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while keeping the ball ”in” the court. A compound effect arises since, as the rally unfolds, 

the cumulative pressure makes it ever harder to hit a shot in the court. To capture these 

features of a rally, we propose a threshold-crossing stochastic model where, for each shot 

in a rally to be in the court requires the pressure imparted by the player executing the 

shot to cross a threshold whose expected value depends on the cumulative pressure of 

the previous shots. We show how to estimate these thresholds using data on the length 
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1 Introduction
The emergence of detailed data on tennis matches in the last decades has shed new
light on tennis analytics. A particularly vibrant new line of research studies (the dis-
tribution of) the length of tennis rallies and factors affecting it. On the empirical side,
recent studies have shown that most rallies are short, with a mode at 1 shot and a
median at 2 to 3 shots depending on the surface (see e.g. Fitzpatrick et al. (2021), Lisi
et al. (2024)), even though the right tail, that retains our attention as spectators, is quite
long with more than 5 percent of the rallies reaching 10 or more shots. Interestingly,
these studies have also shown that the surface of the court affects the distribution of
rally length but in proportions that are much less pronounced than anticipated. For
instance, the mode is not affected whereas the median and average length difference
between grass and clay courts rallies is merely one shot, i.e. respectively 2 and 3.2 on
grass and 3 and 4.3 on clay (see Lisi et al., 2024). On the theoretical side, Klaassen and
Magnus (2001) were among the first to estimate the probability to win rallies using sta-
tistical methods. However, it is only recently that a probabilistic model that treats the
length of a rally as a random (count) variable was adopted (see Lisi et al., 2024). This
work revealed that a zero-one-modified Geometric distribution provides the best fit of
the data and its parameters depend on the height of the two players and varies across
surfaces. Using additional information about whether a rally ends with a winner or a
mistake, Nirodha et al. (2025) presented a Bayesian model whose results showed that
the estimated probability to hit a winner is fairly stable over rally length on the second
serve but slightly higher (lower) in the first 2 shots for the server (receiver) on a first
serve.

In the current literature on the distribution of rally length, a rally is seen as an event
whose length is a random variable. This of course contrasts with the definition of a
rally as a succession of shots, and where shots are the constituents of interest.1 This is
probably due to the fact that in most available data, the unit of observation is a rally
and not a shot. Nevertheless, after each shot, what determines whether a rally goes
on is the quality of the successive shots played by each player until then in that rally.
If, at any point in a rally, a player hits a (succession of) low quality shot(s), either the
ball is going out and the rally ends in favor of his opponent or, it is in but enables
the opponent to make a winner on the next shot(s) without taking too much risks.
Likewise, if a player hits a (succession of) high quality shot(s) it might force a low
quality shot on his opponent or even a mistake and end the point in his favor. A rally
is hence subject to a compound effect (see Hardy (2020)): small actions (execution
of quality shots) accumulate over time (shot after shot) into large effects (winning a
point).

In this paper, we build on the aforementioned literature studying rally length but
propose to treat the constituents of a rally, i.e. each shot, as random variables. We
develop a threshold-crossing stochastic model in which the relative cumulative quality
of the shots of the two players determines whether the rally continues or not. In this
model, a rally goes on if the quality of the next shot is high enough to cross a threshold

1“A rally in tennis is a collective name given to a sequence of back and forth shots between players,
within a point. A rally starts with the serve and the return of the serve, followed by continuous return
shots until a point is scored which ends the rally.” (https://en.wikipedia.org/wiki/Rally (tennis))
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whose value depends on the cumulative quality of the preceding shots played by both
players. Treating the quality of each shot as a random variable enables us to derive the
probability that each successive shot of a rally crosses the associated threshold for the
rally to continue.2 The model therefore generates the probability that a rally is of any
length and hence a distribution of rally length.

An interesting advantage of this method, compared to the distributional approach
in Lisi et al. (2024) for instance, is that the thresholds actually reflect players’ quality
of shots and strategies. Indeed, the model can be used to construct, for each pair of
players say Federer and Nadal,3 a ”profile” from the corresponding estimated thresh-
olds, indicating the quality of the shots that the player (Federer) and his opponent
(Nadal) hit in a typical rally when facing each other. Note that this relates to the po-
tential extension proposed by Nirodha et al. (2025) who estimate for each player their
probability to hit a winner or make a mistake at various rally lengths and argue it
would be interesting as an extension to make these probabilities also depend on the
characteristics of the opponent.4

Central in the model is the notion of quality of a shot. Typically, the quality of a shot
can be described using multiple dimensions such as its speed, depth, spin, trajectory
and taking into account the position of the opponent.5 However, interestingly, the
concept of pressure, as introduced in the following quote, incorporates all of these
aspects into a single dimension.6

In pure theory a perfect shot is when you put the biggest pressure on the
opponent with the least risk of error from your side.
https://www.mayamistrings.com/pages/our-story.

The concept of ”pressure” as a measure of the ”quality of a shot” has the advan-
tage to take into account all sorts of possible balls: deep spinning balls arriving at an
angle, hard flat balls served on the body, short drop shots with back spin etc. while
only requiring the use of a single dimension. This concept has been used previously
in the literature and, for instance, in a recent study Mlakar and Kovalchik (2020) in-
troduce the time-to-net measure, i.e. the time from the shot impact to the time when
the ball passes over the net, to capture the quality of a shot. Shots with short time-to-
net measures put a lot of pressure on one’s opponent and hence are associated with

2Note the similarity between threshold-crossing stochastic models and discrete time survival models
(see Cox (1972)).

3Provided there are enough observations (rallies) for a reliable estimation.
4A serious limitation of this extension of their model however, as argued by the authors, is compu-

tation time: “Under the higher parameterization associated with Model 3 [which does not make the
probabilities dependent on the opponent’s characteristics yet], computational demands increase. Run-
ning Stan with 2,000 iterations using the men’s first serve dataset requires roughly 18 h of computation
on a laptop computer.”

5For instance, the ATP Tour has recently introduced AI generated measures of shot quality, on a
scale from 1 to 10, depending on speed, spin, depth, width, and the impact it has on the opponent. The
higher the quality of a shot the more likely the player is to win the point.

6This definition of pressure resonates very well with how Rafael Nadal analyses his performance on
clay court during an interview with Andy Roddick in his podcast Served: ”I was the player that was
able to play better quality shots, without taking many risks, my ball was creating a lot of damage on the
opponent without having a lot of risks for myself, [...] In some way I created stress on the opponent.”
See https://www.youtube.com/watch?v= SvPnVAJyVI, between 36min 20sec and 37min 25sec.
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high quality. In this paper, we present a general definition of pressure as a measure of
shot quality since our data does not contain information such as time-to-net or spin or
depth. In contrast, our method allows us to recover the pressure of shots at different
moment in a rally from data on the length of rallies.7 We can then construct a balance
of pressure between the two players, where, through the execution of a shot, a player
is able to increase the pressure on his opponent. As argued by ex top 5 ATP player
and international coach Brad Gilbert (see Gilbert and Jamison (2007)), players should,
during a match, ask themselves who does what to whom? The balance of pressure
constructed from the thresholds of the model allows us to answer that question. As a
rally unfolds, the balance of pressure measures the cumulative relative pressure one
player has put on his opponent. If it is positive (resp. negative), the player has put so
far more (resp. less) pressure on his opponent than his opponent has put on him. Our
measure therefore allows us to see when, in a rally, one player has an advantage on
his opponent and when it is his opponent that has the advantage.

The remainder of the paper is organized as follows. In Section 2, we present the
threshold-crossing stochastic model of tennis rallies. Section 3 describes the dataset
and the estimation strategy. Section 4 presents the estimation results and Section 5
concludes.

2 Method

2.1 Definition of the quality of a shot
The execution of a shot in tennis depends on the pressure of the ball arriving towards
the player, and the amount of pressure the player wants to impart to the ball leaving
his racket. For each shot, one hence needs to distinguish between the ability to absorb
the pressure of the incoming ball and the ability to transform it into a pressure for
the outgoing ball. Accounting for this consideration, let us introduce the following
definition of a shot.

Definition 1. A shot transforms the pressure of an incoming ball, which we denote i → R+,
into the pressure of an outgoing ball, which we denote o → R.

Definition 2. The total or gross pressure of the shot is the pressure developed during the
execution of the shot itself, which we denote s → R, and corresponds to s := o + i, the sum of
the pressure of the incoming ball i and the pressure of the outgoing ball. The latter is the net
pressure of an outgoing ball, net of the pressure the incoming ball had, o = s↑ i.

Our measure of quality of a shot j is therefore associated with the net pressure oj .
Indeed, a high quality shot is what puts pressure on the opponent, and oj measures
the net pressure the player executing shot j is able to put on the outgoing ball of shot
j, which then transforms into the pressure of the incoming ball for the opponent, i.e.
ij+1 = oj . The higher the net pressure of shot j, the higher the pressure of the incoming
ball of shot j + 1 for the opponent.

7In case one would have access to information on the various dimensions of the quality of shots such
as spin, depth and speed, one could calibrate the measure of pressure revealed from data on rally length
using this information.
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This definition of a shot allows us to assess whether the ball resulting from a shot
is ”in”, i.e. bounces inside the court on the opposite side of the court, or ”out”.

Definition 3. An outgoing ball is called ”in”, if and only if the pressure associated to it is
non-negative, i.e. o ↓ 0, else it is called ”out”, i.e. o < 0.

Consider now a typical rally in tennis. Each player hits the ball alternatively, the
server hitting the first shot (service), the opponent hitting the second shot (return of
serve), provided the first shot was ”in” etc.. For j → N\ {0}, let ij → R+ be the pressure
associated with the incoming ball8 to shot j and oj → R the pressure associated with
the outgoing ball to shot j. By definition, the gross pressure imparted by the player
executing shot j is sj → R with oj = sj ↑ ij .

Note that, also by definition, if the outgoing ball of shot j is ”in”, i.e. oj ↓ 0, the
outgoing ball of shot j becomes the incoming ball to shot j + 1, i.e. for oj ↓ 0, one has
ij+1 = oj .

We are now equipped to define when shot j is a ”winning point” and when it is a
”winner”.

Definition 4. Shot j is a ”winning point” if and only if the outgoing ball is ”in”, i.e. oj ↓ 0,
and the player executing shot j + 1 fails to return the ball ”in”, i.e. 0 ↔ sj+1 < ij+1 = oj , so
that oj+1 = sj+1 ↑ ij+1 = sj+1 ↑ oj < 0.

Definition 5. Shot j is called a ”winner” if and only if the outgoing ball is ”in”, i.e. oj ↓ 0,
and the player executing shot j + 1 does not impart any pressure on the ball, meaning he did
not touch the ball at all, i.e. sj+1 = 0 so that oj+1 = ↑ij+1 = ↑oj ↔ 0.

To summarize, we have defined:

1. ij → R+ as the pressure of the incoming ball to shot j,

2. sj → R as the gross pressure imparted to the ball by the player executing shot j,

3. oj = sj ↑ ij , oj → R, as the (net) pressure of the outgoing ball from shot j.

Note that, using the relation ij = oj→1 into oj = sj ↑ ij , obtains

oj = sj ↑ oj→1 for j > 1.

For j = 1, i.e. the service, the pressure of the incoming shot is i1 = o0 where o0 can
be understood as the minimum gross pressure required to play a serve into the court.
Indeed, for the serve to be in requires o1 = s1 ↑ o0 ↓ 0 and hence s1 ↓ o0. Let s0 := o0
for the sake of notation.

Stated otherwise, gross pressure imparted on shot j > 0, i.e. sj , determines whether
the player executing the shot increases or decreases the pressure of the ball compared
to the one he received as indeed

oj > oj→1 ↗ sj > 2oj→1.

8Note that shot j is only executed if the incoming ball is ”in”, i.e. if ij ↓ 0, which is the reason
why the pressure of incoming balls is assumed to be non-negative. This contrasts with the pressure
of outgoing balls which can be positive or negative depending on whether the player executing shot j
managed to play the shot j ”in” the court.
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So, to return an incoming ball of pressure oj→1 ”in”, requires a gross pressure of at
least sj = oj→1, whereas to increase the pressure requires a gross pressure of at least
sj = 2oj→1 during the execution of shot j.

2.2 Rally length
With definitions (1↑3) in mind we can now depict how a typical rally will evolve
and how the gross pressure associated with the execution of each shot determines the
length of a rally. Note first that, in a typical rally, both players hit the ball alternatively,
meaning that sj for odd j’s refers to the gross pressure imparted by the server whereas
sj for even j’s refers to the gross pressure imparted by the receiver.

From Definition (2), the net pressure of an outgoing ball from a serve is o1 = s1↑o0,
which depends on the gross pressure imparted by the server, i.e. s1, and the initial
pressure which we have normalized to s0. The serve is ”in” if and only if

o1 = s1 ↑ s0 ↓ 0

which means s1 ↓ s0.
For any other shot, the ball is ”in” if and only if

oj = sj ↑ oj→1 ↓ 0

We use this reasoning to define general conditions for a rally to be of length j ↓ 1
as

s1 ↓ o0 ↘ ... ↘ sj ↓ oj→1 ↘ sj+1 < oj. (1)

For shot j to be the ”winning point” of a rally, trivially requires that the rally goes
on until shot j but stops after shot j. This occurs as long as for each shot preceding j,
players were able to impart enough pressure to the ball to compensate for the pressure
of the incoming ball and at shot j + 1, the player executing the shot could not impart
enough pressure to play the ball ”in”. Interestingly, we can rewrite these conditions
using the recursive structure of oj = sj ↑ oj→1 and obtain a second representation of
these conditions in terms of cumulative gross pressure imparted to the ball by each
player. To see this, first note that one has

oj = (↑1)j
(

j∑

l=0,l↑even

sl ↑
j∑

l=0,l↑odd

sl

)
.

Plugging this expression of oj into the conditions in (1) and rearranging obtains for
j even

s1 ↓ s0
...

j∑

l=0,l↑even

sl ↓
j→1∑

l=0,l↑odd

sl

j+1∑

l=0,l↑odd

sl <
j∑

l=0,l↑even

sl.
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with a similar expression for j odd by simply swapping even and odd in the summa-

tions above.
Let

qj = 1 (j → even)
j∑

l=0,l↑even

sl + 1 (j → odd)
j∑

l=0,l↑odd

sl

for j → [0, J ↑ 1] and note that the term qj has a very natural interpretation as the
cumulative gross pressure imparted by the server (respectively receiver) until and in-
cluding shot j when j is odd (resp. even). Using the cumulative gross pressure, the
required inequalities for a rally to be of length j become

qj+1 < qj, qj ↓ qj→1, ..., q1 ↓ q0.

Of course, in reality, random elements intervene during the execution of each shot
(wind, noise, bad bounce, light, etc.) adding randomness to the process. To capture
these random elements, we simply add a random shock ωj with known distribution (to
be specified by the analyst) to the deterministic part qj and rewrite inequalities above
using kj = qj + ωj rather than qj . It follows that the inequalities required for a rally to
be of length j incorporating random shocks read as

k1 ↓ k0, ..., kj ↓ kj→1, kj+1 < kj.

Note that stated this way, each shot j of a rally is associated with a number kj and
one may say that a rally will be at least of length j if it ”survives” until shot j where the
notion of survival comes from the fact that for a rally to reach length j, each shot l ↔ j
must be associated a number kl ↓ kl→1. The numbers kj can then been seen as (random)
thresholds that need to be reached for each new shot in order for the rally to keep
on going until length j. The numbers qj are the deterministic thresholds that would
need to be reached in the absence of random shocks. As a result, the model proposed
above, using the notion of shots and the associated pressure imparted by each player
executing them, belongs to the class of threshold-crossing stochastic models, where the
stochastic part comes from the presence of the random shocks ω. The model therefore
features a compound effect: small actions in the form of the execution of shots and the
pressure imparted, accumulate shot after shot into large effects leading to making a
winner or forcing a mistake and winning the point.

Before deriving the probability distribution of rally length from the threshold cross-
ing model, let us make some important remarks. First, although the number of shots
in a rally could extend infinitely, rallies longer than a finite limit J almost surely never
occur, (see Lisi et al., 2024 for instance). It is therefore convenient, for all practical mat-
ters, to assume that there exists a finite number of shots J so that there are (almost
surely) no rallies of length J or longer.9

Second, in tennis, if the first serve is out (too weak) then the server has the pos-
sibility to execute a second serve. We therefore need to distinguish between rallies

9As shown for instance in Lisi et al. (2024), rally longer than 12-14 shots (depending on the surface)
represent less than 2.5 percent of the rallies.
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occurring after a first serve (when this serve is ”in”) and rallies following a second
serve. The advantage of the above model is that the same logic of thresholds crossing
can be applied to the two types of rallies, one only needs to introduce the notation kst

j

for the first serve and knd
j for the second serve.

Third, one can recover the gross and net pressures imparted by each player at the
various shots, making use of the relationship that exists between these quantities and
the deterministic part qj of the cumulative pressure at each length j, i.e.

s0 = q0, s1 = q1, sj = qj ↑ qj→2≃j → [2, J ↑ 1]

and

o0 = q0, o1 = q1, oj = qj ↑ qj→1≃j → [2, J ↑ 1] . (2)

Finally, note that the net pressure oj , for j is odd, measures the pressure put by the
server on the receiver after shot j whereas oj , for j is even, indicates the net pressure
put by the receiver on the server. Hence, one can compute a measure accounting for
the balance of pressure between the two players as the rally unfolds (after each shot) by
computing the series o1, o1↑o2, o1+o3↑o2, o1+o3↑o2↑o4,...,

∑J
l=0,l↑odd ol↑

∑j
l=0,l↑even ol

taking the perspective of the server. For instance, after the first shot (service), the
server has put o1 pressure on his opponent so the balance of pressure is o1 in his fa-
vor. After the second shot (return of the receiver), the receiver has put o2 pressure on
the server and the balance of pressure is therefore o1 ↑ o2, etc. As it turns out, this
representation is very useful to analyze the profile of players based on the (estimated)
thresholds of the model. Moreover, it is directly related to the crucial tactical question
players should ask themselves during a match according to Brad Gilbert (Gilbert and
Jamison (2007)): who does what to whom (in a rally)? Our measure of balance pres-
sure allows us to see when in a rally, one player has an advantage on his opponent
and when it is his opponent that has the advantage. The balance of pressure turns out
to be an interesting way of representing a typical rally between two players and can
easily be derived from the model.

2.3 Probability of a rally to be of length j

In the threshold-crossing model presented above, the thresholds
(
ks
j

)s=st,nd

j=0,...,J
are given

by qsj + ωsj where qsj is a deterministic part and ωsj an idiosyncratic shock drawn from a
known distribution. In order to derive explicit solutions for the probability of a rally to
be of length j, ≃j → [0, J ↑ 1], let us assume that the shocks follow a centered Gumbel
type I distribution. As shown in Appendix (A.1), the probability that a rally reaches
length j after a first serve is then

εst
j =






exp(qst1 )
2∑

l=1

exp(qstl )

exp(qst1 )
1∑

l=0

exp(qstl )

if j = 1

exp(qstj )
j+1∑

l=1

exp(qstl )

j→1∏

l=1

exp(qstl )
l∑

m=1

exp(qstm)

exp(qst1 )
1∑

l=0

exp(qstl )

if j → [2, J ↑ 1]
.
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whereas after a second serve it is

εnd
j =






exp(qnd
0 )

1∑

l=0

exp(qnd
l )

exp(qst0 )
1∑

l=0

exp(qstl )

if j = 0

exp(qnd
1 )

2∑

l=0

exp(qnd
l )

exp(qst0 )
1∑

l=0

exp(qstl )

if j = 1

exp(qnd
j )

j+1∑

l=0

exp(qnd
l )

j→1∏

l=1

exp(qnd
l )

l∑

m=0

exp(qnd
m )

exp(qst0 )
1∑

l=0

exp(qstl )

if j → [2, J ↑ 1]

.

o0 = q0, o1 = q1, oj = qj ↑ qj→1≃j → [2, J ↑ 1] . (3)

To illustrate the model, let us consider a first specific case where all deterministic
thresholds are so that qj = q0 ≃j. This corresponds to a situation where, in the absence
of random shocks, the rally would go on forever with the minimum pressure being
imparted to the ball at each shot. Indeed, note that, in this situation, i) the pressure
needed to play a service in, in the absence of random shocks, is o0 = s0 = q0, ii) the
server plays his serve with exactly that pressure, o1 = s1 = q1 = q0, and iii) from then
on, each player imparts a pressure oj = sj = 0 which would be just sufficient to play
the ball in, in the absence of random shocks.10 We hence have that o0 = s0 = q0, o1 =
s1 = q0, oj = sj = 0≃j → [2, J ↑ 1].

For this situation, the distribution of rally length is

εst
j =

1

2

j

(j + 1)!
if j → [1, J ↑ 1] .

εnd
j =






1
4 if j = 0
1
6 if j = 1

1
2

j+1
(j+2)! if j → [2, J ↑ 1]

.

This distribution of rally length is represented in the left panel of Figure (1).
The balance of pressure is very trivial in this case. It initially goes to q0 after the first

shot, and drops to 0 after the return to stay at 0 until the end of the rally. The server
has an initial advantage, as the first mover, but this advantage disappears immediately
after the return and the rest of the rally is played in such a way that both players
”neutralize” each other, putting zero pressure on their opponent and hence keeping
the balance of pressure at 0.

Note that, in this example, players are playing with deterministic gross pressure
calibrated to make the ball just ”in” in the absence of random shocks. This means that
at each shot, even a very small negative shock is enough to push the ball out. As a

10Indeed, since the incoming pressure from the serve is i2 = o1 = s1 ↑ s0 = q0 ↑ q0 = 0, the gross
pressure needed to play the ball in at shot 2 is s2 = o2↑i2 = 0. The same reasoning can be applied to the
remaining shots of the rally to show that for qj = q0, one has s1 = q0 and sj = 0, j > 1. In the absence
of random shocks, the rally would go on for ever with the minimum gross pressure being imparted to
each shot.
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Figure 1: Two distributions of rally length.
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compound effect, these shocks accumulate, shot after shot, so that the expected rally
length is in fact very short: the mode and the median are 1 shot, the mean is about 1.2
shots, and only 2.5 percent of the rallies are at least of length 4.11

As a second illustrative example, let us consider the case where players impart the
same pressure to the ball on each shot, i.e. oj = sj = s ≃j. By simple substitution of
sj = s into the expressions of the thresholds implies that qj = j+2

2 ⇐ s for j → even
and qj = j+1

2 ⇐ s for j → odd.12 The distribution of rally length in the case of s = 1 is
presented in the right panel of Figure (1).

In this case, after each new shot of the server, the balance of pressure goes up
to s but the receiver brings it back to 0 after each of his own shots. The server has
the advantage since, being the first ”mover”, he can put pressure on his opponent, a
pressure that his opponent can only neutralize.

11Indeed, one has
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12Indeed one has

q0 = s, q2 = 2s, q4 = 3s, q6 = 4s, ...

q1 = s, q3 = 2s, q5 = 3s, q7 = 4s...

which gives the solution presented in the main text.
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2.4 Identification
The typical dataset available to researchers aiming at estimating factors impacting the
length of rallies contains, for a large number of matches, the list of rallies with in-
formation about their length, who is serving and whether the first serve was in. Let
N denote the number of rallies in the data, yi the observed length of rally i and zi
whether the first serve was ”in” in rally i. A dataset is then a tuple {yi, zi}Ni=1. Using
these rallies, one can compute the shares

p̂stj =

∑N
i=1 1 (yi = j ↘ zi = 1)

N
,

p̂ndj =

∑N
i=1 1 (yi = j ↘ zi = 0)

N
,

for all j and with p̂st. =
∑

j p̂
st
j the share of rallies on a first serve.

It follows that the dataset {yi, zi}Ni=1 produces shares
{
p̂sj
}
j,s

where, for the sake
of identification, we have assumed that N is large enough so that p̂sj > 0 for all
j < J .13 We aim at showing that the thresholds

(
qsj
)s=st,nd

j=0,...,J
are nonparametrically

point-identified by these data. This is not relevant for inference as one would like
to test for the difference between the q ’s across players or over time for instance but
nonetheless it shows identification does not hinge on some restrictions on the q param-
eters, restrictions that would come from data limitations (too small number of rallies
per match/player) and a need for inference.

After the normalization qnd0 = qst0 = 0, the thresholds can be expressed as functions
13This is an empirical problem not an identification one. In empirical applications, the problem can

be addressed in two ways. First, since shorter rallies are more frequent in most data, one can address
this issue by choosing the proper value of J . Larger values of J would require larger N to have enough
observations for longer rallies. Second, the issue can be addressed in the estimation part by adopting
a parametric specification for the thresholds. The parametric restriction allows one to estimate the
thresholds even if for some matches, there are no observations for some rally lengths. Finally, note that
imposing a maximal rally length J → even in the context of tennis where one player hits even shots and
the other hits odd shots requires to count all rallies of even length greater than J as rallies of length
J ↑ 2 and all rallies of odd length greater than J as rallies of length J ↑ 1.
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of the empirical probabilities as follows14

Qst
j+1 =






p̂st.
1→p̂st.

if j = 0

(Ĉst
j p̂st. →p̂stj )Qst

j →p̂stj

j→1∑

l=1

Qst
l

p̂stj
else

Qnd
j+1 =






1→p̂st. →p̂nd
0

p̂nd
0

if j = 0

(Ĉnd
j (1→p̂st. )→p̂nd

j )Qnd
j →p̂nd

j

j→1∑

l=0

Qnd
l

p̂nd
j

else

where we use the notation Q = exp (q), Ĉst
j =

j→1∏

l=1

Qst
l

l∑

m=1

Qst
m

for j ↓ 2 and Ĉst
1 = 1 and

Ĉnd
j =

j→1∏

l=1

Qnd
l

l∑

m=0

Qnd
m

for j ↓ 2 and Ĉnd
1 = 1.15

This means that for any dataset {yi, zi}Ni=1 that produces empirical probabilities{
p̂sj
}
j,s

, there exists a unique set of thresholds
(
qsj
)s=st,nd

j=1,...,J
and qst0 = qnd0 = 0, so that

εs
j = p̂sj , ≃j → [0, J ↑ 1] and s = st, nd.

3 Estimation

3.1 Data
We use the Match Charting Project by Jeff Sackmann.16 This project aims at collecting
information about professional tennis matches charted by dozens of contributors. The

14See Appendix (A.2) for more details and in particular for an explanation of why a normalization
is required. Note, however, that for both serves the normalization is to any constant, we choose 0
without loss of generality. There is a loss of generality by imposing qnd0 = qst0 though. Unfortunately,
unless data on shots characteristics are available, there is no information that can be used to calibrate
the relative constant between first and second serves. This means that one can only compare the shape
of the q-thresholds over shots between first and second serves but not the absolute level.

15It is important to note that the probability of a rally to reach length j, either on a first or second
serve, depends on the thresholds q0, q1,..., qj and qj+1 and since

qj = 1 (j → even)
j∑

l=0,l→even

sl + 1 (j → odd)
j∑

l=0,l→odd

sl

it depends on the gross pressure imparted during all the preceding shots s0, ..., sj↑1, the gross pressure
imparted during the j-th shot and the gross pressure imparted during the j + 1-th shot. For instance,
whether a rally reaches 3 shots, i.e. j = 3 (serve+1), depends on the initial pressure, s0, the pressure
imparted to the ball during the serve, s1, the pressure imparted during the return, s2, the pressure
imparted during the serve+1, s3 and the pressure imparted during the return+1, s4.

16https://github.com/JeffSackmann/tennis MatchChartingProject
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data we use in this paper are the point-by-point data for men matches which contain
information about all the rallies of the men matches charted in the data by August
2024. Although this is not the universe of men professional tennis matches nor a ran-
dom sample, it contains over 800,000 rallies for over 4,600 matches.

For each rally of each match we know the names of the players, who is serving,
whether the first serve is in or not and the rally length. Note that the rally length is
defined as the number of consecutive shots in a rally that are ”in”. It follows that a
double fault has rally length 0, an ace or unreturned serve (whether on first or second
serve) has length 1, etc. If the player executing shot j + 1 touches the ball but fails to
play it in the court, the rally has length j.

As Lisi et al. (2024), we only use data from 2000 on, as those are the years for
which most matches have been charted. Table (1) presents descriptive statistics about
the rally length in our working dataset by types of serve, whereas Table (2) shows the
distribution of rally length for both first and second serves, until length 15. There are
673,500 rallies in the dataset between 2000 and 2023, about 62% of those occur on the
first serve. While the mode is 1 for both first and second serve rallies, interestingly
(and perhaps not so surprisingly), the second most frequent rally is of length 3 on
a first serve (serve + 1) and of length 2 on the second serve (return of serve). Note
also that the median length is 3 on both first and second serves, whereas the average
rally length is longer on second serves, by about 0.8 shot (3.8 vs. 4.6). Two opposing
forces are at play. First, rallies on second serve include double faults, i.e. 9% of the
second serve rallies have length 0, which tends to decrease the average rally length.
Second, the second serve tends to be easier for the receiver to return allowing for a
more balanced pressure between the two players and hence longer rallies. The latter
effect hence seems to dominate the former.

<Table (1) about here>
<Table (2) about here>

3.2 Maximum likelihood
Let there be M matches in the data. For each match, the data identifies two players,
say x1 and x2, contains information about who is serving and the length of each rally.
Let there be Nm,x rallies on the serve of player x → {x1, x2} of match m. For all rallies
i = 1, ..., Nm,x of match m on player x’s serve, let yi be the observed length of rally i
and zi a dummy indicating whether the first serve was ”in” in rally i. Let qm,x denote
the vector containing the thresholds for each serve, first or second, and each length of
a rally in match m on serve of player x. The log-likelihood of observing data {yi, zi}
for rally i given parameters {qm,x}j , denoted lm,x

i , is simply

lm,x
i (yi, zi|qm,x) =

J→1∑

j=1

1 (yi = j ↘ zi = 1) log εst
j

+
J→1∑

j=0

1 (yi = j ↘ zi = 0) log εnd
j .

where the theoretical probabilities εs
j , ≃j, s are given as in Section 2.3.
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Hence the log-likelihood of observing data
{
{yi, zi}N

m,x1

i=1 , {yi, zi}N
m,x2

i=1

}M

m=1
for all

rallies of all matches given parameters qm,x is

l (y|q) =
M∑

m=1

∑

x=x1,x2

Nm,x∑

i=1

lm,x
i (yi, zi|qm,x) .

4 Results
The above procedure is flexible enough to accommodate various specifications that
might bring new insight in the analysis of match play. As in Lisi et al. (2024), the
model also allows us to distinguish between an unconditional fit, where the aim is to
fit as best as possible the aggregate data for all matches using a specification where the
thresholds are the same for all matches (or may change over time and surface), and a
conditional fit where the aim is to estimate player-opponent specific thresholds. While
the conditional fit is our main objective, we first illustrate the quality of the model by
the unconditional fit.

4.1 Unconditional fit
We first apply the ML estimation method on data for each year since 2000. We proceed
as follows:

1. select a year of data between 2000 and 2023,

2. using all rallies of the matches included in the data for that year, estimate the
thresholds qst and qnd assuming they are the same for all rallies regardless of the
players involved.

This is therefore a fit of the model that compares to the unconditional fit in Lisi et
al. (2024) except that i) we fit the model separately for each year whereas they pull all
years together and ii) we distinguish between first and second serves while they do
not. Estimates of the thresholds for three selected years, i.e. 2001, 2012 and 2023, are
presented in Table (3) whereas a plot of the thresholds and the observed distribution
of rally length for these selected years is presented in Figure (2).

<Table (3) about here>
Figure (2) shows, for the years 2001, 2012 and 2023, the observed and fitted dis-

tribution of rally length on the left hand side, which coincide by construction (see
identification section), and the associated q↑thresholds on the right hand side. The
first serve data are presented on the top panels and the second serves on the bottom
panels.

We note that the thresholds are increasing with the number of shots in a rally. As
shown in Table (3), this increase is statistically significant. It is not a property imposed
on the thresholds but rather reflects the cumulative pressure put by the players. Sec-
ond, although the generic shape remains the same over time, there are statistically
significant differences in the q↑profiles over time, both on the first (top right panel)

14



Figure 2: Distribution of rally length and associated q-thresholds for 2001, 2012 and
2023.
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and second (bottom left panel) serve. First instance, on the first serve, while q1 and q2
increase with time, from q3 on, the largest threshold is for 2012. Third, the q↑profiles
start with a higher absolute pressure on the second serve (> 2) compared to the first
serve (< 1). This does not necessarily means that the server is able to put more pressure
on his opponent on a second serve. Rather, it comes from the fact that the q↑profiles,
for each type of serve, depend on a normalization: qst0 = 0 and qnd0 = 0. This nor-
malization is required for identification of the remaining thresholds but imply that the
initial pressure ost0 (= qst0 ) and ond0 (= qnd0 ) is arbitrarily set to 0 on both the first and
second serve. In reality, it might very be that the true initial pressure is higher on the
first serve than on the second serve ost0 > ond0 which would put the q↑profile higher
on the first serve than on the second serve. As a consequence, one can compare the
relative shapes of q↑profiles between types of serves but not their initial position (i.e.
at q0).

4.2 Conditional fit
4.2.1 Players’ profiles

Of course, the next step is to estimate the model with players’ fixed-effects to capture
thresholds specific to each player and hence gather information about their respective
strategy. To exemplify the potential of the model, we estimate player-specific q-profiles
for the big 3 (Roger Federer, Novak Djokovic and Rafael Nadal) during the period
between 2008 and 2019 which corresponds to the period where all three had won at
least 1 grand slam and before Covid-19 and the decline of Roger Federer. We focus on
the big 3 but as a mean of comparison, we also estimate the profiles of all the other
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winners of grand slams during this period: Andy Murray, Stan Wawrinka, Marin Cilic
and Juan-Martin Del Potro. We also provide, for the sake of a comparison, the profile
of one known baseline player active during the period, i.e. David Ferrer, as well as
one known big server active during that period, i.e. John Isner.

To do so, we adopt the following procedure to estimate the q-profiles of the selected
players when serving (resp. receiving):

1. select the range of years 2008-2019.

2. select all points of all matches during that period where either one of the players
flagged above are serving (resp. receiving),

3. create dummy variables for each of the flagged players when serving (resp. re-
ceiving),

4. use the ML estimation technique presented above to estimate, for the points se-
lected in step 2, the serving (resp. receiving) q↑profiles specific to each flagged
player using the dummy variables created in step 3.

Following step 1-4, one creates for each flagged player a profile of thresholds when
serving and a profile of thresholds when receiving. We can now compare these profiles
across players.

While we report the estimates of the q-thresholds for each player selected on his
serve in Table (4) and when returning in Table (5), for the sake of presentation, these
coefficients are plotted in Figure (3) for the serving profiles and Figure (4) for the re-
turning profiles.

<Table (4) about here> <Table (5) about here>

Figure 3: q-thresholds on serve for selected players.
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Figure 4: q-thresholds on return for selected players.
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Looking at Figure (3), interestingly, the profiles on own serve rarely cross each
other after the third shot of a rally. This indicates that it is difficult to catch up in terms
of pressure as a rally unfolds. Also, note that the first serve profile for players known
to have a strong serve tend to be lower than those of players known to have a weaker
serve and stronger baseline game. The profile of John Isner is lower than that of Marin
Cilic and Roger Federer, which is lower than that of Stan Wawrinka and Juan Martin
Del Potro which is lower than that of Novak Djokovic and Andy Murray which itself
is lower than that of David Ferrer and Rafael Nadal. A similar result holds on the
second serve as well although the order is slightly altered. Note that these differences
are statistically significant as indicated by the coefificients in Table (4) and Table (5). As
we are about to see when studying the balance of pressure below, this is mainly due
to the fact that opponents cannot put as much pressure on big servers as they do on
lesser servers in each of their shots (even shots). As a result, the cumulative pressure
captured by the q-thresholds increases less on big servers serves on even shots and
hence lie below other q-thresholds.

Looking now at the profiles of our selected players when returning, Figure (4), one
notices that again, the profiles barely cross each other past the first 3 shots and those
having a high profile on the first serve of their opponent also have a higher profile on
the second serve. Indeed, the q↑profiles of Novak Djokovic and Andy Murray are the
highest both on first and second serve, followed by David Ferrer, Rafael Nadal and
Juan Martin Del Potro, the profile of John Isner being the lowest on both the first and
second serve.

To better understand the profiles herewith defined, we compute the balance of
pressure as the rally unfolds for each of the selected players. Figure (5) shows the as-
sociated balance of pressure when the selected players are serving whereas Figure (6)
shows the associated balance of pressure when the selected players are receiving. Note
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Figure 5: Balance of pressure on serve for selected players.
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that since we compute the balance of pressure taking the perspective of the server, a
higher balance on Figure (5) indicates a higher balance for the selected player (serv-
ing) whereas a higher balance on Figure (6) indicates a lower balance for the selected
player (receiving).

There are numerous observations worth making starting for Figure (5):

1. For all selected players, on their first serve, the balance of pressure after 11 shots
is larger than the balance of pressure after the first shot whereas, on their second
serve, it is lower for all but two players (i.e. Rafael Nadal and Novak Djokovic).

2. On first serve, Roger Federer is the player who increases most his balance of
pressure as the rally unfolds, from 0.5 to 3.8. This contrasts with David Ferrer
who only manages to increase it from 0.4 to 1.2. Note that the profiles of Rafael
Nadal and Novak Djokovic are very close to each other but at a distance from
that of Roger Federer.

3. Interestingly, John Isner is the only player that does not manage to keep the bal-
ance of pressure after 11 shots at least at the level attained after 6 shots. John
Isner is capable of increasing the balance of pressure very fast during the first
6 shots, faster than anyone else, but cannot maintain this level past 6 shots and
sees his balance of pressure decline after that.

4. On second serve, Rafael Nadal is the only player that increases his balance of
pressure as the rally unfolds, i.e. from 2.6 to 2.9, Novak Djokovic maintains it at
its level after the first shot, all other players see a decline, though a moderate one
for Roger Federer and Stan Wawrinka (about ↑0.5).
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Figure 6: Balance of pressure on return for selected players.
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5. Similarly to the first serve, the profiles of Rafael Nadal and Novak Djokovic on
the second serve are very close to each other. These profiles are again below that
of Roger Federer but only up until the 8th shot, after which they are above.

Figure (6) also presents interesting results for the profile of our selected players
when returning:

1. The profile of John Isner both when returning first and second serve is clearly
the worst of the selected players. Worse, his profile features a constant increase
in the balance of pressure in favor of his opponent (the server) from the first to
the last shot.

2. For the remaining players, when returning first serve, one can distinguish three
groups. The first is composed of Juan Martin Del Potro, Marin Cilic and Stan
Wawrinka, players that see the balance of pressure increase relatively rapidly in
favor of their opponent in the first 6 shots but manage to slow down this increase
after the 6th shot. The second group is composed of Andy Murray and David
Ferrer, whose profile is lower than that of the first group and manage to keep
the balance of pressure constant after the 6th shot. Finally, the third group is
composed of the big 3, whose profile is below that of the other groups but that
features a decrease in the balance of pressure, improving their situation, after the
6th shot.

3. A similar situation is observed when returning the second serve, except that now
Roger Federer leaves the third group (which decreases the balance of pressure
after the 6th shot) to join the second group (which can only maintain the balance
constant after the 6th shot).
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To summarize, this analysis indicates that Novak Djokovic and Rafael Nadal have
a very similar profile of balance of pressure both on serve and on return (first and
second). On his first serve, Roger Federer constantly increases the balance of pressure
in his favor and his balance of pressure is always higher than that of both Novak
Djokovic and Rafael Nadal. On his second serve, Roger Federer also increases the
balance of pressure as the rally unfolds but less so after the 6th shot, so that Novak
Djokovic and Rafael Nadal reach a higher balance of pressure after the 8th shot. On
the return, the big 3 players have a similar profile when it comes to returning first
serves, with the ability to maintain a relatively low balance of pressure from the server
during the first 6 shots and even decrease it after the 6th shot. While Novak Djokovic
and Rafael Nadal manage to do the same on the second serve of their opponents,
Roger Federer does not and can only maintain the balance of pressure constant after
the 6th shot. Novak Djokovic and Rafael Nadal are the ablest players when it comes
to playing rallies on the opponent’s serve, whereas Roger Federer is the player taking
most advantage of his serve by continuously building pressure on both his first and
second serve.

4.2.2 Rivalries profiles

A particular relevant aspect of the model introduced in this paper is that it allows us to
derive q-thresholds specific to a rivalry between two players. All we need for this is to
estimate q-thresholds depending on not only the player serving but also on the player
receiving. This allows us to derive, for each player, a profile of balance of pressure that
is specific to a particular opponent and compare these profiles across opponents. This
gives us information about how the pressure that a player imparts to the ball in each
shot differs between opponents.

To do so, we adopt the following procedure to estimate the q-profiles of the big 3
when playing each other:

1. select the range of years 2008-2019.

2. select all points of all matches during that period where both the server and the
receiver are members of the big 3,

3. for each of the three rivalries between the big 3, create two dummy variables,
one for each of the two rival players serving,

4. use the ML estimation technique presented above to estimate, for the points se-
lected in step 2, the q↑profiles specific to each of the dummy variables created in
step 3.

Following step 1-4 allows us to create a q-profile for each of the two rival players
serving in each of the 3 rivalries among the big 3. Table (6) shows the estimates for all
3 rivalries, i.e. Roger Federer vs. Rafael Nadal, Roger Federer vs. Novak Djokovic and
Novak Djokovic vs. Rafael Nadal.

<Table (6) about here>
Figure (7) shows the balance of pressure when Roger Federer is serving against No-

vak Djokovic (top panels) and Rafael Nadal (bottom panels) both on first (left panels)
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Figure 7: Balance of pressure when Roger Federer serves vs big 3 (left 1st serve, right
2nd serve).

�

�

�

�

�

�

3U
HV
VX
UH

� � � � � � � � � �� ��
��RI�VKRWV

5)�1'
5)�$OO
$OO�1'

�

�

�

�

�

�

3U
HV
VX
UH

� � � � � � � � � �� ��
��RI�VKRWV

5)�1'
5)�$OO
$OO�1'

�

�

�

�

�

�

3U
HV
VX
UH

� � � � � � � � � �� ��
��RI�VKRWV

5)�51
5)�$OO
$OO�51

�

�

�

�

�

�

3U
HV
VX
UH

� � � � � � � � � �� ��
��RI�VKRWV

5)�51
5)�$OO
$OO�51

5)��5RJHU�)HGHUHU��1'��1RYDN�'MRNRYLF��51��5DIDHO�1DGDO
/HJHQG��5)�1'�PHDQV�5)�LV�VHUYLQJ��1'�LV�UHFHLYLQJ

and second (right panels) serves. We also report Roger Federer’s balance of pressure
when serving against any other opponent, as discussed already in Figure (5) and for
the top panels (resp. bottom panels) Novak Djokovic’s (resp. Rafael Nadal’s) balance
of pressure when returning against any other opponent, as discussed in Figure (6).
The figure shows that on Roger Federer’s serve, Rafael Nadal is good at neutraliz-
ing the first serve; the balance of pressure on Roger’s first serve when facing Rafael
Nadal is very close to that when Rafael Nadal returns any other player’s first serve
and much lower than when Roger Federer serves to any other player. On the sec-
ond serve, against Rafael Nadal, Roger Federer has the same balance of pressure as
when playing any other player in the first 3 shots but that balance of pressure then
progressively moves towards the balance of pressure Rafal Nadal maintains when re-
turning on any other player. Against Novak Djokovic, a rather similar pattern occurs
but slightly more nuanced in favor of Roger.

Next, we present, in Figure (8), the rivalries when Novak Djokovic is serving against
Roger Federer (top panels) and Rafael Nadal (bottom panels) both on first (left pan-
els) and second (right panels) serves. The figure shows a few interesting patterns. On
Novak Djokovic’s serve, when playing Rafael Nadal, the balance of pressure is very
close, both on first and second serve, to that when playing any other player. This is
to some extent also true on the second serve when facing Roger Federer but not on
the first serve, where the balance of pressure remains very close to that when Roger
Federer returns to any other player and lower than that when Novak Djokovic serves
to any other player.

Finally, we present, in Figure (8), the rivalries when Rafael Nadal is serving against
Roger Federer (top panels) and Novak Djokovic (bottom panels) both on first (left
panels) and second (right panels) serves. One notes that on Rafael Nadal’s serve, when
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Figure 8: Balance of pressure when Novak Djokovic serves vs big 3 (left 1st serve, right
2nd serve).
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facing Roger Federer, the balance of pressure both on first and second serves is very
close to, if not higher than, that when facing any other player, at least until the 6th shot
on the first and the 7th on the second, after which it settles in between the profile when
Rafael Nadal serves to any other player and that when Roger Federer returns to any
other player. This pattern is also true to some extent on second serves when serving
to Novak Djokovic. However, on the first serve, the balance of pressure is very close
to that when Novak Djokovic returns first serves from any other player.

As a final note, it is interesting to see that each of the big 3 has one player being able
to neutralize his first serve. For Roger Federer it is Rafael Nadal, see the bottom left
panel of Figure (7), for Rafael Nadal it is Novak Djokovic, see the bottom left panel of
Figure (9), and for Novak Djokovic it is Roger Federer, see the top left panel of Figure
(8).

5 Conclusion
In this paper we consider that a rally is a sequence of shots whose quality is defined
by the amount of pressure it puts on the player having to play next. It follows that the
length of a rally, i.e. the number of shots played by both players before one wins the
rally, can be expressed as a sequence of shots of varying pressure. This gives rise to a
compound effect: as the rally unfolds, the cumulative pressure makes it ever harder
to hit a shot in the court.

To capture these features, we introduce a threshold-crossing stochastic model of
a tennis rally. In this model, for each shot in a rally to be in the court requires the
pressure imparted by the player executing the shot to cross a threshold. The expected
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Figure 9: Balance of pressure when Rafael Nadal serves vs big 3 (left 1st serve, right
2nd serve).
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value of the threshold depends on the cumulative pressure of the previous shots. Us-
ing these thresholds, one can recover a measure of the balance of pressure between the
two players as the rally unfolds. This measure is informative about who does what to
whom in a rally and allows us to see when in a rally, one player has an advantage on
his opponent and when it is his opponent that has the advantage.

We show that the threshold-crossing stochastic model can be estimated, through
maximum likelihood, using data where the unit of observation is a rally, as in Lisi et
al. (2024) for instance. Results show interesting patterns. Looking at profiles of play,
Novak Djokovic and Rafael Nadal are the ablest players when it comes to playing
rallies on the opponent’s serve, whereas Roger Federer is the player taking most ad-
vantage of his first and second serves by continuously building pressure during rallies
on both of them. This view is slightly altered when considering the rivalries among
the big 3. While Roger Federer has the unique ability to increase the balance of pres-
sure on his serve against most players, Rafael Nadal has the particularity of being able
to mitigate this especially on his first serve. Also, although Novak Djokovic is able to
maintain a high balance of pressure on his serve when playing against Rafael Nadal,
Roger Federer is able to mitigate that effectively on Novak Djokovic’s first serve and
the same is true of Novak Djokovic on Rafael’s Nadal first serve.

An interesting feature of the model is that, although it can be estimated on data
containing only information about rally length and where the unit of observation is
a rally, one could estimate the model using data containing information about shots
characteristics such as spin, speed, depth and direction as in Hawk Eye data, where the
unit of observation is a shot (see Fitzpatrick et al. (2024) for instance). This extension
is natural and would only require to specify the q-thresholds as a function (linear in
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parameters) of those shot characteristics and some parameters.17 We could then learn
what characteristics of a shot are associated with higher balance of pressure at different
stages of a rally. The author is actively looking forward to be granted access to these
data in order to perform this analysis.

17In addition, as mentioned earlier in footnote 14, Hawk Eye data, would also enable the estima-
tion of the initial pressure on the second serve relative to that on the first serve, and hence provide a
comparison of the absolute level of the balance of pressure between first and second serve.
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A Appendix

A.1 App: Deriving εst
j and εnd

j

This appendix provides more details about how to derive the formulas for the distri-
bution of rally length provided in the paper. Let us first consider the conditions for a
rally to be of length j on the second serve. For a rally on a second serve to be of length
j = 0 (double fault) one needs that knd

0 ↓ max
(
knd
1 , knd

0

)
↘ kst

0 ↓ max (kst
1 , k

st
0 ) which is

associated with a probability of

εnd
0 = Pr


knd
0 ↓ max

(
knd
1 , knd

0

)
↘ kst

0 ↓ max
(
kst
1 , k

st
0

)

=
exp

(
qnd0

)

1∑

l=0

exp
(
qndl

)
exp (qst0 )
1∑

l=0

exp (qstl )

.

For a rally on a second serve to be of length j = 1, requires that knd
1 ↓ max

(
knd
2 , knd

1 , knd
0

)
↘

kst
0 ↓ max (kst

1 , k
st
0 ) which is associated with a probability of

εnd
1 = Pr


knd
1 ↓ max

(
knd
2 , knd

1 , knd
0

)
↘ kst

0 ↓ max
(
kst
1 , k

st
0

)

=
exp

(
qnd1

)

2∑

l=0

exp
(
qndl

)
exp (qst0 )
1∑

l=0

exp (qstl )

.

For a rally on a second serve to be of length j → [2, J ↑ 1] requires that

knd
j ↓ max

(
knd
j+1, k

nd
j , knd

j→1, k
nd
j→2, ..., k

nd
1 , knd

0

)
↘

knd
j→1 ↓ max

(
knd
j→1, k

nd
j→2, ..., k

nd
1 , knd

0

)
↘

knd
j→2 ↓ max

(
knd
j→2, ..., k

nd
1 , knd

0

)
↘

...
knd
2 ↓ max

(
knd
2 , knd

1 , knd
0

)
↘

knd
1 ↓ max

(
knd
1 , knd

0

)
↘

kst
0 ↓ max (kst

1 , k
st
0 )

which occurs with probability

εnd
j =

exp
(
qndj

)

j+1∑

l=0

exp
(
qndl

)

j→1∏

l=1

exp
(
qndl

)

l∑

m=0

exp (qndm )

exp (qst0 )
1∑

l=0

exp (qstl )

If the first serve is good enough, i.e. kst
1 ↓ max (kst

1 , k
st
0 ), then the rally cannot end

up in a double fault so j = 0 is not an option. For a rally on a first serve to be of length
j = 1 requires kst

1 ↓ max (kst
2 , k

st
1 ) ↘ kst

1 ↓ max (kst
1 , k

st
0 ) which occurs with probability

εst
1 = Pr


kst
1 ↓ max

(
kst
2 , k

st
1

)
↘ kst

1 ↓ max
(
kst
1 , k

st
0

)

=
exp (qst1 )
2∑

l=1

exp (qstl )

exp (qst1 )
1∑

l=0

exp (qstl )

.
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For a rally on the first serve to be of length j → [2, J ↑ 1] requires that

kst
j ↓ max

(
kst
j+1, k

st
j , k

st
j→1, k

st
j→2, ..., k

st
1

)
↘

kst
j→1 ↓ max

(
kst
j→1, k

st
j→2, ..., k

st
1

)
↘

kst
j→2 ↓ max

(
kst
j→2, ..., k

st
1

)
↘

...
kst
2 ↓ max (kst

2 , k
st
1 )↘

kst
1 ↓ max (kst

1 , k
st
0 )

which occurs with probability

εst
j =

exp
(
qstj

)

j+1∑

l=1

exp (qstl )

j→1∏

l=1

exp (qstl )
l∑

m=1

exp (qstm)

exp (qst1 )
1∑

l=0

exp (qstl )

.

These are the expressions used in the paper.

A.2 App: Identification of qstj and qndj

This appendix details the steps of the proof for the identification result provided in
the core of the paper. We aim at showing that qstj and qndj are identified from data on
rallies and in particular their length and whether the rally was on a first or second
serve. Note first that the probability that a first serve is ”in” is given by

J∑

j=1

εst
j =

exp (qst1 )
J∑

l=0

exp (qstl )

.

After factorizing to get the sum of the conditional probability of rallies of any
length on the first (second) serve one obtains

1 =
exp (qst1 )
2∑

l=1

exp (qstl )

+
J→1∑

j=2

exp
(
qstj

)

j+1∑

l=1

exp (qstl )

j→1∏

l=1

exp (qstl )
l∑

m=1

exp (qstm)

1 =
exp

(
qnd0

)

1∑

l=0

exp
(
qndl

)
+

exp
(
qnd1

)

2∑

l=0

exp
(
qndl

)
+

J→1∑

j=2

exp
(
qndj

)

j+1∑

l=0

exp
(
qndl

)

j→1∏

l=1

exp
(
qndl

)

l∑

m=0

exp (qndm )

Clearly, one can subtract a constant to all qstj and a (different) constant to all qndj , i.e.
qstj ↑ cst and qndj ↑ cnd without affecting those equations. Setting cs = qs0 for s = st, nd
or equivalently assuming qs0 = 0 for s = st, nd, one obtains the same probabilities for
rallies to evolve on the first or second serve and to be of length j.
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Up to these normalizations, it follows that data on the probability of a first serve
being ”in” p̂st. identifies qst1 as

p̂st. =
Qst

1

1 +Qst
1

↗

Qst
1 =

p̂st.
1↑ p̂st.

where we use the notation Q = exp (q).
We then identify Qst

2 from the probability that a rally on the first serve ends after 1
shot (ace or unreturned first serve)

p̂st1 =
Qst

1

1 +Qst
1 +Qst

2

Qst
1

1 +Qst
1

=
Qst

1

1 +Qst
1 +Qst

2

p̂st.

↗

Qst
2 =

(p̂st. ↑ p̂st1 )Q
st
1 ↑ p̂st1

p̂st1

where Qst
1 = p̂st.

1→p̂st.
, Qst

2 =
(p̂st. →p̂st1 )Qst

1 →p̂st1
p̂sti1

.

Next we can identify Qst
3 from the probability that a rally on the first serve ends

after 2 shots,
where Ĉst

2 = Qst
1

1∑

m=1

Qst
m

= 1.

Next we can identify Qst
j+1 from the probability that a rally on the first serve ends

after j shots,

p̂stj =
Qst

j

j∑

l=1

Qst
l +Qst

j+1

j→1∏

l=1

Qst
l

l∑

m=1

Qst
m

Qst
1

1∑

l=0

Qst
l

=
Qst

j

j∑

l=1

Qst
l +Qst

j+1

Ĉst
j p̂

st
.

↗

Qst
j+1 =


Ĉst

j p̂
st
. ↑ p̂stj


Qst

j ↑ p̂stj

j→1∑

l=1

Qst
l

p̂stj

where Ĉst
j =

j→1∏

l=1

Qst
l

l∑

m=1

Qst
m

.
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Hence one has the following identification

Qst
1 =

p̂st.
1↑ p̂st.

Qst
2 =


Ĉst

1 p̂
st
. ↑ p̂st1


Qst

1 ↑ p̂st1

p̂sti1

Qst
3 =


Ĉst

2 p̂
st
. ↑ p̂st2


Qst

2 ↑ p̂st2 (1 +Qst
1 )

p̂st2

Qst
j+1 =


Ĉst

j p̂
st
. ↑ p̂stj


Qst

j ↑ p̂stj

j→1∑

l=1

Qst
l

p̂stj

where Ĉst
j =

j→1∏

l=1

Qst
l

l∑

m=1

Qst
m

for j ↓ 2 and Ĉst
1 = 1.

So for all j one has

Qst
j+1 =


p̂st.

1→p̂st.
for j = 0

(Ĉst
j p̂st. →p̂stj )Qst

j →p̂stj

j→1∑

l=1

Qst
l

p̂stj
for j → [1, J ↑ 1]

,

where

Ĉst
j =

 1 for j = 1
j→1∏

l=1

Qst
l

l∑

m=1

Qst
m

for j → [2, J ↑ 1]
.

It is then easy to see that qstj for j → [2, J ↑ 1] is identified by p̂stj→1. Hence

p̂st. ↑ > qst1
p̂st1 ↑ > qst2

...

p̂stJ→1↑ > qstJ

where the sign ”↑ >” means ”identifies”.

We can now proceed in a similar fashion for rallies on a second serve. Remember
that p̂st. = Qst

1
1+Qst

1
= 1↑ 1

1+Qst
1

and Ĉst
2 = Qst

1
1∑

m=1

Qst
m

. It follows that
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p̂nd0 =
1

1 +Qnd
1

(
1↑ p̂st.

)

↗

Qnd
1 =

1↑ p̂st. ↑ p̂nd0
p̂nd0

so that p̂nd0 identifies Qnd
1 .

Similarly, one has

p̂ndi1 =
Qnd

1

1 +Qnd
1 +Qnd

2

(
1↑ p̂st.

)
.

↗

Qnd
2 =

(
1↑ p̂st. ↑ p̂nd1

)
Qnd

1 ↑ p̂nd1
p̂nd1

so that p̂nd1 identifies Qnd
2 .

One can proceed through for all j → [3, J ↑ 1] to have

Qnd
j+1 =


Ĉnd

j (1↑ p̂st. )↑ p̂ndj


Qnd

j ↑ p̂ndj

j→1∑

l=0

Qnd
l

p̂ndj

where Ĉnd
j =

j→1∏

l=1

Qnd
l

l∑

m=0

Qnd
m

for j ↓ 2 and Ĉnd
1 = 1, so that p̂ndj identifies Qnd

j+1.

Hence

p̂nd0 ↑ > qnd1
p̂nd1 ↑ > qnd2

...

p̂ndJ→1↑ > qstJ

where once again the sign ”↑ >” means ”identifies”.

Note that, for computation purposes, a recurrence appears in the formula for Ĉst
j

and Ĉnd
j as follow

Ĉst
j =

j→1∏

l=1

Qst
l

l∑

m=1

Qst
m

=
Qst

j→1

j→1∑

m=1

Qst
m

j→2∏

l=1

Qst
l

l∑

m=1

Qst
m

=
Qst

j→1

j→1∑

m=1

Qst
m

Ĉst
j→1
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and similarly,

Ĉnd
j =

j→1∏

l=1

Qnd
l

l∑

m=0

Qnd
m

=
Qnd

j→1

j→1∑

m=0

Qnd
m

j→2∏

l=1

Qnd
l

l∑

m=0

Qnd
m

=
Qnd

j→1

j→1∑

m=0

Qnd
m

Ĉnd
j→1.

A.3 App: Computation
In this appendix we present the formulas used to compute the (log) likelihood function
needed for ML estimation. The probabilities of the model can be easily computed as
follows:

log εst
j =


qst1 ↑ logSst

2 + qst1 ↑ U st
1 for j = 1

sstj ↑ sst1 ↑ logSst
j+1 ↑ T st

j→1 + T st
1 + qst1 ↑ U st

1 for j → [2, J ↑ 1]

and

log εnd
j =






qnd0 ↑ logSnd
1 + qst0 ↑ U st

1 if j = 0
qnd1 ↑ logSnd

2 + qst0 ↑ U st
1 for j = 1

sndj ↑ logSnd
j+1 ↑ T nd

j→1 + T nd
0 ↑ U st

1 for j → [2, J ↑ 1]

where Snd
j =

j∑

l=0

exp
(
qnkl

)
, sndj =

j∑

l=0

qndl and T nd
j =

j∑

l=0

logSnd
l , Sst

j =
j∑

l=1

exp (qstl ),

sstj =
j∑

l=1

qstl and T st
j =

j∑

l=1

logSst
l and U st

1 = log (exp (qst1 ) + exp (qst0 )).

To show this, consider j = 0. This only occurs on second serve. With the above
notation and using the formula provided in the paper one has

log εnd
0 = qnd0 ↑ log

1∑

l=0

exp
(
qndl

)
+ qst0 ↑ log

(
exp

(
qst1

)
+ exp

(
qst0

))

= qnd0 ↑ logSnd
1 + qst0 ↑ U st

1 .

For j = 1, one has on first serve

log εst
1 = qst1 ↑ log

2∑

l=1

exp
(
qstl

)
+ qst1 ↑ log exp

(
qst1

)
+ exp

(
qst0

)

= qst1 ↑ logSst
2 + qst1 ↑ U st

1
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and on second serve

log εnd
1 = qnd1 ↑ log

2∑

l=0

exp
(
qndl

)
+ qst0 ↑ log

(
exp

(
qst1

)
+ exp

(
qst0

))

= qnd1 ↑ logSnd
2 + qst0 ↑ U st

1

It remains to compute the probabilities for j ↓ 2. On first serve one has18

log εst
j = qstj ↑ log

j+1∑

l=1

exp
(
qstl

)
+

j→1∑

l=1

qstl ↑
j→1∑

l=1

log
l∑

m=1

exp
(
qstm

)

+qst1 ↑ log
1∑

l=0

exp
(
qstl

)

= qstj ↑ log
j+1∑

l=1

exp
(
qstl

)
+

j→1∑

l=2

qstl ↑
j→1∑

l=2

log
l∑

m=1

exp
(
qstm

)

+qst1 ↑ log
(
exp

(
qst1

)
+ exp

(
qst0

))

= sstj ↑ sst1 ↑ logSst
j+1 ↑ T st

j→1 + T st
1 + qst1 ↑ U st

1

18Note that

j↑1∑

l=1

qstil ↑
j↑1∑

l=1

log
l∑

m=1

exp
(
qstim

)

= qsti1 +
j↑1∑

l=2

qstil ↑
j↑1∑

l=2

log
l∑

m=1

exp
(
qstim

)

↑ log
1∑

m=1

exp
(
qstim

)

= qsti1 +
j↑1∑

l=2

qstil ↑
j↑1∑

l=2

log
l∑

m=1

exp
(
qstim

)

↑qsti1

=
j↑1∑

l=2

qstil ↑
j↑1∑

l=2

log
l∑

m=1

exp
(
qstim

)
.
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whereas on second serve one obtains

log εnd
j = qndj ↑ log

j+1∑

l=0

exp
(
qndl

)
+

j→1∑

l=1

qndl ↑
j→1∑

l=1

log
l∑

m=0

exp
(
qndm

)

+qst0 ↑ log
(
exp

(
qst1

)
+ exp

(
qst0

))

= qndj +
j→1∑

l=1

qndl + qst0

↑ log
j+1∑

l=0

exp
(
qndl

)

↑
j→1∑

l=1

log
l∑

m=0

exp
(
qndm

)

↑ log
(
exp

(
qst1

)
+ exp

(
qst0

))

= sndj ↑ logSnd
j+1 ↑

(
T nd
j→1 ↑ T nd

0

)
↑ U st

1
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A.4 App: Tables

Table 1: Descriptive statistics of rally length (2000-2024).

Mean p1 p5 Median p95 p99 N
1st serve 3.81 1.00 1.00 3.00 11.00 18.00 418024
2nd serve 4.62 0.00 0.00 3.00 13.00 20.00 255474
All 4.12 0.00 1.00 3.00 12.00 19.00 673498

Table 2: Distribution of rally length on first and second serves (2000-2024).

Rally length Freq. nd Percent nd Freq. st Percent st
0 22865 8.95
1 42964 16.82 152589 36.50
2 33136 12.97 38691 9.26
3 32425 12.69 72533 17.35
4 23791 9.31 30464 7.29
5 21805 8.54 35659 8.53
6 16088 6.30 18682 4.47
7 13360 5.23 16734 4.00
8 10134 3.97 11105 2.66
9 7984 3.13 9138 2.19
10 6526 2.55 6798 1.63
11 5104 2.00 5427 1.30
12 3929 1.54 4296 1.03
13 3127 1.22 3382 0.81
14 2547 1.00 2689 0.64
15 2027 0.79 2103 0.50
... ... ... ... ...
Total 255474 100.00 418024 100.00
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Table 3: q-thresholds for selected years.

(1) (2) (3)
2001 2012 2023

First serve
q1 0.27↓↓↓ 0.49↓↓↓ 0.52↓↓↓

(0.018) (0.015) (0.008)
q2 0.72↓↓↓ 1.06↓↓↓ 1.11↓↓↓

(0.031) (0.025) (0.013)
q3 2.80↓↓↓ 3.35↓↓↓ 3.32↓↓↓

(0.048) (0.039) (0.020)
q4 3.59↓↓↓ 4.35↓↓↓ 4.22↓↓↓

(0.055) (0.045) (0.022)
q5 5.22↓↓↓ 6.22↓↓↓ 6.02↓↓↓

(0.069) (0.056) (0.028)
q6 6.26↓↓↓ 7.45↓↓↓ 7.15↓↓↓

(0.080) (0.064) (0.032)
q7 7.93↓↓↓ 9.12↓↓↓ 8.81↓↓↓

(0.100) (0.076) (0.039)
q8 9.33↓↓↓ 10.63↓↓↓ 10.18↓↓↓

(0.118) (0.087) (0.045)
q9 11.00↓↓↓ 12.21↓↓↓ 11.76↓↓↓

(0.143) (0.101) (0.052)
q10 12.56↓↓↓ 13.82↓↓↓ 13.28↓↓↓

(0.168) (0.116) (0.061)
q11 12.63↓↓↓ 13.90↓↓↓ 13.29↓↓↓

(0.182) (0.125) (0.066)
Second serve
q1 2.21↓↓↓ 2.55↓↓↓ 2.24↓↓↓

(0.046) (0.046) (0.021)
q2 3.63↓↓↓ 4.16↓↓↓ 3.88↓↓↓

(0.055) (0.054) (0.026)
q3 5.20↓↓↓ 5.99↓↓↓ 5.63↓↓↓

(0.065) (0.063) (0.030)
q4 6.58↓↓↓ 7.67↓↓↓ 7.16↓↓↓

(0.074) (0.071) (0.034)
q5 8.18↓↓↓ 9.36↓↓↓ 8.86↓↓↓

(0.086) (0.080) (0.040)
q6 9.60↓↓↓ 11.01↓↓↓ 10.35↓↓↓

(0.097) (0.089) (0.044)
q7 11.25↓↓↓ 12.59↓↓↓ 12.02↓↓↓

(0.113) (0.099) (0.050)
q8 12.72↓↓↓ 14.35↓↓↓ 13.54↓↓↓

(0.128) (0.111) (0.056)
q9 14.30↓↓↓ 15.95↓↓↓ 15.09↓↓↓

(0.147) (0.123) (0.063)
q10 15.87↓↓↓ 17.71↓↓↓ 16.73↓↓↓

(0.167) (0.138) (0.071)
q11 15.86↓↓↓ 17.78↓↓↓ 16.71↓↓↓

(0.180) (0.146) (0.076)
N 12064 18447 69654
Standard errors in parentheses
↓ p < 0.05, ↓↓ p < 0.01, ↓↓↓ p < 0.001
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