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Abstract 
 
This paper examines the effects of climate policies and energy shocks on mean and volatility 
spillovers between green and brown stock price indices in five countries (Canada, India, Japan, 
the UK and the US). More specifically, bivariate GARCH-BEKK models including dummy 
variables controlling for these shocks are estimated using weekly series with start dates ranging 
from 13 March 2009 to 24 August 2012 (depending on data availability for the green index) and 
an end date of 29 December 2023. Significant dynamic linkages between green and brown indices 
are found when climate policy and oil shocks are considered jointly. Some common patterns 
emerge, such as shifts in spillover dynamics between green and brown assets, but also country-
specific effects of the climate policy shocks which reflect differences in regulatory frameworks 
and policies. By contrast, energy shocks tend to have a more uniform impact. Further, the 
interaction between climate policy and energy shocks weakens cross-market linkages, enhancing 
portfolio diversification opportunities for green investors. The conditional correlation analysis 
confirms this finding, suggesting that green stocks can be used as an effective hedge. These results 
highlight the benefits of incorporating green assets into diversified portfolios, particularly in 
financial centers where, in recent years, they have offered higher returns and lower volatility. 
JEL-Codes: C330, G120, G180. 
Keywords: brown stocks, green stocks, VAR, GARCH-BEKK, climate policy shocks, energy 
shocks, spillovers. 
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1. Introduction 
Climate change has become a key issue for policy-makers and financial investors – this is 

because of the risks it generates and the consequent need to adopt policies to achieve the 

transition to a low-carbon economy by promoting renewable energy and sustainable 

investments. This process is expected to have significant effects on financial markets by 

reallocating capital toward sustainable sectors, driving innovation in renewable technologies, 

and altering risk profiles across industries. These changes are expected to create new 

opportunities in green sectors while increasing volatility and adjustment costs in traditional 

industries reliant on fossil fuels (Hanif et al., 2023). The shift toward a green economy drives 

changes in infrastructure and technology, opening new opportunities for some industries while 

posing challenges for others. Moreover, it reinforces the critical role of financial markets in 

channeling capital toward sustainable development. Venturini (2022) highlighted that 

accurately accounting for firms’ exposure to climate risks in return forecasts aligns expected 

returns more closely with actual outcomes, which raises important issues for investors. In their 

comprehensive review of the impact of climate change on financial markets, which focused 

especially on microeconomic evidence, de Bandt et al. (2024) showed that the cumulative 

effects are difficult to estimate, owing to the multifaceted nature of risks and their varying 

impact on markets and portfolios. The recent literature argues that increased stock markets 

volatility and uncertainty related to the green transition depends on exogenous shocks, such as 

new climate policies or commodity price fluctuations, particularly in the case of crude oil (see 

Al-Thaqeb and Algharabali, 2019; Dutta et al., 2020; among others). 

Climate policies have become a key driver of volatility in environmentally focused financial 

markets owing to the significant changes they entail. The Paris Agreement (PA), signed on 12 

December 2015 by 195 countries at the UNFCCC COP21 (United Nations Framework 

Convention on Climate Change, Convention of the Parties 21), represented a turning point, as 

it required its signatories to adopt long-term strategies to reduce greenhouse gas emissions 

specifying targets for 2030 and 2050. Since its announcement, international and national 

climate-financial initiatives have grown, along with the need for investors to understand 

climate policies and their impact on stock returns (Monasterolo and de Angelis, 2020; D’Orazio 

et al., 2022; Raza et al., 2024). The existing literature provides evidence on the different effects 

of climate policies on market uncertainty. For instance, the 2019 violation of the Clean Air Act 

under the Trump administration was linked to increased market volatility, which reflected the 

destabilizing influence of weakened environmental regulations. By contrast, supranational 

initiatives such as the European Green Deal (European Commission, 2021) have proven 
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effective at mitigating market uncertainties, especially in comparison to the case of Asian 

regions where the absence of appropriate climate policies has contributed to greater instability 

(Husain et al., 2022; Albanese et al., 2024). 

Another strand of the literature has investigated the role of crude oil, as a primary energy 

resource, for stock markets. According to Ouyang et al. (2022), understanding the link between 

crude oil prices and financial risk is crucial for maintaining financial stability and fostering 

economic growth. Increasing oil prices may provide an incentive to invest in renewable energy, 

particularly in oil-importing economies (Azhgaliyeva et al., 2022). Such a shock may have a 

different impact on green relative to brown stock prices and thus on optimal investment 

strategies. Green companies prioritize sustainability, utilizing renewable energy and adopting 

eco-friendly practices to reduce emissions and enhance their ESG (environmental, social, and 

governance) scores. They are found in sectors such as renewable energy, organic agriculture, 

and sustainable transportation, among others. By contrast, brown companies operate in 

industries with environmentally harmful practices, often giving priority to profit over 

sustainability. Examples include fossil fuel production, deforestation, and the use of toxic 

chemicals (Hartzmark et al., 2022). 

Global indices tracking green and brown stocks are often employed to monitor the performance 

of these energy sectors. Examples include the MAC Global Energy Index, the ISE Global Wind 

Energy Index, and the S&P 500 Global Clean Energy Index for green stocks. Brown indices 

typically focus on fossil fuel-related sectors such as crude oil, coal, and natural gas (Caporale 

et al., 2023). However, the global nature of such indices means that they are not informative 

about country-specific factors. 

By contrast, the present paper uses weekly series with start dates ranging from 13 March 2009 

to 24 August 2012 (depending on data availability for the green index) and an end date of 29 

December 2023 for five major economies, namely Canada, India, Japan, the UK and the US, 

which allows to analyze spillovers between green and brown stock price indices and the 

possible impact of climate policy as well as energy shocks at the national level. The country 

selection is primarily driven by the availability of sufficiently long time series for the green 

indices to obtain robust estimates. The fact that such indices in most cases have only been 

introduced in recent years limits the analysis to the selected group. However, the findings will 

still be highly informative as the countries in our sample have adopted different climate 

policies, whose effects can be compared.  

Therefore, the first contribution of this study is to investigate within-country spillover effects 

among green and brown stock price indices rather than focusing on global indicators. The 
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second one is to assess the impact of exogenous shocks using independent climate change 

measures. Specifically, the analysis uses the Climate Policy Index, a component of the Climate 

Change Performance Index (Germanwatch, 2022), which is a reliable benchmark for assessing 

country-specific climate policies (detailed in Section 3). Furthermore, following Kilian et al. 

(2022), Baumeister et al. (2016), and Gazzani et al. (2024), the effects of global energy shocks 

resulting from fluctuations in oil prices are also investigated. Specifically, bivariate VAR-

GARCH-BEKK models are used to estimate simultaneously both the conditional mean and 

variance spillovers and the effects of shocks on those spillovers within each country. The layout 

of the paper is the following: Section 2 briefly reviews the literature on the impact of climate 

change on financial markets; Section 3 describes the data used for the analysis; Section 4 

outlines the empirical framework and the hypotheses tested; Section 5 discusses the empirical 

results; Section 5 offers some concluding remarks. 

 

2. Literature Review 

The effects of climate risks, both physical and transition-related (Bua et al., 2022; Ardia et al., 

2023; Campiglio et al., 2018), on financial markets have been extensively investigated in the 

recent literature, with a particular focus on market volatility linkages during stable and 

turbulent periods and their implications for investors. This is particularly important for the 

green and brown energy sectors, given the shift from fossil fuels towards renewable energy, 

which requires a thorough understanding of how information is transmitted between markets 

(Bouri, 2023). Specifically, the literature has analyzed spillovers between green and brown 

market returns, often using global indicators to track the performance of “green” industries 

such as renewable energy, clean energy, solar, and wind, and "brown" ones such as oil, coal, 

and gas. For instance, Liu et al. (2020) analyzed US and European data and found that 

spillovers from fossil fuel to renewable energy stocks are slightly more pronounced in the US. 

Further, crude oil price shocks appear to have a stronger impact than natural gas ones, and 

volatility spillovers are more sizeable in the US, especially during financial crises, when 

investor uncertainty is higher.  

Another study by Cepni et al. (2022) estimated an ADCC model using data on various green 

assets and found that green bonds are the most effective safe-haven against physical and 

transition risks and to manage climate risk exposures in investment portfolios. Caporale et al. 

(2024) focused on Germany, a leader in green investment within the EU, where sustainable 

growth is a priority. Their study provides new insights into the properties of green and 

traditional (brown) stock prices respectively by employing fractional integration techniques to 
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analyze their persistence, which has implications for market efficiency. Using daily data from 

representative green and brown stock indices, their analysis shows that green stock returns 

exhibit higher volatility persistence than brown ones.  

One important issue when assessing the impact of climate change on stock markets is how to 

obtain accurate measures of climate risk.  Textual analysis methods are often used for this 

purpose (Engle et al., 2020; Bua et al., 2022; Ardia et al., 2023). For example, Gavriilidis 

(2021) developed the Climate Policy Uncertainty (CPU) index by searching for articles in eight 

major US newspapers that included terms such as "uncertainty" "climate risk" "greenhouse gas 

emissions" "climate change" "regulation" and "policies". The CPU has since become a widely 

used metric in the climate policy literature. Ren et al. (2023) carried out time-varying Granger 

tests to examine the dynamic bi-directional causality between CPU and both brown (coal, oil, 

natural gas) and green energy markets (clean energy, green bonds, carbon trading) in the US. 

Using monthly data, they considered various types of shocks including the sharp decline in 

crude oil prices in 2014. Their study showed evolving bi-directional causality patterns, 

suggesting that both energy price volatility and climate policy uncertainty influence traditional 

and green energy stocks.  

Husain et al. (2022) followed instead a cross-quantilogram approach to show that CPU affects 

green markets, especially during periods of high uncertainty. Pham et al. (2019) analyzed the 

performance of the green bond market under uncertainty, and detected more sizeable spillovers 

during periods characterized by higher Economic Policy Uncertainty (EPU), stock market 

uncertainty and crude oil price volatility. Ehrenbergerová et al. (2023) examined how climate 

policies, COP meetings, and the COVID-19 pandemic affected green and brown firms' 

securities, using a difference-in-differences regression. Their findings indicate that these 

policies significantly influence securities, with policy makers generally providing greater 

support to green firms after major climate events as well as during pandemics. Diaz-Rainey et 

al. (2021) found that both Trump’s election in 2020 and the Paris Agreement had negative 

effects on the oil and gas sectors. Finally, Bogmans et al. (2024) showed that, during the early 

stages of the energy transition, climate policy uncertainty negatively affects investments in the 

oil and gas sectors. Their analysis uses the transcripts of earnings calls from publicly-listed 

firms as a proxy for measuring climate policy uncertainty. 

While textual analysis provides valuable insights, it has limitations, such as its reliance on a 

selected sample of news and reports. Moreover, indices as such CPU are global measures and 

therefore studies using it do not capture country-specific factors. For these reasons, the current 

study uses instead the Climate Policy Index from the Climate Change Performance Index 
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(CCPI), calculated by GermanWatch, which provides a country-specific assessment of climate 

policies. Therefore, our analysis is based on country-specific indicators of climate change risk 

rather than the global metrics used in most existing studies.  

Concerning the effects of energy price shocks, Wu et al. (2024) reported that spillovers between 

green finance and traditional energy markets peaked during periods of turmoil such as the 2016 

oil price crash, the 2020 pandemic, and the Russia-Ukraine war, when traditional energy 

markets, particularly oil, tend to transmit more risk owing to supply uncertainty and regulatory 

pressures. Bouoiyour et al. (2023) employed wavelet decomposition to investigate directional 

causality between oil and renewable energy indices, and found strong but not long-lived 

linkages corresponding to key events such as the Paris Agreement and the COVID-19 

pandemic. Dutta et al. (2020) and Kilian et al. (2023) analyzed oil price shocks and their effects 

on green investments, highlighting the critical role of oil market volatility as one of their 

drivers. Finally, Ferrer et al. (2018) examined interconnectedness between clean energy stock 

prices and crude oil, and found bigger spillovers during crisis periods.  

 

3. Data Sources and Variables Description 

For our analysis we use weekly green and brown stock price indices obtained from Refinitiv, 

as well as several climate change indicators built by GermanWatch (2022),  for five countries 

(Canada, India, Japan, the UK and the US). The model also includes two control variables, 

namely (i) a proxy for global stock markets uncertainty, specifically changes in the Chicago 

Board Options Exchange volatility index, known as VIX, which is a measure of implied 

volatility and is calculated using option prices on the S&P 500 index, and (ii)  short-term 

interest rates (the 3-month  policy rates) to control for country-specific macroeconomic effects. 

The source for both series is again Refinitiv.   

 As already mentioned, the selection of these countries is mainly driven by the availability of 

data on the green index and the need to ensure a comparable sample size for all of them. More 

specifically, for Japan, the US and the UK the series used is the FTSE Environmental 

Opportunity Index starting on 13 March 2009, whilst for Canada and India it is the S&P TSX 

Renewable Energy Index and the S&P BSE GREENEX respectively, the corresponding start 

dates being 2 April 2010 and 24 August 2012. In all cases the end date is 29 December 2023. 

The estimation period is set accordingly.  

 

For each index, the corresponding rate of return is calculated as follows: Returns𝑡𝑡 =

[(Prices𝑡𝑡 − Prices𝑡𝑡−1) / Prices𝑡𝑡−1] × 100.  



7 
 

 

Please insert Table 1 about here 

 

Table 1 provides definitions of each of the green and brown stock indices considered. We 

selected the Energy Price Return Index from Refinitiv, based on the Refinitiv Business 

Classification, as our measure for brown indices. This classification system categorizes global 

companies by industry. Specifically, for Canada, the index includes 64 companies; for India, 

30 companies; for Japan, 20 companies; for the UK, 11 companies; for the US, 117 companies. 

For the green stock indices, we employ instead the FTSE Environmental Opportunities Index 

Series, which evaluates the performance of global companies significantly involved in 

environmental activities, such as renewable and alternative energy, energy management, water 

infrastructure, and waste and pollution control. To qualify for inclusion, companies must obtain 

at least 20% of their revenues from environmental products and services. In our sample, this 

index is not available for Canada and India, for which we use instead the S&P TSX Renewable 

Energy Index, which tracks Canadian companies listed on the TSX with core activities in green 

technologies and sustainable infrastructure solutions1, and for India the S&P BSE GREENEX, 

which measures the performance of the top 25 “green” companies based on GHG emissions, 

market capitalization, and liquidity. 

To capture the role of climate policies, we use the Climate Change Performance Index (CCPI) 

constructed by GermanWatch (2022). This is an independent measure that evaluates countries' 

efforts in climate protection, promoting transparency in global climate policies and enabling 

cross-country comparisons (Albanese et al., 2025). The climate policy component of the CCPI 

is derived from an annual questionnaire that assesses both national and international policies. 

Experts from NGOs, universities and think tanks rate governments' performance in key areas 

on a scale from 1 (weak) to 5 (strong). The questionnaire focuses on assessing national and 

international policies related to greenhouse gas (GHG) emissions reduction, energy transition, 

and climate strategies. It specifically examines the effectiveness of national strategies for GHG 

emission reductions, the promotion of renewable energy, and energy sector management, with 

particular emphasis on the gradual phase-out of fossil fuels and incentives for sustainable 

energy sources. The section on energy supply and renewable energy evaluates the 

implementation of policies aimed at phasing out coal, gas, and oil, as well as the financial 

                                                 
1 The constituents are screened by Sustainalytics, one of the world's leading providers of environmental, social, 
and governance research and analysis. 
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support for renewable energy sources such as sustainable biofuels. Also, the questionnaire 

discusses the significance of biomass in the national energy mix, addressing potential 

environmental justice issues and impacts on ecosystems associated with its use. In the energy 

use category, the questionnaire investigates decarbonization policies for the transport and 

industrial sectors, focusing on low-emission technologies and regulations aimed at improving 

energy efficiency. Progress towards more energy-efficient buildings is also assessed. The 

questions regarding future targets concentrate on national emission reduction goals for 2030, 

compatibility with international climate agreements, and ambition relative to the country's 

capabilities, while evaluating the integration of renewable energy. The section on non-energy 

sectors explores policies related to forestry, peatlands, and agriculture, assessing the level of 

support for sustainable practices and efforts to reduce deforestation. It also addresses the phase-

out of fossil fuels, focusing on national efforts to ban extraction and halt subsidies for fossil 

fuel production. Finally, the international performance of a country is analyzed in relation to 

its participation in climate negotiations and forums, such as the UNFCCC, considering both 

progressive and regressive actions. The questionnaire also examines participation in global 

climate initiatives and the country's position in international climate negotiations 

(GermanWatch, 2022). In this paper we use scores associated to both the national and 

international climate policy components. 

 

3.1 Dummy Variables 

To measure the impact of climate policies on stock returns, we define two sets of dummy 

variables, each including two dummies corresponding to national and international climate 

policies respectively. In the first (second) set these variables take a value of 1 when the climate 

policy score, national or international, exhibits a positive (negative) change from one year to 

the next and 0 otherwise. In addition, to capture global energy prices shocks, following the 

works of Kilian et al. (2022), Baumeister et al. (2016), and Gazzani et al. (2024), we introduce 

a fifth dummy variable which takes a value of 1 when an oil price shock occurs and 0 otherwise. 

To analyse the combined effects of climate policy shocks and energy shocks, we also include 

interaction dummies between them. These allow us to assess whether the simultaneous 

occurrence of the two types of shocks considered enhances or mitigates their impact on the 

dynamic linkages between green and brown assets. Table 2 specifies the periods when climate 

policy shocks and oil price ones occurred simultaneously, with the corresponding interaction 

dummy taking a value of 1. This modelling approach provides deeper insights into how the 
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interplay between policy-driven environmental changes, at country level, and exogenous 

energy market disruptions influence financial markets and asset diversification. 

 

Please insert Table 2 about here 

 

We also include a set of control variables. Global stock markets uncertainty is proxied by the 

changes in the Chicago Board Options Exchange volatility index, known as VIX, which is a 

measure of implied volatility and is calculated using option prices on the S&P 500 index (this 

series is also obtained from Refinitiv). In addition, we control for monetary policy country-

specific effects by including short-term interest rates (the 3-month policy rates). 

 

3.2 Descriptive Statistics 

Table 3 reports some descriptive statistics for all variables used in our empirical analysis. Green 

stock returns are, on average, twice as high as brown stock returns in Japan, the UK, and the 

US, whilst in Canada and India brown stocks have been more profitable. This suggests that 

investors in green assets tend to prefer more liquid markets, particularly in major financial 

centers, where green investment opportunities are more developed. On the contrary, in smaller 

financial markets such as Canada and India, green assets appear less attractive to financial 

investors, leading to a stronger demand for conventional brown stocks. 

Concerning the second moment, it can be seen that green stock returns exhibit lower volatility 

compared to brown ones in all the countries in our sample. This evidence, combined with the 

significantly higher returns observed in Japan, the UK, and the US, highlights the important 

role of green stocks in portfolio diversification and profit-making strategies, particularly in 

well-established financial markets.  

 

4.   Empirical Model 

In this section, we describe the multivariate setup we use to estimate simultaneously the first 

and second moments of green and brown stock returns as well as the corresponding spillovers 

within each country. Specifically, we model the joint process governing green and brown stock 

returns using a bi-variate BEKK-GARCH(1,1) framework based on the representation  

proposed by .Engle and Kroner (1995). In its most general specification, the model takes the 

following form: 

xt = α + βxt-1 +φ zt-1 + ut                                                                                                (1) 
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where xt = (Green Stock Returnst, Brown Stock Returnst). The parameter vectors of the mean 

equation (1) are the constant α= (α11, α22) and the autoregressive term β = (β11, β12 + β*12 | β21 + 

β*21, β22), xt-1 is the corresponding vector of lagged returns, 2 and zt-1 = = (IR t-1-,VIX t-1) is a 

vector containing the 3-month policy rate, to capture country-specific macroeconomic effects, 

as well as the VIX to control for global financial uncertainty.  

To account for the potential effect of climate policies and/or energy shocks, we include, in turn, 

the dummy variables, discussed in section 3.1, and denoted by *. The residual vector ut is 

bivariate and normally distributed ut | It-1 ~ (0, Ht) with its conditional variance-covariance 

matrix given by: 

                                            𝐻𝐻𝑡𝑡 = �
h11,t h12,t
h21,t h22,t

�                                                                   (2) 

The parameter matrices for the variance equation (2) are defined as 𝐶𝐶, which is restricted to be 

upper triangular, and two unrestricted matrices, 𝐴𝐴11  and 𝐺𝐺11, whose elements are the a and g 

coefficients, respectively. Therefore, the second moment will take the following form: 

𝐻𝐻𝑡𝑡 = 𝐶𝐶′𝐶𝐶 + 𝐴𝐴′11 �
𝑢𝑢1,𝑡𝑡−1
2 𝑢𝑢1,𝑡𝑡−1𝑢𝑢2,𝑡𝑡−1

𝑢𝑢2,𝑡𝑡−1𝑢𝑢1,𝑡𝑡−1 𝑢𝑢2,𝑡𝑡−1
2 � 𝐴𝐴11 +  𝐺𝐺′11𝐻𝐻𝑡𝑡−1𝐺𝐺11,                                    (3)                                                  

where 

𝐴𝐴′11 = �
𝑎𝑎11 𝑎𝑎12 + 𝑎𝑎12 ∗

𝑎𝑎21 + 𝑎𝑎21 ∗ 𝑎𝑎22
�
′

;  𝐺𝐺′11 = �
𝑔𝑔11 𝑔𝑔21 + 𝑔𝑔12 ∗

𝑔𝑔21 + 𝑔𝑔21 ∗ 𝑔𝑔22
�
′
 . 

Equation (3) models the dynamic process of Ht as a linear function of its own past values Ht-1 

and past values of the innovations (u1,t-1, u2,t-1), allowing for own-market and cross-market 

influences in the conditional variances. The off-diagonal parameters in the latter two matrices 

capture the volatility spillovers (causality-in-variance) among the two indices under 

investigation. Given a sample of T observations, a vector of unknown parameters3 θ, and a 2 × 

1 vector of variables xt, the conditional density function for the model (1)−(2) is: 

ƒ(xt | It-1; θ) = (2π)-1 |Ht|-1/2 exp(−[ut′ (Ht
-1) u t] / 2)                                                                (4) 

                                                 
2 Note that the dummy variables are used to model shifts in the cross-parameters only, not in the autoregressive 
terms. 
3 Standard errors (SE) are calculated using the quasi-maximum likelihood method of Bollerslev and Wooldridge 
(1992), which is robust to the distribution of the underlying residuals.  
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The log-likelihood function is: 

Log-Lik = Σt=1
T log ƒ (xt | It-1; θ)                                                                                              (5) 

 

In recent years, other types of models have also been used to investigate cross-country co-

movements. Among those, copula models have become increasingly popular. A 

comprehensive discussion of the pros and cons of using them rather than DCC and GARCH 

models can be found in Al Rahahleh and Bhatti (2017), Nguyen et al. (2017) and Bhatti and 

Do (2019). Given the nature of our research question and the relatively small number of 

variables considered, we have chosen to estimate reduced-form VAR models including a 

GARCH component because of their suitability to analyse both co-movement and spillover 

effects within the same econometric framework. Furthermore, the adopted BEKK 

representation guarantees by construction the positive-definiteness of the variance-covariance 

matrix. 

 

4.1 Hypotheses Tested 

We examine mean and volatility spillovers, as well as possible shifts in the cross parameters, 

by incorporating dummy variables into the model specification (see Section 3). Specifically, 

we test the following null hypotheses: 

 

Test for No Structural Shifts in the Conditional Mean and Variance 

𝐻𝐻01: No shift in the conditional mean: 𝑎𝑎11∗ = 𝑎𝑎22∗ =0 

𝐻𝐻02: No shift in the conditional variance: 𝑐𝑐11∗  = 𝑐𝑐22∗  = 0 

Test for No Mean Spillovers Between Green and Brown Stock Returns 
𝐻𝐻03: No mean spillovers between green and brown stock returns: 𝛽𝛽12=𝛽𝛽21= 0 

𝐻𝐻04: No mean spillovers between green and brown stock returns as a result of 

exogenous shocks (climate policy and/or oil): 𝛽𝛽12∗ = 𝛽𝛽21∗ = 0 

Test for No Volatility Spillovers Between Green and Brown Stock Returns 
𝐻𝐻05: No volatility spillovers between stock returns: 𝑎𝑎12=𝑎𝑎21= 0 

𝐻𝐻06: No volatility spillovers between stock returns as a result of exogenous shocks 

(climate policy and/or oil): 𝑎𝑎12∗  = 𝑎𝑎21∗ = 0 
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Testing empirically these hypotheses allows us to assess the extent to which market linkages 

and risk transmission between green and brown assets are influenced by country-specific 

climate change shocks and global energy shocks. 

 

5. Empirical Results  

We determine the optimal lag length for the mean equation using the Schwarz Information 

Criterion, which suggests that only one lag should be included in all cases. To assess the 

adequacy of the models, we conduct Ljung–Box portmanteau tests on the standardized 

residuals. The pairwise estimates of the dependence between green and brown indices in both 

the conditional mean and variance exhibit variations in both size and direction. The estimated 

GARCH(1,1)-BEKK models with the associated robust p-values and likelihood function 

values are presented in Tables 4-8. Given the extensive set of results presented, we focus only 

on the most relevant coefficients in our discussion. 

 

Please insert Tables 4 to 8 about here 

 

The model specification allows us to explore the shift in the conditional mean value and 

conditional variance, and causality in mean and in variance between green and brown stock 

returns. The main findings emerging from Tables 4 to 8 can be summarized as follows. 

First, we reject the null hypothesis (𝐻𝐻01) of no shift in the conditional mean in some cases. 

Specifically, we find a shift in green stock returns in Japan corresponding to positive changes 

in national climate policy scores (𝑎𝑎11∗ = -0.44), in the UK during periods associated to energy 

shocks (𝑎𝑎11∗ = -0.88) and in Canada when negative changes in the national climate policy score 

interact with oil shocks (𝑎𝑎11∗ = 0.97). Furthermore, there is a positive shift in the conditional 

mean of brown stock returns corresponding to negative changes in the national climate policy 

score in the UK (𝑎𝑎22∗ = 0.44), an a negative shift in India and the US when positive changes in 

the international climate policy score interact with energy shocks (𝑎𝑎22∗ = -3.15 and 𝑎𝑎22∗ = -0.60, 

respectively). 

The shift in the conditional variance (𝐻𝐻02) instead is more pronounced and occurs in both green 

and brown stock returns in several cases. Specifically, we find it in Canada in correspondence 

with positive changes in the international climate policy score (𝑐𝑐11∗ =0.59 and 𝑐𝑐22∗ =1.31, 

respectively), in Japan when there is a significant interaction between negative changes in the 

international climate policy score and energy shocks (𝑐𝑐11∗ =1.12), and in India for brown stock 
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returns when positive changes in the national climate policy score interact with energy shocks 

(𝑐𝑐11∗ =-0.22).  

When climate policies and energy shocks are not accounted for, causality-in-mean and 

causality-in-variance are observed; concerning the former, the mean spillovers run from brown 

to green stock returns in India and in the US and volatility spillovers in the same direction in 

Japan (𝑎𝑎12= -0.31), and in the UK (𝑎𝑎12= 0.12). As for spillovers from green to brown stock 

returns, the mean equation provides supporting evidence only in the case of Japan (𝛽𝛽21= 0.27), 

but not for Canada, India, Japan and the US. Therefore, for Japan we reject the null hypothesis 

of no spillovers between green and brown stock returns (𝐻𝐻03). Conversely, we reject the null 

hypothesis of spillovers in the conditional volatility (𝐻𝐻05) for India (𝑎𝑎21=0.28), Japan 

(𝑎𝑎21=0.08), and the US (𝑎𝑎21=0.18). Therefore, on the whole we find statistically significant 

spillover effects in the second moment regardless of the inclusion of the climate policies and 

energy shock dummies, whereas the mean spillovers appear to be significant only for the UK. 

Finally, in general the exogenous control variables are statistically significant. In particular, the 

estimated coefficients indicate that monetary policy, measured by the domestic 3-month policy 

rate, has a negative effect on asset returns, as one would expect. By contrast, global financial 

markets uncertainty, measured by the VIX, tends to affect negatively brown stock returns but 

positively green ones, though not in all cases. These differences in the behaviour of green vis-

a-vis brown stock returns make them a possible hedge during periods of heightened uncertainty 

to mitigate exposure to market turbulence. 

 

5.1 Climate Policy Shocks 

As mentioned before, the impact of climate policy shocks is measured using four appropriately 

defined dummies for the cases of positive and negative changes in the national and international 

scores respectively. The null hypothesis (𝐻𝐻04) of no mean spillovers between green and brown 

stock returns resulting from those shocks is rejected for the UK (𝛽𝛽12∗ = 0.12), and the US (𝛽𝛽12∗ = 

-0.07). Specifically, in the case of a positive national climate policy shock spillovers are 

positive in the UK (Table 7), but negative in the US (Table 8). The corresponding spillovers 

are negative in Japan, but positive in response to a negative policy shock (Table 6).  

As for the volatility spillovers, we find that in the UK and the US these run from brown to 

green stock returns in correspondence with increases in the international climate policy score 

(𝑎𝑎12∗ = -0.29; 𝑎𝑎12∗ = -0.32, and 𝑎𝑎12∗ = 0.67, respectively). They also run from green to brown stock 

returns in the US when there is a positive change in the national climate policy score (𝑎𝑎21∗ = 
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0.11). The latter findings are consistent with those of Banerjee et al. (2024), who detected 

volatility spillovers varying in both sign and magnitude in response to economic shocks.  

 

5.2 Energy Shocks 

The second set of exogenous shocks, also modelled using dummy variables, captures energy 

price uncertainty as identified by Kilian et al. (2022), Baumeister et al. (2016), and Gazzani et 

al. (2024). The conditional mean equation results are largely insignificant except for a negative 

spillover from green to brown stock returns in Canada (𝛽𝛽21∗ = -0.24), whereas there is evidence 

of significant bi-directional volatility spillovers in the case of Japan (𝑎𝑎12∗ =1.14 and 𝑎𝑎21∗ =0.43). 

In all other cases, we fail to reject the null hypothesis (𝐻𝐻06), which implies that there are no 

significant shifts in volatility spillovers due to energy shocks. 

 

5.3 Interaction between Climate Policy and Energy Price Shocks 

The previous evidence concerning shifts in mean and volatility spillovers, following climate 

policy and energy shocks examined separately, is somewhat mixed. However, the introduction 

of interaction dummies produces a different scenario (Tables 4 to 8). Specifically, mean 

spillovers from brown to green stock returns are now found in all countries under examination 

except the US. In Canada, these are negative and significant in response to positive 

international climate policy and energy shocks (𝛽𝛽12∗ =  −0.62), whereas in the UK they are 

negative in correspondence to negative national climate policy shocks (𝛽𝛽12∗ =  −0.43). In 

India, positive spillovers are detected when positive international climate policy shocks occur 

(𝛽𝛽12∗ = 0.08), while in Japan significant positive spillovers are observed in the case of negative 

national and international climate policy shocks (𝛽𝛽12∗ =0.27 and 𝛽𝛽12∗ =0.33, respectively).  

There is also evidence of mean spillovers from green to brown stock returns, which are always 

negative. In Canada, for instance, in response to negative international climate policy and 

energy shocks, the links between the two markets become much weaker (𝛽𝛽21∗ = -0.44), which is 

in line with the findings of Athari et al. (2024), who argue that fluctuations in oil prices 

significantly affect green energy companies. A similar pattern emerges for the UK, as shown 

in Table 7, and India when the latter is hit by positive international climate policy shocks (𝛽𝛽21∗ = 

-0.82 and 𝛽𝛽21∗ = -0.79). 

Volatility spillovers are generally more sizeable and statistically significant. They run from 

brown to green stock returns in Canada when negative national and international climate policy 

shocks occur (𝑎𝑎12∗ =0.91 and 𝑎𝑎12∗ =0.60, respectively). Similar results are found for Japan 
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(𝑎𝑎12∗ =0.74 and 𝑎𝑎12∗ =0.90)  and the US, where spillovers are significant only in response to 

negative national climate policy and energy shocks (𝑎𝑎12∗ =0.52). In a related study Bouri (2023) 

also reported that the total connectedness index for volatility exhibits significant spikes during 

the oil price crash from mid-2014 to January 2016 and the COVID-19 pandemic, with green 

stock indices typically being net volatility transmitters throughout the sample period. 

Volatility spillovers from green to brown stock returns are generally significant. In India they 

shift in the presence of positive national and international climate policy shocks (𝑎𝑎21∗ = 0.14 and 

𝑎𝑎21∗ =0.20, respectively). In Japan, they result from the interaction between positive 

international climate policies and oil price shocks (𝑎𝑎21∗ =-0.41), and in UK and Canada from the 

interaction between negative national climate policy and oil price shocks (𝑎𝑎21∗ = −0.95 and 

𝑎𝑎21∗ = 0.37, respectively). There is also a similar pattern in the US (𝑎𝑎21∗ = 0.12). These findings 

are in line with those of Guo et al. (2024), who reported that cross-country risk spillovers 

fluctuate over time since they are highly sensitive to major climate actions and financial shocks. 

Please insert Figures 1 and 2 about here 

 

Finally, Figure 1 and 2 display the green and brown stock return series, their conditional 

correlations and the dummy variable for the interaction between negative national climate 

policy and energy shocks. The predominantly positive correlations suggest that green and 

brown stocks tend to move in the same direction over the years, with some exceptions. In the 

case of Canada, for instance, the conditional correlation exhibits significant variability, 

frequently oscillating between negative and positive values, with more stable periods around 

2015 and 2020. India and the UK stand out since their green and brown stock returns 

correlations are always positive over the period analyzed. In the case of the US, they are 

generally high and predominantly positive before 2018, but drop almost to zero in 2020. In 

Japan, the UK and the US they are lower post-2020 (Figure 2). This suggests that in recent 

years green assets could have been used as a hedge against market turbulence, in line with the 

findings of Farid et al. (2023). 

On the whole, the results indicate that effective climate policies, especially at the national level, 

can mitigate volatility spillovers and encourage stable investments in green markets. Regarding 

individual countries, Canada appears to be particularly exposed to energy shocks, which makes 

diversification across green and brown sectors essential.  

With Canada’s strong focus on hydro and wind power, long-term investments in renewable 

energy stocks could provide stable returns (Chen et al., 2023). In India, the responsiveness of 
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brown stocks to positive climate policy shocks offers opportunities for short-term gains (Basu 

et al., 2023). However, with coal dominating the energy landscape, green investments are 

critical for long-term portfolio stability, especially as the country ramps up its renewable 

energy capacity. Investors in the Japanese markets appear to have benefited from the nation’s 

decarbonization initiatives, which have strengthened the performance of green stocks in 

response to positive national as well as international climate policy shocks. However, as noted 

by Paramati et al. (2017), the Japanese economy is still strongly reliant on brown energy. In 

the UK, positive climate policy shocks enhance spillovers from brown to green stocks, which 

reflects a commitment to a well-defined framework for the transition to a low-carbon economy, 

as noted by Shah et al. (2018). Finally, in the US the lack of a consistent climate policy 

framework (Shah et al., 2018) appears to increase significantly volatility, especially in the case 

of brown stocks (Chen et al., 2025).  

 

6. Conclusions 

This paper provides comprehensive evidence on the behaviour of brown and green stock 

returns in response to both climate policy and energy shocks in five major economies, namely 

Canada, India, Japan, the UK and the US, with the sample start dates ranging from 13 March 

2009 to 24 August 2012 and the end date being 29 December 2023 in all cases, the sample 

selection being driven by data availability on country-specific green energy indices. More 

specifically, a VAR-GARCH-BEKK framework is used to estimate simultaneously bivariate 

mean and volatility spillovers and the effects on those dynamic linkages of both (national and 

international) climate policy and energy shocks, which are modelled using dummy variables 

and are also allowed to interact. The former are measured using indices produced by 

GermanWatch, whilst the latter are captured using oil prices.  

The findings reveal strong dynamic linkages between green and brown stock returns, which 

are significantly influenced by exogenous shocks, and expecially by the interaction between 

climate policy and oil price shocks, these effects varying across countries. The conditional 

correlations between stock returns are predominantly positive but appear to have turned 

negative in recent years. The detected dynamic linkages between green and brown stock 

markets highlight the need for diversified investment strategies that incorporate both asset 

types to mitigate risks arising from energy price uncertainty and climate policy shocks. In 

particular, our findings suggest that: i) investors should adopt region-specific strategies to 

optimize their portfolios; the reason is that long-term investments in renewables may offer 

superior returns in markets, such as the UK and Japan, where climate policies appear to have a 
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stronger influence on green asset performance; by contrast, in oil-dependent economies, such 

as Canada, brown stocks may remain more resilient to energy shocks; and ii) international 

investors and asset managers can benefit from forward-looking climate risk assessments to 

identify opportunities in regions where green investments are actively promoted by policy 

interventions. These insights can guide capital allocation towards sustainable assets while 

managing exposure to conventional markets to balance risk-return trade-offs. 

Policymakers clearly also play a crucial role in shaping the investment landscape by 

implementing measures that facilitate green market development and enhance financial 

stability. Governments should introduce incentives such as green bonds, tax breaks, and 

subsidies to encourage investment in sustainable sectors. and focus on transparent and stable 

regulatory environments that provide clear long-term signals to investors. Strategic investment 

in green infrastructure, coupled with retraining programmes for fossil fuel-dependent 

industries, can facilitate a smoother transition to a low-carbon economy. Finally, given the 

international nature of climate risks and financial markets, coordinated efforts among 

policymakers can enhance global green investment opportunities. Establishing regional climate 

investment funds and harmonizing carbon pricing mechanisms can improve capital flow into 

sustainable sectors. 

On the whole, this study makes a novel contribution to the understanding of the linkages 

between climate risks, crude oil shocks, and the dynamics of green and brown stock returns. 

However, its limitations should be acknowledged. In particular, data availability constraints 

meant that the analysis could only be carried out for a limited set of countries, and therefore its 

conclusions might not have general validity. Further, the low frequency of the climate policy 

indices used implies that the analysis cannot shed light on the impact of short-term fluctuations 

in transition climate risk. Future research could also yield additional insights by using sectoral 

data to uncover industry-specific patterns, and by investigating the role of emerging 

technologies, such as carbon capture and storage or renewable energy innovations, as a driver 

of stock market dynamics.  
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Table 1. Brown and Green Stock Indices Definitions 
 

Country Brown index Definition Green Index Definition 
Canada Canada Energy 

Price Stocks 
Index 
 

Composed of 64 companies across 
sectors like uranium mining, oil 
services, natural gas exploration, 
oil refining, and unconventional 
oil production. 
 

S&P/TSX 
Renewable 
Energy and Clean 
Technology Index 
 

Measures companies 
focused on green 
technologies and 
sustainable 
infrastructure solutions, 
screened by 
Sustainalytics. 
 

India 
 
 
 
 
 
 

India Energy 
Price Stocks 
Index 

Includes 30 companies in sectors 
such as oil drilling, petroleum 
refining, wind systems, coal 
mining, and LNG transportation. 

S&P BSE 
GREENEX 

Tracks the performance 
of the top 25 "green" 
companies based on 
GHG emissions, market 
capitalization, and 
liquidity. 

Japan Japan Energy 
Price Stocks 
Index 
 

Comprises 20 companies, 
including coal wholesale, 
petroleum refining, and oil-related 
services. 
 

FTSE 
Environmental 
Opportunities 
 It measures global 

companies significantly 
involved in renewable 
energy, pollution 
control, energy 
efficiency and water 
infrastructure. 
 

United 
Kingdom 

U.K. Energy Price 
Stocks Index 
 

Consists of 11 companies in oil 
exploration, integrated oil and gas 
services, and stationary fuel cells. 
 

FTSE 
Environmental 
Opportunities 
 
 

United 
States 

U.S. Energy Price 
Stocks Index 
 

Tracks 117 companies in sectors 
such as uranium, coal, oil 
exploration, and renewable energy 
services. 

 

FTSE 
Environmental 
Opportunities 
 

Notes: The source for all indices is Refinitiv. 
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Table 2. Climate Policy and Oil Price Shocks - Interaction Dummies 

Country National pos. + Oil 
National neg. + 

Oil 

International pos. 

+ Oil 

International neg. 

+ Oil 

Canada 30/05/2014 to 19/12/2014; 

17/06/2016; 23/03/2018; 

24/09/2021 to 22/10/2021 

21/05/2010; 29/07/2011 

to 09/09/2011; 

25/05/2012; 17/05/2019 

to 24/05/2019; 

02/08/2019; 14/02/2020; 

29/05/2020; 25/02/2022 

to 25/03/2022 

29/07/2011 to 

05/08/2011; 09/09/2011; 

17/06/2016; 23/03/2018; 

25/02/2022 to 

25/03/2022 

25/05/2012; 30/05/2014 

to 19/12/2014; 

17/05/2019 to 

24/05/2019; 02/08/2019; 

14/02/2020; 29/05/2020; 

24/09/2021 to 

22/10/2021 

India 17/06/2016; 17/05/2019 to 

24/05/2019; 02/08/2019; 

14/02/2020; 29/05/2020 

30/05/2014 to 

19/12/2014; 23/03/2018; 

24/09/2021 to 

22/10/2021; 25/02/2022 

to 25/03/2022 

17/06/2016; 23/03/2018; 

14/02/2020; 29/05/2020; 

25/02/2022 to 

25/03/2022 

30/05/2014 to 

19/12/2014; 17/05/2019 

to 24/05/2019; 

02/08/2019; 24/09/2021 

to 22/10/2021 

Japan 17/04/2009; 28/05/2010; 

05/08/2011; 16/09/2011; 

01/06/2012; 30/03/2018; 

24/05/2019 to 31/05/2019; 

01/10/2021 to 29/10/2021; 

04/03/2022 to 01/04/2022 

06/06/2014 to 

26/12/2014;  

24/06/2016; 2102/2020; 

05/06/2020 

28/05/2010; 24/05/2019 

to 31/05/2019; 

09/08/2019; 01/10/2021 

to 29/10/2021; 

04/03/2022 to 

01/04/2022 

17/04/2009; 05/08/2011 

to 12/08/2011; 

16/09/2011; 01/06/2012; 

06/06/2014 to 

26/12/2014; 

24/06/2016/; 

30/03/2018; 21/02/2020; 

05/06/2020 

United 

Kingdom 

21/05/2010; 25/05/2012; 

30/05/2014 to 19/12/2014; 

17/06/2016; 23/03/2018; 

17/05/2019 to 24/05/2019; 

14/02/2020; 29/05/2020; 

19/05/2020; 25/02/20222 

to 25/03/2022 

29/07/2011 to 

05/08/2011; 09/09/2011; 

24/09/2021 to 

22/10/2021 

21/05/2010; 25/05/2012; 

30/05/2014 to 

19/12/2014; 17/06/2016; 

23/03/2018; 17/05/2019 

to 24/05/2019; 

02/08/2019; 25/02/2022 

to 25/03/2022 

29/07/2011 to 

05/08/2011; 09/09/2011; 

24/09/2021 to 

22/10/2021 

United States 10/09/2010; 18/11/2011 to 

25/11/2011; 30/12/2011; 

14/09/2012; 07/10/2016; 

14/01/2022 to 11/02/2022; 

17/06/2022 to 15/07/2022 

19/09/2014 to 

10/04/2015; 13/07/2018; 

05/06/2020; 18/09/2020  

31/07/2009; 10/09/2010; 

14/09/2012; 19/09/2014 

to 10/04/2015; 

07/10/2016 

18/11/2011 to 

25/11/2011; 30/12/2011  

Note: The reported dates correspond to periods when climate policy shocks and oil price shocks were observed. Climate policy 
shocks are identified using the CCPI index, while oil price shocks are based on Kilian et al. (2022), Baumeister et al. (2016), 
and Gazzani et al. (2024). These shocks are represented by a value of 1 when they occur and 0 otherwise. 
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Table 3. Descriptive Statistics 
 

Notes: for Japan, the US and the UK the green index used is the FTSE Environmental Opportunity Index starting on 13 March 
2009, whilst for Canada and India it is the S&P TSX Renewable Energy Index and the S&P BSE GREENEX respectively, the 
corresponding start dates being 2 April 2010 and 24 August 2012. In all cases the end date is 29 December 2023. The sample 
period is set accordingly for all series. 
 
 
 
 
 
 
 
 
 

Country 
 

Green Brown Interest Rate 
Canada Mean 0.05 0.09 1.13 
 S.D. 2.46 3.26 1.19 
 Min. -15.77 -26.16 0.03 
 Max. 11.97 13.56 5.16 
 Obs. 717 717 717 
India Mean 0.20 0.30 6.40 
 S.D. 2.01 3.28 1.86 
 Min. -11.09 -17.35 3 
 Max. 14.40 14.84 11.75 
 Obs. 592 592 592 
Japan Mean 0.24 0.12 -0.04 
 S.D. 2.95 3.46 0.14 
 Min. -13.73 -20.21 -0.47 
 Max. 13.90 15.31 0.28 
 Obs. 772 772 772 
United Kingdom Mean 0.19 0.11 0.80 
 S.D. 2.20 3.58 1.18 
 Min. -14.01 -29.77 -0.09 
 Max. 10.86 18.59 5.58 
 Obs. 757 757 757 
United States Mean 0.29 0.15 0.91 

 S.D. 2.76 3.76 1.45 
 Min. -17.68 -24.31 -0.05 
 Max. 15.37 15.48 5.51 
 Obs. 772 772 772 
     

Global Control Variable  VIX 
 Mean 18.90 
 S.D. 7.31 
 Min. 9.14 
 Max. 66.04 
 Obs. 772 
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Table 4. Estimated GARCH(1,1)-BEKK models for Canada 
 Benchmark Energy 

shock Climate policy shocks  Oil and Climate Policy Shocks 
Interaction 

 
 

 Nat. 
Pos. 

Nat. 
Neg Int. Pos. Int Neg.  

Oil + 
Nat. 
Pos. 

Oil + 
Nat. 
Neg 

Oil + 
Int. 
Pos. 

Oil + 
Int. 
Neg 

 Conditional mean equation 

𝒂𝒂𝟏𝟏𝟏𝟏 -0.03 
(0.878) 

-0.01 
(0.980) 

-0.16 
(0.666) 

-0.02 
(0.929) 

-0.02 
(0.929) 

-0.02 
(0.923)  -0.00 

(0.990) 
0.12 

(0.556) 
0.11 

(0.579) 
-0.02 

(0.898) 
𝒂𝒂𝟏𝟏𝟏𝟏∗  - 0.01 

(0.959) 
0.14 

(0.315) 
-0.14 

(0.372) 
-0.13 

(0.372) 
0.15 

(0.201)  -0.11 
(0.574) 

0.97 
(0.003) 

0.25 
(0.541) 

0.06 
(0.755) 

𝜷𝜷𝟏𝟏𝟏𝟏 0.01 
(0.532) 

0.00 
(0.868) 

0.02 
(0.742) 

0.02 
(0.623) 

0.02 
(0.623) 

0.02 
(0.597)  0.01 

(0.848) 
0.01 

(0.633) 
0.03 

(0.408) 
0.02 

(0.616) 
𝜷𝜷𝟏𝟏𝟏𝟏 0.02 

(0.532) 
0.01 

(0.809) 
-0.00 

(0.928) 
0.04 

(0.259) 
0.04 

(0.259) 
-0.00 

(0.917)  0.01 
(0.625) 

0.01 
(0.713) 

0.00 
(0.948) 

0.01 
(0.608) 

𝜷𝜷𝟏𝟏𝟏𝟏∗  - 0.03 
(0.686) 

0.04 
(0.395) 

-0.03 
(0.376) 

-0.04 
(0.376) 

0.03 
(0.365)  0.01 

(0.853) 
0.16 

(0.253) 
0.18 

(0.263) 
-0.04 

(0.566) 
IR -0.12 

(0.108) 
-0.12 

(0.098) 
-0.18 

(0.023) 
-0.17 

(0.023) 
-0.18 

(0.022) 
-0.17 

(0.002)  -0.13 
(0.597) 

-0.19 
(0.008) 

-0.19 
(0.011) 

-0.13 
(0.028) 

VIX 0.02 
(0.146) 

0.02 
(0.404) 

0.02 
(0.175) 

0.02 
(0.121) 

0.02 
(0.121) 

0.01 
(0.245)  0.02 

(0.146) 
0.01 

(0.351) 
0.01 

(0.245) 
0.02 

(0.136) 
            

𝒂𝒂𝟏𝟏𝟏𝟏 -0.52 
(0.093) 

-0.43 
(0.414) 

-1.10 
(0.007) 

-0.75 
(0.012) 

-0.75 
(0.012) 

-0.52 
(0.067)  -0.48 

(0.125) 
-0.56 

(0.061) 
-0.62 

(0.037) 
-0.50 

(0.096) 
𝒂𝒂𝟏𝟏𝟏𝟏∗  - -0.09 

(0.829) 
0.35 

(0.045) 
-0.35 

(0.099) 
0.03 

(0.591) 
0.11 

(0.476)  0.10 
(0.762) 

-0.26 
(0.637) 

0.75 
(0.263) 

0.00 
(0.991) 

𝜷𝜷𝟏𝟏𝟏𝟏 0.04 
(0.258) 

0.05 
(0.279) 

0.04 
(0.208) 

0.05 
(0.175) 

0.05 
(0.175) 

0.03 
(0.236)  0.05 

(0.149) 
0.05 

(0.106) 
0.05 

(0.156) 
0.04 

(0.140) 
𝜷𝜷𝟏𝟏𝟏𝟏 0.06 

(0.265) 
0.07 

(0.241) 
0.08 

(0.348) 
0.03 

(0.590) 
0.03 

(0.590) 
0.05 

(0.555)  0.07 
(0.147) 

0.03 
(0.546) 

0.01 
(0.821) 

0.07 
(0.145) 

𝜷𝜷𝟏𝟏𝟏𝟏∗  - -0.24 
(0.045) 

-0.05 
(0.627) 

0.05 
(0.626) 

0.04 
(0.626) 

0.04 
(0.648)  -0.28 

(0.142) 
0.02 

(0.905) 
0.22 

(0.295) 
-0.44 

(0.019) 
IR -0.02 

(0.718) 
-0.01 

(0.889) 
-0.05 

(0.565) 
-0.04 

(0.572) 
-0.05 

(0.572) 
-0.01 

(0.821)  -0.02 
(0.616) 

-0.03 
(0.662) 

-0.02 
(0.832) 

-0.02 
(0.723) 

VIX 0.04 
(0.065) 

0.03 
(0.335) 

-0.06 
(0.002) 

0.06 
(0.001) 

0.06 
(0.001) 

0.03 
(0.084)  0.03 

(0.091) 
-0.05 

(0.025) 
-0.04 

(0.011) 
-0.04 

(0.045) 
 Conditional variance equation 

𝒄𝒄𝟏𝟏𝟏𝟏 -0.18 
(0.002) 

0.07 
(0.961) 

0.76 
(0.008) 

0.32 
(0.040) 

0.39 
(0.040) 

-0.00 
(0.998)  0.16 

(0.144) 
0.37 

(0.004) 
0.32 

(0.079) 
0.19 

(0.019) 
𝒄𝒄𝟏𝟏𝟏𝟏∗  - -0.35 

(0.765) 
-0.37 

(0.103) 
0.37 

(0.087) 
0.37 

(0.087) 
0.14 

(0.304)  -0.39 
(0.222) 

-0.37 
(0.016) 

-0.33 
(0.103) 

-0.19 
(0.045) 

𝒈𝒈𝟏𝟏𝟏𝟏 -0.92 
(0.000) 

0.92 
(0.000) 

0.90 
(0.000) 

0.90 
(0.000) 

0.94 
(0.000) 

-0.42 
(0.000)  0.91 

(0.000) 
0.94 

(0.000) 
0.96 

(0.000) 
0.90 

(0.000) 
𝒈𝒈𝟏𝟏𝟏𝟏 -0.09 

(0.000) 
-0.10 

(0.113) 
0.32 

(0.000) 
0.17 

(0.082) 
0.16 

(0.082) 
0.94 

(0.000)  -0.10 
(0.000) 

0.23 
(0.000) 

0.29 
(0.000) 

-0.09 
(0.000) 

𝒈𝒈𝟏𝟏𝟏𝟏∗  - 0.10 
(0.711) 

-0.16 
(0.120) 

0.16 
(0.124) 

0.16 
(0.124) 

-0.12 
(0.000)  0.26 

(0.000) 
-0.61 

(0.018) 
-0.71 

(0.000) 
-0.08 

(0.107) 
𝒂𝒂𝟏𝟏𝟏𝟏 0.39 

(0.000) 
0.38 

(0.000) 
0.43 

(0.000) 
0.49 

(0.000) 
0.49 

(0.000) 
0.18 

(0.000)  0.39 
(0.000) 

0.38 
(0.000) 

0.39 
(0.000) 

0.41 
(0.000) 

𝒂𝒂𝟏𝟏𝟏𝟏 -0.10 
(0.000) 

0.35 
(0.051) 

-0.10 
(0.493) 

0.02 
(0.006) 

0.03 
(0.854) 

0.48 
(0.000)  0.36 

(0.000) 
-0.15 

(0.138) 
-0.19 

(0.055) 
0.29 

(0.000) 
𝒂𝒂𝟏𝟏𝟏𝟏∗  - -0.02 

(0.974) 
0.13 

(0.434) 
0.16 

(0.124) 
-0.13 

(0.448) 
0.07 

(0.191)  -0.41 
(0.036) 

0.91 
(0.009) 

0.63 
(0.006) 

0.60 
(0.013) 

𝒄𝒄𝟏𝟏𝟏𝟏 0.59 
(0.000) 

-0.49 
(0.283) 

0.30 
(0.841) 

0.86 
(0.000) 

0.86 
(0.000) 

0.85 
(0.000)  0.49 

(0.001) 
0.66 

(0.001) 
0.68 

(0.000) 
0.56 

(0.005) 
𝒄𝒄𝟏𝟏𝟏𝟏∗  - 0.04 

(0.962) 
0.57 

(0.695) 
-0.56 

(0.690) 
-0.56 

(0.690) 
-0.27 

(0.413)  -0.48 
(0.023) 

-0.70 
(0.013) 

-0.72 
(0.002) 

0.07 
(0.833) 

𝒄𝒄𝟏𝟏𝟏𝟏 0.37 
(0.000) 

-0.42 
(0.167) 

0.7 
(0.728) 

0.07 
(0.735) 

0.07 
(0.735) 

0.29 
(0.000)  0.40 

(0.000) 
-0.05 

(0.734) 
-0.09 

(0.607) 
0.40 

(0.000) 
𝒈𝒈𝟏𝟏𝟏𝟏 0.92 

(0.000) 
0.93 

(0.000) 
0.82 

(0.000) 
0.82 

(0.000) 
0.82 

(0.000) 
0.31 

(0.000)  0.93 
(0.000) 

0.83 
(0.000) 

0.79 
(0.000) 

0.94 
(0.000) 

𝒈𝒈𝟏𝟏𝟏𝟏 -0.02 
(0.035) 

-0.01 
(0.583) 

-0.08 
(0.027) 

-0.07 
(0.148) 

-0.07 
(0.148) 

0.76 
(0.000)  -0.01 

(0.167) 
-0.06 

(0.000) 
-0.08 

(0.000) 
-0.03 

(0.238) 
𝒈𝒈𝟏𝟏𝟏𝟏∗  - -0.02 

(0.257) 
0.01 

(0.681) 
-0.01 

(0.689) 
-0.01 

(0.689) 
0.11 

(0.000)  0.04 
(0.111) 

-0.06 
(0.480) 

-0.00 
(0.954) 

0.02 
(0.292) 

𝒂𝒂𝟏𝟏𝟏𝟏 0.23 
(0.000) 

0.22 
(0.031) 

0.28 
(0.000) 

0.29 
(0.006) 

0.29 
(0.006) 

0.11 
(0.001)  0.21 

(0.000) 
0.33 

(0.000) 
0.35 

(0.000) 
0.20 

(0.000) 
𝒂𝒂𝟏𝟏𝟏𝟏 0.01 

(0.064) 
0.01 

(0.882) 
-0.04 

(0.662) 
-0.00 

(0.908) 
-0.00 

(0.908) 
0.11 

(0.000)  -0.00 
(0.977) 

0.03 
(0.507) 

0.04 
(0.430) 

0.02 
(0.573) 

𝒂𝒂𝟏𝟏𝟏𝟏∗  - 0.02 
(0.882) 

0.03 
(0.722) 

-0.01 
(0.689) 

-0.03 
(0.716) 

-0.00 
(0.983)  -0.08 

(0.278) 
0.37 

(0.008) 
0.20 

(0.181) 
0.11 

(0.057) 
            

LogLik 3218.47 3212.53 3227.05 3227.05 3227.05 3216.61  3209.99 3223.87 3226.43 3212.34 

𝑳𝑳𝑳𝑳𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮(𝟕𝟕) 8.41 
(0.297) 

8.89 
(0.260) 

8.78 
(0.268) 

8.78 
(0.268) 

7.68 
(0.361) 

7.58 
(0.371)  8.15 

(0.319) 
7.56 

(0.372) 
7.56 

(0.372) 
8.45 

(0.294) 
𝑳𝑳𝑳𝑳𝑳𝑳𝑮𝑮𝑩𝑩𝑩𝑩𝑮𝑮(𝟕𝟕) 8.40 

(0.297) 
 

8.84 
(0.355) 

 

7.51 
(0.377) 

 

7.51 
(0.377) 

 

8.67 
(0.276) 

 

8.86 
(0.262) 

 
 

8.04 
(0.328) 

 

8.15 
(0.318) 

 

8.34 
(0.303) 

 

8.71 
(0.274) 

 

Notes: Statistically significant parameters at 5% are shown in bold. Parameters 𝛽𝛽12 and 𝑎𝑎12 measure the spillover effect of 
brown on green stock returns and brown on green stock returns volatility, respectively. Whereas, 𝛽𝛽21 and 𝑎𝑎21 capture the 
spillover effect of green on brown stock returns and brown on green stock returns volatility, respectively. The asterisk (*) 
denotes dummy variables corresponding to each climate policy shock (national and international; positive and negative), energy 
(oil) shocks, and their respective interactions. Standard errors (in brackets) are computed using the quasi-maximum likelihood 
method of Bollerslev and Wooldridge (1992), which is robust to the distribution of the underlying residuals. The first column 
presents the benchmark model without the inclusion of dummy variables. 𝐿𝐿𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(7) and 𝐿𝐿𝐿𝐿𝐵𝐵𝐺𝐺𝐵𝐵𝐵𝐵𝐺𝐺(7) are the Ljung-Box test 
(1978) of significance of no autocorrelations of seven lags in the standardized residuals for green and brown returns, 
respectively. The covariance stationarity condition is satisfied by all the estimated models, all the eigenvalues of A11⊗A11 + 
G11⊗G11 being less than one in modulus.  
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Table 5. Estimated GARCH(1,1)-BEKK models for India 
 Benchmark Energy 

shock Climate policy shocks  Oil and Climate Policy Shocks 
Interaction 

 
 

 Nat. 
Pos. 

Nat. 
Neg Int. Pos. Int Neg.  

Oil + 
Nat. 
Pos. 

Oil + 
Nat. 
Neg 

Oil + 
Int. 
Pos. 

Oil + 
Int. 
Neg 

 Conditional mean equation 

𝒂𝒂𝟏𝟏𝟏𝟏 -0.06 
(0.895) 

-0.30 
(0.549) 

-0.32 
(0.522) 

-0.34 
(0.511) 

-0.29 
(0.383) 

-0.62 
(0.305)  0.38 

(0.000) 
-0.02 

(0.954) 
0.19 

(0.000) 
0.07 

(0.875) 
𝒂𝒂𝟏𝟏𝟏𝟏∗  - 0.03 

(0.909) 
-0.01 

(0.926) 
0.01 

(0.926) 
-0.30 

(0.083) 
0.34 

(0.042)  -0.59 
(0.000) 

0.05 
(0.826) 

-1.53 
(0.000) 

0.38 
(0.201) 

𝜷𝜷𝟏𝟏𝟏𝟏 0.13 
(0.005) 

0.14 
(0.06) 

0.12 
(0.002) 

0.12 
(0.002) 

0.15 
(0.000) 

0.13 
(0.004)  0.12 

(0.000) 
0.12 

(0.006) 
0.12 

(0.000) 
0.10 

(0.002) 
𝜷𝜷𝟏𝟏𝟏𝟏 -0.07 

(0.058) 
-0.07 

(0.029) 
-0.05 

(0.206) 
-0.07 

(0.171) 
-0.09 

(0.252) 
-0.10 

(0.097)  -0.05 
(0.250) 

-0.07 
(0.060) 

-0.05 
(0.002) 

-0.05 
(0.175) 

𝜷𝜷𝟏𝟏𝟏𝟏∗  - 0.07 
(0.345) 

-0.01 
(0.775) 

0.01 
(0.779) 

0.05 
(0.252) 

0.02 
(0.679)  0.03 

(0.601) 
0.14 

(0.156) 
0.08 

(0.002) 
0.06 

(0.347) 
IR 0.01 

(0.839) 
0.02 

(0.740) 
0.02 

(0.688) 
0.02 

(0.688) 
0.01 

(0.642) 
0.02 

(0.679)  -0.06 
(0.000) 

0.09 
(0.839) 

-0.03 
(0.000) 

0.02 
(0.763) 

VIX 0.01 
(0.401) 

0.02 
(0.146) 

0.02 
(0.178) 

0.02 
(0.178) 

0.03 
(0.048) 

0.030 
(0.118)  0.01 

(0.000) 
0.01 

(0.521) 
0.01 

(0.000) 
0.00 

(0.788) 
            

𝒂𝒂𝟏𝟏𝟏𝟏 0.55 
(0.464) 

0.04 
(0.939) 

-0.08 
(0.935) 

0.10 
(0.920) 

0.13 
(0.790) 

-0.22 
(0.807)  0.30 

(0.021) 
0.03 

(0.968) 
-0.06 

(0.511) 
0.31 

(0.615) 
𝒂𝒂𝟏𝟏𝟏𝟏∗  - -0.43 

(0.297) 
0.18 

(0.369) 
-0.18 

(0.402) 
-0.25 

(0.297) 
0.27 

(0.210)  -1.21 
(0.000) 

-0.51 
(0.122) 

-3.15 
(0.000) 

0.02 
(0.967) 

𝜷𝜷𝟏𝟏𝟏𝟏 -0.10 
(0.049) 

-0.11 
(0.015) 

-0.09 
(0.079) 

-0.09 
(0.079) 

-0.13 
(0.028) 

-0.13 
(0.031)  -0.13 

(0.000) 
-0.11 

(0.122) 
-0.14 

(0.000) 
-0.09 

(0.032) 
𝜷𝜷𝟏𝟏𝟏𝟏 0.16 

(0.063) 
0.21 

(0.006) 
0.17 

(0.047) 
0.14 

(0.774) 
0.15 

(0.053) 
0.23 

(0.025)  0.23 
(0.000) 

0.19 
(0.048) 

0.25 
(0.000) 

0.16 
(0.009) 

𝜷𝜷𝟏𝟏𝟏𝟏∗  - -0.02 
(0.188) 

-0.03 
(0.767) 

0.03 
(0.532) 

0.14 
(0.122) 

-0.08 
(0.431)  -0.18 

(0.586) 
0.03 

(0.830) 
-0.79 

(0.000) 
-0.23 

(0.132) 
IR -0.05 

(0.457) 
-0.01 

(0.763) 
-0.02 

(0.669) 
-0.02 

(0.669) 
-0.01 

(0.823) 
-0.00 

(0.956)  -0.07 
(0.000) 

0.00 
(0.989) 

-0.03 
(0.005) 

-0.01 
(0.616) 

VIX 0.01 
(0.698) 

0.03 
(0.178) 

0.03 
(0.532) 

0.03 
(0.532) 

0.02 
(0.995) 

0.02 
(0.397)  0.03 

(0.002) 
0.01 

(0.439) 
0.03 

(0.000) 
0.10 

(0.616) 
 Conditional variance equation 

𝒄𝒄𝟏𝟏𝟏𝟏 0.00 
(0.999) 

0.00 
(0.999) 

0.00 
(0.999) 

0.00 
(0.999) 

-0.000 
(0.995) 

0.37 
(0.001)  0.22 

(0.130) 
0.00 

(0.999) 
-0.32 

(0.459) 
-0.00 

(0.999) 
𝒄𝒄𝟏𝟏𝟏𝟏∗  - -1.00 

(0.015) 
-0.00 

(0.999) 
-0.00 

(0.999) 
0.60 

(0.021) 
-0.18 

(0.587)  -0.22 
(0.117) 

-0.00 
(0.999) 

0.32 
(0.456) 

0.31 
(0.257) 

𝒈𝒈𝟏𝟏𝟏𝟏 0.94 
(0.000) 

0.81 
(0.000) 

0.90 
(0.000) 

0.90 
(0.000) 

0.88 
(0.000) 

0.86 
(0.000)  0.75 

(0.000) 
1.00 

(0.000) 
0.74 

(0.000) 
0.76 

(0.000) 
𝒈𝒈𝟏𝟏𝟏𝟏 0.11 

(0.031) 
1.36 

(0.000) 
0.02 

(0.592) 
-0.12 

(0.029) 
1.59 

(0.000) 
-0.18 

(0.183)  0.12 
(0.000) 

0.21 
(0.315) 

0.19 
(0.002) 

-0.35 
(0.000) 

𝒈𝒈𝟏𝟏𝟏𝟏∗  - 0.50 
(0.002) 

0.05 
(0.003) 

0.14 
(0.007) 

-0.21 
(0.171) 

0.01 
(0.863)  0.79 

(0.000) 
0.17 

(0.094) 
0.18 

(0.002) 
-0.35 

(0.000) 
𝒂𝒂𝟏𝟏𝟏𝟏 0.00 

(0.999) 
0.13 

(0.189) 
-0.06 

(0.598) 
-0.06 

(0.598) 
0.13 

(0.059) 
-0.12 

(0.331)  0.17 
(0.000) 

-0.03 
(0.743) 

0.12 
(0.000) 

0.12 
(0.298) 

𝒂𝒂𝟏𝟏𝟏𝟏 -0.31 
(0.007) 

-0.19 
(0.062) 

-0.41 
(0.021) 

-0.31 
(0.188) 

0.07 
(0.559) 

-0.50 
(0.022)  -0.35 

(0.000) 
-0.43 

(0.105) 
-0.04 

(0.000) 
0.52 

(0.000) 
𝒂𝒂𝟏𝟏𝟏𝟏∗  - -0.06 

(0.808) 
-0.09 

(0.441) 
-0.09 

(0.188) 
-0.29 

(0.000) 
0.12 

(0.427)  0.14 
(0.005) 

-0.02 
(0.904) 

-0.02 
(0.000) 

0.66 
(0.000) 

𝒄𝒄𝟏𝟏𝟏𝟏 0.83 
(0.008) 

1.28 
(0.000) 

1.21 
(0.000) 

1.51 
(0.000) 

0.98 
(0.000) 

1.78 
(0.000)  2.27 

(0.001) 
1.22 

(0.025) 
2.13 

(0.000) 
0.88 

(0.000) 
𝒄𝒄𝟏𝟏𝟏𝟏∗  - -0.58 

(0.242) 
0.30 

(0.592) 
-0.30 

(0.186) 
0.01 

(0.972) 
-0.14 

(0.503)  -1.96 
(0.000) 

-0.62 
(0.241) 

-2.00 
(0.000) 

-0.88 
(0.011) 

𝒄𝒄𝟏𝟏𝟏𝟏 0.71 
(0.000) 

0.82 
(0.000) 

0.80 
(0.000) 

0.80 
(0.000) 

0.68 
(0.000) 

0.87 
(0.000)  0.25 

(0.139) 
0.56 

(0.063) 
0.08 

(0.000) 
0.00 

(0.980) 
𝒈𝒈𝟏𝟏𝟏𝟏 0.87 

(0.000) 
-0.93 

(0.000) 
0.84 

(0.000) 
0.84 

(0.000) 
-1.00 

(0.000) 
0.78 

(0.000)  0.53 
(0.000) 

0.75 
(0.000) 

0.53 
(0.000) 

1.02 
(0.000) 

𝒈𝒈𝟏𝟏𝟏𝟏 -0.10 
(0.000) 

0.51 
(0.002) 

-0.11 
(0.002) 

-0.06 
(0.052) 

-0.03 
(0.005) 

-0.03 
(0.469)  0.17 

(0.000) 
-0.17 

(0.094) 
0.18 

(0.000) 
0.20 

(0.000) 
𝒈𝒈𝟏𝟏𝟏𝟏∗  - -0.08 

(0.308) 
0.05 

(0.003) 
-0.05 

(0.003) 
-0.05 

(0.110) 
-0.12 

(0.331)  0.27 
(0.000) 

0.04 
(0.486) 

0.19 
(0.000) 

-0.10 
(0.001) 

𝒂𝒂𝟏𝟏𝟏𝟏 0.32 
(0.000) 

0.35 
(0.000) 

0.44 
(0.000) 

0.44 
(0.000) 

0.24 
(0.000) 

0.53 
(0.000)  0.37 

(0.000) 
0.42 

(0.010) 
0.49 

(0.000) 
-0.05 

(0.669) 
𝒂𝒂𝟏𝟏𝟏𝟏 0.28 

(0.000) 
0.24 

(0.002) 
0.32 

(0.000) 
0.32 

(0.000) 
0.19 

(0.006) 
0.35 

(0.000)  0.19 
(0.000) 

0.31 
(0.000) 

0.21 
(0.000) 

0.12 
(0.142) 

𝒂𝒂𝟏𝟏𝟏𝟏∗  - -0.08 
(0.380) 

0.00 
(0.972) 

0.00 
(0.972) 

0.07 
(0.138) 

0.00 
(0.978)  0.14 

(0.005) 
-0.44 

(0.000) 
0.20 

(0.000) 
-0.45 

(0.000) 
            

LogLik 2634.15 2637.65 2629.70 2629.70 2626.82 2627.17  2631.77 2627.74 2630.85 2634.54 

𝑳𝑳𝑳𝑳𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮(𝟕𝟕) 7.62 
(0.366) 

6.85 
(0.444) 

7.93 
(0.259) 

7.93 
(0.338) 

9.45 
(0.221) 

9.62 
(0.211)  7.97 

(0.334) 
7.50 

(0.378) 
9.95 

(0.190) 
5.36 

(0.616) 
𝑳𝑳𝑳𝑳𝑳𝑳𝑮𝑮𝑩𝑩𝑩𝑩𝑮𝑮(𝟕𝟕) 6.44 

(0.488) 
6.53 

(0.478) 
6.22 

(0.514) 
6.22 

(0.514) 
6.26 

(0.532) 
7.28 

(0.400)  6.47 
(0.486) 

6.26 
(0.509) 

6.94 
(0.434) 

7.02 
(0.426) 

Notes: Please refer to the notes in Table 4. 
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Table 6. Estimated GARCH(1,1)-BEKK models for Japan 
 Benchmark Energy 

shock Climate policy shocks  Oil and Climate Policy Shocks 
Interaction 

 
 

 Nat. 
Pos. 

Nat. 
Neg Int. Pos. Int Neg.  

Oil + 
Nat. 
Pos. 

Oil + 
Nat. 
Neg 

Oil + 
Int. 
Pos. 

Oil + 
Int. 
Neg 

 Conditional mean equation 

𝒂𝒂𝟏𝟏𝟏𝟏 0.01 
(0.945) 

0.12 
(0.627) 

0.19 
(0.442) 

-0.25 
(0.362) 

0.18 
(0.667) 

0.12 
(0.637)  0.20 

(0.461) 
-0.16 

(0.585) 
0.03 

(0.890) 
-0.11 

(0.679) 
𝒂𝒂𝟏𝟏𝟏𝟏∗  - 0.25 

(0.450) 
-0.44 

(0.015) 
0.44 

(0.018) 
-0.27 

(0.155) 
0.22 

(0.153)  -0.33 
(0.631) 

0.40 
(0.481) 

-1.08 
(0.032) 

0.23 
(0.577) 

𝜷𝜷𝟏𝟏𝟏𝟏 0.03 
(0.447) 

0.01 
(0.764) 

0.01 
(0.798) 

0.01 
(0.787) 

0.05 
(0.273) 

0.04 
(0.277)  0.06 

(0.085) 
0.02 

(0.503) 
0.04 

(0.213) 
0.01 

(0.699) 
𝜷𝜷𝟏𝟏𝟏𝟏 -0.02 

(0.532) 
-0.03 

(0.214) 
-0.05 

(0.276) 
0.00 

(0.949) 
-0.00 

(0.891) 
-0.02 

(0.662)  -0.03 
(0.247) 

-0.01 
(0.582) 

-0.02 
(0.371) 

-0.01 
(0.542) 

𝜷𝜷𝟏𝟏𝟏𝟏∗  - 0.12 
(0.298) 

0.05 
(0.309) 

-0.05 
(0.314) 

-0.02 
(0.716) 

0.00 
(0.872)  0.09 

(0.628) 
0.27 

(0.053) 
0.22 

(0.219) 
0.33 

(0.004) 
IR -0.29 

(0.691) 
-0.08 

(0.887) 
0.25 

(0.719) 
0.25 

(0.687) 
-0.34 

(0.703) 
-0.28 

(0.677)  -0.07 
(0.916) 

-0.53 
(0.464) 

-0.26 
(0.708) 

-0.32 
(0.643) 

VIX 0.01 
(0.263) 

0.01 
(0.360) 

0.02 
(0.056) 

0.02 
(0.073) 

0.01 
(0.522) 

0.00 
(0.851)  0.00 

(0.593) 
0.02 

(0.107) 
0.01 

(0.281) 
0.02 

(0.090) 
            

𝒂𝒂𝟏𝟏𝟏𝟏 -0.01 
(0.968) 

0.15 
(0.606) 

0.04 
(0.888) 

0.04 
(0.892) 

0.18 
(0.508) 

0.13 
(0.678)  0.25 

(0.414) 
-0.02 

(0.926) 
0.25 

(0.937) 
0.01 

(0.976) 
𝒂𝒂𝟏𝟏𝟏𝟏∗  - -0.00 

(0.976) 
0.00 

(0.985) 
-0.00 

(0.984) 
-0.10 

(0.711) 
0.06 

(0.672)  1.04 
(0.122) 

-0.74 
(0.052) 

0.93 
(0.221) 

-0.92 
(0.014) 

𝜷𝜷𝟏𝟏𝟏𝟏 -0.09 
(0.008) 

-0.09 
(0.005) 

-0.08 
(0.001) 

-0.08 
(0.009) 

-0.07 
(0.023) 

-0.08 
(0.011)  -0.10 

(0.000) 
-0.08 

(0.004) 
-0.10 

(0.002) 
-0.08 

(0.010) 
𝜷𝜷𝟏𝟏𝟏𝟏 0.27 

(0.000) 
0.26 

(0.000) 
0.37 

(0.000) 
0.18 

(0.000) 
0.20 

(0.029) 
0.32 

(0.000)  0.28 
(0.000) 

0.27 
(0.000) 

0.29 
(0.000) 

0.26 
(0.000) 

𝜷𝜷𝟏𝟏𝟏𝟏∗  - -0.18 
(0.216) 

-0.19 
(0.013) 

0.19 
(0.007) 

0.09 
(0.285) 

-0.14 
(0.103)  0.11 

(0.498) 
-0.11 

(0.358) 
-0.08 

(0.607) 
-0.08 

(0.388) 
IR -0.61 

(0.435) 
-0.39 

(0.589) 
-0.54 

(0.485) 
-0.54 

(0.434) 
-0.81 

(0.279) 
-0.95 

(0.225)  -0.06 
(0.429) 

0.62 
(0.457) 

-0.57 
(0.500) 

-0.35 
(0.676) 

VIX 0.01 
(0.657) 

0.00 
(0.907) 

0.00 
(0.700) 

0.00 
(0.714) 

0.02 
(0.882) 

-0.00 
(0.991)  -0.01 

(0.631) 
0.01 

(0.642) 
0.00 

(0.835) 
0.01 

(0.597) 
 Conditional variance equation 

𝒄𝒄𝟏𝟏𝟏𝟏 0.00 
(0.999) 

0.00 
(0.999) 

0.29 
(0.729) 

0.00 
(0.999) 

0.97 
(0.040) 

0.00 
(0.999)  0.56 

(0.493) 
0.00 

(0.999) 
0.73 

(0.081) 
0.00 

(0.999) 
𝒄𝒄𝟏𝟏𝟏𝟏∗  - -0.00 

(0.999) 
-0.29 

(0.713) 
0.29 

(0.721) 
0.31 

(0.435) 
0.79 

(0.000)  -0.56 
(0.514) 

1.12 
(0.043) 

-0.73 
(0.054) 

1.09 
(0.032) 

𝒈𝒈𝟏𝟏𝟏𝟏 0.89 
(0.000) 

0.99 
(0.000) 

0.97 
(0.000) 

0.97 
(0.000) 

0.80 
(0.002) 

0.85 
(0.000)  0.06 

(0.663) 
0.89 

(0.000) 
0.82 

(0.000) 
0.92 

(0.000) 
𝒈𝒈𝟏𝟏𝟏𝟏 0.66 

(0.000) 
0.71 

(0.000) 
0.69 

(0.000) 
0.72 

(0.000) 
0.07 

(0.744) 
-0.10 

(0.147)  0.79 
(0.000) 

0.57 
(0.000) 

0.59 
(0.000) 

0.60 
(0.000) 

𝒈𝒈𝟏𝟏𝟏𝟏∗  - -0.00 
(0.977) 

0.03 
(0.681) 

-0.03 
(0.682) 

-0.07 
(0.305) 

0.06 
(0.331)  -0.14 

(0.507) 
-0.29 

(0.050) 
-0.63 

(0.052) 
-0.33 

(0.023) 
𝒂𝒂𝟏𝟏𝟏𝟏 0.27 

(0.000) 
0.19 

(0.002) 
0.24 

(0.001) 
0.24 

(0.002) 
0.05 

(0.804) 
0.02 

(0.750)  0.11 
(0.016) 

0.27 
(0.000) 

0.32 
(0.000) 

0.25 
(0.000) 

𝒂𝒂𝟏𝟏𝟏𝟏 -0.39 
(0.000) 

-0.45 
(0.000) 

-0.54 
(0.002) 

-0.27 
(0.005) 

-0.42 
(0.000) 

0.32 
(0.000)  -0.45 

(0.000) 
-0.41 

(0.000) 
-0.31 

(0.003) 
-0.44 

(0.000) 
𝒂𝒂𝟏𝟏𝟏𝟏∗  - 1.14 

(0.000) 
0.27 

(0.215) 
-0.27 

(0.213) 
-0.13 

(0.236) 
0.05 

(0.572)  -0.04 
(0.806) 

0.74 
(0.000) 

0.11 
(0.415) 

0.90 
(0.000) 

𝒄𝒄𝟏𝟏𝟏𝟏 1.61 
(0.000) 

1.95 
(0.000) 

1.56 
(0.000) 

2.00 
(0.000) 

1.34 
(0.000) 

1.29 
(0.001)  1.38 

(0.000) 
1.68 

(0.000) 
1.64 

(0.000) 
1.73 

(0.000) 
𝒄𝒄𝟏𝟏𝟏𝟏∗  - -1.10 

(0.323) 
0.43 

(0.125) 
-0.43 

(0.169) 
-0.24 

(0.663) 
0.22 

(0.079)  0.36 
(0.761) 

-2.29 
(0.000) 

2.06 
(0.023) 

-2.32 
(0.000) 

𝒄𝒄𝟏𝟏𝟏𝟏 -0.91 
(0.000) 

-0.59 
(0.003) 

-0.69 
(0.031) 

-0.69 
(0.053) 

0.11 
(0.937) 

1.10 
(0.002)  -0.45 

(0.077) 
-0.79 

(0.000) 
-0.76 

(0.008) 
-0.79 

(0.000) 
𝒈𝒈𝟏𝟏𝟏𝟏 0.34 

(0.002) 
0.15 

(0.279) 
0.29 

(0.274) 
0.20 

(0.311) 
0.81 

(0.000) 
0.86 

(0.000)  0.21 
(0.000) 

0.41 
(0.000) 

0.41 
(0.009) 

0.36 
(0.000) 

𝒈𝒈𝟏𝟏𝟏𝟏 -0.02 
(0.867) 

-0.13 
(0.173) 

-0.11 
(0.543) 

-0.10 
(0.630) 

0.08 
(0.776) 

-0.09 
(0.038)  0.78 

(0.000) 
0.03 

(0.715) 
0.06 

(0.581) 
-0.01 

(0.981) 
𝒈𝒈𝟏𝟏𝟏𝟏∗  - -0.48 

(0.000) 
0.01 

(0.843) 
-0.01 

(0.846) 
-0.03 

(0.672) 
0.07 

(0.124)  0.27 
(0.000) 

0.04 
(0.486) 

0.19 
(0.000) 

-0.10 
(0.001) 

𝒂𝒂𝟏𝟏𝟏𝟏 0.36 
(0.000) 

0.29 
(0.000) 

0.32 
(0.000) 

0.32 
(0.000) 

0.04 
(0.448) 

-0.01 
(0.746)  0.00 

(0.989) 
-0.74 

(0.000) 
0.14 

(0.403) 
-0.62 

(0.000) 
𝒂𝒂𝟏𝟏𝟏𝟏 0.08 

(0.055) 
0.11 

(0.000) 
0.06 

(0.100) 
0.11 

(0.052) 
-0.37 

(0.003) 
0.22 

(0.001)  -0.30 
(0.000) 

0.06 
(0.272) 

0.05 
(0.361) 

0.07 
(0.078) 

𝒂𝒂𝟏𝟏𝟏𝟏∗  - 0.43 
(0.007) 

0.04 
(0.540) 

-0.04 
(0.538) 

0.15 
(0.147) 

0.07 
(0.350)  -0.22 

(0.082) 
0.13 

(0.537) 
-0.41 

(0.007) 
0.22 

(0.207) 
            

LogLik 3786.94 3778.86 3777.23 3777.23 3764.26 3757.87  3765.52 3772.12 3778.32 3768.66 

𝑳𝑳𝑳𝑳𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮(𝟕𝟕) 0.96 
(0.995) 

0.63 
(0.998) 

1.56 
(0.980) 

1.56 
(0.980) 

1.34 
(0.987) 

1.17 
(0.991)  3.04 

(0.880) 
1.03 

(0.994) 
1.26 

(0.989) 
0.79 

(0.997) 
𝑳𝑳𝑳𝑳𝑳𝑳𝑮𝑮𝑩𝑩𝑩𝑩𝑮𝑮(𝟕𝟕) 4.78 

(0.686) 
 

4.43 
(0.729) 

 

3.61 
(0.820) 

3.64 
(0.820) 

 

4.74 
(0.692) 

 

4.54 
(0.715) 

 
 

5.01 
(0.658) 

 

4.96 
(0.664) 

 

4.84 
(0.679) 

 

5.05 
(0.654) 

 

Notes: Please refer to the notes in Table 4. 
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Table 7. Estimated GARCH(1,1)-BEKK models for the United Kingdom 
 Benchmark Energy 

shock Climate policy shocks  Oil and Climate Policy Shocks 
Interaction 

 
 

 Nat. 
Pos. 

Nat. 
Neg Int. Pos. Int Neg.  

Oil + 
Nat. 
Pos. 

Oil + 
Nat. 
Neg 

Oil + 
Int. 
Pos. 

Oil + 
Int. 
Neg 

 Conditional mean equation 

𝒂𝒂𝟏𝟏𝟏𝟏 -0.15 
(0.503) 

-0.13 
(0.553) 

-0.27 
(0.151) 

-0.28 
(0.240) 

0.07 
(0.766) 

-0.12 
(0.619)  -0.10 

(0.673) 
-0.09 

(0.683) 
-0.00 

(0.984) 
-0.30 

(0.255) 
𝒂𝒂𝟏𝟏𝟏𝟏∗  - -0.88 

(0.028) 
-0.23 

(0.052) 
0.16 

(0.215) 
-0.19 

(0.134) 
0.19 

(0.156)  -0.10 
(0.732) 

-1.87 
(0.312) 

-0.32 
(0.293) 

-1.92 
(0.342) 

𝜷𝜷𝟏𝟏𝟏𝟏 -0.00 
(0.930) 

-0.04 
(0.340) 

0.01 
(0.695) 

-0.02 
(0.577) 

0.00 
(0.940) 

0.00 
(0.839)  0.00 

(0.908) 
-0.02 

(0.513) 
0.00 

(0.929) 
-0.02 

(0.473) 
𝜷𝜷𝟏𝟏𝟏𝟏 -0.00 

(0.932) 
0.00 

(0.946) 
-0.07 

(0.004) 
0.00 

(0.949) 
-0.02 

(0.734) 
0.01 

(0.616)  -0.03 
(0.195) 

-0.01 
(0.612) 

-0.03 
(0.209) 

0.00 
(0.946) 

𝜷𝜷𝟏𝟏𝟏𝟏∗  - -0.07 
(0.663) 

0.12 
(0.000) 

-0.05 
(0.314) 

0.03 
(0.568) 

-0.03 
(0.618)  0.05 

(0.531) 
-0.43 

(0.034) 
0.00 

(0.953) 
-0.11 

(0.435) 
IR -0.02 

(0.709) 
-0.09 

(0.241) 
-0.00 

(0.962) 
0.25 

(0.687) 
-0.02 

(0.754) 
-0.02 

(0.744)  -0.05 
(0.329) 

-0.08 
(0.158) 

-0.06 
(0.344) 

-0.10 
(0.085) 

VIX 0.02 
(0.070) 

0.02 
(0.030) 

0.03 
(0.000) 

0.02 
(0.046) 

0.01 
(0.271) 

0.01 
(0.182)  0.02 

(0.142) 
0.02 

(0.068) 
0.01 

(0.293) 
0.03 

(0.031) 
            

𝒂𝒂𝟏𝟏𝟏𝟏 -0.68 
(0.023) 

-0.49 
(0.120) 

-0.67 
(0.014) 

-0.87 
(0.015) 

-0.37 
(0.215) 

-0.71 
(0.040)  -0.31 

(0.337) 
-0.53 

(0.123) 
-0.25 

(0.455) 
-0.42 

(0.215) 
𝒂𝒂𝟏𝟏𝟏𝟏∗  - -0.49 

(0.433) 
-0.30 

(0.075) 
0.44 

(0.017) 
-0.33 

(0.153) 
0.33 

(0.173)  0.00 
(0.993) 

-3.46 
(0.073) 

-0.48 
(0.156) 

-1.83 
(0.610) 

𝜷𝜷𝟏𝟏𝟏𝟏 0.06 
(0.133) 

-0.08 
(0.035) 

0.11 
(0.001) 

0.07 
(0.054) 

0.09 
(0.052) 

0.09 
(0.089)  0.05 

(0.146) 
0.03 

(0.326) 
0.03 

(0.370) 
0.09 

(0.021) 
𝜷𝜷𝟏𝟏𝟏𝟏 0.01 

(0.855) 
-0.05 

(0.423) 
-0.08 

(0.130) 
0.05 

(0.354) 
-0.02 

(0.699) 
0.02 

(0.734)  -0.01 
(0.851) 

-0.01 
(0.851) 

-0.00 
(0.982) 

-0.04 
(0.427) 

𝜷𝜷𝟏𝟏𝟏𝟏∗  - -0.25 
(0.356) 

0.11 
(0.082) 

-0.11 
(0.135) 

0.05 
(0.553) 

-0.05 
(0.624)  -0.00 

(0.993) 
-0.82 

(0.000) 
-0.11 

(0.578) 
-0.63 

(0.175) 
IR -0.01 

(0.811) 
-0.11 

(0.332) 
-0.04 

(0.545) 
-0.05 

(0.454) 
0.00 

(0.967) 
0.00 

(0.965)  -0.04 
(0.619) 

-0.09 
(0.233) 

-0.09 
(0.351) 

-0.08 
(0.407) 

VIX 0.04 
(0.007) 

0.04 
(0.024) 

0.05 
(0.000) 

0.04 
(0.026) 

0.03 
(0.054) 

0.03 
(0.044)  -0.02 

(0.211) 
0.04 

(0.033) 
0.03 

(0.141) 
0.03 

(0.131) 
 Conditional variance equation 

𝒄𝒄𝟏𝟏𝟏𝟏 0.27 
(0.002) 

0.00 
(0.999) 

0.00 
(0.999) 

0.33 
(0.000) 

-0.16 
(0.573) 

0.37 
(0.078)  0.00 

(0.999) 
0.00 

(0.999) 
0.00 

(0.999) 
0.00 

(0.999) 
𝒄𝒄𝟏𝟏𝟏𝟏∗  - 1.13 

(0.005) 
0.45 

(0.064) 
-0.33 

(0.019) 
-0.21 

(0.478) 
-0.53 

(0.159)  -0.00 
(0.999) 

-0.00 
(0.999) 

0.00 
(0.999) 

-3.10 
(0.000) 

𝒈𝒈𝟏𝟏𝟏𝟏 0.89 
(0.000) 

0.97 
(0.000) 

0.77 
(0.000) 

0.89 
(0.000) 

0.87 
(0.000) 

0.87 
(0.000)  -0.70 

(0.000) 
0.45 

(0.002) 
0.44 

(0.003) 
-0.97 

(0.000) 
𝒈𝒈𝟏𝟏𝟏𝟏 0.09 

(0.003) 
0.57 

(0.000) 
1.77 

(0.000) 
-0.09 

(0.000) 
-0.14 

(0.026) 
-0.05 

(0.285)  -1.16 
(0.000) 

-0.20 
(0.124) 

-0.15 
(0.460) 

-1.40 
(0.000) 

𝒈𝒈𝟏𝟏𝟏𝟏∗  - -0.28 
(0.177) 

-0.07 
(0.607) 

0.03 
(0.361) 

0.09 
(0.148) 

-0.09 
(0.195)  -0.77 

(0.000) 
0.58 

(0.107) 
-0.14 

(0.268) 
0.16 

(0.719) 
𝒂𝒂𝟏𝟏𝟏𝟏 0.33 

(0.000) 
-0.08 

(0.337) 
0.32 

(0.000) 
0.37 

(0.000) 
0.38 

(0.000) 
0.38 

(0.000)  -0.08 
(0.358) 

0.02 
(0.903) 

0.02 
(0.809) 

-0.23 
(0.062) 

𝒂𝒂𝟏𝟏𝟏𝟏 0.12 
(0.098) 

0.29 
(0.188) 

0.17 
(0.010) 

0.27 
(0.017) 

0.25 
(0.019) 

0.02 
(0.800)  -0.16 

(0.014) 
0.02 

(0.791) 
-0.08 

(0.243) 
-0.25 

(0.009) 
𝒂𝒂𝟏𝟏𝟏𝟏∗  - -0.64 

(0.177) 
-0.32 

(0.000) 
-0.18 

(0.123) 
-0.23 

(0.048) 
0.23 

(0.099)  -0.03 
(0.782) 

0.82 
(0.000) 

0.19 
(0.130) 

-0.06 
(0.695) 

𝒄𝒄𝟏𝟏𝟏𝟏 0.75 
(0.000) 

0.01 
(0.970) 

0.51 
(0.001) 

0.60 
(0.000) 

0.71 
(0.000) 

0.80 
(0.000)  -1.22 

(0.000) 
-0.94 

(0.000) 
0.88 

(0.028) 
0.80 

(0.000) 
𝒄𝒄𝟏𝟏𝟏𝟏∗  - -2.28 

(0.036) 
0.02 

(0.795) 
-0.04 

(0.823) 
0.09 

(0.609) 
-0.09 

(0.655)  -0.28 
(0.104) 

-0.81 
(0.580) 

0.151 
(0.645) 

3.29 
(0.000) 

𝒄𝒄𝟏𝟏𝟏𝟏 0.60 
(0.000) 

-0.71 
(0.000) 

0.52 
(0.000) 

0.55 
(0.000) 

0.59 
(0.000) 

0.59 
(0.000)  -1.48 

(0.000) 
-1.59 

(0.000) 
1.64 

(0.000) 
0.64 

(0.000) 
𝒈𝒈𝟏𝟏𝟏𝟏 0.94 

(0.000) 
0.70 

(0.000) 
-0.83 

(0.000) 
0.96 

(0.000) 
0.95 

(0.000) 
0.95 

(0.000)  1.06 
(0.000) 

0.94 
(0.000) 

0.94 
(0.000) 

1.01 
(0.000) 

𝒈𝒈𝟏𝟏𝟏𝟏 0.00 
(0.965) 

-0.18 
(0.000) 

0.14 
(0.000) 

0.01 
(0.434) 

0.04 
(0.410) 

0.00 
(0.966)  0.13 

(0.000) 
-0.00 

(0.715) 
0.06 

(0.581) 
-0.01 

(0.981) 
𝒈𝒈𝟏𝟏𝟏𝟏∗  - 0.07 

(0.301) 
-0.02 

(0.280) 
-0.01 

(0.381) 
-0.04 

(0.672) 
0.04 

(0.354)  0.27 
(0.000) 

0.04 
(0.803) 

0.00 
(0.939) 

0.08 
(0.493) 

𝒂𝒂𝟏𝟏𝟏𝟏 0.28 
(0.000) 

0.08 
(0.626) 

0.17 
(0.000) 

0.19 
(0.000) 

0.25 
(0.000) 

0.25 
(0.000)  0.05 

(0.271) 
0.39 

(0.000) 
0.41 

(0.000) 
0.24 

(0.000) 
𝒂𝒂𝟏𝟏𝟏𝟏 -0.01 

(0.872) 
0.29 

(0.000) 
-0.01 

(0.582) 
-0.06 

(0.124) 
0.09 

(0.211) 
-0.02 

(0.724)  -0.23 
(0.000) 

0.31 
(0.000) 

0.32 
(0.001) 

0.00 
(0.979) 

𝒂𝒂𝟏𝟏𝟏𝟏∗  - -0.10 
(0.487) 

0.04 
(0.322) 

0.04 
(0.398) 

0.07 
(0.472) 

-0.07 
(0.399)  0.11 

(0.329) 
-0.95 

(0.000) 
-0.05 

(0.711) 
0.17 

(0.313) 
            

LogLik 3422.08 3434.01 3403.68 3414.55 3414.55 3414.55  3423.40 3424.18 3438.64 3412.79 

𝑳𝑳𝑳𝑳𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮(𝟕𝟕) 6.77 
(0.452) 

5.55 
(0.489) 

7.22 
(0.405) 

6.77 
(0.453) 

7.29 
(0..399) 

7.29 
(0.399)  7.99 

(0.333) 
8.04 

(0.328) 
9.04 

(0.249) 
5.16 

(0.640) 
𝑳𝑳𝑳𝑳𝑳𝑳𝑮𝑮𝑩𝑩𝑩𝑩𝑮𝑮(𝟕𝟕) 10.57 

(0.158) 
11.58 

(0.115) 
11.65 

(0.112) 
11.29 

(0.126) 
10.93 

(0.141) 
10.93 

(0.141)  11.62 
(0.113) 

11.73 
(0.109) 

12.59 
(0.082) 

11.49 
(0.118) 

Notes: Please refer to the notes in Table 4. 
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Table 8. Estimated GARCH(1,1)-BEKK models for the United States 
 Benchmark Energy 

shock Climate policy shocks  Oil and Climate Policy Shocks 
Interaction 

 
 

 Nat. 
Pos. 

Nat. 
Neg Int. Pos. Int Neg.  

Oil + 
Nat. 
Pos. 

Oil + 
Nat. 
Neg 

Oil + 
Int. 
Pos. 

Oil + 
Int. 
Neg 

 Conditional mean equation 

𝒂𝒂𝟏𝟏𝟏𝟏 -0.47 
(0.061) 

-0.28 
(0.198) 

-0.44 
(0.039) 

-0.46 
(0.091) 

-0.30 
(0.247) 

-0.44 
(0.049)  -0.40 

(0.061) 
-0.06 

(0.214) 
-0.32 

(0.147) 
-0.40 

(0.000) 
𝒂𝒂𝟏𝟏𝟏𝟏∗  - -0.52 

(0.186) 
-0.23 

(0.771) 
0.05 

(0.709) 
-0.01 

(0.936) 
0.10 

(0.504)  -0.38 
(0.640) 

-0.29 
(0.523) 

-0.41 
(0.084) 

-1.58 
(0.607) 

𝜷𝜷𝟏𝟏𝟏𝟏 -0.00 
(0.941) 

0.02 
(0.564) 

0.04 
(0.216) 

0.03 
(0.256) 

0.02 
(0.482) 

0.028 
(0.460)  0.03 

(0.415) 
0.17 

(0.713) 
0.02 

(0.438) 
0.03 

(0.079) 
𝜷𝜷𝟏𝟏𝟏𝟏 -0.07 

(0.025) 
-0.07 

(0.003) 
-0.03 

(0.259) 
-0.08 

(0.002) 
-0.04 

(0.238) 
-0.06 

(0.026)  -0.06 
(0.024) 

-0.05 
(0.068) 

-0.07 
(0.001) 

-0.07 
(0.004) 

𝜷𝜷𝟏𝟏𝟏𝟏∗  - 0.05 
(0.396) 

-0.07 
(0.057) 

0.03 
(0.529) 

0.03 
(0.435) 

-0.07 
(0.277)  -0.03 

(0.837) 
0.00 

(0.984) 
0.06 

(0.203) 
0.18 

(0.533) 
IR 0.01 

(0.814) 
-0.02 

(0.631) 
-0.02 

(0.581) 
-0.01 

(0.809) 
-0.02 

(0.649) 
-0.00 

(0.888)  -0.00 
(0.861) 

-0.02 
(0.658) 

-0.01 
(0.674) 

-0.00 
(0.875) 

VIX 0.04 
(0.000) 

0.04 
(0.001) 

0.05 
(0.000) 

0.04 
(0.000) 

0.04 
(0.002) 

0.04 
(0.000)  0.04 

(0.000) 
0.04 

(0.005) 
0.04 

(0.001) 
0.04 

(0.000) 
            

𝒂𝒂𝟏𝟏𝟏𝟏 -1.10 
(0.000) 

-0.65 
(0.015) 

-0.88 
(0.001) 

-0.74 
(0.018) 

-1.01 
(0.018) 

-0.85 
(0.002)  -0.83 

(0.001) 
-0.79 

(0.012) 
-0.71 
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LogLik 3513.02 3493.12 2116.98 2116.98 2116.98 2116.98  2116.98 2116.98 2116.98 2116.98 

𝑳𝑳𝑳𝑳𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮(𝟕𝟕) 9.71 
(0.205) 

8.33 
(0.401) 

7.51 
(0.378) 

7.97 
(0.334) 

7.28 
(0.400) 
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(0.272)  8.16 
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4.77 
(0.687) 

 

9.79 
(0.200)  

8.99 
(0.252) 

 

7.83 
(0.348) 

 

9.19 
(0.239) 

 

8.56 
(0.285) 

 

Notes: Please refer to the notes in Table 4. 
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Figure 1. Stock Returns and Conditional Correlations 
 

 

 

Notes: To examine the combined effects of climate policy shocks and energy shocks, we incorporate interaction dummies that 
account for the simultaneous occurrence of both types of shocks. Specifically, the figures at the bottom illustrate the interaction 
dummy representing instances where national climate policies in favour of a green transition coincide with oil shocks. 
Furthermore, the time-varying conditional correlation (ρ12,t = h12,t/(√h11,t√h22,t) is estimated using the multivariate GARCH(1,1)-
BEKK model, which explicitly includes the interaction dummies discussed. 
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Figure 2. Stock Returns and Conditional Correlations 
 

 

 

 

Notes: Please refer to the notes in Figure 1. 
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