 is increased and the output of good 2 is reduced under
an EEP regulation. This follows directly from (42) and (43), respectively, and noticing that
the optimal value of the Lagrange multiplier, λ̂, must be strictly positive for t < t∗∗. As the
incumbent distorts the output level of its electric cars above the benchmark duopoly level, it
must also be that the entrant reduces the output of its electric cars below the benchmark level
q∗∗E , because its best-response function slopes downward.
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VET equilibrium with EEP (no pooling). If the incumbent finds the VET solution optimal,
then the unique Cournot Nash equilibrium (q̃1, q̃2, q̃E) (in short: VET equilibrium) follows from

(q̃1, q̃2) = argmax
q1,q2

Π := π − S = π −m(−tq1 + (x2 − t)q2),

q̃E = argmax
qE

πE ,

and thus fulfills firm I’s first-order conditions

∂Π

∂q1
= π′

1 +mt = 0, (45)

∂Π

∂q2
= π′

2 −m(x2 − t) = 0, (46)

and firm E’s first-order condition (39), which is not affected by the EEP-regulation. The quan-
tity distortions induced by the EEP in the VET equilibrium point in the same direction as in
the FET equilibrium. Comparing (45)-(46) with (37)-(38), it is straightforward that firm I in-
creases the output of good 1 and reduces the output of good 2, while firm E’s output of electric
cars must be reduced because its best-response function slopes downward.

For any given value of qE , firm I chooses the solution which gives the highest profit. Com-
paring the first-order conditions in the FET and the VET solution (that is, (42)-(43) and (45)-
(46)), it is obvious that the FET solution is optimal whenm ≥ λ̂, because then the VET solution
is not admissible. In this case, the VET solution would imply a higher output of electric cars
and a lower output of conventional cars when compared with the FET solution, implying that
firm I’s emissions constraint (5) is not violated. Thus, if m ≥ λ̂, then the FET solution must be
optimal because of the strict concavity of I’s profit function. If, to the contrary,m < λ̂, then the
VET solution is optimal because now the distortions of firm I’s outputs of good 1 and good 2
away from the unconstrained levels are minimal. We summarize these results as follows.

Lemma 7 (Competition Case with EEP). In the competition case with an EEP in place, the equilib-
rium is either a FET equilibrium (q̂1, q̂2, q̂E) if m ≥ λ̂, which satisfies (42)-(44) and (39), or a VET
equilibrium (q̃1, q̃2, q̃E) if m < λ̂, which satisfies (45)-(46) and (39).

Now suppose that the two firms agree to pool their fleets. Note that such an agreement
does not affects firm E’s first-order condition (39), because we assumed that it only specifies a
lump-sum payment that cannot be conditioned on any market variable. If both firms pool their
fleets, then the joint emissions constraint is given by (30) with α = 1. Let tPC such that the joint
emissions constraint of firms I andE (see (30)) holds as an equality in the benchmark duopoly
equilibrium (q∗∗1 , q∗∗2 , q∗∗E ) when the firms pool their entire fleets (with α = 1); i.e., we have

−tq∗∗1 + (x2 − t)q∗∗2 − tq∗∗E = 0 at t = tPC .

In the following, wedistinguish two cases depending onwhether or not pooling allows to realize
the unconstrained duopoly equilibrium (q∗∗1 , q∗∗2 , q∗∗E ). The unconstrained outcome is feasible
whenever tPC ≤ t < t∗∗ holds, and it is not feasible if t < tPC holds.
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Case 1 (tPC ≤ t < t∗∗). If pooling makes the unconstrained duopoly equilibrium feasible,
then this is the unique equilibrium and we get the following results, which follow directly
from comparing the unconstrained equilibrium (Lemma 6) and the EEP-constrained equilib-
rium (Lemma 7).

Proposition 5 (Pooling in the Competition Case). Suppose an EEP regulation is in place that allows
for pooling, and assume tPC ≤ t < t∗∗. In the equilibrium of the competition case, firms I and E reach
a pooling agreement with α = 1, which has the following effects:

i) Firm I’s output of electric cars is reduced from either q̂1 or q̃1 to q∗∗1 .

ii) Firm I’s output of conventional cars is increased from either q̂2 or q̃2 to q∗∗2 .

iii) Firm I’s profit is increased from either π̂1 or Π̃1 to π∗∗
1 .

iv) Firm E’s output (profit) is increased from either q̂E (π̂E) or q̃E (π̃E) to q∗∗E (π∗∗
E ).

v) The joint surplus of pooling is strictly positive, JSP (α = 1) > 0, and either firm I or firm E

makes a strictly positive payment to the other pooling partner.

vi) The total output in the electric car market is reduced, and the market price for electric cars is in-
creased.

In the competition case, pooling induces firm E to expand its output of electric cars because
firm I reduces its electric car output. This leads to a positive profit effect of pooling on E’s side
which is absent in the no-competition case. Note also that the output expansion of firmE could
lead to a reduction of firm I’s profits from selling electric cars even though the market price
for electric cars increases under pooling. Taking both effects together, the gain from pooling
could be larger for E than for I , in which case firm E makes a payment to firm I to conclude
the pooling agreement (i.e., we have T < 0).

Case 2 (0 < t < tPC). We now analyze the case where pooling does not allow firm I and firm
E to realize the unconstrained benchmark solution (Lemma 6). In this case firm I will remain in
an EEP-constrained solution which is either FET or VET according to Lemma 7. Still, the effects
of pooling are qualitatively similar to the results stated in Proposition 5. To see this, note first
that a pooling agreement does not affect firm I’s production plan if the VET solution is optimal
with andwithout pooling, which follows directly from inspecting the first-order conditions (45)
and (46). As pooling also does not affect the optimal output of firm E, we get that all output
levels (q̃1, q̃2, q̃E) (Lemma 7) remain untouched by pooling. Yet, pooling still creates a strictly
positive joint surplus by reducing the EEP the incumbent has to pay by the amount ofmtq̃E .

Next, suppose that the firms I and E are in the FET equilibrium without pooling. Here
firm I solves (40) so that the optimal quantities (q̂1, q̂2) and the optimal value of the Lagrange
multiplier λ̂ follow from (42)-(44). With a pooling agreement in place, firm I solves again (40)
with the only difference that now the less restrictive joint emissions constraint (30) applies. Note
that the joint emissions constraint (30) is relaxed not only under a pooling agreementwithα = 1
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but also for pooling agreements with 0 < α < 1, where firm E only pools a share of its total
output with firm I’s total car sales. In all those cases, firm I’s optimal quantities of good 1 and
good 2 together with the Lagrange multiplier, and firm E’s output fulfill the equation system
(42)-(44) and (39) in the FET equilibrium. By the implicit function theorem, this equation
system defines the values of (q1, q2, λ, qE) in the FET equilibrium as implicit functions of α,
which gives q̂1(α), q̂2(α), λ̂(α), and q̂E(α). Totally differentiating this equation system with
respect toα (i.e., the share of firmE’s electric car output qE pooledwith firm I’s total car output)
and applying Cramer’s rule, we get

dq̂1(α)

dα
< 0, dq̂2(α)

dα
> 0, dλ̂(α)

dα
< 0, and dq̂E(α)

dα
> 0. (47)

Thus, if the FET solution holds with and without pooling, then a pooling agreement with α = 1

can only reduce the output of good 1 and increase the output of good 2. Notably, the Lagrange
multiplier is monotonically decreasing in α and becomes minimal at α = 1; namely, when a
pooling agreement is concluded. Using Lemma 7, we know that the VET (FET) solution applies
if and only if m < λ̂(α) (m ≥ λ̂(α)). Thus, if m < λ̂(α = 1), the VET solution holds with and
without pooling, because λ̂(α) is monotonically decreasing in α. However, ifm < λ̂(α = 0) and
m ≥ λ̂(α = 1), then the VET solution holds without pooling, whereas the FET solution holds
with pooling. In the former case, pooling does not affect firm I’s optimal output levels, whereas
it must decrease the output of good 1 and increase the output of good 2 in the latter case.

FirmE’s outputmust increase if the FET equilibriumholds under pooling (i.e., ifm > λ̂(α =

1), because its best-response function is downward sloping (Assumption 3). Moreover, themar-
ket price for electric cars increases through pooling because a reduction of firm I’s output by
one unit induces an expansion of firm E’s output by less than one unit (see part ii) of Assump-
tion 3). If, however, the VET equilibrium holds before and after pooling, then not only firm I’s
outputs but also firm E’s output is unaffected by pooling. Consequently, the market price for
electric cars then also remains the same before and after pooling.

The joint surplus of pooling (with α = 1) is strictly positive if the VET equilibrium holds
with and without pooling because it reduces firm I’s EEP payment by the amount of mtq̃E

and leaves all production quantities unchanged. If the FET equilibrium holds with and with-
out pooling, then the joint surplus also increases through pooling because we assumed that
E’s marginal production costs are not strictly larger than firm I’s marginal production costs of
electric cars; i.e., we have

cE ≤ c1 ⇒ ĴSP (α = 1) > 0. (48)

The reason for this result is that pooling shifts parts of the production of electric cars from the
less efficient firm I to the more efficient firm E, while at the same time the market price for
electric cars is increased because total output falls under pooling. If the VET equilibrium holds
without pooling and the FET equilibrium with pooling, then the increase of the joint surplus is
a combination of the surplus generated in the VET equilibrium (by reducing the EPP payment
of firm I) and in the FET equilibrium. We summarize those results as follows.

Proposition 6 (Pooling in the Competition Case for 0 < t < tPC). Suppose an EEP regulation is
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in place that allows for pooling, and assume 0 < t < tPC . In the equilibrium of the no-competition case,
firms I and E reach a pooling agreement with α = 1, which has the following effects:

i) If m > λ̂(α = 1), firm I’s (firm E’s) output of electric cars is reduced (increased) from either q̂1
(q̂E) or q̃1 (q̃E) to q̂1(α = 1) (q̂E(α = 1)), whereas the output of electric cars of firm I and firm
E is not affected and stays at q̃1 and q̃1 if m ≤ λ̂(α = 1).

ii) Ifm > λ̂(α = 1), firm I’s output of conventional cars is increased from either q̂2 or q̃2 to q̂2(α = 1),
whereas it is not affected and stays at q̃2 if m ≤ λ̂(α = 1).

iii) If m > λ̂(α = 1), firm E’s profit is increased from either π̂E or Π̃E to ΠE(α = 1), whereas it is
not affected and stays at π̃E if m ≤ λ̂(α = 1).

iv) The joint surplus of pooling is strictly positive, JSP (α = 1) > 0, and either firm I or firm E

makes a strictly positive payment to the other firm.

Proof. See Appendix.
Altogether, pooling is strictly profitable for the two firms. For all cases but the case where

before and after pooling the VET case applies, pooling increases the output of conventional
vehicles and softens competition in the market for electric vehicles, reducing the output of the
incumbent firm and increasing the sales of the entrant firm.

Entry for Pooling. Now suppose that firmE must cover fixed costs F > 0 to enter the market.
Thus, we introduce a preliminary stage in which E decides whether to enter or not. It only
enters when entry is strictly profitable. As we have shown in Section 3, the incumbent firm
expands its output due to the EEP regulation. Hence, one might think that this reduces the
incentive for entry. However, as pooling creates a joint surplus that the entrant strictly benefits
from, the incentives for entry are higher than in the absence of the EEP regulation. Specifically,
then, the pooling option can induce entry by expanding the range of fixed costs for which entry
is profitable.

Denote by FNO-EEP the minimal fixed costs that prohibits entry of E when there is no EEP
regulation, by FNO-POOL the minimal fixed costs that prohibits entry ofE when there is the EEP
regulation but no pooling option, and by F POOL minimal fixed costs that prohibits entry of E
when there is the EEP regulation and the pooling option.

Corollary 1. The minimal fixed costs that prohibit entry satisfy 0 < FNO-POOL < FNO-EEP < F POOL.

Thus, entry is least likelywhen the EEP is in place, but pooling is not feasible. This is because
the incumbent firm becomes more competitive in the presence of the EEP, expanding its output
of electric vehicles in response to the regulation. Without the EEP, the incumbent firm is less
competitive, making entrymore profitable. When pooling is feasible, the duopoly outcomes (as
in the absence of the EEP regulation) are realized, but in addition, the entrant earns a strictly
positive share of the joint surplus generated through pooling. Consequently, pooling shifts part
of the rents earned from conventional vehicles to the entrant firm, increasing the likelihood of
its entry.
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This analysis applies especially to Chinese manufacturers of electric vehicles, which are nu-
merous, and of whichmany have yet to enter the Europeanmarket (e.g., Li Auto).20 The oppor-
tunity to increase profits under the EEP regulation could incentivize their market entry—unless
countered by import tariffs, which are also under discussion.

5 Conclusion

In this paper, we analyzed the effects of the EEP on the automotivemarket. The EEP incentivizes
manufacturers that produce both conventional and electric cars to increase their electric car
sales in order to meet emission targets. We distinguish between two solutions: one in which
the emission target is violated (VET) and one in which it is fulfilled (FET). The EEP induces
an expansion of electric car sales and a reduction in conventional car sales. These effects are
stronger in the FET than in the VET solution. The effect of a stricter emission target is non-
monotonic: when it just becomes binding, electric car sales are incentivized. However, when it
becomes more restrictive, the positive externality of electric car sales on the regulatory costs of
conventional car sales is reduced, and thus electric car sales might decrease.

When considering more than one car manufacturer, the EEP regulation creates a market
for emissions credits through the pooling option, with electric car manufacturers as the pri-
mary beneficiaries. Even though explicit quantity agreements are prohibited by cartel laws, we
have shown that pooling—which only specifies an unconditional lump-sum payment between
manufacturers—softens competition. Furthermore, pooling could encourage the entry of for-
eign electric car manufacturers, enabling them to profit from pooling their fleets with conven-
tional car manufacturers and thereby shifting rents from conventional car production to these
new entrants. While our main analysis builds on independent demands for conventional and
electric cars, we demonstrate in Appendices B and C that the main results remain valid even
when demands are interdependent—for example, pooling decreases the output of electric cars
and increases the output of conventional cars.

Our analysis shows that the regulation may not necessarily achieve the benefits it is sup-
posed to deliver (European Parliament and Council, 2019). Specifically, we find that the effect
of a stricter emission target is non-monotonic: tightening the regulation does not necessarily
lead to an expansion of electric vehicle sales. Instead, due to pooling, conventional car sales
may increase while electric vehicle sales decline due to weakened competition. This outcome
runs counter to the regulation’s intended goal of promoting the “wider deployment of [...] zero-
emission vehicles” and could contradict its broader objective of “achieving climate neutrality.”

Our analysis could be extended in several directions. For instance, we have only analyzed
the case of two car manufacturers. In a more general oligopoly setting, the crucial question,
then, is who pools fleets with whom and how pooling partners are selected. Moreover, we have
assumed that pooling involves a lump-sum payment. While the pooling regulation prohibits
contract schemes involving quantity agreements, it is possible that car manufacturers might
agree on more complex contracts than simple unconditional payments for pooling. All more

20For an overview of Chinese electric vehicle manufacturers, see, for instance, https://licarco.com/news/bes
t-chinese-ev-manufacturers.
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complicated contract schemes, however, could induce coordinated effects regarding sold quan-
tities, at the extreme this would mean a monopolization of the electric car market. This would
reinforce and amplify our central finding that pooling weakens competition in the electric car
market and facilitates an expansion of conventional car sales.
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Appendix

In Appendix A, we present the missing proofs. In Appendix B, we generalize our monopoly
analysis toward interdependent demands. InAppendix C,we generalize our duopoly and pool-
ing results toward interdependent demands.

Appendix A: Missing Proofs

Proof of Lemma 1 (Monopoly Benchmark). The monopolist solves (9). The unique solution
(q∗1, q

∗
1) follows from the first-order conditions

∂π

∂qi
= 0 ⇔ qi

∂pi(qi)

∂qi
+ pi(qi)− ci = 0 for i = 1, 2. (49)

For each good i = 1, 2 the first-order condition gives a unique solution q∗i > 0 because we
assumed marginal revenue, i.e., qi ∂pi(qi)∂qi

+ pi(qi), to be strictly decreasing in qi and the choke
price pi to be sufficiently large. The optimal prices are then given by p∗i = pi(q

∗
i ) for i = 1, 2.

Eq. (49) defines for each good i an implicit function q∗i (ci). Using the Implicit function
theorem, we then get

dq∗i
dci

= −
∂2π

∂qi∂ci
∂2π
∂q2i

= − −1

2 · ∂pi(qi)
∂qi

+ qi
∂2pi(qi)

∂q2i

< 0 for i = 1, 2,

and
dq∗i
dcj

= 0 for i, j = 1, 2 and j ̸= i,

as stated in the lemma. Accordingly, the price effects of a small change of marginal costs are
given by

dp∗i
dci

=
∂pi
∂qi

dq∗i
dci

> 0 and dp∗i
dcj

= 0 for i, j = 1, 2 and i ̸= j.
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Using (49), the effect of a marginal change of ci on the optimal monopoly profit, π(q∗1, q∗2), is
given by the partial derivative of the profit function; this gives

dπ(q∗1, q
∗
2)

dci
=

∂π(q∗1, q
∗
2)

∂ci
= −q∗i < 0 for i = 1, 2.

This proves Lemma 1. Q.E.D.

Proof of Lemma 2. The FET solution (q̂1, q̂2) solves (18) and

−(x2 − t)π′
1 − tπ′

2 = 0, (50)

where (50) follows from the optimality condition (19). Both equations together define the im-
plicit functions q̂1(t) and q̂2(t). Taking the total derivative of both equations with respect to t,
we get (

−t x2 − t

−(x2 − t)π′′
1 −tπ′′

2

)(
dq1
dt
dq2
dt

)
=

(
q1 + q2

−π′
1 + π′

2

)
. (51)

The 2 × 2 matrix on the left-hand side of (51) we denote by A. Define the matrix Ai, i = 1, 2,
by matrix A, where the ith column vector is substituted by the column vector on the right-hand
side of (51). By Cramer’s rule, we then get

dq̂1
dt

=
|A1|
|A|

=
− (q1 + q2) tπ

′′
2 − (−π′

1 + π′
2) (x2 − t)

t2π′′
2 + (x2 − t)2π′′

1

(52)

and
dq̂2
dt

=
|A2|
|A|

=
−t (−π′

1 + π′
2) + (x2 − t)π′′

1(q1 + q2)

t2π′′
2 + (x2 − t)2π′′

1

> 0. (53)

To determine the signs of equations (52) and (53) notice that π′′
i < 0, for i = 1, 2 (second-order

conditions), and that π′
1 < 0 and π′

2 > 0 follow directly from (16) and (17), respectively. It then
follows that |A|, |A2| < 0 and thus dq̂2

dt > 0, whereas dq̂1
dt

sgn
= −|A1| can be positive, negative, or

zero. Consequently, a stricter emission target, t, always reduces the number of conventional cars
produced but could lead to an increase or decrease in the production of electric cars. To under-
stand the latter ambiguity, we examine the optimal adjustment of q1 in a small neighborhood of
the boundaries over (0, t∗).

First take t = t∗, in which case the optimal production plan is (q∗1, q∗2) with π′
i = 0 for i =

1, 2. Suppose the emission target is reduced slightly below t∗ by dt < 0. Then, at (q∗1, q∗2), the
emission target constraint (5) is violated by the amount of (q∗1+q∗2)dt > 0. By (53)we know that
the manufacturer reduces the output of conventional cars, q2. Now suppose that the firm only
reduces the output of good 2 to make the emission target binding again. Reducing the output
of good 2 from q∗2 by dq2 to q2 with dq2 = − q∗1+q2

x2−t dt < 0 restores equality of the excess emissions
constraint (5). By this, we have reached the point (q∗1, q2) with q2 < q∗2 , where

−tq∗1 + (x2 − t)q2 = 0 (54)
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holds and the firm’s profit is reduced by dπ = π′
2dq2 = −π′

2
q∗1+q2
x2−t dt < 0. However in any such

point, the firm can increase its profit by increasing the output of electric cars beyond q∗1 and at
the same time increase the output of conventional cars so that the total derivative of the excess
emissions constraint (holding as an equality) is just zero; i.e., according to dq2

dq1
= t

x2−t > 0.
This follows from totally differentiating the firm’s profit π(q1, q2(q1)) with respect to q1 and
evaluating it at (q∗1, q2). We then get

dπ

dq1

∣∣∣∣
q1=q∗1 ,q2=q2

= π′
1

∣∣
q1=q∗1

+ π′
2

∣∣
q2=q2

· dq2
dq1

= π′
2

∣∣
q2=q2

· t

x2 − t
> 0, (55)

where we used that π′
1|q1=q∗1

= 0 and where the positive sign follows from q2 < q∗2 which
implies π′

2|q2=q2 > 0. Note that (55) holds for any point (q∗1, q2), where q2 follows from (54) so
that q2 < q∗2 holds for all t ∈ [0, 1). Thus, starting from (q∗1, q2), the firm can strictly increase
its profit by increasing the output of electric cars above q∗1 by one unit and by simultaneously
increasing the output of conventional cars by t

x2−t units, so the emissions target (5) is binding.
The firm follows this adjustment path until the tangency condition (19) holds, where it reaches
the FET solution (q̂1, q̂2) as stated in Proposition 1. Thus, a reduction of t below t∗ not only
reduces the output of conventional cars below q∗2 but at the same time increases the output of
electric cars beyond q∗1 . Due to continuity arguments, there exists ε > 0 so that (55) also holds
for t < t∗, with t∗ − t < ε. Let dq̂1/dt|t=t∗ be the left-derivative of the optimal output of good 1
in the FET solution with respect to t. We then have that dq̂1/dt|t=t∗ < 0.

Moreover, from the above analysis, we also get that the monopolist’s maximal profit, ΠFET ,
as a function of t is continuous at t = t∗, whenever the FET solution holds over (0, t∗) with

ΠFET :=

{
π∗ if t ≥ t∗

π̂ if t < t∗,

because limt↗t∗ q̂1 = q∗1 and limt↗t∗ q̂2 = q∗2 .
We next analyze the case t = 0, where q̂1 = q∗1 and q̂2 = 0. How does a slight increase of the

excess emissions target above t = 0 affect the firm’s optimal production plan here? We know
that the firm now wants to increase the output of conventional cars, q2 (see (53)). Suppose
the firm does so until the emission target is binding while it keeps the output of electric cars at
q̂1 = q∗1 . This gives q2 according to (54). But thenwe know from (55) that the firmwants to raise
also q1 above q∗1 . Notably, in this case a decrease of t increases the output of electric cars, which
in turn makes it possible for the firm also to increase the output of conventional cars beyond
q2, which restores equality of the excess emissions condition without changing the output of
electric cars q1. These arguments also hold in a small neighborhood to the right of t = 0, and we
have thus established that dq̂1

dt |t=0 > 0, where Let dq̂1/dt|t=0 is the right-derivative of the optimal
output of good 1 in the FET solution with respect to t.

Moreover, the firm’s maximal profit, ΠFET , as a function of t whenever the FET solution
applies over (0, t∗) is continuous at t = 0, because limt↘0 q̂1 = q∗1 and limt↘0 q̂2 = 0. The next
lemma summarizes those results for the FET solution. Q.E.D.
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Proof of Proposition 4 (Pooling in the No-Competition Case for 0 < t < tPN). Suppose a
pooling agreement with α ∈ (0, 1], so that we treat α now as a continuous variable. Assume that
the FET solution holds with and without pooling. We show that any such pooling agreement
reduces the output of electric cars and increases the output of conventional cars of firm I . At the
same time, it reduces the value of the Lagrange multiplier and increases the profit of firm I for
all t < tPN . The FET solution (q̂1(α), q̂2(α), λ̂(α)) solves (31) in the casewhere the joint emission
target is binding. The corresponding Lagrange function is L = π− λ(−tq1 + (x2 − t)q2 − tαq∗E),
from which we get the first-order conditions (16)-(17) and the condition tq1 − (x2 − t)q2 +

tαq∗E = 0. These equations define the FET solution for q1, q2, and λ as functions of α. Totally
differentiating the equation system with respect to α, we get

dq̂1(α)

dα
=

t2q∗Eπ
′′
2

−(x2 − t)2π′′
1 − t2π′′

2

< 0 and dq̂2(α)

dα
=

−t(x2 − t)q∗Eπ
′′
1

−(x2 − t)2π′′
1 − t2π′′

2

> 0, (56)

which give the signs as stated in (47).

Proof of Proposition 6 (Pooling in the Competition Case for 0 < t < tPC). If t < tPC , then
the unconstrained duopoly equilibrium (Lemma 6) is not feasible. In this case, the equilibrium
under pooling is either FET or VET (Lemma 7). We start with the FET equilibrium and then
turn to the VET equilibrium.
FET Equilibrium. The effects of a pooling agreement (with α = 1) can be analyzed via the
comparative statics of the equation system (42)-(44) and (39) with respect to α, which is the
share of firm E’s output of electric cars pooled with the total car sales of firm I . Note that
the equations (42)-(44) and (39) pin down the quantities (q̂1, q̂2, q̂E) and the optimal value of
the Lagrange multiplier λ̂ in the FET equilibrium for any value of 0 ≤ α ≤ 1. By the implicit
function theorem, those equations define the implicit functions (q̂1(α), q̂2(α), q̂E(α), λ̂(α)), and
totally differentiating the equation system (42), (43), (39), and (44) (in that order) with respect
to α and rearranging, we get21

π′′
1 0 π′′

1E t

0 π′′
2 0 − (x2 − t)

π′′
1E 0 π′′

E 0

t −(x2 − t) αt 0


︸ ︷︷ ︸

=A


dq̂1
dα
dq̂2
dα
dq̂E
dα
dλ̂
dα

 =


0

0

0

−tq̂E

 . (57)

Define the 4×4matrix on the left-hand side of (57) byA and thematrixAk, with k = 1, 2, 3, 4, by
matrix Awith the k’s column vector of A replaced by the vector on the right-hand side of (57).
Calculating the determinants of those matrices, we get the following expressions and signs for

21Note that all values of the second derivatives of the profit functions stated below are evaluated in a small neigh-
borhood of the FET equilibrium (q̂1, q̂2, q̂E) and the optimal value of the Lagrange multiplier λ̂, where all those
values depend on α.
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all t > 0 and α ∈ [0, 1]:

|A| = −(x2 − t)2
(
π′′
1π

′′
E − π′′

E1π
′′
1E

)
− t2π′′

2

(
π′′
E − π′′

E1α
)
< 0,

|A1| = t2q̂Eπ
′′
2π

′′
E > 0,

|A2| = −tq̂E(x2 − t)
(
π′′
1π

′′
E − π′′

E1π
′′
1E

)
< 0,

|A3| = −tq̂Eπ
′′
2

(
π′′
1π

′′
E − π′′

E1π
′′
1E

)
> 0, and

|A4| = −t2q̂Eπ
′′
E1π

′′
2 < 0.

By Cramer’s rule, we then get

dq̂1(α)

dα
=

|A1|
|A|

< 0, dq̂2(α)
dα

=
|A2|
|A|

> 0, dλ̂(α)
dα

=
|A3|
|A|

< 0, and dq̂E(α)

dα
=

|A4|
|A|

> 0. (58)

which gives the signs of the comparative statics of the FET equilibrium with respect to α as
stated in (47).

We next analyze the price effect of pooling in the electric car market and the joint surplus of
pooling when the FET equilibrium applies.

The equilibrium price in the electric car market is given by p̂1 := p1(q̂1 + q̂E) and we get

dp̂1
dα

=
∂p1
∂Q1

(
dq̂1
dα

+
dq̂E
dα

)
=

∂p1
∂Q1

t2q̂Eπ
′′
2 (π

′′
E − π′′

E1)

|A|
> 0, (59)

so that anymarginal increase ofα unambiguously reduces total output and increases themarket
price for electric cars in the FET equilibrium.

We next show that our assumption on the firms’ marginal costs of electric cars (that is, cE ≤
c1) ensures that the joint surplus of pooling is always strictly positive. Define the joint surplus
of pooling in the FET equilibrium for any value of α > 0 by

ĴSP (α) := π̂(α)− π̂(0) + π̂E(α)− π̂E(0), (60)

where π̂(α) (π̂E(α)) and π̂(0) (π̂C(0)) are the incumbent’s (entrant’s) equilibrium profits for
α > 0 and α = 0, respectively. Now note that I’s profit from selling conventional cars can
only increase through pooling because pooling increases I’s output of conventional cars while
I’s marginal profits are strictly positive in the FET equilibrium. Ignoring I’s conventional car
gains, a sufficient condition for a strictly positive joint surplus from pooling is that the firms’
sum of profits in the electric car market, π1 + πE , increases through pooling. Taking the total
differential of both firms’ profits in the electric car market gives

d[π1 + πE ] =

(
π′
1 +

∂p1
∂Q1

qE

)
dq1 +

(
π′
E +

∂p1
∂Q1

q1

)
dqE (61)

Note first that the terms in brackets on the right-hand side of (61) are strictly negative in the
unconstrained benchmark duopoly equilibrium (that is at (q∗∗1 , q∗∗E )), where π′

1 = π′
E = 0 holds.

It then follows that any reduction of the firms’ outputs must increase the sum of firm profits,
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which is intuitive because competition induces the firms to produce toomany electric cars when
compared with the quantity a monopolist would choose. Next note that both terms remain
strictly negative in the FET equilibrium (that is, at (q̂1, q̂1)), where π′

1 < 0 and π′
E = 0 hold.

From (58) and (59) we know that any marginal increase of α reduces I’s electric car output
and increases E’s output and that the former change is larger than the total value of the latter
change. Rewriting (61) as

d[π1 + πE ] =

(
∂p1
∂Q1

Q1 + p1 − c1

)
dq1 +

(
∂p1
∂Q1

Q1 + p1 − cE

)
dqE (62)

shows that c1 ≥ cE is sufficient to ensure that the firms’ sum of profits in the electric car market
must increasewith amarginal increase ofα. The terms in brackets on the right-hand side of (62)
are equal except for the marginal cost terms. If c1 ≥ cE then the term in brackets in front of dq1
is strictly smaller than the term in brackets in front of dq2 (while both are negative). A reduction
of q1 by an amount larger than the total value of the increase of qE must then increase the sum
of firm profits. Above we showed that any marginal increase of α results in such an adjustment
of the outputs in the FET equilibrium. It follows that a pooling agreement with α = 1 must
increase the sum of the firm profits in the electric car market so that the joint surplus from
pooling is also strictly positive, i.e., we have the result as stated in (48).
VET Equilibrium. Suppose a pooling agreement with α > 0. If the VET equilibrium holds with
andwithout the pooling agreement then the production quantities are not affected and the joint
surplus from pooling is given

J̃SP (α) := Π̃(α)− Π̃(0) + π̃E(α)− π̃E(0) = mαtq̃E > 0. (63)

This completes the proof of the proposition. Q.E.D.

Appendix B: Monopoly with Interdependent demands

Analogue of Proposition 1. Here, we analyze the monopoly version of our model (Section
3) for the case where the demands for goods i = 1, 2 are interdependent. Let pi = pi(q1, q2)

stand for the inverse demand of good i = 1, 2 with the following three properties: i) ∂pi
∂qi

< 0

and ii) ∂pi
∂qi

− ∂p1
∂q2

< 0 with i = 1, 2. Thus, the demands are strictly downward sloping in their
own and the other good’s price, and the own price effect dominates the cross-price effect. In the
benchmark case (without an EEP regulation), the monopolist solves

max
q1,q2

π := (p1(q1, q2)− c1)q1 + (p2(q1, q2)− c2)q2, (64)

which gives the first-order conditions

π′
1 :=

∂π

∂q1
=

∂p1
∂q1

q1 + p1 − c1 +
∂p2
∂q1

q2 = 0, (65)

π′
2 :=

∂π

∂q2
=

∂p2
∂q2

q2 + p2 − c2 +
∂p1
∂q2

q1 = 0. (66)
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Denote the second derivatives of π by π′′
i := ∂2π

∂q2i
and π′′

ij := ∂2π
∂qi∂qj

for i, j = 1, 2 and i ̸= j. The
matrix,M , of the second derivatives of π is then given by

M :=

(
π′′
1 π′′

12

π′′
21 π′′

2

)
(67)

=

 2∂p1
∂q1

+ ∂2p1
∂q21

q1 +
∂2p2
∂q21

q2
∂2p1

∂q1∂q2
q1 +

∂p1
∂q2

+ ∂p2
∂q1

+ ∂2p2
∂q1∂q2

q2
∂2p1

∂q1∂q2
q1 +

∂p1
∂q2

+ ∂p2
∂q1

+ ∂2p2
∂q1∂q2

q2 2∂p2
∂q2

+ ∂2p2
∂q22

q2 +
∂2p1
∂q22

q1

 . (68)

Note that the cross-derivatives π′′
12 and π′′

21 are equal. We assume that marginal profits π′
1 and

π′
2 are strictly decreasing in q1 and q2 and that own-quantity effects dominate cross-quantity

effects; that is, we assume

π′′
1 , π

′′
2 , π

′′
12 < 0 and π′′

i − π′′
12 < 0, for i = 1, 2. (69)

As a consequence of this, the second-order conditions of the monopolist’s problem (64) are ful-
filled; namely, we have π′′

1 < 0 and |M | > 0. Throughout our analysis, we assume the existence
of an interior solution with strictly positive quantities q1, q2 > 0. Let q∗1, q∗1 denote the unique
and interior solution of the monopolist’s problem (64) which fulfills (65) and (66). We then get
the same result as stated in Lemma 1with the only difference that a change of good i’s marginal
costs not only affects the output of good i but also the output of the other good j, with i, j = 1, 2

and i ̸= j. Precisely, for a small change of ci, we get

dqi
dci

=
π′′
j

|M |
< 0 and dqj

dci
=

−π′′
ji

|M |
> 0, for i, j = 1, 2 and i ̸= j. (70)

With interdependent demands, a small increase of the marginal costs of good i reduces the
output of good i (as stated in Lemma 1) and increases the output of the other good j. When
goods are substitutable, the induced output reduction of good 1 drives some consumers to good
2, which must increase the consumption of the other good in the optimal monopoly solution.
Thus, in contrast to the case of independent demands as analyzed in Section 3, a tax on conven-
tional cars would lead to an output expansion of electric cars when goods are substitutable.

Suppose now an EEP regulation in place, which gives rise to the EEP function (6), so that
the monopolist’s problem is given by (12). Define t∗ as in (13) with the only difference that
the optimal quantities (q∗1, q∗2) now follow from (65) and (66). We then get the same first-order
conditions for the FET solution (see (16)-(18)) and for the VET solution (see (22)-(23)) as
stated in Section 3, with the only difference that the marginal profits π′

1 and π′
2 are now given

by (65) and (66), respectively. If we redefine (q̂1, q̂2, λ̂) and (q̃1, q̃2) as solutions of (16)-(18) and
(22)-(23), respectively, then Proposition 1 also holds for the interdependent demands case.

Analogue/Qualification of Proposition 2. We note that the incentive to expand the produc-
tion of electric cars beyond the benchmark monopoly solution, q∗1 , is now reinforced because
of the interdependence of the demands. Under an EEP with t < t∗ the output of conventional
cars must be reduced below the benchmark monopoly level q∗2 both in the FET and the VET
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solution. A reduction of q2 below q∗2 —ceteris paribus— increases the marginal profit of good 1,
which in turn directly creates an incentive to raise the output of good 1 (see (65)). That effect
is absent when demands are independent. A consequence of this is that the electric car output
is larger in the FET solution even for t = 0 when demands are interdependent. In contrast, for
independent demands, we got that the output of electric cars in the FET solution for t = 0 is the
same as in the benchmark solution. Formally, we can prove the quantity distortions induced by
the EEP both in the FET and the VET solution by examining the comparative statics of the sys-
tem of first-order conditions (either in case of the FET solution (16)-(17) or of the VET solution
(22)-(23)) with respect to t. For the VET solution we then get

dq1
dt

= −m
π′′
2 + π′′

12

|M |
> 0 and dq̃2

dt
= m

π′′
1 + π′′

21

|M |
< 0, (71)

where the signs follow from (69). We get the same expressions for the FET solution when we
substitute m by λ̂. Thus, an EEP with t < t∗ always increases (decreases) the output of good
1 (good 2) when compared with the benchmark solution without an EEP. Note also that the
monopolist chooses the FET solution (VET solution) when λ̂ ≤ m (λ̂ > m) holds. This follows
again fromnoticing that the optimality conditions in the FET solution (24) and the VET solution
(24) are parallel while the profit function π(q1, q2) is strictly concave.

Next, we analyze the emissions target expansion path. Note first that the result stated in
Lemma 3 for the VET solution stays valid. This follows directly from the first-order conditions
for the VET solution (see (22)-(23)) and using (65) and (66). This gives rise to the comparative
statics results stated in (71), which are the same as stated in Lemma 3. Likewise, the disconti-
nuity at t = t∗ also stays valid because the products’ regulatory marginal costs change abruptly
at the point where the emissions target is violated.

The FET solution fulfills (16)-(18), where π′
1 and π′

2 are given by (65) and (66), respectively.
Taking the total derivative with respect to t, we get π′′

1 π′′
12 t

π′′
21 π′′

2 − (x2 − t)

t − (x2 − t) 0




dq̂1
dt
dq̂2
dt
dλ̂
dt

 =

 −λ̂

−λ̂

−(q̂1 + q̂2)

 . (72)

Note that (72) gives the total derivatives of q̂1, q̂2, and λ̂ for all values of 0 ≤ t ≤ t∗ with respect
to t, where the derivatives evaluated at the boundaries t = 0 and t = t∗ are the left-sided and
right-sided derivatives, respectively. Note also that λ̂ = 0 at t = t∗ and that λ̂ > 0 and q̂2 = 0

at t = 0. Denote the 3 × 3 matrix on the left-hand side of (72) by B. Let Bi, with i = 1, 2, 3,
be matrix B, where the i’s column of B is replaced by the vector on the right-hand side of (72).
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The determinants of those matrices are

|B| = −
[
(x2 − t)2π′′

1 + t2π′′
2 + (x2 − t)tπ′′

12

]
> 0 (73)

|B1| = (x2 − t)
[
λ̂(x2 − t) + π′′

12(q̂1 + q̂2)
]
+ t
[
λ̂(x2 − t) + π′′

2(q̂1 + q̂2)
]

(74)

|B2| = −
[
(x2 − t)

(
π′′
1(q̂1 + q̂2)− tλ̂

)
+ t
(
π′′
21(q̂1 + q̂2)− tλ̂

)]
> 0 (75)

|B3| = −λ̂
[
−(x2 − t)

(
π′′
21 − π′′

1

)
− t
(
π′′
2 − π′′

12

)]
. (76)

We thus have |B| > 0 and |B2| > for all 0 ≤ t ≤ t∗, whereas the signs of |B1| and |B3| can be
positive or negative over 0 ≤ t ≤ t∗. By Cramer’s rule, we then get that a stricter emission target
always reduces the number of conventional cars produced; i.e., we have

q̂2
dt

=
|B2|
|B|

> 0, for all 0 ≤ t ≤ t∗.

Evaluating the effect of t on q̂1 at the upper boundary t = t∗, where λ̂ = 0 holds, and thus |B1|
reduces to the expression

(x2 − t)
[
π′′
12(q̂1 + q̂2)

]
+ t
[
π′′
2(q̂1 + q̂2)

]
< 0,

we consequentially get
q̂1
dt

=
|B1|
|B|

< 0 at t = t∗.

Thus, reducing the emission target by a small amount below t∗ must increase the number of
electric cars produced. Turning to the lower end of values of t, we get that |B1| reduces to the
expression

|B1| = x2

[
λ̂x2 + π′′

12q̂1

]
at t = 0,

because q̂2 = 0 must hold at this point. Using (66) and the first-order condition (17), we then
get that

|B1|
>
=
<
0 ⇔ x2π

′
1|q̂2=0

>
=
<
−q̂1π

′′
12|q̂2=0 at t = 0, (77)

with x2π
′
1|q̂2=0 > 0. We then get the result stated in Proposition 1 that dq̂1

dt = |B1|
|B| > 0 holds at

t = 0, if the choke price —and with that π′
1|q̂2=0— is sufficiently large. However, in contrast to

Proposition 1, condition (77) also shows that there could be instances, where a small increase
of t above t = 0 could reduce the output of electric cars. If the inverse demands are linear in q1

and q2, the condition (77) can be rewritten as

|B1|
>
=
<
0 ⇔ p2 − c2

>
=
<
−∂p2
∂q1

q̂1, (78)

where we used (66) and (68). Thus, a small increase of t above t = 0 could induce a reduction
of electric cars produced whenever the profit margin of conventional cars, p2− c2 is small at the
choke price and the products are close substitutes such that−∂p2

∂q1
gives a large positive number.
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Appendix C: Pooling with Interdependent demands

We now show that our main results of pooling (see Proposition 6) concerning its allocative
effects stay valid when the electric and the conventional car demands are interdependent. Ac-
cordingly, assume the inverse demand for electric cars is given by

p1 = p1(Q1, q2) with ∂p1
∂Q1

<
∂p1
∂q2

< 0, (79)

and the inverse demand for conventional cars is given by

p2 = p2(Q1, q2) with ∂p2
∂q2

<
∂p2
∂Q1

< 0; (80)

that is, we assume that the products are (imperfect) substitutes. We assume that the inverse de-
mand functions are at least twice continuously differentiable and that the mixed partial deriva-
tives are equal (i.e., Young’s Theorem holds). The profits π and πE and the marginal profits
π′
1, π′

2, and π′
E are defined as before with the only difference that the inverse demands are now

given by (79) and (80).
Our analysis from now on proceeds in four steps. In step 1, we analyze the benchmark case

without an EEP and here we introduce our main assumption for the entire duopoly analysis
with interdependent demands. In step 2, we analyze the effects of pooling when the FET equi-
librium holds with and without pooling. In step 3, the effect of pooling is examined when the
VET equilibrium holds without pooling. In step 4, we show that the allocative consequences of
pooling remain qualitatively valid when pooling allows to realize the benchmark equilibrium
without an EEP regulation. Finally, we recapitulate all results in a summary statement.

Step 1 (Benchmark case without an EEP). Given the demands (79) and (80), we get the fol-
lowing expressions for the marginal profits and the first-order conditions:

π′
1 =

∂p1
∂Q1

q1 + p1 − c1 +
∂p2
∂Q1

q2 = 0, (81)

π′
2 =

∂p2
∂q2

q2 + p2 − c2 +
∂p1
∂q2

q1 = 0, and (82)

π′
E =

∂p1
∂Q1

qE + p1 − cE = 0. (83)

The second derivatives of firms’ profits are given by

G :=

 π′′
1 π′′

12 π′′
1E

π′′
21 π′′

2 π′′
2E

π′′
E1 π′′

E2 π′′
E

 =


∂2p1
∂Q2

1
q1 + 2 ∂p1

∂Q1
+ ∂2p2

∂Q2
1
q2

∂2p1
∂Q1∂q2

q1 +
∂p1
∂q2

+ ∂p2
∂Q1

+ ∂2p2
∂Q1∂q2

q2
∂2p1
∂Q2

1
q1 +

∂p1
∂Q1

+ ∂2p2
∂Q2

1
q2

∂2p1
∂q2∂Q1

q1 +
∂p1
∂q2

+ ∂p2
∂Q1

+ ∂2p2
∂q2∂Q1

q2
∂2p2
∂q22

q2 + 2∂p2
∂q2

+ ∂2p1
∂q22

q1
∂2p2

∂q2∂Q1
q2 +

∂p2
∂Q1

+ ∂2p1
∂q2∂Q1

q1
∂2p1
∂Q2

1
qE + ∂p1

∂Q1

∂2p1
∂Q1∂q2

qE + ∂p1
∂q2

∂2p1
∂Q2

1
qE + 2 ∂p1

∂Q1

 .

(84)

39



Let J := {1, 2, E} denote the set of the considered products with j ∈ J . We impose the stan-
dard assumption that all marginal profits (or, equivalently, all marginal revenues) are strictly
decreasing in any of the products’ quantities. In addition, we suppose that the matrix of the
second derivatives of the firms’ profits, G, is row-wise diagonally dominant.

Assumption A.1. Let

π′′
j − π′′

jj′ − π′′
jj′′ < 0 with π′′

jj′ , π
′′
jj′′ < 0 for all j ∈ J and j ̸= j′ ̸= j′′. (85)

As π′′
12 = π′′

21 holds (see (84)), Assumption A1 implies

π′′
12 = π′′

21 < π′′
2E , (86)

which follows from noticing that π′′
12 = π′′

21 = π′′
2E + ∂p1

∂q2
(see (84)). Thus firm I’s marginal

profit of good 2 reacts stronger to the sales of its own electric cars q1 than to the sales of firm
E’s electric cars qE . This is a consequence of the multiproduct problem firm I faces. By re-
sults presented in McKenzie (1960), the diagonally dominance of G implies that the system of
first-order conditions (81)-(83) has a unique and stable Nash equilibrium which we denote by
(q∗∗1 , q∗∗2 , q∗∗E ).

Let us next analyze the comparative statics of the Nash equilibrium in the absence of an EEP
regulation with respect to c1 and c2. Totally differentiating the system of first-order conditions
(81)-(83) and rearranging gives π′′

1 π′′
12 π′′

1E

π′′
21 π′′

2 π′′
2E

π′′
E1 π′′

E2 π′′
E


︸ ︷︷ ︸

=:G


dq1
dc1

dq1
dc2

dq2
dc1

dq2
dc2

dqE
dc1

dqE
dc2

 =

 1 0

0 1

0 0

 . (87)

By (85) G is a diagonally dominant matrix, which implies that the sign of the determinant of
each principal minor of G is given by the product of the respective diagonal entries. Thus, we
get |G| < 0which we prove in the following lemma.

Lemma A.1. Assumption A1 implies |G| < 0.

Proof. We apply Gaussian elimination to the first column of G. Dividing each row of G by the
row’s first entry, then substracting the first row from the second and the third row, respectively,
yields

G′ :=


1

π′′
12
π′′
1

π′′
1E
π′′
1

0
π′′
2

π′′
21

− π′′
12
π′′
1

π′′
2E
π′′
21

− π′′
1E
π′′
1

0
π′′
E2

π′′
E1

− π′′
12
π′′
1

π′′
E

π′′
E1

− π′′
1E
π′′
1

 .

Next, we multiply the second (third) row ofG′ by π′′
1 and π′′

21 (π′′
1 and π′′

E1), respectively, which
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gives

G′′ :=


1

π′′
12
π′′
1

π′′
1E
π′′
1

0 π′′
2π

′′
1 − π′′

21π
′′
12 π′′

1π
′′
2E − π′′

21π
′′
1E

0 π′′
1π

′′
E2 − π′′

E1π
′′
12 π′′

1π
′′
E − π′′

E1π
′′
1E

 .

The sign of the determinant of G′′ is positive if

π′′
2π

′′
1 − π′′

21π
′′
12 > π′′

1π
′′
2E − π′′

21π
′′
1E and (88)

π′′
1π

′′
E − π′′

E1π
′′
1E > π′′

1π
′′
E2 − π′′

E1π
′′
12 (89)

hold. Rewriting the first inequality (88), we get

π′′
2π

′′
1 − π′′

21π
′′
12 − π′′

1π
′′
2E + π′′

21π
′′
1E > π′′

1π
′′
21 + π′′

1π
′′
2E − π′′

21π
′′
12 − π′′

1π
′′
2E + π′′

21π
′′
1E

= π′′
1π

′′
21 − π′′

21π
′′
12 + π′′

21π
′′
1E = π′′

21(π
′′
1 − π′′

12) + π′′
21π

′′
1E > 0.

Proceeding likewise for the second inequality (89), we get

π′′
1π

′′
E − π′′

E1π
′′
1E − π′′

1π
′′
E2 + π′′

E1π
′′
12 > π′′

1(π
′′
E1 + π′′

E2)− π′′
E1π

′′
1E − π′′

1π
′′
E2 + π′′

E1π
′′
12

= π′′
1π

′′
E1 − π′′

E1π
′′
1E + π′′

E1π
′′
12 = π′′

E1(π
′′
1 − π′′

1E) + π′′
E1π

′′
12 > 0.

Thus, both inequalities (88) and (89) are fulfilled, which implies |G′′| > 0, and hence, |G| < 0

becausewemultiplied seven times a row ofG by a negative expression to obtainG′′. This proves
the lemma. Q.E.D.

Let Gjk be matrix Gwhere the jth column vector (j = 1, 2, E) is replaced by the kth column
vector (k = 1, 2) of the matrix on the right-hand side of (87). Using Cramer’s rule and calcu-
lating the determinants of the matrices Gjk, we get the following comparative statics results:

dq1
dc1

=
|G11|
|G|

=
π′′
2π

′′
E − π′′

E2π
′′
2E

|G|
< 0

dq2
dc1

=
|G21|
|G|

= −
π′′
21π

′′
E − π′′

E1π
′′
2E

|G|
> 0 (90)

dqE
dc1

=
|GE1|
|G|

=
π′′
21π

′′
E2 − π′′

E1π
′′
2

|G|
dq1
dc2

=
|G12|
|G|

= −
π′′
12π

′′
E − π′′

E2π
′′
1E

|G|
dq2
dc2

=
|G22|
|G|

=
π′′
1π

′′
E − π′′

E1π
′′
1E

|G|
< 0 (91)

dqE
dc2

=
|GE2|
|G|

= −
π′′
1π

′′
E2 − π′′

E1π
′′
12

|G|
.

Given Assumption A1 and noticing (86), we can sign all derivatives except dqE
dc1

, dq1
dc2

, and dqE
dc2

.
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However, for the total electric car sales Q1, we get clear cut effects; namely, we have

dQ1

dc1
=

dq1
dc1

+
dqE
dc1

=
π′′
2(π

′′
E − π′′

E1) + π′′
E2(π

′′
21 − π′′

2E)

|G|
< 0 and (92)

dQ1

dc2
=

dq1
dc2

+
dqE
dc2

= −
π′′
12(π

′′
E − π′′

E1) + π′′
E2(π

′′
1 − π′′

1E)

|G|
> 0. (93)

Those results are intuitive. Total electric car output is reduced by a small increase of c1 (see (92))
because this induces firm I to reduce its electric car sales and to increase its conventional car
sales. Both reactions together tend to lower total electric car sales, and this direction cannot be
compensated by the countervailing adjustment of qE . In contrast, a small increase of c2 increases
total electric car sales (see (93)) because this induces firm I to reduce its conventional car sales
which drives consumers into the electric market which must expand accordingly.

Step 2 (The effect of pooling in the FET equilibrium). We are now in a position to analyze
the effect of a pooling agreement if the FET equilibrium holds with and without pooling. The
FET equilibrium (q̂1, q̂2, q̂E , λ̂) fulfills

π′
1 + λt = 0, (94)

π′
2 − λ(x2 − t) = 0, (95)

π′
E = 0, and (96)

tq1 − (x2 − t)q2 + αtqE = 0. (97)

As explained in Section 4, α = 0 stands for the no-pooling case, and α = 1 stands for the case
that firms I and E pool their entire fleets. In the former case, (97) stands for firm I’s emission
target constraint, and in the latter case, (97) stands for the joint emission target constraint of
firms I and E. To compare the FET equilibria of both cases, we treat α as a continuous variable
over [0, 1].

Totally differentiating the equation system (94)-(97) with respect to α, we get
π′′
1 π′′

12 π′′
1E t

π′′
21 π′′

2 π′′
2E −(x2 − t)

π′′
E1 π′′

E2 π′′
E 0

t −(x2 − t) αt 0


︸ ︷︷ ︸

=:L


dq̂1
dα
dq̂2
dα
dq̂E
dα
dλ̂
dα

 =


0

0

0

−tqE

 . (98)

Denote the 4× 4matrix on the left-hand side of (98) by L and by Li the matrix Lwhere the ith

column is replaced by the column vector on the right-hand side of (98). We first analyze the
determinant of L, which turns out to be strictly negative.

Lemma A.2. Assumption A1 implies |L| < 0.
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Proof. Using the Laplace expansion along the fourth row of L, we get

|L| = −t

∣∣∣∣∣∣∣
π′′
12 π′′

1E t

π′′
2 π′′

2E −(x2 − t)

π′′
E2 π′′

E 0

∣∣∣∣∣∣∣−(x2−t)

∣∣∣∣∣∣∣
π′′
1 π′′

1E t

π′′
21 π′′

2E −(x2 − t)

π′′
E1 π′′

E 0

∣∣∣∣∣∣∣−αt

∣∣∣∣∣∣∣
π′′
1 π′′

12 t

π′′
21 π′′

2 −(x2 − t)

π′′
E1 π′′

E2 0

∣∣∣∣∣∣∣ .
Using next for the remaining three 3×3matrices the Laplace expansion along the third column,
we get

|L| = −
[
t2ϕ1 + t(x2 − t)ϕ2 + (x2 − t)2ϕ3

]
, with (99)

ϕ1 := π′′
2π

′′
E − π′′

E2π
′′
2E + απ′′

21π
′′
E2 − απ′′

E1π
′′
2 ,

ϕ2 := π′′
12π

′′
E − π′′

E2π
′′
1E + π′′

21π
′′
E − π′′

E1π
′′
E2 + απ′′

1π
′′
E2 − απ′′

E1π
′′
12, and

ϕ3 := π′′
1π

′′
E − π′′

E1π
′′
1E .

Inspecting the expressions of ϕ1 and ϕ3, we get that both are strictly positive, which follows
from

ϕ1 > π′′
2π

′′
E1(1− α) + π′′

E2π
′′
21(1 + α) > 0 and

ϕ3 > π′′
12π

′′
E1 + π′′

12π
′′
E2 + π′′

1Eπ
′′
E2 > 0,

whereas the sign of ϕ2 remains ambiguous. Now note that the sum of the terms in the rect-
angular brackets on the right-hand side of (99) is positive if the following two inequalities are
fulfilled:

ϕ1 + ϕ2 > 0 and ϕ2 + ϕ3 > 0. (100)

For the first inequality of (100), we get

ϕ1 + ϕ2 > (1− α)(π′′
2π

′′
1 + π′′

12π
′′
E1 − π′′

E2π
′′
1E) + (1 + α)(π′′

E2π
′′
21 + π′′

E2π
′′
12) + π′′

E1(π
′′
21 − π′′

E2)

> (1− α)(π′′
2π

′′
1 − π′′

E2π
′′
1E)

≥ (1− α)
[
π′′
21π

′′
12 + π′′

1E(π
′′
21 − π′′

E2) + π′′
2Eπ

′′
12 + π′′

2Eπ
′′
1E

]
≥ 0,

where the last inequality follows from (86). And for the second inequality of (100), we get

ϕ2 + ϕ3 > (1− α)(π′′
12π

′′
E1 − π′′

E2π
′′
1E) + π′′

E1(π
′′
21 − π′′

E2) + π′′
E2π

′′
12(1 + α) + π′′

12(π
′′
E1 + π′′

E2) + π′′
1Eπ

′′
E2

> −π′′
E2π

′′
1E(1− α) + π′′

1Eπ
′′
E2

= απ′′
1Eπ

′′
E2 ≥ 0.

Thus, the term in rectangular brackets on the right-hand side of (99) is strictly positive, and we
get the result stated in the lemma. Q.E.D.

It is immediate that |L4| = −tqE |G| > 0, which implies

dλ̂

dα
=

|L4|
|L|

< 0.
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Thus, a pooling agreement unambiguously relaxes the incumbent firm’s emission constraint.
This in turn implies that —for a fixed value of qE— the output of electric cars must be reduced
whereas the output of conventional cars must increase. Taking into account the optimal re-
sponse of E this result stays valid as we show next. For the determinant of L1, we get

|L1| = tqE

∣∣∣∣∣∣∣
π′′
12 π′′

1E t

π′′
2 π′′

2E −(x2 − t)

π′′
E2 π′′

E 0

∣∣∣∣∣∣∣
= tqE

[
t(π′′

2π
′′
E − π′′

E2π
′′
2E) + (x2 − t)(π′′

12π
′′
E − π′′

E2π
′′
1E)
]

and for the determinant of LE , we get

|LE | = tqE

∣∣∣∣∣∣∣
π′′
1 π′′

12 t

π′′
21 π′′

2 −(x2 − t)

π′′
E1 π′′

E2 0

∣∣∣∣∣∣∣
= tqE

[
t(π′′

21π
′′
E2 − π′′

E1π
′′
2) + (x2 − t)(π′′

1π
′′
E2 − π′′

E1π
′′
12)
]
.

It then follows that

dQ1

dα
=

dq1
dα

+
dqE
dα

=
|L1|+ |LE |

|L|

= tqE
t(π′′

2(π
′′
E − π′′

E1) + π′′
E2(π

′′
21 − π′′

2E)) + (x2 − t)(π′′
12(π

′′
E − π′′

E1) + π′′
E2(π

′′
1 − π′′

1E))

|L|
< 0,

so pooling must reduce total electric car sales. For firm I’s conventional car sales, we get the
opposite outcome because

dq2
dα

=
|L2|
|L|

=
−tqE
|L|

∣∣∣∣∣∣∣
π′′
1 π′′

1E t

π′′
21 π′′

2E −(x2 − t)

π′′
E1 π′′

E 0

∣∣∣∣∣∣∣
= −tqE

t(π′′
21π

′′
E − π′′

E1π
′′
2E) + (x2 − t)(π′′

1π
′′
E − π′′

E1π
′′
1E)

|L|
> 0.

We thus have established the following result.

Proposition A.1. Assume the demands for electric and conventional cars are given by (79) and (80),
respectively, and that assumption (85) holds. If the FET equilibrium holds with and without pooling,
then pooling with α = 1 has the following effects:

i) Pooling reduces the total output of electric cars Q1.

ii) Pooling increases the output of conventional cars q2.

iii) Pooling reduces the value of the Lagrange multiplier λ.

Step 3 (The effect of pooling in theVET equilibrium). The VET equilibrium (q̃1, q̃2, q̃E) fulfills
(94)-(96) if we replace λ by m in (94) and (95). This equation system is independent of α, so
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that pooling has not allocative effects if the VET equilibrium holds with and without pooling.
From Proposition A1, we know that the Lagrange multiplier in the FET equilibrium decreases
monotonically in α. Thus, if the VET equilibrium holds without pooling, then pooling can
induce a switch to the FET equilibrium if λ̂(α = 0) > m ≥ λ̂(α = 1) holds. If this is the case,
then pooling leads to the same effects are stated in Proposition A1.

Step 4. Suppose that pooling allows to realize the benchmark equilibrium (q∗∗1 , q∗∗2 , q∗∗E ), which
is the case if the joint emission target constraint is not binding at this point; i.e., if

−tq∗∗1 + (x2 − t)q∗∗2 − tq∗∗E < 0

holds. If the FET solution holdswithout pooling, then the effect of pooling follows fromnoticing
that pooling reduces the Lagrange multiplier in (94) and (95) from a strictly positive value to
zero. The effect of pooling is then analogous to an increase of c1 and a reduction of c2. Using
our above comparative static results for Q1 (see (92) and (93)) and q2 (see (90) and (91)) it
follows that pooling must reduce Q1 and increase q2. Finally, assume that the VET solution
holds without pooling. As noted above the VET solution also fulfills (94) and (96) if we replace
λ bym. The effect of pooling then follows from reducingm from a strictly positive value to zero.
It is then obvious that the effect of pooling is to reduce Q1 and to increase q2.

We summarize those results as follows.

PropositionA.2. Assume the demands for electric and conventional cars are given by (79) and (80), re-
spectively, and that assumption (85) holds. A pooling agreement between I andE then has the following
allocative effects depending on the value ofm and the value of λ̂ at α = 0 and α = 1:

i) If λ̂(α = 0) ≤ m, then the FET equilibrium holds without pooling and pooling reduces the total
output of electric cars and increases the output of conventional cars.

ii) If λ̂(α = 1) ≤ m < λ̂(α = 0), then the VET equilibrium holds without pooling and pooling
reduces the total output of electric cars, increases the output of conventional cars, and reduces the
EEP firm I has to pay to the government.

iii) If m < λ̂(α = 1), then the VET equilibrium holds with and without pooling and pooling only
reduces the EEP firm I has to pay to the government.
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