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Abstract

We study the effects of bank transparency on both banks’ asset and liquid-

ity risks, and ultimately, on banking sector stability and welfare. We show

how enhanced bank transparency increases banks’ vulnerability to exces-

sive deposit outflows, but this threat of a liquidity crisis incentivizes banks

to choose safer assets. We find that bank stability and welfare are a non-

monotonic function of transparency, and that they are maximized at an

intermediate level of transparency, which is larger than the one preferred by

banks but lower than what would result in excessive deposit outflows. Our

model also suggests that bank transparency and deposit insurance are com-

plementary policy tools, and that bank regulators should adjust disclosure

requirements for banks procyclically.
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1 Introduction

Whether making banks more transparent improves stability and welfare is an un-

settled issue. Transparency should be beneficial because it facilitates market dis-

cipline, which has been recognized as an important mechanism for controlling

various moral hazard problems in banks. However, public disclosure about banks’

financial conditions will not calm markets if it provides news worse than markets’

expectations (as, for example, became evident in the US and Swiss banking crisis

in the spring of 2023). To tackle this issue, this paper constructs a model in which

changes in bank transparency affect both sides of banks’ balance sheets. As in

Diamond and Dybvig (1983), depositors (banks’ creditors) face liquidity shocks,

and a bank provides liquidity by allowing depositors who have liquidity needs to

consume more. The bank can choose riskiness of its asset, and it can fail if ei-

ther its asset risk or liquidity risk realizes. Depositors receive interim information

about the bank’s asset returns, and they will withdraw early if they perceive the

return to be sufficiently low. The bank is more transparent when the depositors’

information is more reliable. Our model also includes partial deposit insurance

scheme, which often is a key part of bank crisis episodes (Allen et al., 2011), but

rarely considered in the literature of bank transparency.

Under this setting, we document that deposit outflows are more sensitive to

information about banks’ performance when banks are more transparent. We

then show that through this mechanism, enhanced transparency can discipline

banks’ asset risk taking: Depositors are more prone to withdraw when they learn

pessimistic information about a bank’s performance if that information is more

precise. To prevent them from doing so, the bank has to lower asset risk. Because
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encountering bank runs is costly, the bank may find it optimal to become safe

enough so that there are no excessive deposit outflows.

These results are consistent with the empirical findings. For example, Chen

et al. (2022) find that enhanced bank transparency makes uninsured deposit flows

sensitive to weak bank performance. Anderson and Copeland (2023) document

that, after New York state bank regulators suspended the publication of balance

sheets of state-charter banks over 1933-1935, these state-charter banks not only

suffered smaller deposit outflows compared to national-charter banks, but were

also able to hold more risky assets. Similarly, Wang (2021) shows that the bank

holding companies that exited from the SEC disclosure system (so were subject

to fewer disclosure requirements) between 2012 and 2016 were able to hold both

more deposits and illiquid assets.

Our results suggest that even if a bank run reduces welfare, higher transparency

can be welfare improving through two reasons. First, enhanced transparency in-

creases the efficiency of bank runs in liquidating insolvent banks. Second, enhanced

transparency makes the threat of bank runs more pertinent and, thus, it may re-

duce the banks’ incentive to seek risk. However, too much transparency can also

be welfare reducing, also for two reasons: First, because depositors may have ex-

cessive incentive to withdraw, it is possible that the level of bank risk required

to avoid excessive deposit outflows is too low compared to the socially optimal

level. When this happens, a reduction in bank transparency raises social welfare.

The government should hence loosen information disclosure requirements on banks

when they are likely to be excessively conservative, for example, during recessions

– a policy implication which is confirmed when we study the relation of bank

transparency regulation and business cycle in more detail. Second, if depositors’
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information is sufficiently precise, it becomes too costly for a bank to prevent a

bank run upon bad news about the bank’s performance. Thus, our model pre-

dicts, in line with the evidence in Correia et al. (2024), that bank runs can occur

only if depositors obtain sufficiently reliable information that banks’ performance

is poor. In such circumstances the disciplining effect of liquidity risk vanishes due

to a bank’s limited liability, and the bank will take more risk, the more precise is

the depositors’ information.

As a result of these tradeoffs, the optimal bank transparency is at an interme-

diate level: It should be higher than what is preferred by the banks themselves

but lower than the one that would prompt excessive deposit outflows. We also

find that bank transparency and deposit insurance coverage are complementary

policy tools: A broader deposit insurance coverage dilutes the disciplining effect of

liquidity risk on banks’ asset risk taking and enhanced transparency is needed to

restore depositors’ incentives to act upon adverse news about bank performance.

The literature on bank transparency is large, although the question of identify-

ing a welfare-maximizing policy in the presence of equilibrium asset and liquidity

risks has received less attention. Related papers include Calomiris and Kahn

(1991) where depositors’ private information acquisition and liquidation threat

provide incentives for bank managers not to abscond funds from the bank, and

Allen and Gale (1998), where depositors start a bank run if the expected return

of the bank’s assets is sufficiently low, and this threat of a bank run may incen-

tivize the bank to choose optimal risk sharing between early and late withdrawing

depositors. Matutes and Vives (2000), Hyytinen and Takalo (2002), Vauhkonen

(2012), and Moreno and Takalo (2023), for example, show how providing investors

with information of the bank’s asset risk choice ex ante can discipline banks’ asset
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risk taking. Chen and Hasan (2006, 2008) and Parlatore (2024), for example, find

like we do, that higher transparency can trigger inefficient bank runs. Similarly,

the literature using global game techniques to pin down a unique equilibrium in

bank run settings (e.g., Bouvard et al., 2015; Iachan and Nenov, 2015; Moreno and

Takalo, 2016) also find that creditors’ incentives to rollover a bank’s debt may be

weakened if they obtain more precise information about bank performance.

As the stress tests emerged as a novel policy tool to enhance bank transparency

in the aftermath of the Global Financial Crisis, much of the subsequent literature

has analyzed the effects of stress tests on financial stability – see Goldstein and

Leitner (2022) for an overview and, e.g., Leitner and Williams (2023), Moreno and

Takalo (2023), and Orlov et al. (2023) for more recent contributions. The public

signal in our model can be interpreted as a disclosure of stress test results. A

related literature studies the effects of transparency in the case of non-financial

firms – e.g., Gigler et al. (2014) imply that managers may pursue inefficient short-

term projects if firms are required to disclose information too frequently.

A main difference between our paper and those in the literature is that in our

model, banks provide valuable liquidity services and changes in bank transparency

affect both sides of the banks’ balance sheet, while most papers take the existence

of banks given or study the effects of bank transparency on just one side of the bal-

ance sheet. These features of the model allow us to consider simultaneously both

the destabilizing and the disciplining effect of bank transparency when discussing

stability and welfare issues. For example, Parlatore (2024) finds that an increase

in transparency always reduces welfare, whereas in our setting an increase in trans-

parency can also have a disciplining merit and therefore it can either improve or

reduce welfare so that an intermediate level of transparency is optimal from the
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welfare point view. We also study the optimal bank transparency in the presence

of partial deposit insurance. In this respect, a close paper to ours is Faria-e-Castro

et al. (2017) who show that, since bad news about banks may prompt inefficient

runs, the government should provide a candid evaluation of the banking industry’s

financial health only if it is in a strong fiscal position to provide deposit insurance.

Our results about the optimality of procyclical transparency regulation contrasts

with the findings in Bouvard et al. (2015) and Alvarez and Barlevy (2021) where

more transparency is good during crises but maybe harmful in normal times, but

is in line with Dang et al. (2017, 2020) who suggest that opaqueness is typically

desirable to allow banks to take risk while simultaneously reducing their liquidity

risk, especially in crisis times when banks’ creditors pay more attention to bad

news about banks’ performance.

The rest of the paper is organized as follows. Section 2 describes the assump-

tions of the model. Section 3 studies the equilibrium effects of bank transparency,

whereas Section 4 studies its stability and welfare effects. Section 5 discusses

several extensions of the model, e.g., we consider how optimal bank transparency

regulation should vary with deposit insurance coverage and business cycle. Section

6 concludes.

2 A Model of Bank Transparency, Asset and Liq-

uidity Risks

Consider a three-date (t = 0, 1, 2) model with a bank, a unit measure of depositors,

and a governmental regulatory agency. The bank, which maximizes its owners’
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payoff, exercises market power. All the agents are risk-neutral. Thus, in a de-

parture, e.g., from Diamond and Dybvig (1983), our depositors are risk-neutral,

and we could think them as investors holding the bank’s debt instruments as well

as small retail depositors. We follow the tradition in the literature and label the

bank’s creditors as depositors irrespective of their type.1

At t = 0, each depositor receives an endowment of one dollar. As in Diamond

and Dybvig (1983), a bank is established to satisfy the depositors’ liquidity needs.

Depositors make deposits at t = 0 if and only if their expected payoff from de-

positing is no lower than U0, where U0 > 1 is the highest payoff that a depositor

can receive from other alternatives. Depositors face liquidity shocks : Some of them

die (early diers) at t = 1, and the others die (late diers) at t = 2. The proportion

of early diers is f ∈ (0, 1) and depositors learn their types at t = 1. Depositors’

types are i.i.d. and we assume, as usually, that with a continuum of i.i.d. random

variables, the mean equals the expectation with probability 1 (Judd, 1985). Early

diers must withdraw their deposits from the bank at t = 1. An early dier will

suffer a utility loss X if his date-1 consumption is strictly lower than δ, where X

and δ are constants with X > 0 and 1 < δ < 1/f < U0. Late diers can consume

at dates 1 and 2, and they have no time preference for consumptions. A bank run

occurs if the late diers, too, withdraw at t = 1.

The deposit contract is (d1, d2) ∈ [0,∞)2 where dt denotes the repayment that

1The bank’s market power is another difference to liquidity risk models building on Diamond
and Dybvig (1983) with a perfectly competitive bank. On the other hand, the models analyzing
the banks’ asset risks, e.g., Matutes and Vives (1996, 2000), Hellmann et al. (2000), and Repullo
(2004), often assume that banks have market power. We follow this latter tradition. Drechsler
et al. (2017), Egan et al. (2017) and Carletti et al. (2024) emphasize banks’ market power and,
according to Philippon (2015), that market power has been increasing over the past decades.
See, e.g., Moreno and Takalo (2016) and Parlatore (2024), for the effects of transparency in a
perfectly competitive banking sector.
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the bank promises to a depositor if she withdraws at date t ∈ {1, 2}. For now,

we consider a generic deposit contract with d2 > d1 = δ. Any deposit contract

chosen by a bank with market power should satisfy these properties: d1 = δ is the

smallest date-1 repayment which allows an early dier to avoid the utility loss X

if she successfully withdraws at t = 1, while setting d2 > d1 provides late diers

with an incentive to rollover if they believe that they can successfully withdraw

at t = 2. The bank cannot identify a depositor’s type and operates under the

sequential service constraint. Depositors’ claims also have seniority, implying that

if the bank is unable to meet its obligations, its depositors receive in expectation

a pro rata share of the bank’s residual value. We shall discuss more about the

deposit contract in Section 5.

At t = 0, the bank chooses an investment p ∈ [0, 1]. The investment matures

at t = 2. For each dollar invested, the date-2 return of the investment is R(p)

when it succeeds, which happens with probability p, and is r when it fails (with

probability 1−p). Thus, p serves as an inverse measure of the bank’s asset portfolio

riskiness, e.g., we may think that with probability 1 − p the share of defaulting

borrowers in the bank’s loan portfolio is so high that the bank becomes insolvent

and r is the liquidation value of the bank’s assets in an insolvency.2 The bank’s

asset portfolio can also be liquidated prematurely at t = 1. Early liquidation of a

dollar’s investment generates one dollar. We impose the following mild restrictions

on the bank’s investment returns:

Assumption 1. (a) The return function of a successful investment R : [0, 1] →
2Alternatively, we may also think that the bank has many investments in its portfolio, and

each of which can be decomposed to a common and an idiosyncratic component. If idiosyncratic
investments can be pooled perfectly, we are left with the common component whose riskiness is
captured by p – see, e.g., Allen and Gale (2004).
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[ sR,R] is twice differentiable, strictly decreasing, and concave; (b) Its first derivative

R′(p) is bounded and satisfies R′(1) < r −R; (c) The parameters satisfy

0 ≤ r < 1 <
(1− f)d2
1− fd1

≤ R < sR.

Assumption 1 has several intuitive implications. One is that riskier investments

fail more likely but yield higher returns conditional on success (part (a)). Another

is that the bank can fully pay off depositors if its investment succeeds and no bank

run occurs at date 1: Since early liquidation of the bank’s investment at t = 1

recovers its principal, it is optimal for the bank to invest all its funds at t = 0

and, if no bank run occurs, liquidate proportion fd1 of its investment to satisfy

the deposit outflows at t = 1 (recall that d1 = δ < 1/f)). Part (c) of Assumption

1 implies that, in the absence of a bank run, the bank’s proceeds from a perfectly

safe investment of p = 1 ((1 − fd1)R(1) = (1 − fd1)R) are sufficient for meet

the deposit outflows at t = 2 ((1 − f)d2) and, since R′(p) < 0 by part (a) of

Assumption 1, the same applies for any risky investment with p ∈ (0, 1).

Writing

V (p) = pR(p) + (1− p)r − 1, (1)

as the net present value of the investment, part (a) of Assumption 1 implies that

V (p) is strictly concave, that is, V ′′(p) = 2R′(p) + pR′′(p) < 0.3 Then pNPV ≡

argmaxp∈[0.1] V (p) is the unique p that satisfies

V ′(p) = R(p) + pR′(p)− r = 0. (2)

3Note that V is also a (increasing) function of r in addition to p. Throughout the paper we
suppress the function arguments that are of no interest in the current section. For example, here
V (p) ≡ V (p, r).
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Parts (b) and (c) of Assumption 1 imply V ′(0) > 0 and V ′(1) < 0, pNPV ∈ (0, 1)

and V (pNPV ) > 0.

At t = 1, when depositors learn their types, they observe p. This assumption

is common in the literature but is subject to discussion; for example the textbooks

of Freixas and Rochet (2008) discuss both the observable and unobservable asset

risk cases. We therefore also consider the case where the bank’s choice of p is

unobservable to depositors in Section 5. However, depositors do not observe the

bank’s actual asset performance. Instead, the depositors receive a signal S with

realization s ∈ {h, l} about the bank’s investment (about its returns or about

the true success probability). If the bank’s investment succeeds and the return is

R(p), then s = h with probability q and s = l with probability 1− q. If the bank’s

investment fails and the return is r, then s = h with probability 1 − q and s = l

with probability q, where q is the precision of the signal S with q ∈ [0.5, 1]. Given

the bank’s asset risk, the signal, and the realized depositor types, the early diers

withdraw by the assumption, and the late diers decide whether to withdraw or

rollover.

We consider generic bank transparency by assuming that it is directly related

to q: the higher is q, the more informative is S about the bank’s investment perfor-

mance. In practice, various factors may affect the transparency of banks. A bank

is more transparent if it is listed or is otherwise required to make more extensive

public information disclosures, if more analysts collect and publish information

about it, if its business model is less complicated, and if it voluntarily reveals

more information. Bank transparency is also influenced by banking regulations

such as those included in Pillar 3 of the Basel framework which force banks to

disclose more information.
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In addition, regulators usually obtain information about banks’ asset portfolio

risks. For example, in a stress test, a regulatory agency inquires about a bank’s

ability to absorb losses it may incur in an adverse economic scenario and publishes

the results of this inquiry. The signal realization s = h(l) can be interpreted as

meaning that, according to the stress test results, the bank’s asset returns are suffi-

ciently high (low), given the bank’s capital, that it would (would not) survive such

a scenario – Goldstein and Leitner (2018) identify conditions where such simple

disclosure rules of a stress test are optimal. The stringency of stress tests and the

extent of disclosure of its results and underlying models affect the informativeness

of stress tests and transparency of banks to the public (e.g., Leitner and Williams,

2023; Orlov et al., 2023). We take no stance to these subtle differences in the

determinants of bank transparency and will work directly with the level of q. For

the moment, we take q as given – in Sections 4 and 5 we assume that q is set by

the government’s regulatory agency as the minimum level of transparency which

banks must obey (while being voluntarily able to be more transparent).

In our model, the bank is exposed to both liquidity and asset risks: The bank

may fail at date 1 due to excessive deposit outflows, and it may fail at date 2

due to the failure of its investment. Because bank failures cause social costs, a

dead-weight loss Z ≥ 0 is incurred if the bank fails. We may think that the size of

Z varies across different banks; for example, large, systemically important banks

have large Z whereas small local lenders have small Z. We assume that the size of

the dead-weight loss is independent of the reason (asset or liquidity risk) for bank

failure. Also, irrespective of the reason for bank failure, the government provides

partial deposit insurance: If a depositor cannot get paid from the bank at either

t = 1 or t = 2, the government gives her a fixed reimbursement of size y ≥ 0,
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where y is not too high to eliminate late diers’ incentives to withdraw at t = 1 –

see Section 3 for the exact condition. Even if a deposit insurance scheme has a

complete coverage de jure, banks can still fail if their asset risk taking realizes (like

in our model), which makes the deposit insurance de facto partial.4 For simplicity,

we assume no direct cost of providing deposit insurance for the government.

The timing of events can be summarized as follows: At t = 0, the bank is

established. Given the deposit contract (d1, d2), depositors decide whether to

deposit. If they do, the bank invests and chooses p. At t = 1, the depositors’

types and the signal S are revealed. Early diers withdraw. Late diers decide on

whether to withdraw or rollover. If a bank run occurs, the bank fails. If there is

no bank run at t = 1, the bank’s investment matures and its risk realizes at t = 2.

The bank pays off the remaining depositors if possible.

We look for perfect Bayesian equilibria where all the agents maximize their

payoffs by using sequentially rational strategies that are consistent with their be-

liefs. The agents have rational prior beliefs, and their (in particular, the late

diers’) posterior beliefs are derived from their equilibrium strategies and priors by

using Bayes’ rule, if possible. We discuss only symmetric perfect Bayesian equi-

libria where all the agents (in particular, the late diers) take the same action.

We further assume, building on Chen (1999) and Chen and Hasan (2006), that

depositors choose the Pareto dominant equilibrium when there are multiple sym-

4According to International Association of Deposit Insurers, as of July 2019, 145 jurisdictions
have established an explicit deposit insurance system, and another 25 jurisdictions are consid-
ering the possibility (see http://www.iadi.org/en/deposit-insurance-systems/, accessed
March 20, 2024). Most explicit deposit insurance systems only provide partial coverage and
even unlimited, explicit deposit insurance is not necessarily credible nor equivalent to receiving
the funds unambiguously and immediately upon withdrawal (e.g., Allen et al., 2011; Shy et al.,
2016). An implicit or not fully credible deposit insurance scheme is equivalent to partial deposit
insurance in expectation.
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metric perfect Bayesian equilibria. In what follows, we call perfect Bayesian Pareto

dominant equilibria simply equilibria unless otherwise indicated. This equilibrium

selection mechanism allows us to focus on bank runs that are results of depositors’

perceptions about banks’ riskiness instead of “sunspots”.5

3 Equilibria

We first investigate the realization of the bank’s liquidity risk at date 1, then the

bank’s choice of asset risk at date 0. Finally, we analyze the depositors’ depositing

decision at date 0. As the bank’s payoff is always non-negative, we do not need to

consider its participation constraint.

3.1 Bank’s Asset and Liquidity Risks

At t = 1, depositors learn their types and the realization of the signal S. While

early diers always withdraw at t = 1, late diers’ decision to withdraw or to rollover

is affected by the realization of S. Let ps denote the probability that the bank’s

investment will succeed when the realization of S is s ∈ {l, h}. By Bayes’ rule, we

have

ph ≡ pq

pq + (1− p)(1− q)
> p >

p(1− q)

(p(1− q) + (1− p)q
≡ pl. (3)

Consider the depositors’ rollover decisions at t = 1 upon s = l. Suppose a

5An alternative method to rule out uninteresting “sunspot” equilibria would be to follow the
global game literature (e.g., Rochet and Vives, 2004; Goldstein and Pauzner, 2005; Bouvard et al.,
2015; Iachan and Nenov, 2015; Moreno and Takalo, 2016), and regard p as a random variable with
realizations from which depositors obtain private signals, and use iterated elimination of strictly
dominated strategies. In our case of p is the bank’s choice variable. We discuss the relation of
our equilibrium concept to the one used in the global game literature further in Section 5.
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late dier who believes that all the other late diers rollover. As shown in Chen

and Hasan (2006), given the assumption that depositors choose the Pareto dom-

inant equilibrium when there are multiple equilibria, no late dier will withdraw

if and only if the depositor under consideration prefers to rollover. Otherwise,

withdrawing at t = 1 is a strictly dominant strategy for all the late diers.

Let vF denote the late dier’s expected payoff t = 2 if she rollovers at t = 1 and

the bank’s investment fails. We have

vF ≡ (1− fd1)r

1− f
+

[
1− (1− fd1)r

(1− f)d2

]
y. (4)

The right-hand side of the definition (4) shows how the late dier under considera-

tion receives d2 at t = 2 from the bank with probability (1−fd1)r/
[
(1−f)d2

]
, and

receives y from the government otherwise, if only early diers withdraw at t = 1

and the bank’s investment fails at t = 2.6 We assume that

y <
d1 − (1−fd1)r

1−f

1− (1−fd1)r
(1−f)d2

so that vF < d1. As a result, the late dier may withdraw at t = 1 if she believes

that the bank’s asset risk is likely to realize. Given s = l, the late dier’s payoff

is d1 if she withdraws, and is pld2 + (1 − pl)vF if she rollovers. Thus, the late

dier prefers to rollover if and only if pld2 + (1− pl)vF ≥ d1, or equivalently, using

6At t = 1, the bank liquidates the proportion fd1 of its investment to meet the deposit
outflows. Thus, the liquidation value of the failed bank at t = 2 is (1− fd1)r, while the bank’s
debt obligation is (1− f)d2. Given the sequential service constraint and seniority of depositors’
claims, each depositor gets paid from the bank with probability (1− fd1)r/

[
(1− f)d2

]
.
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equation (3), if and only if

p ≥ pRun
l (q) ≡ q

q + (1− q)
(
d2−d1
d1−vF

) . (5)

Then, upon s = l, no late dier withdraws t = 1 if p ≥ pRun
l (q), and all the late

diers withdraw otherwise.

Applying the similar logic to the depositors’ rollover decisions at t = 1 upon

s = h, the late dier under consideration prefers to rollover if and only if phd2 +

(1− ph)vF ≥ d1, or equivalently, using equation (3), if and only if

p ≥ pRun
h (q) ≡ 1− q

1− q + q
(
d2−d1
d1−vF

) (6)

Given s = h, no late dier withdraws at t = 1 if p ≥ pRun
h (q), and all the

late diers withdraw otherwise. The following lemma characterizes the mappings

pRun
s (q), s ∈ {h, l}, and their implications for bank runs. (The proofs of all the

lemmas, propositions, and corollaries are provided in the Appendix.)

Lemma 1. (a) pRun
l (q) is an increasing and pRun

h (q) a decreasing function of q on

(0.5, 1) satisfying

pRun
l (0.5) = pRun

h (0.5) = pRun
0 ≡ d1 − vF

d2 − vF
,

pRun
l (1) = 1, and pRun

h (1) = 0. Moreover, pRun
l (q) > pRun

h (q) for q ∈ (0.5, 1].

(b) If p ≥ pRun
l (q), no bank run at date 1 occurs. Íf p ∈ [pRun

h (q), pRun
l (q)), a

bank run at date 1 occurs upon s = l. If p < pRun
h (q), a bank run at date 1 occurs

irrespective of the signal S.
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Part (a) of Lemma 1 suggests that when the signal is more informative, late

diers have stronger incentive to respond to bad news about the bank and withdraw,

so it requires a higher p to make them to rollover. Similarly, when q is higher,

good news implies more likely that the bank’s investment will be successful, making

late diers more inclined to rollover for a given p. Therefore, pRun
l (·) is increasing

and pRun
h (·) decreasing on (0.5, 1). The pRun

0 defined in Lemma 1 represents the

threshold of p that triggers a bank run when the signal S is uninformative (q = 0.5).

If depositors received no additional information at t = 1, a bank run would occur if

and only if p < pRun
0 . When the signal is informative (q > 0.5), the threshold of p

required to prevent a bank run is higher when the news is bad (s = l) than when it

is good (s = h). As a result, the partition of the bank’s asset riskiness characterized

by part (b) of Lemma 1 arises: A sufficiently safe bank never encounters a run,

a moderately risky bank encounters a run upon bad news but does not encounter

a run upon good news, and a sufficiently risky bank always encounters a run.

The last case (p < pRun
h (q)) cannot be an equilibrium asset choice, since in the

anticipation of a sure bank run at t = 1, depositors would not lend their money

to the bank at t = 0. We thus ignore it in what follows.

We next characterize the bank’s choice of p at t = 0. Using the subscripts

R and N denote the environments where a bank run at t = 1 can occur and

cannot occur, respectively, we may write the bank’s expected payoff in the no-run

environment as

πN(p) = p
[
(1− fd1)R(p)− (1− f)d2

]
. (7)

The bank’s investment succeeds with probability p and yields (1 − fd1)R(p) at

t = 2, since the fraction fd1 of its investment has been liquidated to meet deposit
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outflows at t = 1. At t = 2, the bank is a residual claimant: it first meets the late

diers’ claims (1− f)d2 and keeps the remaining return of a successful investment.

(In the case of a date-2 bankruptcy occurring with probability 1 − p, the bank’s

liquidation value (1− fd1)r is fully paid off to late diers.) By Assumption 1, the

bank’s no-run payoff πN(p) is concave in p.

Consider next the environment where a bank run at t = 1 occurs if s = l and

no bank run occurs if s = h. The bank’s expected payoff in this case is

πR(p, q) = pq
[
(1− fd1)R(p)− (1− f)d2

]
= qπN(p), (8)

i.e., the difference to the no-run case of equation (7) is that the bank is only able

to make profits if its investment succeeds and there is no bank run. As the bank’s

expected run-payoff πR(p) is proportional to its no-run expected payoff πN(p), we

can define

pB ≡ arg max
p∈[0,1]

πN(p) = arg max
p∈[0,1]

πR(p, q),

i.e., pB is the p that satisfies dπi/dp = 0, i ∈ {N,R}, and is hence given by

(1− fd1)[R(p) + pR′(p)]− (1− f)d2 = 0. (9)

We may refer pB as the bank’s preferred asset risk choice: it is the p the bank

would like to choose if it is not concerned about a date-1 liquidity crisis. The

following lemma characterizes the properties of pB.

Lemma 2. 0 < pB < pNPV < 1. In addition, pB is independent of q.

As the bank is residual claimant in our model, it needs to pay off depositors

before receiving the remaining return of the investment. Therefore, as in Jensen
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and Meckling (1976), the bank has stronger incentive to pursue risk than the

shareholders of an all-equity firm, and pB is lower than pNPV maximizing the net

present value of the bank’s asset portfolio. For the same reason, pB is independent

of q : if there is a run at t = 1, the bank receives no profits.

In the remaining of the paper, we make the following assumption.

Assumption 2. pB > pRun
0 .

Assumption 2 together with Lemma 1 allows to focus our analysis on information-

based bank runs: If the bank chooses its preferred asset pB, a bank run at t = 1

cannot occur if depositors receive good news (s = h) about the performance of the

bank’s investment. This assumption simplifies the analysis without changing the

main results – see Section 5 for a discussion of the case when Assumption 2 fails

to hold. Moreover, the assumption appears to be reasonable: If the bank chooses

pB and pB < pRun
0 , a bank run at t = 1 always occurs in the absence of news

and may even occur upon good news, which implies that depositors would be very

panicking. In such a case it could be difficult to convince the depositors to lend

their money to the bank at t = 0.

To characterize the bank’s risk choice p as a function of bank transparency

q, it is useful to define qN as the q that satisfies pB = pRun
l (q), and qR as the

q that satisfies πR(pB, q) = πN(p
Run
l (q)). The threshold qN defines whether the

bank’s asset risk choice in the no-run environment is constrained by date-1 liquidity

concern and the threshold qR defines whether it is more profitable for the bank to

choose its preferred asset pB and expose it to a run upon s = l or to choose a safer

asset pRun
l (q) > pB to avoid bank runs.

Lemma 3. Both qN and qR are uniquely determined, and 0.5 < qN < qR < 1.
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Moreover, pB > pRun
l (q) for q < qN , pB < pRun

l (q) for q > qN , πR(pB, q) <

πN(p
Run
l (q)) for q ∈ [qN , qR), and πR(pB, q) > πN(p

Run
l (q)) for q > qR.

The thresholds qN and qR divide the parameter range in terms of bank trans-

parency into three regions with different equilibrium behaviors by the bank and its

depositors, as shown by the following proposition characterizing the bank’s asset

risk choice p∗(q) and the existence of bank runs in equilibrium.

Proposition 1. If q ≤ qN or if q > qR, the bank chooses its preferred asset, i.e.,

p∗(q) = pB, which is independent of the level of transparency. If q ∈ (qN , qR), the

bank chooses a safer asset than its preferred asset, i.e., p∗(q) = pRun
l (q) > pB, and

the bank’s asset riskiness decreases with the level of transparency. There are no

bank runs if q < qR or if s = h.

Proposition 1 and the definition pRun
l (qN) = pB imply that the bank’s equi-

librium asset risk choice p∗(·) is a well-defined, non-decreasing function on q ∈

[0.5, 1]\{qR} but has a downward jump at q = qR. If q ≤ qN , the bank is opaque

and bad news about its asset performance is less likely to cause excessive deposit

outflows for any given risk choice. In such opaque circumstances, pRun
l (q) ≤ pB,

so the bank can choose its preferred asset risk without a threat of a liquidity crisis

at t = 1, so the bank sets p∗(q) = pB which is independent of q.

When the bank becomes more transparent (q > qN), the threat of a liquidity

crisis begins to constraint the bank’s risk choice. In so far q nonetheless remains

below qR, the benefits of preventing a bank run are relatively large and its costs

relatively small, so the bank distorts its asset choice towards safer assets by setting

p∗(q) = pRun
l (q) > pB to prevent bank runs.7 At these intermediate levels of bank

7Recall from Lemma 1 that pRun
l (q) is, for a given q, the least safe asset which eliminates the
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transparency where q ∈ (qN , qR), the bank’s asset riskiness is decreasing in q: when

the signal becomes more reliable, an increasingly safer asset is required to prevent

bank runs upon bad news.

As q increases, the farther away is pRun
l (q) from the bank’s preferred choice

pB, and the higher is the cost of eliminating runs for the bank. Moreover, the

benefit of eliminating runs for the bank is decreasing in q: the bank benefits from

preventing the run triggered by bad news s = l only if that news is misleading

which happens with probability p(1 − q).8 Ultimately, when bank transparency

rises to a sufficiently high level so that q > qR, it is no longer profitable to eliminate

bank runs, so the bank resorts to its preferred asset p∗(q) = pB and exposes itself

to a run upon s = l. Therefore, the equilibrium mapping p∗(q) experiences a

downward jump at q = qR, and is independent of q for q > qR. This downward

jump is visible in Figure 1, which plots p∗(q) in a numerical example.9 As shown

in the figure, the bank sets p∗(q) = pB = 0.852 if q ≤ qN = 0.671 and if q > qR =

0.974, and sets p∗(q) = pRun
l (q) = q/(1.24− 0.24q) if q ∈ (qN , qR).

Besides characterizing the bank’s asset risk choice, Proposition 1 predicts that

bank runs can occur only when depositors obtain sufficiently reliable (q ≥ qR)

news that a bank’s asset performance will be poor (s = l), but not otherwise.10

bank run triggered by s = l. Since πN (p) is concave in p and maximized at pB choosing any
larger p than pRun

l (q) to avoid a bank run would yield smaller profits.
8The probabilities that the bank can receive the profit (1 − fd1)R(p) − (1 − f)d2 are p and

pq if the bank run triggered by the signal realization s = l is eliminated and is not eliminated,
respectively. Thus, eliminating the bank run increases the bank’s probability of receiving positive
profits by p− pq = p(1− q).

9In the numerical examples throughout the paper we use the following values and functional
forms: f = 0.2, δ = 1.02, d2 = 1.04, r = 0.95, R(p) = r + 1.4(pNPV − p/2), y = 0.2, X = 3,
Z = 0.04, and U0 = 1.023. In this example, pNPV = 0.92.

10When q is exactly qR, the bank is by the definition of qR indifferent between choosing
pRun
l (qR) to prevent bank runs and choosing pB and allowing a bank run upon s = l. Otherwise,

the equilibrium is unique.
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Figure 1: Bank Transparency and Asset Risk

Notes: This figure shows the relation between the optimal p∗(q) for the bank (in
the vertical axis) and the level of bank transparency q (in the horizontal axis) when
f = 0.2, δ = 1.02, d2 = 1.04, y = 0.2, r = 0.95, and R(p) = r + 1.4(pNPV − p/2).

For example, ”sunspots” or noisy information do not lead to bank runs in our

model. The result is in line with the evidence in Correia et al. (2024) according

to which bank runs arise from weak bank performance rather than vice versa.

Combining Proposition 1 with equations (7) and (8) gives the bank’s expected

profit in equilibrium as

π∗(q) ≡ π(p∗(q), q) =


πN(pB) if q ≤ qN

πN(p
Run
l (q)) if q ∈ (qN , qR)

πR(pB, q) if q > qR.

(10)

Using equation (10) we can characterize the bank’s expected profit as a function
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of the level of transparency as follows:

Proposition 2. The banks expected profit π∗(q) is independent of the level of

transparency if q ≤ qN , decreases with the level of transparency if q ∈ (qN , qR),

and increases with the level of transparency if q > qR. The bank’s expected profit

π∗(q) reaches its maximal value when q ≤ qN or when q = 1, and its minimal value

when q = qR.

The explanations for low and intermediate levels of transparency are familiar

from the ones associated with Proposition 1: If q ≤ qN , the bank can choose its

preferred asset risk level pB without date-1 liquidity concerns, so its payoff πN(pB)

is independent of q. If q ∈ (qN , qR), the bank’s payoff πN(p
Run
l (q)) decreases with

q since, when q increases, the bank has to choose a higher p further away from

the bank’s preferred choice pB to eliminate the bank run (πN(p) is concave and

decreases with p when p > pB). By contrast, in the high levels of transparency

where q > qR, the bank’s payoff is πR(pB, q) which increases with q: an increase

in q does not affect the bank’s risk choice pB but reduces the probability of an

inefficient bank run triggered by misleading bad news. Figure 2 plots the mapping

π∗(q) using our numerical example.

Proposition 2 also implies that the bank would like to choose some q ≤ qN or

q = 1: The bank’s expected profit π∗(q) is maximized when q ≤ qN or at q = 1 –

cf. Figure 2. In both cases the bank can choose its optimal asset risk level pB and

fails only if its asset risk taking fails: if q ≤ qN , there are no date-1 bank runs and

if q = 1, only efficient bank runs occur.
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Figure 2: Bank Transparency and Bank’s Expected Payoff

Notes: This figure shows the relation between the bank’s expected payoff π∗(q) (in
the vertical axis) and the level of bank transparency q (in the horizontal axis) when
f = 0.2, δ = 1.02, d2 = 1.04, y = 0.2, r = 0.95, and R(p) = r + 1.4(pNPV − p/2).

3.2 Deposit Decisions

To complete the equilibrium analysis, we study the depositors’ decision whether

to deposit at date 0. Let us write

UN(p) = fd1 + (1− f)
[
pd2 + (1− p)vF

]
(11)

and

UR(p, q) = pq
[
fd1 + (1− f)d2

]
+ (1− p)(1− q)

[
fd1 + (1− f)vF

]
+
[
(1− p)q + p(1− q)

][
1 + (1− 1

d1
)(y − fX)

]
. (12)
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as the depositors’ expected payoff at t = 0 with no bank run and with a bank

run upon s = l, respectively. The first and second terms on the right-hand side of

equation (11) characterize the depositor’s expected payoff if she turns out to be an

early dier and a late dier, respectively: an early dier gets the promised payment d1

for sure, and a late dier will get the promised repayment d2 if the bank is solvent;

otherwise, she will get a smaller payment upon bank failure (equation (4)).

The depositor’s expected payoff when there is a run upon bad news is more

complicated: the first and second terms on the right-hand side of equation (12)

describe the depositor’s expected payoff when news is good and, as a result, there is

no bank run. The first term shows the payoff when good news truthfully indicates

a solvent bank and the second term describes the payoff when the good news

is misleading and the bank is insolvent. The last term describes the depositor’s

expected payoff when there is a bank run because of bad news; the signal realization

s = l can truthfully reflect an insolvent bank, or it can be misleading and a suggest

a failure of a solvent bank.

Let U∗(q) denote the depositors’ expected payoff from depositing at t = 0.

From Proposition 1, if q ≤ qN , U
∗(q) = UN(pB), which is independent of q. If

q ∈ (qN , qR), U
∗(q) = UN(p

Run
l (q)), which is increasing in q since pRun

l (·) and UN(·)

are increasing. Thus, when q ∈ (qN , qR), an increase in q incentivizes the bank to

choose a safer asset, which reduces the bank’s expected return but increases the

depositors’ expected payoff. If q > qR, U
∗(q) = UR(pB, q), which may be either

increasing or decreasing in q depending on the size of an early dier’s utility loss

X from low consumption in the case of a bank run. Depositors make deposits at

t = 0 if and only if U∗(q) ≥ U0. This condition holds, for example, for all the

feasible q our numerical example.
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4 Stability and Welfare Analysis

In this section, we investigate the optimal level of bank transparency from the

viewpoints of both banking sector stability and social welfare. Although the ob-

jective of a government’s regulatory agency should be to maximize total welfare,

the stability mandate of bank regulators may explicitly call for maximization of

banking sector stability instead. Bank regulators may also implicitly care more

about banking sector stability than total welfare because bank failures involve high

social costs and bank regulators will be blamed when banks fail. We shall say that

banking sector stability is measured by the probability that the bank does not fail.

We assume that the regulatory agency chooses the level of bank transparency

q at the beginning of date 0, before the bank and depositors take actions. We

interpret the regulatory agency’s choice of q as the binding minimum level of

transparency; the bank can choose a higher level if it wishes. Thus, we need to

compare the regulator’s choice of q with the bank’s choice of q. We begin with the

stability analysis in Section 4.1, and conduct welfare analysis in Section 4.2.

4.1 Transparency and Stability

In Section 3 we show how changes in bank transparency have impacts on banking

sector stability via both sides of a bank’s balance sheet: It may affect the prob-

ability that the bank fails at t = 2 due to unsuccessful asset risk taking and the

probability that the bank fails at t = 1 due to a bank run. Building on Proposition

1, we obtain the following result:

Proposition 3. Banking sector stability is independent of the level of transparency

if q ≤ qN , and increases with the level of transparency if q ∈ (qN , qR) or if q ∈

25



(qR, 1]. The banking sector is more stable when q ∈ (qN , qR) than otherwise, and

its stability is maximized at q = qR.

If q ≤ qN , Proposition 1 shows that the bank’s optimal asset risk choice p∗(q) is

pB, and there are no runs. Hence, when the banking sector is relatively opaque, its

stability is measured by pB, which independent of q. If q ∈ (qN , qR), Proposition

1 suggests that p∗(q) = pRun
l (q), which prevents bank runs and hence acts as a

measure of banking sector stability. Moreover, pRun
l (q) increases with q and is

larger than pB. Hence, when bank transparency is at an intermediate level, the

banking sector is safer than under opaqueness, and its stability increases with q.

Once the level of bank transparency q rises above qR, banking sector stability

worsens drastically, as implied by Proposition 1: First, there is a discrete, down-

ward jump in p∗(q) from pRun
l (qR) to pB (cf. Figure 1). Second, the bank becomes

exposed to a run upon the signal realization s = l. Thus, the bank will fail if either

its liquidity or asset risk realizes, and banking sector stability can be measured by

pBq at these high levels of transparency where q > qR.
11 Since pB is independent of

q, pBq increases with q and reaches its maximal value pB when q = 1. Thus, when

the banking sector is relatively transparent to begin with, a further increase in

bank transparency makes the banking sector safer since it reduces the probability

of an inefficient bank run when the bank is actually solvent (pB(1 − q)). Then,

maximal transparency leads to the maximum stability, since the bank will fail only

if its asset risk realizes, which happens with probability 1− pB.

To summarize, at the low levels of transparency where q ≤ qN , banking sector

stability is measured by pB, which equals the maximum banking sector stability

11The liquidity risk is not realized when s = h, which happens with probability pq+(1−p)(1−q).
Given s = h, the asset risk is not realized with probability ph as defined by equation (3).
Multiplying ph by pq + (1− p)(1− q) gives pq.
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that can be achieved at the high levels of transparency where q > qR. In contrast,

at the intermediate levels of transparency where q ∈ (qN , qR), banking sector

stability is pRun
l (q) > pB where pRun

l (q) increases with q. Thus, the maximum

stability is obtained when the level of bank transparency is qR. However, choosing

the exact stability-maximizing level of transparency is problematic because there

is a downward jump in stability if the level of transparency is even marginally

above the stability-maximizing level.12

Comparing Propositions 2 and 3 also suggests a need for transparency regu-

lation: The bank’s interests are in conflict with the regulatory agency’s stability

mandate since the bank would like to choose a low level of bank transparency

where q ≤ qN or the maximum level of q = 1 rather than an intermediate level

q ∈ (qN , qR) more conducive for stability, and its expected profit decreases with q

at those intermediate levels of transparency where stability increases with q.

In practice, being perfectly transparent (q = 1) is hardly feasible nor desir-

able for a bank. The bank will prefer relative opaqueness where q ≤ qN , if the

bank’s maximum feasible transparency level in practice is even marginally be-

low the perfect level of q = 1 or if the bank encounters even an infinitely small

cost from increasing q from a low level below qN to the perfect level of q = 1

(for banks’ compliance costs of transparency regulation, see Hyytinen and Takalo,

2002). Moreover, if choosing q = 1 were both feasible and desirable for a bank,

transparency regulation as a binding minimum level of transparency would be moot

as the regulatory agency could never improve outcomes from the bank’s choice. We

therefore assume in what follows that the bank either does not want or cannot be

12Stability is maximized at q = qR assuming that the bank chooses p∗(qR) = pRun
l (qR).

However, since p∗(qR) = pB minimizing stability is also an equilibrium, a stability maximizing
regulatory agency may alternatively choose q below but arbitrarily close to qR.
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perfectly transparent, which implies that the bank prefers the relative opaqueness

of q ≤ qN . Facing the challenges of implementing the exact stability-maximizing

level, it might thus be practical for the regulatory agency concerned with stability

to choose an intermediate level of transparency where q ∈ (qN , qR) which will not

put the bank at risk of excessive deposit outflows but is more stringent that the

level of transparency preferred by the bank.

The stability maximizing level of transparency characterized by Proposition 3

approximates the welfare-maximizing level if there are very large external costs

of bank failures (as will be formalized in Corollary 1 of the next subsection).

With more moderate social costs of bank failures, the stability maximizing level

of transparency is, however, not necessarily the same as the level of transparency

which maximizes social welfare. We therefore characterize the welfare-maximizing

level of transparency next.

4.2 Transparency and Welfare

If no bank run will occur at date 1, social welfare is given by

WN(p, Z) = fd1 + (1− fd1)[pR(p) + (1− p)r]− (1− p)Z. (13)

In this case, only early diers withdraw at t = 1 (the first term in the right-hand

side of equation (13)), and the dead-weight loss of bank failure Z will arise only

if the bank’s asset risk realizes (the third term). The second term captures the

expected date-2 payoff from the bank’s assets.

28



If a bank run occurs at t = 1 upon the signal realization s = l, social welfare is

WR(p, q, Z) = pq[fd1 + (1− fd1)R(p)] + (1− p)(1− q)[fd1 + (1− fd1)r − Z]

+ [p(1− q) + (1− p)q][1− (1− 1

d1
)fX − Z] (14)

where the three terms on the right-hand side capture the welfare effects, respec-

tively, if the bank does not fail, if it fails due to the realization of its asset risk at

t = 2, and if it fails due to the realization of its liquidity risk at t = 1.

From Proposition 1, in equilibrium we have

W (q, Z) ≡ W (p∗(q), q, Z) =


WN(pB, Z) if q ≤ qN ,

WN(p
Run
l (q), Z) if q ∈ (qN , qR),

WR(pB, q, Z) if q > qR.

(15)

Thus, at the low levels of transparency where q ≤ qN , the social welfare W (q, Z) =

WN(pB, Z) is independent of q.

At the intermediate levels of transparency (q ∈ (qN , qR)) where the bank in

equilibrium chooses pRun
l (q), the behavior of the social welfare function W (·, Z) =

WN(p
Run
l (·), Z) is more complicated. Define qWN (Z) ≡ argmaxq∈[0.5,1]WN(p

Run
l (q), Z),

i.e., qWN (Z) is the level of transparency which maximizes welfare when the bank

chooses the asset risk level pRun
l (q) to prevent excessive deposit outflows at t = 1.

We can establish the following result:

Lemma 4. qWN (Z) ∈ (qN , 1] and it increases with Z. For sufficiently high levels

of Z, qWN (Z) > qR.

Lemma 4 implies that at the intermediate levels of transparency where q ∈
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(qN , qR), the welfare-maximizing level of transparency is either interior or, if the

dead-weight loss Z is sufficiently high, social welfare WN(p
Run
l (·), Z) is increasing

on the whole range q ∈ (qN , qR). The optimal level of transparency qWN (Z) increases

with Z since pRun
l (q) increases with q (Lemma 1) and, from the welfare point of

view, an increase in p reduces the probability that the dead-weight loss Z will

be incurred. Since qWN (Z) increases with Z whereas qR is independent of Z, for

sufficiently high levels of Z, qWN (Z) > qR

In the high levels of transparency where q > qR, equation (15) implies that

W (q, Z) = WR(pB, q, Z), so from equation (14) we get after some algebra that

∂WR

∂q
= (1− fd1)[pB(R(pB)− 1) + (1− pB)(1− r)]

+ (2pB − 1)(1− 1

d1
)fX + pBZ. (16)

From equation (16), sufficient conditions for ∂WR/∂q > 0 include (i) a sufficiently

large Z, (ii) pB > 0.5, i.e., the bank is more likely to be solvent than insolvent,

and (iii) (1− 1/d1)fX < (1− fd1)(1− r), i.e., a bank run improves welfare if the

bank is insolvent.13 Because of these sufficient conditions for ∂WR/∂q > 0 when

q > qR appear reasonable, we make the following assumption:

Assumption 3. ∂WR

∂q
> 0.

Using the above insights we can characterize the behavior of the social welfare

13We may also rewrite the right-hand side of equation (16) as

pB

[
(1− fd1)(R(pB)− 1) + (1− 1

d1
)fX + Z

]
+ (1− pB)

[
(1− fd1)(1− r)− (1− 1

d1
)fX

]
.

The term in the first square-brackets is positive. In the latter square-brackets, (1− 1/d1)fX is
the expected utility loss suffered by early diers in a bank run and (1 − fd1)(1 − r) is the gain
from liquidating the assets of an insolvent bank at date 1.
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function W (·, Z).

Proposition 4. The social welfare W (q, Z) is independent of the level of trans-

parency if q ≤ qN , increases with the level of transparency if q ∈ (qN ,min{qWN (Z), qR})

or if q > qR, and decreases with the level of transparency if q ∈ (min{qWN (Z), qR}, qR].

Proposition 4 has two policy implications. First, transparency regulation can

be welfare improving: If the bank were unregulated, it would choose some level

of transparency q ≤ qN (Proposition 2). Since W (q, Z) is continuous at q = qN ,

Proposition 4 suggests that welfare can for sure be improved by increasing q to

some level q ∈ (qN ,min{qWN (Z), qR}). In our model, enhanced transparency can

improve welfare because it both makes bank runs more efficient mechanism to

liquidate insolvent banks ex post and increases the threat of a bank run, which

steers the bank towards safer assets to avoid the run ex ante. Therefore, our results

hold even if a bank run reduces social welfare.

Second, Proposition 4 also suggests that “too much” transparency may also

reduce welfare. For example, the social welfare function W (·, Z) experiences a

downward jump at q = qR, since the bank becomes vulnerable to runs and changes

its asset choice from pRun
l (qR) to riskier pB (Proposition 1). Another case of too

much transparency occurs if qWN (Z) < q < qR. In that case, to prevent late

diers from withdrawing early, the bank becomes too conservative from the welfare

point of view, and a decrease in q will increase welfare by allowing the bank to

take more risk. Although excessive risk taking by banks is always a concern for

bank regulation, to foster economic growth and serve as value-creating financial

intermediaries, banks have to take risk. There are situations where banks seem to

be too conservative. For example, banks are often criticized as being reluctant to
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extend loans to new, innovative firms (see, e.g., Hall and Lerner, 2010, for a survey),

which may slow down productivity growth, or even to more established firms

during economic downturns, which may worsen the recessions (a classic reference

is Bernanke et al., 1996; for more recent evidence, see, e.g., Blattner et al., 2023

and Maneresi and Pierri, 2024). In such circumstances, the stability-maximizing

level of bank transparency qR is not optimal, and a lower level of transparency is

required to encourage the bank to take appropriate risk.

Figure 3 illustrates Proposition 4 by displaying the relationship between social

welfare and q using our numerical example with Z = 0.04. As shown in the figure,

social welfare is first independent of the level of transparency when q ≤ qN = 0.671.

If the bank could choose, it would like the level of transparency be in this region.

When q increases from qN to qWN (0.04) = 0.885, social welfare increases, and then

decreases when q increases further to qR = 0.974. There is a drastic downward

jump in welfare at q = qR, after which welfare again increases with q.

Building on Proposition 4 we can shed light on the welfare-maximizing trans-

parency policy for all feasible q. In the region q ∈ [0.5, qR) where W (q, Z) is

continuous and bank runs are absent, Proposition 4 suggests that the regula-

tory agency should choose the intermediate level of bank transparency of q =

min{qWN (Z), qR} > qN , which is more stringent than the one preferred by the bank

– cf. Figure 3. Intuitively, if the bank is not exposed to runs, it is optimal to choose

either qR which induces the bank to choose the safest possible asset that can be

obtained via transparency regulation, or a somewhat lower level of transparency

qWN (Z) to encourage the bank to take more risk.

In the region q > qR where bank runs are possible, Proposition 4 implies that
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Figure 3: Bank Transparency and Welfare

Notes: This figure shows the relation between social welfare W (q) (in the vertical
axis) and the level of bank transparency q (in the horizontal axis) when f = 0.2,
δ = 1.02, d2 = 1.04, y = 0.2, r = 0.95, R(p) = r + 1.4(pNPV − p/2), X = 3, and
Z = 0.04

implementing the perfect transparency of q = 1 maximizes welfare for all Z – cf.

Figure 3 where welfare increases with q when q > qR. Intuitively, if the bank is

exposed to runs, it is optimal to eliminate inefficient runs arising from misleading

bad news.

Therefore, to characterize the socially optimal bank transparency, we need to

compare whether the perfect transparency of q = 1 or the intermediate level of

transparency of q = min{qWN (Z), qR} yields higher welfare. The following result

elucidates why it may not be socially optimal to implement the perfect bank

transparency of q = 1 even if it were feasible.

Corollary 1. The higher is the dead-weight loss Z of a bank failure, or the early
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diers’ utility loss X from a low consumption in a bank run, the more likely that wel-

fare is maximized at the intermediate level of transparency of q = min{qWN (Z), qR}

rather than at the perfect level of q = 1. For sufficiently high levels of Z, the

welfare-maximizing level of q equals the stability-maximizing level qR.

Corollary 1 suggests that the social costs of bank failures – the early diers’ util-

ity loss X and the dead-weight loss Z – tend to make the intermediate level of bank

transparency preferable to the perfect level. The utility loss X is only incurred in

the case of a bank run. Because no bank run occurs when q = min{qWN (Z), qR},

and a bank run will be triggered by s = l when q = 1, social welfare is likely to be

higher when q = min{qWN (Z), qR} than when q = 1 – cf. the welfare functions of

equations (13) and (14).

The dead-weight loss Z is incurred upon both a bank run and an asset-risk

taking failure. Thus, the probabilities that Z is incurred with q = 1 and with

q = min{qWN (Z), qR} are 1 − pB and 1 − pRun
l

(
min{qWN (Z), qR}

)
, respectively.

Because pB < pRun
l

(
min{qWN (Z), qR}

)
, the dead-weight loss Z is incurred more

likely when q = 1 than when q = min{qWN (Z), qR}. Moreover, both pRun
l (·) and

qWN (·) are increasing and, for sufficiently high levels of Z, qWN (Z) > qR (Lemmas

1 and 4). Therefore, the higher Z, the more likely that the intermediate level

of transparency of q = min{qWN (Z), qR} maximizes welfare and, for sufficiently

high levels of Z, the welfare is maximized at the stability-maximizing level of

qR. Intuitively, stability maximization approximates welfare maximization if the

dead-weight loss of bank failure is sufficiently large.

Lemma 2 suggests another reason making the intermediate level of bank trans-

parency desirable from the welfare point of view: the bank takes too much risk even
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without a concern for social costs of bank failures. In the Appendix we establish

the following condition for the optimality of the intermediate bank transparency

for all Z ≥ 0:

(1− fd1)
(
V (pNPV )− V (pB)

)
> (1− pB)

[
(1− fd1)(1− r)−

(
1− 1

d1

)
fX

]
(17)

The left-hand side of the condition (17) gives the difference in the net present value

of the bank’s assets in the absence of a bank run when q = qWN (0) and q = 1: In the

Appendix we show that when Z = 0, the intermediate level of transparency of q =

qWN (0) results in the asset risk choice pNPV which maximizes V (p), the net present

value of the bank’s assets. In contrast, the perfect transparency of q = 1 results

in the bank’s preferred asset risk choice pB and, therefore, V (pNPV ) > V (pB).
14

The right-hand side of the condition (17) displays the efficiency gain of liqui-

dating an insolvent bank at t = 1 via a bank run rather than allowing it to fail

at t = 2, i.e., the condition (iii) for Assumption 3. If the value r of the bank’s

assets in an insolvency or if the early diers’ loss X in a bank run is sufficiently

large, the date-2 insolvency is preferable to the date-1 run and the condition (17)

unambiguously holds.

Going beyond our model, striving for perfect transparency is likely in practice

associated with very large costs of information gathering and disclosure for the

regulatory agency or the bank (see, e.g., Hyytinen and Takalo, 2002; Wei and

Zhou, 2021; Moreno and Takalo, 2023). It can be prohibitively costly to obtain

14The condition (17) holds for qWN (0) < qR. When qWN (0) > qR the value-maximizing asset
risk choice pNPV cannot be implemented via transparency regulation – the highest possible asset
value is reached at q = qR with pB < pRun

l (qR) < pNPV , i.e., the left-hand side of the condition
(17) should be expressed as (1 − fd1)

(
V (pRun

l (qR)) − V (pB)
)
, which is also positive – see the

Appendix.
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perfect transparency as to a bank’s asset returns, which are affected by its borrow-

ers’ actions, its various high-frequency transactions, security trading, exposures to

counterparty risks, and so on.15 The existence of such regulatory and compliance

costs should also render the intermediate level of bank transparency preferable to

perfect transparency.

We can thus conclude that setting q∗(Z) = qR maximizes the banking sector

stability and, if qR < qWN (Z) due to large dead-weight losses of bank failures,

welfare as well. If the dead-weight losses of bank failures are more moderate so that

qR ≥ qWN (Z), setting q∗(Z) = qWN (Z) maximizes welfare. In our numerical example,

the dead-weight loss is modest, and welfare is maximized at q∗N = qWN (Z) = 0.885 <

qR = 0.974 < 1 – see Figure 3. More loosely, it may be desirable to choose an

intermediate level of transparency (q ∈ (qN , qR)), which forces the bank to be

more transparent than it would prefer but which maintains sufficient opaqueness

to eliminate excessive deposit outflows which may fail a solvent bank.

5 Extensions

This section discusses possible extensions of the model. Section 5.1 studies how

macroeconomic conditions and deposit insurance coverage affects the optimal bank

transparency. Section 5.2 investigates the consequences of relaxing Assumption

2. In Section 5.3, we discuss the assumptions related to the observability of the

15Stress tests disclosures provide an example of limitations in obtaining perfect transparency:
In a couple of months after passing the initial 2010 European stress tests, Allied Irish and Bank
of Ireland were on the verge of bankruptcy, as were Bankia and Dexia after passing the 2011
stress tests. In June 2017, the collapse of Banco Popular in Spain, after passing its 2016 stress
test, led the New Your Times (June 13, 2017)) to note: ”... there is much for investors to learn
... Lesson No. 1: Don’t trust bank stress-test results”. The Federal Reserve’s stress tests of
2022 and 2023 did not even consider a scenario of sharply increasing interest rates such as that
of early 2023 that led to the failure of several midsize banks.
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bank’s asset risk choice by depositors and the pricing of deposits, and elaborate the

relation of our equilibrium concept to the one used in the global game literature.

5.1 Transparency, Deposit Insurance, and Business Cycles

It has been frequently pointed out that banking crises are not random events but

related to the interaction of business cycle with depositors’ information (see, e.g.,

Allen and Gale, 1998; Dang et al., 2020). Our result concerning the prevalence of

bank runs (Proposition 1) may also be interpreted as supporting this view. But

how should bank regulators adjust banks’ disclosure requirements when changing

economic conditions also change banks’ vulnerability to both asset and liquidity

risks?

To examine the relationship between the optimal bank transparency level and

business cycle, we make the following modifications of the model: Assume that

for each dollar of the bank’s investment, the date-2 return is αR when it succeeds

and is αr when it fails, and the dead-weight loss of a bank failure is αZ, where

α ∈ (0, 1/r). All the remaining assumptions are kept unchanged. Under this

setting, α is a scaling variable, and can be interpreted as the degree of prosperity

of the economy. The higher the α, the stronger is the economy.16 The modified

model setting allows us to study the relation between the socially optimal bank

transparency and business cycle stages. Simultaneously, we can study how deposit

insurance coverage y affects the optimal bank transparency level. As shown in the

following proposition, banks should be less transparent when the economy is worse

16That the dead-weight loss Z is proportional to α is debatable but assumed for simplicity.
We may consider the dead-weight loss to be lower in recessions, since governments often prefer
banks not to cut loans to borrowers in recessions, and holding more loans in recessions means
banks have higher asset risk. On the other hand, if a failure of one bank leads to contagion more
easily in recessions than in booms, then the dead-weight loss may be higher in recessions.
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off or deposit insurance coverage is smaller.

Proposition 5. The socially optimal level of bank transparency q∗(α, y) =

min{qWN (α, y), qR(α, y)} increases with α and y.

To explain Proposition 5, note first that under this modified setting, equation

(4) should be rewritten as

vF (α, y) ≡
1− fd1)αr

1− f
+

[
1− (1− fd1)αr

(1− f)d2

]
y. (18)

Since vF (α, y) increases with both α and y, equation (5) implies that pRun
l (q, α, y)

decreases with both α and y. Intuitively, when economic conditions or deposit

insurance coverage are better, late diers are more willing to rollover, and the

bank can take more asset risk without a concern for a bank run when s = l.

To counteract this increased risk appetite, the regulatory agency should increase

the level of transparency to steer the bank’s risk taking towards safer assets: the

regulatory agency should choose q to keep the level of pRun
l (q, α, y) constant at the

desired level when α or y changes.

One implication of Proposition 5 is that bank regulators should relax disclosure

requirements for banks in economic crises, reinforcing the message of Proposition

4. Intuitively, in economic crises, depositors are more eager to respond to pes-

simistic information about banks, so bank regulators should reduce the precision

of bank information to lower depositors’ incentive to start a bank run. For ex-

ample, according to Anderson and Copeland (2023), the New York state bank

regulator suspended the rendering and publication of call reports for state-charter

banks during the Great Depression due to the concern for bank runs.

Proposition 5 also suggests the complementarity between bank transparency
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and deposit insurance coverage. Deposit insurance has the familiar effects in our

model: it makes deposits stickier which encourages the bank to take more risk.

To offset this moral hazard, the banking regulators should increase the level of

transparency and make depositors more sensitive to news about weak bank per-

formance.

5.2 Panicky Depositors: When Assumption 2 Does Not

Hold

Assumption 2 stipulates that pB > pRun
0 . Let us analyze the relation between the

bank’s choice of p and the transparency level q when this assumption is violated.

In this case, depositors panic easily and withdraw unless they obtain sufficiently

reliable good news about the bank’s performance. The results for this case are

shown in the following proposition.

Proposition 6. Suppose that pB < pRun
0 , and that depositors deposit at date 0. In

this case, there is a unique q′R ∈ (0.5, 1) such that the bank sets p∗(q) = pRun
l (q) if

q < q′R, and sets p∗(q) = max{pB, pRun
h (q)} if q > q′R. There are no bank runs if

q < q′R or if s = h.

Proposition 6 suggests that the bank’s asset risk choice is similar irrespectively

of whether Assumption 2 holds or not. If the level of transparency is not too high

(that is, q < q′R), the bank chooses p to eliminate bank runs. If q is sufficiently high,

eliminating the bank runs is too costly for the bank, so it allows a bank run to occur

when s = l. Since the bank’s behavior does not change much when Assumption

2 is relaxed, our main results should be qualitatively similar if Assumption 2 is

relaxed.
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When Assumption 2 fails to hold, however, p∗(q) must be no lower than pRun
h (q):

if p < pRun
h (q), a bank run would always occur at date 1 and depositors would not

lend their money to the bank at date 0. If the bank chooses pB < pRun
0 , late

diers roll over at date 1 only if the signal is h and sufficiently precise (so that

pRun
h (q) < pB). Thus, if pB < pRun

0 , a sufficiently high level of transparency is a

necessary condition to make banking feasible. Yet, when pB < pRun
0 , it may still

be difficult to satisfy the depositors’ participation constraint.

5.3 Other Assumptions

In this subsection, we discuss three further features of the model: the observability

of bank’s choice of asset risk p by depositors, exogeneity of deposit pricing, and our

equilibrium selection criterion. First, from, e.g., Freixas and Rochet (2008) and

Vives (2016), who discuss both the observable and unobservable asset risk cases,

we can infer that the observability of the bank’s choice of p by depositors may be

critical to some of our results. If, alternatively, we assume that p is unobservable to

depositors, depositors need to have a conjecture on the p chosen by the bank, which

extends the set of possible (Nash) equilibria. However, using our perfect Bayesian

Pareto dominance criterion we may restrict depositors’ conjectures. Since choosing

pB maximizes both πN(p) and πR(p, q) = qπN(p), the depositors’ only reasonable

conjecture of p satisfying the perfect Bayesian Pareto dominance criterion is pB.

Therefore, when p is unobservable, the only possible equilibrium for any feasible q

is that the bank sets p = pB if depositors make deposits at date 0.

In this case, bank transparency would have no impact on the riskiness of bank

assets and the region q ∈ (qN , qR] where p∗(q) = pRun
l (q) would vanish. As a
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result, there would be runs upon s = l if q ≥ qN and a stability-maximizing

regulator should set q to any level less or equal to qN . Under Assumption 3,

welfare maximization would amount to comparing WR(pB, 1, Z) to WN(pB, Z).

From equations (13) and (14), we then obtain that the sign of WR(pB, 1, Z) −

WN(pB, Z) is given by the sign of (1 − fd1)(1 − r) − (1 − 1/d1)fX. Thus, if the

sufficient condition (iii) for Assumption 3 holds, setting q = 1 maximizes welfare

in this case. Otherwise, choosing some q ≤ qN would be welfare-maximizing,

too. Intuitively, if the bank transparency affects only the bank’s liquidity risk,

welfare effects of bank transparency depend on the efficiency of bank runs: When

(1 − 1/d1)fX < (1 − fd1)(1 − r), a bank run improves welfare if the bank is

insolvent, and setting q = 1 makes sure that there are runs only if the bank is

insolvent. In contrast, if early diers’ utility loss X in the case of a bank run is

so large that insolvency is preferable to runs, it is optimal to make the banking

system opaque (q ≤ qN) to avoid runs.

Whether or not p is observable may be case specific. In the case of bank failures

of 2023, for example, it is quite clear that the asset risk level of Silicon Valley Bank

was observable to those who wanted to look. However, probably very few people

outside of Credit Suisse knew what had been hidden in its balance sheets and

derivatives. As Lowenstein (2000) discussion of the demise of Long-Term Capital

Management, a prominent hedge fund, concludes: “If the long-term episode proved

anything, it is that...investors have a pretty good idea of balance-sheet risks [of

financial intermediaries]; they are completely befuddled with regard to derivative

risks” (Lowenstein, 2000, p. 231).

Another debatable simplifying assumption, while also used in the literature, is

that the deposit interest rates are exogenously given. To see how our results may
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change when the pricing of deposits becomes endogenously determined, suppose

that the deposit interest rates are determined by the bank. To provide liquidity,

d1 must be no lower than δ. On the other hand, the bank has no incentive to set

d1 higher than δ because doing so would increase both its interest expenses and

the depositors’ incentive to start a bank run. Therefore, the optimal d1 for the

bank is indeed δ.

The bank encounters tradeoffs when it determines d2. An increase in d2 has

several effects on the bank. First, an increase in d2 raises the bank’s interest

expenses and thus reduces its payoff. Second, the increased debt burden induces

the bank to take more risk, thus pB(d2) decreases with d2. Third, by raising

the late diers’ payoff to rolling over, an increase in d2 reduces pRun
l (q).17 As a

result, bank transparency regulation would have complex effects on the bank’s

asset risk taking if it also affects d2. Thus, some of our results may change if the

deposit interest rates are endogenously determined, especially if deposit interest

rates could be contingent on bank transparency and the realization of the signal

S. However, we see seldom such contingent deposit contracts in practice. We can

also interpret our analysis as a study of bank creditors’ rollover decisions when

interest rate payments to withdrawing and rolling over are predetermined.

Finally, we discuss the relation of our equilibrium concept with the one used in

the global game literature. Let us assume there is no public information (q = 0.5)

for brevity. In such global-game settings p would be a random variable with real-

izations from which depositors would obtain private signals – see, e.g., Rochet and

17From equations (5) and (6), an increase in d2 has two effects on pRun
l (q, d2, vF (d2)). First,

∂pRun
l /∂d2 < 0. Second, (∂pRun

l /∂vF )(∂vF /∂d2) < 0. Therefore, pRun
L (q, d2, vF (d2))) decreases

with d2. As to pB(d2), it decreases with d2, since R(p) + pR′(p) in equation (9) is decreasing by
Assumption 1.
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Vives (2004), Goldstein and Pauzner (2005), Bouvard et al. (2015), Iachan and

Nenov (2015), and Moreno and Takalo (2016). In the absence of public informa-

tion, the threshold pRun
0 defined in Lemma 1 would correspond to the threshold of

a lower dominance region of those settings. Finding another threshold for an upper

dominance region, say pRun
1 ∈ (pRun

0 , 1), and using iterated elimination of strictly

dominated strategies, we could pin down a threshold level p̄ ∈ (pRun
0 , pRun

1 ) such

that late diers would rollover if their private signals were above p̄ and withdraw

otherwise. In our setting, late diers coordinate to rollover immediately if they

observe a p above pRun
0 and withdraw otherwise. Thus, in the case of an exogenous

p, in our setting the threshold level for withdrawing and rolling over is somewhat

lower than in a global game setting, and either all or a fraction f of depositors

withdraw, whereas in a global game setting, a fraction of depositors whose signal

is above the threshold rollover and the rest withdraw.

6 Conclusions

We study optimal bank transparency regulation when it affects both sides of a

bank’s balance sheet. We show how, on the one hand, an opaque banking system

is not vulnerable to a liquidity crisis arising from excessive deposit outflows. As a

result, banks prefer opaqueness which allows them to choose risky assets with a less

concern for liquidity shortfalls. On the other hand, a more transparent banking

system allows banks’ creditors to better separate weak and strong banks, and may

lead to bank runs if news about a bank are bad. Through increasing this threat

of bank runs, enhanced bank transparency can induce banks to lower asset risk

to prevent such runs. Optimal bank transparency regulation must balance these
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tradeoffs: An optimally set bank transparency is at an intermediate level, which

is larger than the level preferred by banks but lower than the level which would

prompt excessive deposit outflows in the case of bad news.

Since banks can take too much or too little risk from the welfare point of view,

one policy implication of the paper is that bank disclosure requirements should be

stricter during booms when banks may take too much risk but bank creditors may

pay less attention to news, and should be looser during recessions when banks are

likely to be too conservative and their creditors are more sensitive to bad news. We

also find that bank transparency complements deposit insurance: Broader deposit

insurance coverage makes deposits stickier, which encourages the bank to take

more risk. To combat this moral hazard, the bank should be forced to disclose

more information to depositors.

In a desire to study the interaction of bank transparency, banks’ asset and

liquidity risks, we have abstracted from a number of important considerations

that should be addressed in future research. First, our assumption of an exogenous

deposit pricing is awkward. According to the literature, bank transparency can

provide market discipline as it forces riskier banks to pay more for their funding.

Nonetheless, even in the presence of exogenous deposit pricing, we find a similar

market discipline effect operating via the threat of a liquidity crisis.

Second, we do not consider bank capital regulation. The model can be extended

to analyze the optimal combination of bank capital and transparency regulation

as in Orlov et al. (2023). We expect that capital and transparency regulation are

complementary policy tools, like deposit insurance and transparency regulation

in our setting. In such a case, the government should require banks to be more

transparent when they are better capitalized. We also assume that the bank
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chooses its asset risk level. Alternatively, we can modify the model so that the bank

chooses the proportion of risky loans in its assets. The more risky loans it holds,

the higher is its asset risk. The policy implication that too much transparency

may be especially harmful during recessions will become more reasonable under

this setting. More generally, a future work could model more rigorously the way

the banking regulation is affected by business cycles.
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Appendix

Proof of Lemma 1

Setting q = 0.5 and q = 1 in equations (5) and (6) implies pRun
l (0.5) = pRun

h (0.5) =

(d1−vF )/(d2−vF ), p
Run
l (1) = 1, and pRun

h (1) = 0. A straightforward differentiation

of pRun
l (q) and pRun

h (q) in equations (5) and (6) shows that ∂pRun
l /∂q > 0 and

∂pRun
h /∂q < 0. These results imply that pRun

l (q) ≥ pRun
h (q) with the inequality

being strict for q ∈ (0.5, 1]. The claims concerning the occurrence of bank runs in

part (b) then follow from the definitions of pRun
l (q) and pRun

h (q). ■

Proof of Lemma 2

As implied by equation (2) and Assumption 1, pNPV ∈ (0, 1) and satisfies R(p) +

pR′(p) = r, whereas equation (9) implies that pB satisfies R(p) + pR′(p) = ((1 −
f)d2)/(1 − fd1). Assumption 1 implies that ((1 − f)d2)/(1 − fd1) > 1 > r and

that R(p) + pR′(p) decreases with p. As a result, pB < pNPV . Moreover, pB >

0: because R′(p) is bounded by Assumption 1, at p = 0, R(p) + pR′(p) equals

R(0) = sR > ((1− f)d2)/(1− fd1), where the inequality follows from Assumption

1. Finally, since equation (9) contains no q, pB is independent of q. ■

Proof of Lemma 3

Given that (i) ∂pRun
l /∂q > 0 (Lemma 1), (ii) pRun

l (0.5) = pRun
0 and pRun

l (1) = 1

(Lemma 1), (iii) pRun
0 < pB < pNPV < 1 (Assumption 2 and Lemma 2), and

(iv) pB is independent of q (Lemma 2), there is a unique qN ∈ (0.5, 1) such that
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pRun
l (qN) = pB. Moreover, pRun

l (q) < pB for q ∈ [0.5, qN) and pRun
l (q) > pB for

q ∈ (qN , 1].

We next show that there is a unique qR ∈ (qN , 1) such that πR(pB, qR) =

πN(p
Run
l (qR)). Since πR(pB, q) = qπN(pB) (equation (8)) and since pB is indepen-

dent of q (Lemma 2), πR(pB, ·) is increasing. From the facts that (i) ∂pRun
l /∂q > 0,

(ii) πN(·) is concave and is maximized at pB, and (iii) pRun
l (qN) = pB, we know

that πN(p
Run
l (q)) increases with q on [0.5, qN) and decreases with q on (qN , 1].

Also, since qN < 1, πR(pB, qN) = qNπN(pB) < πN(pB) = πN(p
Run
l (qN)), whereas

at q = 1, πR(pB, 1) = πN(pB) > πN(p
Run
l (1)) = πN(1) where the inequality follows

from the definition of pB and Lemma 2 implying pB < 1.

Since we have established that (i) πR(pB, q)− πN(p
Run
l (q)) increases with q on

(qN , 1) and (ii) πR(pB, qN)−πN(p
Run
l (qN) < 0, whereas πR(pB, 1)−πN(p

Run
l (1)) >

0, there is a unique qR ∈ (qN , 1) which satisfies πR(pB, qR) = πN(p
Run
l (qR)). In

addition, πR(pB, q) < πN(p
Run
l (q)) for q ∈ [qN , qR), and πR(pB, q) > πN(p

Run
l (q))

for q ∈ (qR, 1]. ■

Proof of Proposition 1

Recall from Lemma 3 that qN and qR are uniquely determined, and 0.5 < qN <

qR < 1. Lemmas also 3 implies that if q ∈ [0.5, qN ], p
Run
l (q) ≤ pB, so choosing

pB does not trigger bank runs (Lemma 1 and Assumption 2) and by definition

maximizes the bank’s payoff πN(p). By Lemma 2, pB is independent of q.

If q > qN , p
Run
l (q) > pB, so choosing pB triggers a bank run upon s = l (Lemmas

1 and 3, and Assumption 2). The bank needs to compare whether choosing pB

and allowing the bank run to take place upon s = l or choosing pRun
l (q) to prevent

bank runs yields higher profits. Lemma 3 implies that πR(pB, q) < πN(p
Run
l (q))

for q ∈ (qN , qR) and πR(pB, q) > πN(p
Run
l (q)) for q ∈ (qR, 1], so the bank will

set p = pRun
l (q) > pB if q ∈ (qN , qR), and will set p = pB < pRun

l (q) if q > qR.

At q = qR, πR(pB, qR) = πN(p
Run
l (qR)) by definition, so the bank is indifferent

between choosing pB and pRun
l (qR). By Lemmas 1 and 2, pRun

l (q) increases with q

and pB is independent of q.

Since the bank’s asset risk choice is either pB which prevents bank runs upon

s = h (Lemma 1 and Assumption 2), or it is pRun
l (q) which prevents bank runs
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for both s = h and s = l (Lemma 1), no bank run occurs if s = h. Moreover, by

Lemma 1, no bank run can occur if the bank chooses some p such that p ≥ pRun
l (q),

which we have established to happen if q < qR. ■

Proof of Proposition 2

Equation (10) shows that the bank’s expected profit π∗(q) is πN(pB) if q ≤ qN , is

πN(p
Run
l (q)) if q ∈ (qN , qR), and is πR(pB, q) if q > qR. By definition, πN(pB) =

πN(p
Run
l (qN)) and πR(pB, qR) = πN(p

Run
l (qR)).

Since πN(p) and pB are independent of q, the bank’s payoff πN(pB) is inde-

pendent of q if q ≤ qN . Also, because πR(pB, q) = qπN(pB) for all p, the bank’s

payoff πR(pB, q) increases with q for q > qR. Moreover, πR(pB, 1) = πN(pB). For

q ∈ (qN , qR), the bank’s payoff πN(p
Run
l (q)) decreases with q as established in the

proof of Lemma 3. Given πN(pB) = πN(p
Run
l (qN)) and πR(pB, qR) = πN(p

Run
l (qR)),

the bank’s expected profit π∗(q) is maximized when q ≤ qN or when q = 1, and

minimized when qR. ■

Proof of Proposition 3

Because, by Proposition 1, no bank run will occur if q < qR and a bank run will

occur when s = l if q > qR, bank stability (the probability that the bank does

not fail) is the p chosen by the bank if q ≤ qR, and is the p chosen by the bank

multiplied by q if q ≥ qR. By Proposition 1, bank stability is then pB if q ≤ qN ,

is pRun
l (q) if q ∈ (qN , qR), and is qpB if q > qR. At q = qR, the bank stability is

either qRpB or pRun
l (qR) in which pRun

l (qR) > pB > qRpB. From the facts that (i)

pB is independent of q, (ii) ∂pRun
l /∂q > 0, and (iii) pRun

L (qN) = pB, bank stability

is independent of q if q ≤ qN and increases with q if q ∈ (qN , 1]\{qR}.
From these results, bank stability is pB for q ∈ [0.5, qN ] and, for q ∈ (qR, 1],

the highest bank stability is pB (when q = 1). For q ∈ (qN , qR), bank stability is

pRun
l (q). Since pRun

l (q) > pB for q > qN by Lemma 3, bank stability is higher when

q ∈ (qN , qR) than otherwise. Moreover, since ∂pRun
l /∂q > 0, the highest bank

stability, obtained by setting q = qR, is pRun
l (qR). Since the bank is indifferent

between choosing pB and pRun
l (qR) at q = qR by Proposition 1, maximal stability

can alternatively be achieved by choosing q below but arbitrarily close to qR. ■
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Proof of Lemma 4

Let us use equation (1) to rewrite equation (13) as

WN(p, Z) = fd1 + (1− fd1)(V (p) + 1)− (1− p)Z (A1)

Evaluating this equation (A1) at p = pRun
l (q) and taking derivatives yield

dWN(p
Run
l (q), Z)

dq
=

[
(1− fd1)V

′(pRun
l (q)) + Z

]∂pRun
l

∂q
.

Since ∂pRun
l /∂q > 0 by Lemma 1, the sign of dWN(p

Run
l (q), Z)/dq is given by the

sign of

∂WN(p
Run
l (q), Z)

∂pRun
l

= (1− fd1)V
′(pRun

l (q)) + Z. (A2)

Recall that Assumption 1 implies that V (·) is strictly concave, bounded, V ′(0) >

0, and V ′(1) < 0, whereas Lemma 1 verifies that ∂pRun
l /∂q > 0 and pRun

l (1) = 1.

These properties of V (·) and pRun
l (·), and equation (A2) imply that for Z <

−(1− fd1)V
′(1), qWN (Z) < 1 is a unique solution to

(1− fd1)V
′(pRun

l (qWN )) + Z = 0 (A3)

from where we get

dqWN
dZ

= − 1

(1− fd1)V ′′(pRun
l (q))

∂pRun
l

∂q

> 0,

whereas for Z ≥ −(1− fd1)V
′(1), qWN (Z) = 1 > qR. Thus, for sufficiently high Z,

qWN (Z) > qR.

For Z = 0, equations (A3) and (2) imply that qWN (0) satisfies pRun
l (qWN (0)) =

pNPV . Since pNPV > pB by Lemma 2, pRun
l (qN) = pB by definition, and ∂pRun

l /∂q >

0 by Lemma 1, qWN (0) > qN . Since qWN (·) is increasing, qWN (Z) > qN for all Z. ■
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Proof of Proposition 4

For q ≤ qN , equation (15) shows that W (q, Z) = WN(pB, Z). Because pB is

independent of q, WN(pB, Z) is independent of q.

For q ∈ (qN , qR), equation (15) shows that W (q, Z) = WN(p
Run
l (q), Z). If

qWN (Z) < qR, then qWN (Z) ≡ argmaxq∈[0.5,1]WN(p
Run
l (q), Z) ∈ (qN , qR) is the unique

solution to equation (A3). Thus, if q ∈ (qN , q
W
N (Z)), WN(p

Run
l (q), Z) increases

with q and, if q ∈ (qWN (Z), qR), WN(p
Run
l (q), Z) decreases with q. If qWN (Z) > qR,

qWN (Z) ≡ argmaxq∈[0.5,1]WN(p
Run
l (q), Z) is either the unique solution to equation

(A3) in which case qWN (Z) ∈ (qR, 1) and WN(p
Run
l (q), Z) increases with q for all

q ∈ [0.5, qWN (Z)) or qWN (Z) = 1 in which case WN(p
Run
l (q), Z) increases with q for

all q ∈ [0.5, 1].

For q > qR, equation (15) shows that W (q, Z) = WR(pB, q, Z). By Assumption

3, ∂WR(pB, q, Z)/∂q > 0 for all q ∈ [0.5, 1]. ■

Proof of Corollary 1

We break the proof into three steps.

Step 1. Let q∗R(Z) ≡ argmaxq∈(qR,1]WR(pB, q, Z) and

q∗N(Z) ≡ argmaxq∈[0.5,qR] WN(p, Z), i.e., q
∗
R(Z) and q∗N(Z) are the transparency

levels that maximize welfare when, respectively, there are runs and there are no

runs in equilibrium. Assumption 3 implies q∗R(Z) = 1 for all Z.

To determine q∗N(Z), note first that setting q ≤ qN cannot be optimal: Propo-

sition 4 implies that W (q, Z) = WN(pB, Z) is independent of q if q ≤ qN , and

W (q, Z) = WN(p
Run
l (q), Z) increases with q if q ∈ (qN , qR). Since pRun

l (qN) = pB

by definition, W (·, Z) is continuous on [0.5, qR).

For q ∈ (qN , qR], there are two possible solutions for q∗N(Z) which arise from

Proposition 4: If qWN (Z) < qR, q
∗
N(Z) = qWN (Z). On the other hand, if qWN (Z) ≥ qR,

WN(p
Run
l (q), Z) increases with q on (qN , qR], implying that q∗N(Z) = qR. Therefore,

q∗N(Z) = min{qWN (Z), qR}, with Lemmas 3 and 4 implying that min{qWN (Z), qR} >

qN .

Step 2. Step 1 proves that q∗R(Z) = 1 and q∗N(Z) = min{qWN (Z), qR} > qN .

Hence, to find out the optimal policy q∗(Z), we only need to compare whether

choosing q∗R(Z) = 1 or q∗N(Z) = min{qWN (Z), qR} yields higher welfare. Note from
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equation (15) that if q∗N(Z) = min{qWN (Z), qR} is optimal, the resulting maximal

welfare isWN(p
Run
l (q∗N(Z)), Z) since min{qWN (Z), qR} > qN . Similarly, if q∗R(Z) = 1

is optimal, the resulting maximal welfare is WR(pB, 1, Z). Equations (A1) and (14)

imply that

WN(p
Run
l (q∗N(Z)), Z) = fd1 + (1− fd1)

[
V
(
pRun
l (q∗N(Z))

)
+ 1

]
−
(
1− pRun

l (q∗N(Z))
)
Z, (A4)

and

WR(pB, 1, Z) = pB
[
fd1 + (1− fd1)R(pB)

]
+ (1− pB)

[
1− (1− 1

d1
)fX − Z

]
. (A5)

Step 3. Equation (A4) shows that welfare in the absence of bank runs is

independent of X, whereas equation (A5) shows that welfare in the presence of

bank runs decreases with X. Therefore, the higher is X, the more likely that the

welfare-maximizing q is min{qWN (Z), qR}, which prevents bank runs, rather than

1, which allows bank runs to take place when s = l.

Similarly, we show that an increase in Z has a larger negative impact on

WR(pB, 1, Z) than onWN(p
Run
l (q∗N(Z)), Z). Consider first the case where q

W
N (Z) ≥

qR implying that q∗N(Z) = qR is independent of Z. Then, taking derivatives in

equation (A4) gives

∂WN(p
Run
l (qR), Z))

∂Z
= −(1− pRun

l (qR)). (A6)

Next, consider the case where qWN (Z) < qR implying that q∗N(Z) = qWN (Z).

Note from equations (A2) and (A3) that in this case qWN (Z) is a solution to

∂WN

(
pRun
l (qWN (Z)), Z

)
∂pRun

l

= 0. (A7)

Using equation (A7) in differentiating equation (A4) gives

dWN(p
Run
l (qWN (Z)), Z)

dZ
= −

(
1− pRun

l (qWN (Z))
)
. (A8)
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Similarly, taking derivatives in equation (A5) gives

∂WR(pB, 1, Z))

∂Z
= −(1− pB). (A9)

Both pRun
l (qR) and pRun

l (qWN (Z)) are strictly larger than pB by Lemmas 3 and

4. Moreover, pRun
l (qWN (Z)) increases with Z (Lemmas 1 and 4). Therefore, from

equations (A6), (A8) and (A9) we observe that

∂WR(pB, 1, Z)

∂Z
<

dWN(p
Run
l (q∗N(Z)), Z)

dZ
< 0 (A10)

for all Z, irrespective of whether q∗N(Z) = qWN (Z) or q∗N(Z) = qR.

Moreover, qR is independent of Z but, by Lemma 4, qWN (·) is increasing and for

sufficiently high values of Z, qWN (Z) > qR. Thus, for sufficiently high values of Z,

q∗N(Z) = qR. In that case, we get from equations (A6) and (A9) that

∂WN(p
Run
l (qR, Z)

∂Z
− ∂WR(pB, 1, Z)

∂Z
= pRun

l (qR)− pB,

where the right-hand side is a strictly positive constant (recall Lemma 3). There-

fore, for sufficiently high values of Z, WN(p
Run
l

(
qWN (Z)), Z

)
= WN(p

Run
l (qR), Z) >

WR(pB, 1, Z) and thus, welfare is maximized when q = qR. Alternatively, since

p∗(q) = pB is also an equilibrium at qR, we may think that q should be chosen

below but arbitrarily close to qR. ■

Proof of the condition (17)

From equations (A4) and (A5) we get that the condition WN(p
Run
l (q∗N(0)), 0) >

WR(pB, 1, 0) is equivalent to

(1− fd1)
[
V
(
pRun(q∗N(0))

)
+ 1− pBR(pB)

]
> (1− pB)

[
1− fd1 − (1− 1

d1
)fX].
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Using equation (1) to rearrange this inequality yields after some algebra

(1− fd1)
[
V
(
pRun
l (q∗N(0))

)
− V (pB)

]
> (1− pB)

[
(1− fd1)(1− r)− (1− 1

d1
)fX

]
. (A11)

The right-hand side of inequality (A11) equals the right-hand side of inequality

(17). Recall next from the proof of Lemma 4 that q∗N(0) = min{qWN (0), qR} where

qWN (0) satisfies pRun
l (qWN (0)) = pNPV . Hence, if qWN (0) < qR, then V

(
pRun
l (q∗N(0))

)
=

V (pNPV ), i.e., also the left-hand side of inequality (A11) equals the left-hand side

of inequality (17).

To prove that the left-hand side of inequality (A11) is strictly positive, note first

that V (pNPV ) > V (pB) by the definition of pNPV ≡ argmaxp∈[0,1] V (p) and Lemma

2. If qWN (0) > qR, then Lemmas 2 and 3 imply that pB < pRun
l (qR) < pRun

l (qWN (0)) =

pNPV < 1. Then the definition of pNPV and Assumption 1 (implying V ′′(p) < 0)

imply that V (pRun
l (qR)) > V (pB). Thus, irrespective of whether q

∗
N(0) = qWN (0) or

q∗N(0) = qR, V
(
pRun
l (q∗N(0))

)
> V (pB). (We have 1 > fd1 by assumption). ■

Proof of Proposition 5

In Section 4.2, we establish that the intermediate level of bank transparency max-

imizes welfare. For this modified setting, this optimal level of bank transparency

can be written as q∗(α, y) = min{qWN (α, y), qR(α, y)}. Consider first the case where
qWN (α, y) < qR(α, y) so that q∗(α, y) = qWN (α, y). When qWN (α, y) is chosen, there

are no bank runs. From equation (A1), we get that in this modified setting, social

welfare in the absence of runs is given by

WN(p, α) = fd1 + α[(1− fd1) (V (p) + 1)− (1− p)Z]. (A12)

Define pWN ≡ argmaxp∈[0,1]WN(p) where WN(p) is given by equation (A1).

Comparing equations (A1) and (A12) shows how this pWN that maximizes WN(p) of

equation (A1) must equal the p that maximizesWN(p, α) of equation (A12). Hence

pWN is independent of α and y. Moreover, qWN (α, y) ≡ argmaxq∈[0.5,1] WN(p
Run
l (q, α, y), α)

must be a solution to pRun
l (qWN , α, y) = pWN . Since pRun

l (q, α, y) increases with q but

decreases with α and y (see the main text after the proposition), qWN (α, y) must
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increase with both α and y.

If qWN (α, y) > qR(α, y), q
∗(α, y) = qR(α, y) where qR(α, y) solves πR(pB(α), qR, α) =

πN(p
Run
l (qR, α, y), α). We have

πR(pB(α), qR, α) = pB(α)qR
[
(1− fd1)αR(pB(α))− (1− f)d2

]
(A13)

and

πN(p
Run
l (qR, α, y), α) = pRun

l (qR, α, y)
[
(1− fd1)αR(pRun

l (qR, α, y))− (1− f)d2
]
,

(A14)

where equation (5) suggests that

pRun
l (qR, α, y) =

1

1 + (1−qR)(d2−d1)
qR(d1−vF (α,y))

(A15)

with vF (α, y) being increasing in α and y – recall (equation (18)). Note also that

pB(α) is a solution to

∂πR

∂p
= (1− fd1)α(R(p) + pR′(p))− (1− f)d2 = 0.

Hence, pB(α) increases with α, given that R(p) + pR′(p) decreases with p by

Assumption 1.

Since πR(pB(α), qR, α) = qRπN(pB(α), α) by equation (8), we may write the

condition πR(pB(α), qR, α) = πN(p
Run
l (qR, α, y), α) as

qRπN(pB(α), α)− πN(p
Run
l (qR, α, y), α) = 0. (A16)

Differentiating equation (A16) with respect to qR and y gives

dqR
dy

=

∂πN (pRun
l (qR,α,y),α)

∂pRun
l

dpRun
l

dy

πN(pB(α), α)−
∂πN (pRun

l (qR,α,y),α)

∂pRun
l

∂pRun
l

∂qR

> 0 (A17)

where the sign follows since dpRun
l /dy < 0 and ∂pRun

l /∂qR > 0 (see equations

(18) and (A15)), and since ∂πN(p
Run
l (qR, α, y), α)/∂p

Run
l < 0 by the definition
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of pB(α) ≡ argmaxp∈[0,1] πN(p, α) and since Lemmas 1 and 3 apply so that 1 >

pRun
l (qR, α, y) > pB(α). Thus, both the numerator and denominator of the right-

hand side of equation (A17) are positive.

Similarly, differentiating equation (A16) with respect to qR and α using the

Envelope Theorem gives

dqR
dα

=
−qR

∂πN (pB(α),α)
∂α

+
∂πN (pRun

l (qR,α,y),α)

∂α
+

∂πN (pRun
l (qR,α,y),α)

∂pRun
l

dpRun
l

dα

πN(pB(α), α)−
∂πN (pRun

l (qR,α,y),α)

∂pRun
l

∂pRun
l

∂qR

. (A18)

In the right-hand side of equation (A18) the denominator and the last term

∂πN(p
Run
l (qR, α, y), α)

∂pRun
l

dpRun
l

dα

in the numerator are positive as in the case of equation (A17). As to the two

first terms in the numerator of the right-hand side of equation (A18), we get from

equations (A13) and (A14) that

∂πN(p
Run
l (qR, α, y), α)

∂α
− qR

∂πN(pB(α), α)

∂α

= (1− fd1)
[
pRun
l (q, α, y)R(pRun

l (q, α, y))− qRpB(α)R(pB(α))
]

=
1

α
(1− f)d2

[
pRun
l (q, α, y)− pB(α)qR

]
> 0

where the second equality follows after substitution of equations (A13) and (A14)

for the condition πR(pB(α), qR, α) = πN(p
Run
l (qR, α, y), α). The inequality follows

since Lemmas 1 and 3 imply 1 > pRun
l (qR, α, y) > pB(α) > qRpB(α). As a result,

the numerator of the right-hand side of equation (A18) is positive, too, and we

have dqR/dα > 0 as claimed.

In sum, as both qWN (α, y) and qR(α, y) increase with α and y, q∗(α, y) =

min{qWN (α, y), qR(α, y)} increases with α and y. ■

Proof of Proposition 6

Suppose that Assumption 2 is violated so that pB < pRun
0 . By Lemma 1, the

function pRun
h : [0.5, 1] → [pRun

0 , 0] is strictly decreasing. Because pB > 0 is inde-
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pendent of q, there thus exists a unique q′N ∈ (0.5, 1) that satisfies pRun
h (q′N) = pB.

In addition, pRun
h (q) > pB if q ∈ [0.5, q′N) and pRun

h (q) < pB if q ∈ (q′N , 1].

First consider the case where q ∈ [0.5, q′N), implying that pB < pRun
h (q) <

pRun
l (q). The bank has two choices. It can either set p = pRun

h (q) so that a bank

run will occur if and only if s = l, or set p = pRun
l (q) to eliminate bank runs.

Setting p = pB is not optimal for the bank in this case, because it would allow a

bank run to occur irrespective of the realization of the signal S. The bank will set

p∗(q) = pRun
h (q) and receive πR(p

Run
h (q), q) if πR(p

Run
h (q), q) > πN(p

Run
l (q)), and

will set p∗(q) = pRun
l and receive πN(p

Run
l (q)) otherwise.

Next consider the case where q ∈ (q′N , 1]. In this case, pRun
h (q) < pB < pRun

l (q).

This case is familiar from the main setting in which Assumption 2 holds. The bank

has two choices: It can either set p = pB so that a bank run will occur if and only

if s = l, or set p = pRun
l (q) to eliminate bank runs. The bank will set p∗(q) = pB

and receive πR(pB, q) if πR(pB, q) > πN(p
Run
l (q)), and will set p∗(q) = pRun

l (q) and

receive πN(p
Run
l (q)) otherwise.

Combining these two cases, the bank sets p∗(q) = max{pRun
h (q), pB} if

πR(max{pRun
h (q), pB}, q) > πN(p

Run
l (q)),

and p∗(q) = pRun
l (q) otherwise. Note that πR(max{pRun

h (q), pB}, q)) = qπN(max{pRun
h (q), pB})

increases with q: if pB ≥ pRun
h (q), πN(pB) is independent of q, and if pB < pRun

h (q),

dπN(p
Run
h (q))

dq
=

∂πN

∂pRun
h

∂pRun
h

∂q
> 0,

since ∂πN/∂p
Run
h < 0 by the definition of pB and ∂pRun

h /∂q < 0 by Lemma 1. Also,

πN(p
Run
l (q)) decreases with q because ∂pRun

l /∂q > 0 by Lemma 1 and ∂πN/∂p
Run
l <

0 since pB < pRun
l (q).

In addition, if q = 0.5,

πN(p
Run
l (0.5)) = πN(p

Run
0 ) > πR(p

Run
0 , 0.5)

= πR(p
Run
h (0.5), 0.5) = πR(max{pRun

h (0.5), pB}, 0.5)

since when Assumption 2 fails to hold, pB < pRun
0 = pRun

h (0.5). By the continuity of
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πN(p
Run
l (·)) and πR(max{pRun

h (·), pB}, ·), we have πN(p
Run
l (q)) > πR(max{pRun

h (q), pB}, q)
for any q sufficiently close to 0.5.

If q = 1,

πN(p
Run
l (1)) = πN(1) < πN(pB) = πR(pB, 1)

= πR(max{pRun
h (1), pB}, 1) = πR(max{0, pB}, 1).

By the continuity of πN(p
Run
l (·)) and πR(max{pRun

h (·), pB}, ·), we have πN(p
Run
l (q)) <

πR(max{pRun
h (q), pB}, q) for any q sufficiently close to 1.

From the results that (i) πR(max{pRun
h (q), pB}) increases with q on (0.5, 1), (ii)

πN(p
Run
l (q)) decreases with q on (0.5, 1), (iii) πN(p

Run
l (q)) > πR(max{pRun

h (q), pB}, q)
for any q sufficiently close to 0.5, and (iv) πN(p

Run
l (q)) < πR(max{pRun

h (q), pB}, q)
for any q sufficiently close 1, there is a unique q′R ∈ (0.5, 1) such that the bank’s

optimal risk choice is p∗(q) = pRun
l (q) if q < q′R, and is p∗(q) = max{pB, pRun

h (q)}
if q > q′R. When p∗(q) = pRun

l (q) there are no bank runs in equilibrium and when

p∗(q) = max{pB, pRun
h (q)} a bank run arises upon s = l. ■
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