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Abstract

The low-risk anomaly challenges traditional financial theory by stating that less volatile stocks

generate higher risk-adjusted returns. This paper explores how various portfolio construction

choices influence the performance of low-risk portfolios. We show that methodological decisions

critically influence portfolio outcomes, causing substantial dispersion in performance metrics

across weighting schemes and risk estimators. This can only be marginally mitigated by incor-

porating constraints such as short-sale restrictions and size or price filters. Our analysis reveals

that volatility-based estimators yield the most favorable performance distribution, outperform-

ing beta-based approaches. Transaction costs are found to significantly affect performance and

are vitally important in identifying the most attractive portfolios, highlighting the importance

of realistic implementation constraints. Through rigorous empirical analysis, this study bridges

the gap between theoretical insights and practical applications, offering actionable guidance

to investors. The findings advocate for a cautious approach to limiting nonstandard errors in

portfolio modeling and emphasize the necessity of robust strategies in low-risk investing.
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1 Introduction

Methodological uncertainty has emerged as a critical topic in quantitative finance, particularly in

the study of portfolio construction and performance evaluation. The growing complexity of financial

datasets, the large number of reported factors that appear relevant (Cochrane, 2011), the p-hacking

problem (Harvey, 2017), and the proliferation of portfolio design choices have led to concerns about

the robustness and replicability of research findings (e.g., see Hou et al., 2020; Jensen et al., 2023).

These issues are especially relevant in the context of factor investing, where methodological choices

can significantly affect the performance of strategies that seek to capture anomalies such as value,

quality, momentum, and low-risk premia (Hasler, 2023; Walter et al., 2023; Soebhag et al., 2024).

The existing literature highlights the challenge posed by methodological uncertainty in financial

research. Menkveld et al. (2024) propose the concept of “nonstandard errors”, a measure of vari-

ability introduced by arbitrary methodological decisions. They show that these errors could be as

large as or even larger than traditional standard errors. Soebhag et al. (2024) apply the notion of

nonstandard errors to factor sorting portfolios, suggesting that conclusions drawn from portfolio

backtests may often depend more on design choices than on underlying economic phenomena. Sim-

ilarly, Hasler (2023) and Walter et al. (2023) emphasize the sensitivity of factor portfolio results to

seemingly minor methodological details, while Chen et al. (2024) illustrate the impact of decision

variables in machine learning stock prediction models and Fieberg et al. (2024) analyze the matter

for cryptocurrencies. In this portfolio context, methodological uncertainty arises from a variety

of choices, including the selection of exclusion criteria (e.g., size, price, sector and characteristics

filter), the rebalancing frequency, portfolio size or weighting scheme. These decisions often involve

trade-offs between theoretical rigor and practical implementability, as highlighted by Novy-Marx

and Velikov (2016).

Although the current literature emphasizes methodological uncertainty in the portfolio construction

process, decision variables related to the definition of the sorting variable – arguably the most

relevant input – have been largely overlooked. We address this gap by examining the computation

of a specific factor theme, and thus quantify the estimation error of the signal used to construct

sorting portfolios. Contrary to existing literature that takes factor definitions provided by the

corresponding original papers, we show that choices in factor computation—such as the specific

estimator, parametrization, and lookback window length—are equally critical and should not be

overlooked. For instance, replicating a low-volatility portfolio involves decisions about the type of
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volatility estimator to use, including variations in lookback periods and data weighting. In this

study, we demonstrate that the impact of these (low-risk) factor computation choices is substantial

and comparable to the influence of portfolio sorting construction decisions highlighted by Hasler

(2023), Walter et al. (2023), and Soebhag et al. (2024).

To demonstrate that the above mentioned extensions lead to substantial variation in factor portfolio

performance, we illustrate the impact of construction choices on the cumulative (net of transaction

costs) returns of low-risk portfolios in Figure 1. Each path corresponds to a specific long-only port-

folio construction method, as detailed below. In orange we plot 1,620 equally-weighted portfolios,

in blue 1,620 value-weighted portfolios, and in black a value-weighted market portfolio that serves

as our benchmark. Despite our focus on one factor theme, the figure reveals significant dispersion

in portfolio performance, underscoring the critical influence of methodological decisions and the

necessity for a deeper evaluation of decision criteria. The compound annual growth rate of low-risk

portfolios ranges from -3.9% to +14.0%, compared to +11.9% of the benchmark. It is worth noting

that this figure captures only a subset of our results, as limited-short and long-short portfolios are

excluded here.1 Consequently, the extent of dispersion observed in our analysis is even greater.

In addition to extending methodological uncertainty to the sorting variable, we further expand

current findings by focusing on practically relevant portfolios. Although much of the existing

literature relies on dollar-neutral long-short portfolios without considering transaction costs, we

extend the analysis to include more realistic and implementable portfolios. These include long-

only and fully-invested limited-short portfolios. Additionally, we incorporate turnover analysis and

provide results with both (net) and without (gross) transaction cost considerations. To fully assess

the dispersion of the results, we evaluate performance across multiple relevant metrics rather than

relying on a single measure and also compare them with a benchmark, which is neglected in the

current literature (Hasler, 2023; Walter et al., 2023; Soebhag et al., 2024). This approach provides

a more holistic view of the influence of portfolio construction choices.

To investigate these extensions on methodological uncertainty and nonstandard errors in portfolio

construction, we focus on the “factor zoo” within a single factor theme rather than across factors.

Specifically, we focus our empirical analysis on low-risk portfolios to examine the dispersion within

this factor. For many fundamental factors, such as value or quality, certain proposed methodolog-

ical enhancements, such as varying the length of the lookback window or employing alternative
1Including these portfolios would make the figure less readable without providing additional insights.
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Figure 1: Cumulative returns of long-only low-risk portfolios with transaction costs
The figure shows the dispersion of cumulative returns of long-only portfolios after transaction costs across portfolio construction
decisions. In total, the plot contains returns for 3,240 portfolios. We distinguish between portfolios with equally-weighted stocks
(orange) and value-weighted stocks (blue). The cumulative returns are calculated based on 11,598 daily out-of-sample returns
from January 1978 to December 2023 and presented on a log-10 y-axis.

estimation techniques, are often not applicable or meaningful due to the low time series granular-

ity of the data, stemming from infrequent updates in accounting cycles (e.g., income statements,

balance sheets, and cash flow statements)2. This renders all accounting-based factors unsuitable

for our purposes.

In particular, the choice for the low-risk factor theme, among other price-based ones such as mo-

mentum, is motivated by three primary reasons. First, unlike momentum, which has been explicitly
2In this study we do not want to engage in methodological choices regarding the computation of fundamental

variables, as this would introduce numerous other decision variables that are not comparable/consistent between
factors.
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examined in previous studies, low-risk has not gained much attention, as it is either completely left

out (Soebhag et al., 2024), examined jointly with all anomalies (Hasler, 2023), or grouped within

broader categories such as trading friction estimators (Walter et al., 2023). This relative scarcity

of focused research highlights the need to explore low-risk further. Second, studies on portfolio

construction choices that include low-risk factors often focus narrowly on their potential to deliver

a return premium (Hasler, 2023; Walter et al., 2023). Yet, the core purpose of low-risk factors is to

optimize risk-adjusted returns, setting them apart from other anomalies, which predominantly tar-

get excess returns through long-short portfolios. This dual focus cannot be addressed with returns

alone, but also requires an assessment of risk-adjusted performance. Third, while there is relatively

strong consensus on the definition of momentum as the prior 2-12 monthly return (Wiest, 2023),

multiple variations of low-risk strategies exist (Traut, 2023) and that often interchanged, making

the analysis of risk estimators particularly urgent.

The need for a comprehensive study of low-risk strategies is further underscored by the growing

attention they have received over the past two decades, both in academia and industry. This interest

is driven by the apparent paradox that less volatile stocks often deliver higher risk-adjusted returns,

a phenomenon widely referred to as the low-risk anomaly (see Blitz et al., 2023; Traut, 2023, for

an overview). Recent investment manager surveys highlight that low-risk investing is among the

most commonly employed price-based anomaly strategies, on par or even surpassing momentum

(Invesco, 2023, 2024). While extensive academic literature supports the existence of this anomaly

across global (equity) markets, there remains a gap between theoretical insights and their practical

implementation.

This paper bridges that gap by focusing on the impact of construction and evaluation choices of

realistic and implementable low-risk portfolios. Most existing studies focus on simplistic sorting

mechanisms and overlook the profound influence of methodological choices, such as risk estimator

selection and configuration, transaction costs handling, rebalancing frequency, and portfolio con-

straints. These decisions are pivotal in shaping portfolio performance, yet their impact remains

largely overlooked both in the context of low-risk investing and factor investing more broadly. Es-

pecially neglection of transaction costs is shown to significantly influence the performance of factor

portfolios and therefore requires consideration in the context of evaluating methodological choices

(Detzel et al., 2023). Another key feature of this study is its focus on long-only and limited-short

portfolios, reflecting the regulatory constraints investors face in various jurisdictions.

5



Overall, this paper contributes to the literature in several key ways. First, we systematically

examine the impact of risk estimators on portfolio performance, highlighting that the choice of

estimation methodology (risk estimator and its lookback window length) is one of the main sources

of performance variability with an impact comparable to the weighting scheme and transaction

costs. Second, we analyze the role of transaction costs and performance evaluation metrics, offering

insights into the trade-offs between return enhancement and cost efficiency. Consequently, we

demonstrate that while the portfolio construction choices outlined in Hasler (2023), Walter et

al. (2023), and Soebhag et al. (2024) provide a solid foundation for investigating methodological

uncertainty, they overlook two critical factors: the computation of the sorting variable and the

consideration of transaction costs. Third, this paper not only advances the academic understanding

of low-risk investing but also provides actionable insights for practitioners seeking to implement

effective and robust low-risk portfolio strategies.

The remainder of this paper is organized as follows. Section 2 presents the data and methodol-

ogy, detailing the empirical framework and portfolio construction decisions. Section 3 provides a

comprehensive empirical evaluation, discussing the implications of construction choices and perfor-

mance outcomes. Finally, Section 4 concludes with key findings, practical recommendations, and

avenues for future research. The appendices contain additional results and auxiliary materials.

2 Data and Methodology

2.1 Data

We construct our sample using the CRSP daily dataset, spanning from January 1973 to December

2023. The dataset is restricted to primary stocks listed on AMEX, NYSE, and NASDAQ, excluding

stock-days with missing observations for returns or shares outstanding. Since the longest estimation

window in our analysis is five years, we start our out-of-sample analysis in January 1978, providing

T = 11, 598 daily returns per portfolio and benchmark. This starting point is selected to avoid the

structural changes introduced in the early 1970s, as the CRSP universe tripled in size in 1973. The

eligible universe for out-of-sample analysis ranges in size from 3,564 to 7,465 stocks over time (see

Figure A.1). On average, it has a size of 5,089 stocks, resulting in an average size of 1,696 stocks

for our long-only tercile portfolios, 1,018 stocks for our long-only quintile portfolios, and 509 stocks

for our long-only decile portfolios. The corresponding quantile long-short portfolios are twice as

large.
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Daily data for the Fama and French (2015) five-factor model are sourced from the WRDS database,

while NBER recession identifiers are obtained from the Federal Reserve Bank of St. Louis.

Transaction costs are approximated using half spreads, as proposed by Novy-Marx and Velikov

(2016). When quote data are available, the spreads are calculated as the quoted bid-ask spread

divided by twice the contemporaneous mid-point, averaged over month m. In cases where quote

data are unavailable, spreads are estimated using the CHL spread estimator by Abdi and Ranaldo

(2017). For any remaining missing values, we impute spreads using the methodology described in

Novy-Marx and Velikov (2016). Additional details on the spread estimation process are provided

in Appendix C.

2.2 Portfolio Construction and Evaluation Choices

In our empirical analysis we focus on some of the most prominent estimators in the low-risk litera-

ture. First, we use the total volatility of historical returns (hist) as advocated by Blitz and van Vliet

(2007), Baker and Haugen (2012), and Blitz et al. (2013). This measure is arguably the simplest one

in our analysis as it is based on the sample volatility, more precisely the equally-weighted volatility

of simple returns, σ̂hist
i , for all stocks in the eligible universe i = 1, . . . , N .

Secondly, we employ the seminal RiskMetrics method to estimate the risk of a stock (RiskMetrics,

1996; Mina & Xiao, 2001; Zumbach, 2007). It is closely related to the hist methodology but places

more weight on more recent observations in the calculation of volatility. Henceforth, σewma
i,t is

estimated using an exponential weighted moving average (ewma) as

σ̂ewma
i,t =

√
λ(σ̂ewma

i,t−1 )2 + (1− λ)r2i,t−1 , (1)

where λ ∈ [0, 1] is the decay factor or alternatively φ = −log(2)/log(λ) is the half-life parameter.

It is worth noting that the ewma methodology is the equivalent of an I-GARCH(1) estimator and

thus represents the broad literature that forecasts volatility with GARCH models (e.g., Bollerslev,

1986; Engle, 2001).

Another refinement of the hist methodology is to use idiosyncratic volatility of residual returns

instead of total returns to determine risk. This is commonly done relative to the Fama and French

(1993) three-factor model as proposed by Ang et al. (2006), which was later validated by Ang et al.
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(2009) and Dimson et al. (2017), and can be computed by performing the following regression

rei,t = α̂i + β̂i,mrem,t + β̂i,SMBrSMB,t + β̂i,HMLrHML,t + ε̂ff3i,t , (2)

where m, SMB, and HML refer to the three factors of the Fama and French (1993) three-factor

model and the superscript e denotes returns in excess of the risk-free rate, rf . The standard

deviation of ε̂ff3i,t , denoted as σ̂ff3
i , is then taken as the risk measure. Thus, we refer to this risk

estimator as ff3. We also include the idiosyncratic volatility of residuals in the Fama and French

(2015) five-factor model (ff5) as it represents a more contemporaneous methodology that is likely

employed by practitioners to isolate idiosyncratic risk.

Another prevalent research stream focuses on measuring risk with market beta (Fama & MacBeth,

1973; Asness et al., 2014; Frazzini & Pedersen, 2014). We follow this stream and calculate our beta

risk measure as

β̂i,m = ρ̂ei,m
σ̂e
i

σ̂e
m

, (3)

where ρ̂ei,m is the sample correlation of rei and rem and σ̂e
i and σ̂e

m are the sample standard deviations

of rei and rem respectively.

For our risk estimation described above and for portfolio construction, we require a minimum of

90% of daily return observations for the respective lookback period being available, and we filter

out stocks with missing return on the last day of our lookback period. Furthermore, we exclude

stocks that have missing volume observations for the last month in the portfolio formation.3

Regarding our choices with respect to the methodological setup of portfolio construction, we are

strongly guided by Hasler (2023), Walter et al. (2023), and Soebhag et al. (2024). We exclude

decision forks that are commonly used in studies on factors that are based on book variables (e.g.,

the exclusion of financial or utility companies) as the rationale for these decisions does not apply
3The missing data filtration is included to keep the lookback period decision variable clean. For example, if data

for a stock was only available for the past four years, it shall not be included in the 5-year lookback portfolio. Note
that the literature is usually less strict on missing data filters, but as we focus on practically relevant portfolios we
raise the bar on data coverage; e.g., Hou et al. (2020) and the references therein use a minimum of just 15 daily return
observations for total volatility, 100 daily return observations for idiosyncratic volatility, and from 120 to 750 daily
return observations for beta estimation. The volume filter is included because this paper focuses on realistic portfolios
and it is known that especially at the beginning of our sample the CRSP daily file is prone to data errors (Bryzgalova
et al., 2024). To avoid biases due to data errors, such data are excluded. In addition, it is realistic to assume that
investors in practice would not trade stocks with insufficient data or for which they must assume their data are flawed.
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to low-risk investing. Furthermore, we expand their decision variables by choices that may not be

used in academic research yet but are relevant for practitioners.

1. Portfolio Type: Current studies that examine the influence of methodological choices in the

portfolio construction context solely focus on studying long-short factor portfolios (Hasler,

2023; Walter et al., 2023; Soebhag et al., 2024). These portfolios are not only difficult (or even

impossible) to implement for many market participants but also involve taking on leverage,

which could be seen as contradictory to the goal of investing with low risk. However, the

recent work by Blitz et al. (2024) shows that taking on some leverage can significantly improve

the performance of low-risk portfolios. Because of this, we consider three portfolio types in

our analysis: a long-only portfolio, which we denote as 100-0; a fully-invested limited-short

portfolio, that takes on a leveraged position of 130% on the least risky stocks and finances this

by short selling 30% of the riskiest stocks (130-30); and the standard dollar-neutral long-short

portfolio that goes long on the least risky stocks and short on their most risky counterparts

with equal investment amounts (100-100).

2. Size Exclusion: To mitigate the effects of small and potentially illiquid stocks on the results,

we employ the two most commonly used size filters as in Walter et al. (2023) and Soebhag

et al. (2024). These filters either exclude stocks that are smaller than either the 10%, or 20%

thresholds based on the market capitalization of NYSE stocks.

3. Price Exclusion: Price exclusions aim to reduce the impact of trading frictions like short

sale constraints on the outcome of the portfolios. Again, we focus on the most popular choices

as identified by Hasler (2023), Walter et al. (2023), and Soebhag et al. (2024) and exclude

stocks with a price below either 1$, or 5$ in the portfolio formation.

4. Lookback Window: The lookback for the case of low-risk portfolios specifies how much

past data are used to estimate the respective risk measure for the portfolio formation. This is

an important choice as one needs to balance the trade-off between more timely risk estimates

and having too few data points. The low-risk literature shows considerable variation in the

choice of lookback windows, spanning from as short as one month (e.g., Ang et al., 2006) to

as long as five years (e.g., Frazzini & Pedersen, 2014). To keep the analysis manageable, we

limit our focus to three specific settings, using data from the past one, three, and five years

to compute our risk estimators.4

4It is important to note that for the ewma estimator, the decay factor, λ effectively sets the lookback window for
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5. Rebalancing Frequency: We include monthly and annual rebalancing frequencies, as these

are the two most common choices in academic literature (Hasler, 2023; Walter et al., 2023).

To capture further relevant frequencies, we consider weekly and quarterly rebalancing.

6. Portfolio Buckets: We include groups of three (tercile), five (quintile), and ten (decile)

portfolios, with the latter two also employed in Hasler (2023) and Walter et al. (2023). Tercile

portfolios are included, as they are used in replication studies (e.g., Jensen et al., 2023) and

in some low-risk strategies (see Traut, 2023).

7. Weighting Scheme: The weighting scheme is among the most frequently controlled decision

criteria. Although equally-weighted portfolios tend to incur in higher trading costs, value-

weighted portfolios often underperform, as many anomalies are more pronounced in smaller

stocks. Therefore, same as in Hasler (2023), Walter et al. (2023), and Soebhag et al. (2024),

we consider both equal and value weighting.

Unlike current studies that primarily address methodological uncertainty in portfolio construction,

we expand our analysis to include decisions related to portfolio evaluation. Although existing

studies often focus solely on average returns (Hasler, 2023; Walter et al., 2023) or Sharpe ratios

(Soebhag et al., 2024), we evaluate our portfolios using a range of criteria (based on daily frequency

t): Cumulative return (Cum.), average return (Ret.), alpha, standard deviation (Std.), Sharpe ratio

(SR), information ratio (IR) and maximum drawdown (m. DD).5

We calculate all performance measures for the total period of our sample, that is, we include all

the T = 11, 598 daily (stock, benchmark, and portfolio) returns from January 1978 to December

2023. In addition, we compare them with a benchmark based on the value-weighted market return

of the Fama and French (2015) five-factor model.

Last, building on findings by Detzel et al. (2023), who demonstrate that the performance of factor

models is significantly affected by the inclusion or exclusion of transaction costs, we consider two

the analysis. Because of this, we choose λ for the respective lookback windows such that 99.9% of the probability
mass falls within one, three and five years, leading to λ of 0.97, 0.99 and 0.995 respectively. These decay factors are
much larger than 0.94 that is recommended for daily data by RiskMetrics (RiskMetrics, 1996; Mina & Xiao, 2001;
Zumbach, 2007). In Appendix E we formalize the selection of the respective λ for the different lookback windows and
show that the average performance of ewma portfolios with λ = 0.94 is inferior to that of portfolios with λ = 0.97,
making the former infeasible from a practical perspective.

5For a detailed definition of all performance measure see Appendix B. It is worth noting that, while calculating
cumulative returns for long-only and limited-short portfolios is straightforward, there is no consensus on how they
should be calculated for dollar-neutral long-short portfolios. Following Detzel et al. (2023), we adopt an interest-free
cash account methodology, which is further detailed in Appendix D.
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cases for each portfolio configuration. The first excludes transaction costs, as is common in low-risk

investing literature, while the second includes them to evaluate whether low-risk strategies hold

up under realistic implementation assumptions. To our knowledge, we are the first to incorporate

transaction costs in assessing portfolio modeling choices, allowing us to examine the robustness of

low-risk investing across various portfolio decisions in a realistic market environment.6

Taking into account all feasible portfolio constructions and performance evaluation combinations,

we examine a total of 136,080 performance metrics for 9,720 portfolios. Our complete empirical

setup is illustrated as a decision tree in Figure 2.

3 Empirical Results

3.1 General Overview of the Portfolio Strategies

To obtain a general understanding of the impact of construction choices on low-risk (sorting) port-

folios, we first focus on the dispersion and similarity of all the investigated strategies. We begin by

examining whether Sharpe ratios are robust to varying construction choices. Note that the results

for other performance measures, such as cumulative returns, mean returns, standard deviation, and

maximum drawdown, are comparable. Therefore, we restrict our attention to arguably the most

important risk-adjusted performance measure: the Sharpe ratio. However, dispersion results for

other performance measures are available upon request.

In Figure 3, we plot the annualized Sharpe ratios gross (without transaction costs) and net (with

transaction costs) for all the 9, 720 portfolios. These include the 3, 240 × 2 Sharpe ratios of long-

only portfolios (100-0), 3, 240 × 2 of limited-short portfolios (130-30), and 3, 240 × 2 of dollar-

neutral (100-100) portfolios.7 The x-axis shows the 6,480 different versions for any portfolio type,

ordered from low to high Sharpe ratios. For the fully-invested portfolios (100-0 and 130-30), the

benchmark (BM) is the Sharpe ratio of the market-cap-weighted portfolio, whereas for the dollar-

neutral portfolios (100-100), it is a Sharpe ratio of zero. The color grading indicates the percentile

ranking of Sharpe ratios.

Figure 3 reveals substantial variation in the annualized Sharpe ratios obtained. Depending on

how the low-risk portfolio is constructed and evaluated, the Sharpe ratios range between −0.55

6The details about how we estimate transaction costs can be found in Appendix C.
7For a detailed analysis of the impact of transaction costs, refer to Section 3.3, and for the methodology used to

calculate transaction costs, see Appendix C.
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Figure 2: Decision tree of portfolio construction and evaluation choices
The figure illustrates all possible decision paths for our portfolio construction and evaluation. We consider the paths of eight
portfolio construction decision forks and two performance evaluation forks for our sorting portfolios. The portfolio construction
forks include the estimation of risk (historical volatility, exponentially weighted moving average, idiosyncratic volatility with
respect to the Fama and French 3-factor and 5-factor model, or market beta), portfolio type (long-only (100-0), limited-short
(130-30), or long-short (100-100)), small stocks exclusion dependent on market equity quantiles (none, smaller than p(10)
or p(20)), stock price exclusion (none, smaller than $1 or $5), lookback window for the risk estimators (past returns of the
previous one, three, or five years), the number of sorting portfolio buckets (three, five, and ten), and weighting scheme (equal-
or value-weighting). The performance evaluation forks include transaction costs (with or without) and the performance metric
(cumulative return, average return, alpha, standard deviation, Sharpe ratio, information ratio, or maximum drawdown). In
total we construct 9,720 portfolios for which we calculate 136,080 performance metrics.

and 1.75 for 100-0, between −1.00 and 2.07 for 130-30, and between −1.85 and 0.69 for 100-100

portfolios. While both fully-invested portfolios exhibit similar average and median Sharpe ratios,

slightly above 0.6, the figure indicates that the uncertainty arising from construction choices is

larger for portfolios that permit short selling. Another notable finding is the difference in relative

performance against the benchmark in terms of Sharpe ratio. While 97% of the 100-0 portfolios

and 83% of the 130-30 portfolios outperform the market-cap benchmark Sharpe ratio of 0.5, only

17% of the 100-100 portfolios achieve a positive Sharpe ratio.
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Figure 3: Sharpe ratios of all portfolios across portfolio construction choices
This figure plots the (annualized) gross (without transaction costs) and net (with transaction costs) Sharpe ratios for all the
9, 720 portfolios, respectively 3, 240×2 Sharpe ratios of long-only (100-0), 3, 240×2 of limited-short (130-30), and the 3, 240×2

of dollar-neutral (100-100) portfolios across varying portfolio construction choices. The x-axis shows the 6,480 different versions
for any portfolio type ordered from low to high Sharpe ratio. For the fully-invested portfolios (100-0 and 130-30) the benchmark
(BM) is the Sharpe ratio of the value-weighted market portfolio, whereas for the dollar-neutral portfolio (100-100) it is a Sharpe
ratio of zero. The color grading indicates the percentile ranking of Sharpe ratios. All the portfolios are based on 11,598 daily
out-of-sample returns from January 1978 to December 2023.

Notably, our finding that only 17% of dollar-neutral long-short portfolios achieve a positive Sharpe

ratio is significantly weaker than the results reported in the existing literature on low-risk anomaly

(see Traut, 2023, for an overview). There are two main reasons for this. First, unlike previous stud-

ies, we incorporate transaction costs into our portfolios, which significantly impacts performance

(see Section 3.3). Second, we compute the long-short strategies as dollar-neutral portfolios, whereas

some other studies consider beta-neutral portfolios. The dollar-neutral portfolios tend to have a

short-bias, as the beta of the long positions (low risk stocks) is frequently smaller than the beta
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of the short positions (high risk stocks). Despite this drawback, we adopt dollar-neutral portfolios

for simplicity and to avoid introducing additional construction choices. This approach is also the

most commonly used methodology in the low-risk literature (Traut, 2023).

Another perspective on the portfolio construction uncertainty problem is to evaluate the similarity

in performance across strategies. In Figure 4, we present the average correlation between risk

estimators in the off-diagonal elements and the average correlation within a risk estimator on

the diagonal. The reported correlation numbers are for portfolios that include transaction costs;

however, the gross results are nearly identical. Since we consider different specifications of low-risk

portfolios, we find that correlations are generally high. Nevertheless, several noteworthy patterns

emerge across portfolio types and risk estimators.
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Figure 4: Average correlations between and within portfolios including transaction costs
This figure shows the average correlation between portfolios formed on different risk estimators in the off-diagonal elements
and the average correlation within portfolios based on the same risk estimator on the diagonal. The analysis is carried out
separately for long-only (100-0), limited-short (130-30), and long-short (100-100) portfolios. Correlations are calculated based
on 11,598 daily out-of-sample returns including transaction costs from January 1978 to December 2023.

First, consistent with the findings on Sharpe ratio dispersion, we observe that correlation numbers

decrease if short selling is permitted. For the 100-0 portfolios, the average correlation is 0.9, for

130-30 it drops to 0.76, and for 100-100 it is at 0.79. Second, the correlations between portfolios

for a given risk estimator (diagonals) are generally higher than the correlations between different

risk estimators (off-diagonals). Third, portfolios sorted on beta exhibit the lowest correlations, both

with portfolios based on other risk estimators and with other beta portfolios (with the exception of
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100-100). This highlights the instability of beta as a portfolio construction variable, given that it

relies on an OLS regression coefficient, which is susceptible to potentially large estimation errors.

However, beta-based portfolios also offer the largest diversification potential when combined with

other low-risk portfolios.

Analyzing the out-of-sample distribution of various portfolio performance measures and the corre-

lations between portfolio returns, we conclude that increasing the degrees of freedom in portfolio

construction exacerbates the problem of methodological uncertainty. This further supports the

idea that weight constraints in portfolio construction are beneficial to the robustness of a strategy

and can help mitigate the dispersion of the results.8 To quantify the methodological uncertainty

of various practically relevant low-risk portfolios, we focus on the concept of nonstandard errors in

the next section.

3.2 Nonstandard Errors Versus Standard Errors

To evaluate the influence of construction choices on portfolio performance and to make our results

comparable with existing literature, we calculate standard and nonstandard errors for our collection

of low-risk portfolios. In our definition of nonstandard errors, we are guided by Soebhag et al.

(2024) who use Sharpe ratios as their evaluation criterion. We define nonstandard errors as the

cross-sectional standard deviation of Sharpe ratios across all portfolios (1,296 in total) for a given

low-risk estimator and portfolio type. Standard errors, in contrast, are calculated as the average

monthly Sharpe ratio (time-series) standard deviation across all construction choices for the same

estimator and portfolio type.9 The annualized results of both error types are shown in Figure 5.

Similar to the findings of Menkveld et al. (2024) on nonstandard errors in research design choices

and those of Soebhag et al. (2024) and Walter et al. (2023) on nonstandard errors in factor portfolio

sorts, we find that nonstandard errors for low-risk portfolios are generally too large to be ignored

and are substantial relative to standard errors. A key contribution of our analysis is the distinction

between portfolio types. While the existing literature predominantly focuses on long-short dollar-

neutral portfolios, we demonstrate that for long-only portfolios and many fully-invested portfolios

with limited short selling, nonstandard errors tend to be smaller and are often lower than their
8See, for example, Jagannathan and Ma (2003), who demonstrate that imposing (even incorrect) weight constraints

reduces risk in large portfolios and prove that it is equivalent to using a shrinkage estimator for the covariance matrix,
as in Ledoit and Wolf (2004) and De Nard (2022).

9For the average standard error definition see Menkveld et al. (2024) and Walter et al. (2023).
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Figure 5: Standard vs. nonstandard errors
This figure plots the nonstandard error (stripes) and standard error (no pattern) for each risk estimator and portfolio type.
The nonstandard error is defined as the cross-sectional standard deviation of monthly Sharpe ratios for all decision variables.
The standard error is the mean time-series standard error of monthly Sharpe ratios across all decision variables. The results are
grouped by portfolio type: long-only (100-0), limited-short (130-30), and long-short (100-100). Both error types are annualized
and calculated based on 11,598 daily out-of-sample returns from January 1978 to December 2023.

standard error counterparts. Overall, our findings indicate that nonstandard errors are less sta-

ble across portfolio types and risk estimators compared to standard errors. Furthermore, as the

degrees of freedom increase (i.e., more short selling allowed), the relative impact of nonstandard

errors (compared to standard errors) becomes larger. This finding offers promising implications

for investors who face various (regulatory or risk management) constraints on their portfolio hold-

ings. For these investors, nonstandard errors pose less of a challenge than suggested by previous

literature.

To evaluate how much each construction choice of our decision tree influences portfolio outcomes

we follow Walter et al. (2023) and calculate the mean absolute differences (MAD) for a pair of

paths (i, j) that only differ in one construction choice made at a specific fork, f , of our decision

tree. This set of matched paths for a combination of estimator e and portfolio type p that only
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differs in one fork f can be defined as

Se,p
f = {(i, j)|ci,n = cj,n ∀n ∈ {1, . . . , 7}, ci,f 6= cj,f} , (4)

where p = (c1, . . . , cF ) is a path that is defined as a vector of choices, cf , from Figure 2. Therefore,

each path corresponds to one portfolio based on estimator e and portfolio type p. Note that

we include transaction costs as a construction choice in this case because it is calculated before

the performance measure and its treatment as a construction choice grants insights into how its

inclusion/neglection affects portfolio performance.

We calculate the differences in performance measures over the entire sample for each of the matched

paths in Se,p
f . We also create an overall estimate across all matched paths, Sp

f , for each portfolio

type across all risk estimators. In this case, we also include the risk estimator as a decision fork for

which we calculate the MAD. The mean absolute difference for each fork f , portfolio type p, and

estimator e can be formalized as

MADp
f =

1

|Se.p
f |

∑
(i,j)∈Se,p

f

|me
i −me

j | , (5)

for a selected performance measure m. With the MAD we can quantify the impact of each con-

struction choice on a selected performance measure. We report MADs across risk estimators and

portfolio types. MAD results for Sharpe ratios are presented in Table 1 where decision forks are

sorted from the largest overall impact (top) to the smallest overall impact (bottom) across all risk

estimators. Further results for mean return, standard deviation, and maximum drawdown are

presented in Tables A.1–A.3.

From Table 1, we identify the portfolio construction decisions that induce the largest variation

in Sharpe ratios when all other decisions at the respective fork are held constant. Generally, the

ranking among risk estimators and (fully-invested) portfolio types is relatively consistent.

The most influential decision fork is the weighting scheme, followed by the consideration of trans-

action costs and the choice of the risk estimator. Across all risk estimators (Overall), the MAD

impact of equally-weighting versus value-weighting on the SR ranges from 0.15 (100-0) to 0.20

(130-30). In comparison, MAD impact of transaction cost on the SR ranges from 0.07 (100-0) to
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Table 1: Mean absolute differences at decision forks with respect to Sharpe ratio
This table presents the average mean absolute Sharpe ratio differences p.a., as defined in Equation 5, for each decision fork.
For each fork, we compare Sharpe ratio differences between matched decision paths that vary only in the specific decision
under consideration. These mean absolute differences are calculated individually for each risk estimator and averaged across all
matched paths, as well as jointly for all risk estimators. The columns report averages for all risk estimators combined (Overall)
and for individual risk estimators separately. The forks (rows) are ordered by their overall impact in descending order. The
analysis is carried out separately for long-only (100-0), limited-short (130-30), and long-short (100-100) portfolios. Note that
the impact of the risk estimator can only be calculated for the joint analysis across all estimators.

Portfolio Fork Overall Hist. EWMA FF3 FF5 Beta

Weighting 0.15 0.17 0.17 0.14 0.13 0.15
Trans. Costs 0.07 0.04 0.07 0.03 0.03 0.20
Risk Estimator 0.07
Rebalancing 0.03 0.02 0.03 0.01 0.01 0.07
Lookback 0.02 0.02 0.02 0.02 0.02 0.05
Drop Size 0.02 0.01 0.01 0.01 0.01 0.07
Port. Buckets 0.02 0.02 0.02 0.01 0.01 0.05

100-0

Drop Price 0.01 0.00 0.00 0.00 0.00 0.02

Weighting 0.20 0.21 0.23 0.15 0.15 0.28
Trans. Costs 0.16 0.11 0.18 0.09 0.09 0.31
Risk Estimator 0.10
Drop Size 0.06 0.05 0.06 0.05 0.05 0.10
Rebalancing 0.06 0.04 0.07 0.04 0.04 0.10
Lookback 0.06 0.05 0.06 0.05 0.05 0.07
Port. Buckets 0.05 0.03 0.04 0.03 0.03 0.10

130-30

Drop Price 0.02 0.02 0.03 0.02 0.02 0.03

Trans. Costs 0.17 0.16 0.20 0.18 0.18 0.15
Weighting 0.12 0.12 0.13 0.13 0.13 0.09
Risk Estimator 0.11
Port. Buckets 0.10 0.11 0.11 0.12 0.12 0.05
Drop Size 0.10 0.11 0.11 0.12 0.12 0.04
Lookback 0.09 0.09 0.09 0.11 0.11 0.04
Rebalancing 0.08 0.08 0.09 0.08 0.09 0.04

100-100

Drop Price 0.03 0.04 0.04 0.04 0.04 0.01

0.17 (100-100), and the choice of risk estimator from 0.07 (100-0) to 0.11 (100-100). The smallest

impact generally arises from the price exclusion fork. Additionally, the length of the lookback win-

dow, rebalancing frequency, number of portfolio buckets, and size restrictions induce considerable

and quantitatively similar variations in Sharpe ratios.10

Consistent with the nonstandard error analysis in Figure 5, we find that portfolio construction

choices have the most significant impact on ewma and beta portfolios, while idiosyncratic volatility
10Note that for the “Risk Estimator” fork only the Overall score can be computed.
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portfolios (ff3 and ff5) are the least affected. Finally, we observe larger (aggregated) MAD numbers

for dollar-neutral portfolios, followed by fully-invested limited long-short portfolios and long-only

portfolios. This provides further evidence that nonstandard errors and thus the impact of decision

forks become more pronounced as the degrees of freedom in portfolio construction increase.

Tables A.1–A.3 show a similar relationship between the impact of portfolio construction choices

and other performance measures. For instance, the ‘weighting’ decision fork’s MAD of annualized

mean returns, as well as for standard deviation and maximum drawdown, consistently exceeds 1%

p.a. across all estimators and portfolio types. A few notable cases emerge: As expected, transaction

cost considerations have less influence on risk metrics such as standard deviation and maximum

drawdown. However, other portfolio construction choices, such as the number of portfolio buckets

and size filters, are more relevant for risk metrics compared to returns. For long-only portfolios

and in terms of out-of-sample risk metrics, the choice of the risk estimator is the most influential

portfolio construction decision.

Based on the reported MADs across the portfolio construction choices, the consideration of the risk

estimator (estimation methodology and lookback window length) and transaction costs in our study

are, besides the weighting scheme, the most influential decisions. While the impact of the weighting

scheme is generally known and already controlled for in many studies, these newly added decision

forks are (practically) more relevant than the construction choices already covered by Hasler (2023),

Walter et al. (2023), and Soebhag et al. (2024). Given the different order of decision forks across

the performance metrics we investigate, portfolio managers should carefully evaluate their options

to optimize the performance metric(s) that align most closely with their objectives. Focusing solely

on average returns is insufficient to capture the complete picture.

3.3 Transaction Costs

A topic often overlooked in the academic literature on (factor) portfolio selection and nonstandard

error analysis is the careful consideration of transaction costs. As shown in Table 1, the impact

of including transaction costs in portfolio evaluation is as significant as the decision to invest

using an equally-weighted or value-weighted approach. Therefore, an important contribution of

our paper is the examination of the robustness of low-risk investing under realistic and practically

relevant transaction cost considerations. To achieve this, we do not assume fixed transaction costs

across stocks and time. Instead, we approximate transaction costs using half spreads, following the
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methodology of Novy-Marx and Velikov (2016) that is detailed in Appendix C.

To highlight the impact of transaction costs, we present the first quartile (Q1), median (Q2), and

third quartile (Q3) of cumulative returns over time for 648 long-only portfolios, across different risk

estimators and transaction cost considerations in Figure 6. The cumulative returns are plotted on

a logarithmic scale for improved readability, and we compare the performance dispersion with our

market benchmark (in black).
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Figure 6: Interquartile range (Q1 and Q3) of cumulative returns for long-only portfolios with and
without transaction costs vs. benchmark
The plot shows the interquartile range of cumulative returns for long-only portfolios, both without (left panels) and with (right
panels) transaction costs. Each color represents a different risk estimator, illustrating the range across 648 portfolios. The
black line represents the benchmark, a value-weighted market portfolio. The median cumulative return is highlighted in darker
shade. The returns are calculated based on 11,598 daily out-of-sample returns including transaction costs from January 1978
to December 2023 and presented on a log-10 y-axis.

From Figure 6, we observe that the impact of transaction costs is substantial, affecting not only

Sharpe ratios but also cumulative returns. Similar findings can be drawn from Table A.1 for MADs
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of average returns. Additionally, we find that the impact of transaction costs varies across risk

estimators and, as shown in Table A.1, also across portfolio types. The panels on the left in Fig-

ure 6 illustrate that without considering transaction costs, all risk estimators exhibit comparable

performance (in terms of dispersion). Notably, for most of the analyzed period and for all risk

estimators, approximately 75% of the portfolios outperform the benchmark. However, once trans-

action costs are deducted, the net outperformance decreases, and the impact varies significantly

across risk estimators. Specifically, we find that the ewma and, particularly, the beta portfolios

experience the largest negative impact from transaction costs due to higher turnover; see also the

top panel of Table A.1. The panels on the right in Figure 6 reveal that, even with transaction

costs, most of the total and idiosyncratic volatility portfolios continue to outperform the bench-

mark, albeit with smaller margins and reduced dispersion. In contrast, only around 50% of the

ewma portfolios and a minority of the beta portfolios manage to outperform the benchmark once

transaction costs are considered. In conclusion, the inclusion of transaction costs has a profound

influence on determining which portfolios perform best.

To closer examine what choices impact transaction costs, we focus on the two components that

determine the total transaction costs of our portfolios, turnover, and stock-level costs. We calculate

the total transaction costs of portfolio p at time t as

TCp,t =

Np,t∑
i=1

toi,p,tci,t , (6)

where ci,t is the stock-level transaction cost, Np,t is the number of stocks at the time of rebalancing,

and toi,p,t is the turnover of stock i, calculated as the absolute difference in weights before and

after rebalancing, toi,p,t = |wi,p,t − w̃i,p,t−|. More details on our transaction costs calculation can

be found in Appendix C.

We first examine which portfolios have high turnover to see what characteristics lead to higher

transaction costs due to more extensive reallocations of portfolios—the first part of the right-

hand side in (6). In Figure 7, we plot the median yearly turnover for portfolios split by rebalancing

frequencies and risk estimators as these are arguably the most influential choices on turnover. While

the overall median turnover across all portfolios is 256%, the median turnover varies significantly

by rebalancing frequency: 464% for weekly rebalancing, 270% for monthly rebalancing, 160% for
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quarterly rebalancing, and 85% for yearly rebalancing. For each rebalancing frequency, a consistent

pattern emerges: Total and idiosyncratic volatility portfolios exhibit greater robustness over time,

resulting in lower turnover compared to ewma and beta portfolios. This difference is a primary

reason why net-of-transaction-cost results are less favorable for ewma and beta portfolios. The

higher turnover for ewma portfolios arises because these portfolios place greater weight on recent

observations to improve volatility estimation. However, this approach has the drawback of being

more erratic and susceptible to influence from a few observations, depending on the chosen decay

factor, λ. Instead, the turnover for beta portfolios is elevated due to the instability of Ordinary

Least Squares (OLS) regression coefficient estimates.
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Figure 7: Median yearly turnover for portfolios with varying rebalancing frequency and risk esti-
mator
The plot illustrates median yearly turnover for portfolios across construction choices. Turnover is measured for portfolios
grouped by the same risk estimator and rebalancing frequency: weekly (w), monthly (m), quarterly (q), and yearly (y). The
median yearly turnover across all portfolios is 272%. The turnover is calculated based on 11,598 daily out-of-sample returns
from January 1978 to December 2023.

Next, we investigate what characteristics lead to higher transaction costs due to putting more

weight on stocks that are more costly to trade—the second part of the right-hand side in (6). In

Figure 8, we analyze the median transaction costs (per unit of turnover) and split our results by

portfolio type, portfolio weighting, and size filters. We perform this “size focused” split because, like
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many other anomalies, the low-risk anomaly is criticized for shorting expensive small stocks, which

results in high transaction costs that are often overlooked (Baker et al., 2011; Novy-Marx & Velikov,

2022). We find that the overall median transaction cost per unit of turnover across all portfolios

is 0.45%. However, it varies by portfolio type: 0.37% for long-only portfolios, 0.46% for limited

long-short portfolios, and 0.55% for dollar-neutral portfolios. This shows that, as criticized by the

literature, the short leg of low-volatility portfolios is indeed more costly to trade. As expected, we

observe lower costs per turnover for value-weighted portfolios compared to equally-weighted ones,

as well as for portfolios that exclude small stocks. Both the weighting methodology and the size

filter influence exposure to expensive small stocks, directly impacting the costs per unit of turnover

for the respective portfolios. Notably, however, only equally weighted portfolios without a size filter

exhibit exceptionally high trading costs, while other specifications show comparatively small costs.

These findings highlight why “Drop Size” is one of the influential portfolio construction choices

discussed in Section 3.2 and should not be underestimated.

Finally, we examine the impact of transaction costs on conclusions drawn on which characteristics

lead to superior portfolio performance. We do this by selecting the top 100 winner and loser port-

folios in terms of average Sharpe ratio (for fully-invested long-only and limited-short portfolios)11

and count how often each decision variable in each decision fork is represented in the winner and

loser portfolios. We repeat the process twice, once with and once without transaction costs and

plot the results in Figure 9.

The focus of this analysis lies on how transaction costs change the conclusions about preferences

for decision variables. A more extensive discussion on which characteristics are commonly shared

by winner and loser portfolios can be found in Section 3.5.

We observe the following influences of transaction costs on the choices in our decision forks:

• Risk Estimator: Without transaction costs, most winner portfolios are constructed using

beta as the risk estimator. However, due to its high turnover, the majority of winner portfolios

with transaction costs employ the hist or ewma estimators, which are more robust and thus

yield better net performance. Among loser portfolios, the beta estimator is predominantly

used, regardless of whether transaction costs are accounted for or not.

• Portfolio Type: Although limited-short portfolios are more expensive than long-only port-
11We exclude long-short portfolios from this analysis because they involve zero-net investment, making them fun-

damentally different from the other two portfolio types, which are fully invested. This fundamental difference does
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Figure 8: Median transaction costs per unit of turnover for portfolios with varying portfolio type,
weighting scheme, and size filters
The plot illustrates median costs per unit of turnover for portfolios across construction choices, categorized by three decision
variables: size exclusion, weighting scheme, and portfolio type. Size exclusion refers to the exclusion of stocks that are smaller
than the 0, 10, or 20 percentile of stocks with respect to market equity. Weighting scheme indicates whether portfolios are
constructed using value-weighing (vw) or equal-weighing (ew). Considered portfolio types are long-only (100-0), limited-short
(130-30), and long-short (100-100) portfolios. The median costs per turnover across all portfolios within a portfolio type is
indicated by the dashed black lines. The median transaction costs per unit of turnover across all portfolios is 0.45%. The costs
are calculated based on 11,598 daily out-of-sample returns from January 1978 to December 2023.

folios, they appear more frequently among winners and less frequently among losers when

transaction costs are included. This indicates that the performance gains from shorting out-

weigh the relatively high costs.

• Size Exclusion: Without considering transaction costs, most winner portfolios do not apply

a size filter. However, when transaction costs are factored in, approximately 75% of winner

portfolios exclude at least the smallest 10% of stocks due to their high trading costs. The

opposite trend can be observed for loser portfolios.

• Price Exclusion: Transaction costs appear to have no impact on the relative prevalence of

price filters in winner and loser portfolios.

• Loockback Window: For winner portfolios, the distribution of lookback periods remains
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Figure 9: Relative appearance of decision choices in top 100 and bottom 100 long-only and limited-
short portfolios by gross and net Sharpe ratio
The figure illustrates the relative occurrence of decision variables in the top 100 winner portfolios (upper panel) and bottom
100 loser portfolios (lower panel) based on Sharpe ratios. Portfolios, including both long-only and limited-short strategies,
are ranked by Sharpe ratio, and the relative appearance of decision variables is calculated for each decision fork. The plot
distinguishes between portfolios evaluated with transaction costs (black bars) and without transaction costs (white bars). The
Sharpe ratios are calculated based on 11,598 daily out-of-sample returns from January 1978 to December 2023.

relatively consistent across both gross and net cases. In contrast, for loser portfolios, the

relative share of portfolios with shorter lookback periods increases when transaction costs are

considered. This is intuitive, as shorter lookback periods enable more responsive risk estima-

tors, which increase turnover and, consequently, transaction costs that diminish performance.

• Rebalancing Frequency: Without transaction costs, most winning portfolios are the ones

that are rebalanced weekly. Such frequent rebalancing, despite being widely ignored in the

literature, allows the portfolio to adapt faster to changing risk dynamics of the market.

not allow meaningful comparison between the portfolio types.
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However, as shown before, these portfolios have the highest turnover. Hence, when transaction

costs are considered, most winning portfolios are rebalanced quarterly or even yearly. In

contrast, loser portfolios are primarily rebalanced annually without transaction costs, but

shift to weekly rebalancing when transaction costs are considered.

• Portfolio Buckets: We do not find a strong impact of transaction costs on the choice of

portfolio buckets.

• Weighting Scheme: All winning portfolios are equal-weighted, regardless of whether trans-

action costs are accounted for or not. By contrast, losing portfolios are all value-weighted

when transaction costs are excluded, while approximately 80% shift to equal-weighting when

costs are considered. This aligns with our earlier analysis, as equal-weighted portfolios incur

higher costs than value-weighted ones.

From our analysis, we conclude that portfolio construction choices significantly impact the turnover

and average stock-level costs of low-risk portfolios that ultimatly determine total transaction costs.

We argue that for practical applications, transaction costs must be properly accounted for, as they

can significantly influence inferences about what portfolio construction choices lead to positive

performance. Our findings show that transaction costs influence most notably the selection of the

optimal risk estimator, the use of size filters, and the preferred rebalancing frequency.

3.4 Evaluation of Implementable Portfolios

In this section, we focus on the portfolios that are arguably the most relevant from a practical

investor perspective: long-only (100-0) and fully-invested limited-short (130-30). In Table 2, we

present the percentage of portfolios that outperform the benchmark across various performance

measures.

In general, we observe that the percentage of portfolios outperforming the benchmark is higher

for long-only portfolios across performance measures and transaction cost considerations. This is

primarily due to the reduced impact of nonstandard errors, as discussed in Section 3.2. Specifically,

around 80% of the gross cumulative portfolio returns are higher for long-only portfolios compared

to the value-weighted benchmark, while 63% of net cumulative returns outperform. However, these

percentages are noticeably smaller when comparing annualized arithmetic mean returns: 66% of

long-only portfolios outperform the benchmark in terms of gross arithmetic mean returns, but only
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Table 2: Percentage of portfolios that outperform their benchmark with and without transaction
costs
The table reports the percentage of portfolios within each portfolio type that outperform their respective benchmarks based on
six performance metrics: cumulative return, average return, alpha, standard deviation, Sharpe ratio, and maximum drawdown.
The results are further divided by whether transaction costs are included in the evaluation. The benchmark is a value-weighted
market portfolio. The statistics are calculated based on 11,598 daily out-of-sample returns from January 1978 to December
2023.

Portfolio Trans. Costs Cum. Ret. Alpha Std. SR m. DD

100-0 w/o 80% 66% 45% 100% 99% 97%
100-0 with 63% 44% 20% 100% 94% 96%

130-30 w/o 78% 69% 47% 100% 94% 84%
130-30 with 45% 31% 14% 100% 72% 72%

44% outperform in terms of net arithmetic mean returns.

This difference can be attributed to compounding effects, where higher (lower) volatility leads to

lower (higher) geometric average returns. This phenomenon, which disproportionately affects the

most volatile stocks and benchmarks, is further discussed by van Vliet et al. (2011) and Spitznagel

(2021). Arithmetic averages ignore compounding effects, which are particularly important when

comparing portfolios with significantly different volatility characteristics, as is evident in our em-

pirical analysis. Arguably, geometric (compounded) average returns are more relevant to long-term

investors than arithmetic (simple) averages.

The next column of Table 2 shows the percentage of portfolios with positive alpha from the daily

Fama and French (2015) five-factor regression (B.3). For gross returns, less than half of the port-

folios exhibit positive alpha, and for net returns, less than a fifth do. Novy-Marx (2015) argues

that the low-beta and low-volatility anomalies can be explained by a three-factor model augmented

with a profitability factor. Similarly, Fama and French (2016) find that their five-factor model,

which adds profitability and investment factors to the original three-factor model, explains returns

on low-risk-sorted portfolios. Nevertheless, Blitz and Vidojevic (2017) and related work contend

that the low-risk anomaly is not fully explained by the five-factor model: “But as long as the data

indicates that portfolios with higher risk do not generate higher returns, it is premature to conclude

that the low-risk anomaly has been resolved.”

The last three columns of Table 2 present risk and risk-adjusted performance metrics. As we focus

on low-risk portfolios, it comes as no surprise that risk metrics improve relative to the benchmark.

Nevertheless, it is noteworthy that the standard deviation of all portfolios consistently remains
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lower than the benchmark, while Sharpe ratios and maximum drawdowns improve across nearly

all portfolio constructions. We find that around 99% (97%) of the gross SRs (m. DD) are larger

(lower) for the long-only portfolios compared to the benchmark, respectively 94% (96%) for net

SRs (m. DD).

For the implementable fully-invested 100-0 and 130-30 portfolios net of transaction costs, the

average Sharpe ratio across all 6,480 variations is 0.57, which exceeds the benchmark Sharpe ratio

of 0.5. In Figure 10, we illustrate the distribution of these Sharpe ratios, categorized by various

construction choices.
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Figure 10: Average Sharpe ratios for long-only and limited-short portfolios by decision variable
including transaction costs
The plot displays the average annualized Sharpe ratios of long-only and limited-short portfolios after accounting for transaction
costs. Each bar represents portfolios sharing a specific decision variable within a given decision fork, differentiated by colors.
The black lines show the inter quartile range of Sharpe ratios. Sharpe ratios are calculated based on 11,598 daily out-of-sample
returns from January 1978 to December 2023.

The results with respect to SR can be summarized as follows:

• Risk Estimator: The total volatility estimator performs the best, followed by ewma and

idiosyncratic volatility estimators. Portfolios based on beta sorting perform the worst by far

and also have the largest dispersion.
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• Portfolio Type: Interestingly, long-only (100-0) portfolios outperform limited-short (130-

30) portfolios and exhibit lower dispersion.

• Size Exclusion: The inclusion of size filters boosts performance.

• Price Exclusion: The impact of price filters is less pronounced, but higher price filters are

preferred.

• Lookback Window: There is no obvious pattern regarding length of the lookback window.

A shorter lookback of one year provides a more attractive distribution by increasing Q1.

• Rebalancing Frequency: Less frequent rebalancing (quarterly or annual) outperforms

weekly and monthly updates.

• Portfolio Buckets: A smaller number of buckets, resulting in a larger number of stocks per

portfolio, outperforms.

• Weighting Scheme: Equally-weighted portfolios substantially outperform value-weighted

portfolios, though they also exhibit markedly larger dispersion.

Note that in unreported results, we analyze which portfolio construction choices are most suitable

for benchmarked managers. We find that for the implementable portfolios net of transaction costs

with a positive information ratio (IR), the relative distribution of construction choices closely

mirrors the Sharpe ratio evaluation above.

3.5 Winner Loser Evaluation

It is natural to ask which implementable portfolio construction choices perform the best and worst

with respect to various performance measures, net of transaction costs. To address this question, we

report the relative counts of decision variables of the 100 winner (W) and 100 loser (L) portfolios in

Table 3. We highlight results in (light) green if they are more than (two) three standard deviations

away from an equal distribution of variables in a positive direction. For winning portfolios, this

indicates that the variable is overrepresented, while for loser portfolios, it suggests the variable is

underrepresented. Conversely, we apply (light) red coloring for the opposite scenario. We further

report the construction choices of the top and bottom five Sharpe ratio portfolios across different

portfolio types and transaction cost considerations in Table A.4.

The comparison of winner and loser portfolios provides a more detailed evaluation of each perfor-
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mance metric. Similar to the assessment of the Sharpe and Information ratios in Section 3.4, we

can determine which decisions enhance or weaken performance. If a decision variable appears more

frequently in winner portfolios and less frequently in loser portfolios (W and L entries are green),

it indicates an improvement in performance for that metric. Conversely, if it is more common

in loser portfolios and less common in winner portfolios (W and L entries are red), it signals a

decline in performance. Additionally, this comparison allows us to assess how decisions impact the

dispersion of results. If a variable is overrepresented in the winner and loser portfolios (W entry

is green and L entry is red), it leads to greater dispersion in outcomes. In contrast, if a variable

is underrepresented in the winner and loser portfolios (W entry is red and the L entry is green),

it suggests that the variable leads to a more persistent performance across portfolios. Therefore,

beyond identifying performance-enhancing characteristics, this analysis also reveals which decision

variables contribute to greater variability or more stable results.

The results of this analysis can be summarized as follows:

• Risk Estimator: Portfolios based on idiosyncratic volatility improve mean returns and in-

formation ratios, while those based on beta result in lower average returns. Interestingly,

beta-sorted portfolios reduce volatility, whereas idiosyncratic volatility-sorted portfolios in-

crease it. Total volatility estimators (hist and ewma) perform best in terms of Sharpe ratios,

whereas the beta estimator performs the worst. Additionally, beta-sorted portfolios show a

wider dispersion in maximum drawdown.

• Portfolio Type: With the exception of maximum drawdown and information ratio, where

limited-short portfolios result in worse performance, they increase dispersion across all other

performance metrics. This further emphasizes the heightened impact of nonstandard errors

as the degrees of freedom increase.

• Price Exclusion: Price filters appear to have a positive impact on results. With the excep-

tion of information ratio, they increase the likelihood of being among winning portfolios and

reducing the likelihood of being among losing portfolios across all performance metrics.

• Size Exclusion: Size filters significantly reduce the dispersion of the results for average

returns, alpha, and volatility. In addition, they are clearly beneficial to improve Sharpe

ratios and reduce maximum drawdowns.

• Lookback Window: There is no clear winner regarding the length of the lookback window.
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Table 3: Relative appearance of portfolio construction choices in top 100 winner (W) and loser (L)
portfolios for long-only and limited-short portfolios with transaction costs
The table presents the relative occurrence of decision variables in the top 100 winner (W) and bottom 100 loser (L) portfolios,
ranked according to various performance metrics. These portfolios, encompassing both long-only and limited-short strategies,
are evaluated net of transaction costs. The relative appearance of decision variables is calculated for each decision fork across
the following performance metrics: average return, alpha, volatility, Sharpe ratio, information ratio, and maximum drawdown.
Results are highlighted in (light) green if they are more than (two) three standard deviations away from an uniform distribution
of variables in a positive direction. For winning portfolios, this indicates that the variable is overrepresented, while for loser
portfolios, it suggests the variable is underrepresented. Conversely, we apply (light) red coloring for the opposite scenario. The
performance metrics are calculated based on 11,598 daily out-of-sample returns from January 1978 to December 2023.

Return Alpha Volatility SR IR max. DD

Variable W L W L W L W L W L W L

Risk Estimator
hist 0% 5% 12% 13% 0% 0% 34% 5% 1% 9% 3% 7%
ewma 21% 11% 33% 24% 7% 0% 57% 11% 6% 13% 3% 17%
ff3 42% 3% 0% 19% 0% 50% 0% 5% 48% 9% 1% 6%
ff5 37% 4% 0% 19% 0% 46% 0% 5% 45% 9% 4% 6%
beta 0% 77% 55% 25% 93% 4% 9% 74% 0% 60% 89% 64%

Portfolio Type
100-0 36% 22% 24% 7% 15% 2% 1% 20% 99% 31% 55% 17%
130-30 64% 78% 76% 93% 85% 98% 99% 80% 1% 69% 45% 83%

Size Exclusion
0 43% 91% 64% 92% 81% 78% 22% 91% 34% 96% 47% 95%
10 47% 6% 25% 5% 10% 10% 41% 6% 42% 4% 26% 5%
20 10% 3% 11% 3% 9% 12% 37% 3% 24% 0% 27% 0%

Prize Exclusion
0 36% 50% 34% 56% 12% 55% 25% 51% 44% 54% 34% 56%
1 36% 36% 29% 40% 28% 33% 26% 36% 38% 38% 32% 37%
5 28% 14% 37% 4% 60% 12% 49% 13% 18% 8% 34% 7%

Lookback Window
1y 73% 60% 42% 51% 40% 22% 77% 65% 40% 53% 53% 60%
3y 18% 27% 26% 27% 32% 39% 13% 22% 48% 31% 28% 26%
5y 9% 13% 32% 22% 28% 39% 10% 13% 12% 16% 19% 14%

Rebalancing Frequency
w 18% 60% 1% 83% 39% 13% 0% 60% 33% 64% 8% 59%
m 3% 35% 3% 17% 26% 13% 15% 34% 1% 33% 39% 25%
q 40% 4% 38% 0% 20% 18% 56% 4% 29% 3% 42% 6%
y 39% 1% 58% 0% 15% 56% 29% 2% 37% 0% 11% 10%

Portfolio Buckets
3 72% 9% 12% 21% 26% 2% 27% 8% 100% 16% 36% 7%
5 9% 22% 26% 27% 44% 8% 48% 22% 0% 29% 27% 23%
10 19% 69% 62% 52% 30% 90% 25% 70% 0% 55% 37% 70%

Weighting Scheme
vw 18% 17% 0% 10% 0% 86% 0% 20% 0% 0% 100% 14%
ew 82% 83% 100% 90% 100% 14% 100% 80% 100% 100% 0% 86%

Generally, shorter lookback windows lead to greater dispersion in outcomes, while longer

windows tend to reduce it.
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• Rebalancing Frequency: Less frequent rebalancing schedules (quarterly and annual) are

better for returns, alpha, Sharpe ratio, and information ratio, but worse for reducing volatility.

Monthly and quarterly rebalancing perform best in terms of maximum drawdown.

• Portfolio Buckets: Larger portfolios (e.g., terciles) are the least prevalent in the loser

bucket and frequently among the most prevalent in the winner bucket. Thus larger portfolios

generally lead to improved performance.

• Weighting Scheme: As observed previously, the results for equally-weighted versus value-

weighted portfolios are mixed. Equal-weighted portfolios increase the dispersion of results

with regard to average returns, alpha, Sharpe ratio, and information ratio. However, for

volatility, equally-weighted portfolios are the clear winners, whereas for maximum drawdown,

value-weighted portfolios perform best.

Note that the results discussed above regarding the construction choices for winner and loser port-

folios are robust over time and during recessions. In Appendix F, we present and discuss results

for the above winner loser analysis to check its robustness over time and during recession periods.

The results of our time-series analyses align with the overall results presented here, reinforcing the

robustness of our findings. Thus, we find that the long-term results are not significantly driven by

single events, and the top (bottom) portfolio constructions consistently outperform (underperform)

over time.

3.6 A Recommendation for Nonstandard Errors in Low-Risk Portfolios

As the final step in our analysis, we aim to recommend an attractive and robust construction

methodology for low-risk portfolios. While we acknowledge that this ex-post approach is susceptible

to a look-ahead bias, it nonetheless provides valuable insights into the potential upper limit of low-

risk portfolio performance.

Based on our findings, we conclude that the performance of low-risk premia is highly sensitive to

the construction choices made during the portfolio-building process. To enhance the robustness

of our evaluation, we constructed an aggregated ensemble low-risk portfolio by selecting the most

favorable variations at each decision point in the construction process. The return time series of

this ensemble portfolio is computed as the equally-weighted net return time series of all portfolios

deemed optimal according to our evaluation criteria.
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For our ensemble portfolio, we adopt the following construction choices:

1. Risk Estimator: We select total and idiosyncratic volatility risk estimators, as they achieve

the highest Sharpe ratios while maintaining robust mid-range performance during crises.

2. Portfolio Type: We focus on long-only and limited-short strategies, given that most dollar-

neutral long-short strategies yield negative Sharpe ratios. This approach also aligns with our

emphasis on implementable portfolios for benchmarked managers.

3. Size Exclusion: Size filters at the 10% and 20% levels are applied, as portfolios with these

filters deliver the highest Sharpe ratios and demonstrate robust performance during crises.

However, this choice reduces the likelihood of extreme winners.

4. Price Exclusion: We adopt a stringent price filter, excluding stocks priced below 5 USD.

This filter consistently outperforms less restrictive alternatives across all summary statistics,

during crises, and over time.

5. Lookback Window: All available lookback periods are incorporated due to inconclusive

results. While a 1-year lookback excels in crisis performance and information ratios, it pro-

duces more extreme summary statistics. Conversely, a 5-year lookback performs best over

longer periods, with comparable Sharpe and information ratios across time.

6. Rebalancing Frequency: Quarterly and yearly rebalancing frequencies are selected for their

superior Sharpe and information ratios, consistent performance across summary statistics, and

robustness during crises and over time.

7. Portfolio Buckets: Portfolios are divided into three buckets, as this configuration achieves

the highest Sharpe and information ratios, strong summary statistics, and solid long-term

performance. However, it tends to produce more extreme outcomes during crises.

8. Weighting Scheme: Equal weighting is chosen for its superior Sharpe and information

ratios, despite resulting in more extreme outcomes across summary statistics, during crises,

and over time.

This analysis results in a total of 72 portfolios, forming the foundation of our ensemble portfolio.

An illustration of our selected subset of variables is outlined in Figure A.2. To ensure that the

evaluation reflects realistic investment scenarios, we limit our focus to portfolios that account for

transaction costs.
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The cumulative returns of the ensemble portfolio (red), its underlying portfolios (gray), and the

benchmark (black) are illustrated in Figure 11. The ensemble portfolio significantly outperforms

the benchmark over the sample period, with much of the outperformance driven by the dot-com

bubble in the early 2000s. Notably, while low-risk strategies underperformed during the buildup of

the bubble, they recovered strongly thereafter. Additionally, the relatively low dispersion among

the underlying portfolios suggests that nonstandard errors for this subset are minimal.
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Figure 11: Cumulative returns of the benchmark and the ensemble portfolio with its underlying
strategies
The figure illustrates cumulative returns for an ensemble portfolio (red), derived as the average of 72 individual portfolios
(gray), alongside a value-weighted market benchmark (black). The 72 portfolios represent those with optimal decision variables
identified in our analysis. These are all portfolios that are built with total or idiosyncratic volatility risk estimators, long-only or
limited-short portfolio types, 10% or 20% size exclusion, a price filter of $5, all lookback periods, quarterly or yearly rebalancing,
three portfolio buckets, and equal weighting scheme. The cumulative returns are calculated based on 11,598 daily out-of-sample
returns from January 1978 to December 2023 and presented on a log-10 y-axis.

The outperformance of the ensemble strategy is further examined in Table 4, which presents se-
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lected performance metrics. The results indicate that the ensemble low-risk portfolio consistently

outperforms the benchmark across all metrics. It achieves a higher average return and a lower stan-

dard deviation, resulting in a superior Sharpe ratio and a positive information ratio. Additionally,

the ensemble portfolio exhibits a smaller maximum drawdown compared to the benchmark, under-

scoring its resilience during market downturns. We further evaluate whether the outperformance

of the ensemble portfolio in terms of lower standard deviation and higher Sharpe ratio compared

to the benchmark is statistically significant and economically meaningful. The bold numbers for

standard deviation (Std.) and Sharpe ratio (SR) indicate that these differences are statistically

significant at the 1% significance level for Std. and at the 5% significance level for SR.12

Table 4: Summary statistics of ensemble portfolio vs. benchmark
The table holds portfolio summary statistics for an ensemble portfolio, derived as the average of 72 individual portfolios and
for a value-weighted market benchmark. The 72 portfolios represent those with optimal decision variables identified in our
analysis. These are all portfolios that are built with total or idiosyncratic volatility risk estimators, long-only or limited-short
portfolio types, 10% or 20% size exclusion, a price filter of $5, all lookback periods, quarterly or yearly rebalancing, three
portfolio buckets, and equal weighting scheme. The presented performance metrics are cumulative return, average return,
average standard deviation, Sharpe ratio, information ratio, and maximum drawdown. The standard deviation and Sharpe
ratio of the ensemble portfolio are printed in bold as they are statistically significantly different from those of the benchmark at
the 1% and 5% levels, respectively. The performance metrics are calculated based on 11,598 daily out-of-sample returns from
January 1978 to December 2023.

Portfolio Cum. Ret. Std. SR IR m. DD

Ensemble 358.43 14% 14% 0.68 0.13 49%
Benchmark 172.66 13% 17% 0.50 55%

Overall, this section demonstrates that, when managed effectively, low-risk strategies can achieve

substantial outperformance relative to the market. Furthermore, it highlights that nonstandard

errors have a small impact on well-managed portfolios that are diversified across the most attractive

and robust portfolio construction choices.

4 Conclusion

This study provides a comprehensive examination of the impact of portfolio construction choices

on the performance of low-risk portfolios. Our analysis highlights that the methodological decisions
12To test the outperformance of the ensemble portfolio over the benchmark a two-sided p-value for the null hypoth-

esis of equal standard deviations, respectively equal Sharpe ratios, is obtained by the prewhitened HACPW method
described in Ledoit and Wolf (2011, Section 3.1), respectively Ledoit and Wolf (2008, Section 3.1). As the out-of-
sample size is very large at 11,598, there is no need to use the computationally more involved bootstrap method de-
scribed in Ledoit and Wolf (2011, Section 3.2), respectively in Ledoit and Wolf (2008, Section 3.2), which is preferred
for small sample sizes.
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during the portfolio construction process significantly influence performance metrics and are crucial

for understanding and enhancing investment outcomes.

This paper makes several significant contributions to the literature. First, it systematically eval-

uates the influence of risk estimators on low-risk portfolio performance, demonstrating that the

choice of estimation methodology—specifically, the risk estimator choice together with its lookback

window length—accounts for a big share of performance variability. Second, the study investigates

the role of transaction costs and performance evaluation metrics, shedding light on the trade-offs

between return enhancement and cost efficiency—areas that have been largely neglected in the

current literature (Hasler, 2023; Walter et al., 2023; Soebhag et al., 2024). We demonstrate that

these enhancements are essential, as both significantly shape preferences and inferences regarding

portfolio construction choices. Third, our work contributes by focusing on realistic, implementable

portfolios that address practical challenges such as transaction costs and leverage constraints. By

bridging the gap between theory and practice, it offers valuable insights for both academics and

practitioners.

Overall, this study highlights the dispersion in decision choices for sorting variable computation

and portfolio construction. It underscores the risk of nonstandard errors while demonstrating how

construction choices can be optimized to maximize the benefits of the low-risk anomaly. Our

results indicate that optimal low-risk portfolios should also be constructed in a low-risk manner.

This means that choices that arguable reduce risk, such as the exclusion of small and penny stocks,

avoidance of extreme portfolio buckets, long rebalancing cycles, and little short selling lead to

consistent performance over time that is not driven by single events.

Our findings provide valuable guidance for practitioners seeking to implement low-risk strategies

and highlight opportunities for further research. Future studies should extend the impact anal-

ysis of practical low-risk portfolio construction choices by exploring more efficient and optimized

portfolios, such as the global minimum variance (GMV), equal risk contribution (ERC), or hierar-

chical risk parity (HRP) portfolio. Whereas most sorting portfolios rely solely on stock-specific risk

measures, efficient portfolios also incorporate cross-sectional information through the covariance

matrix. Since large-dimensional portfolio optimization and covariance matrix estimation are more

prone to errors compared to simple univariate risk sorting, the choice of portfolio optimization and

covariance matrix estimators introduces even greater variability in the results. However, the need

for optimization routines significantly increases computational requirements, making the inclusion
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of such portfolios challenging when evaluating nonstandard errors.
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Appendices

A Additional Figures and Tables
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Figure A.1: Size of the eligible out-of-sample universe over time
The figure displays the total number of stocks that are available in our eligible universe for portfolio construction at each day
between January 1978 and December 2023.
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Figure A.2: Decision tree of selected portfolio construction choices for ensemble portfolio
The figure illustrates our selected portfolio construction choices for an ensemble portfolio across all decision paths. The selected
choices per decision forks are as follows: risk estimation using historical volatility or idiosyncratic volatility with respect to the
Fama and French 3-factor or 5-factor model, long-only (100-0) or limited-short (130-30) portfolios, exclusion of small stocks
that are smaller than 10% or 20% of stocks regarding market equity, exclusion of stocks with prices below $5, estimation of risk
using the past one, three, or five years of return data, sorting stocks into three portfolio buckets, and equally weighting stocks.
With our evaluation we focus on metrics after the deduction of transaction costs. In total our ensemble portfolio includes 72
portfolios.

42



Table A.1: Mean absolute differences at decision forks with respect to mean returns
This table presents the average mean absolute return differences p.a., as defined in Equation 5, for each decision fork. For
each fork, we compare average return differences between matched decision paths that vary only in the specific decision under
consideration. These mean absolute differences are calculated individually for each risk estimator and averaged across all
matched paths, as well as jointly for all risk estimators. The columns report averages for all risk estimators combined (Overall)
and for individual risk estimators separately. The forks (rows) are ordered by their overall impact in descending order. The
analysis is carried out separately for long-only (100-0), limited-short (130-30), and long-short (100-100) portfolios. Note that
the impact of the risk estimator can only be calculated for the joint analysis across all estimators.

Portfolio Fork Overall Hist. EWMA FF3 FF5 Beta

Weighting 1.39% 1.29% 1.26% 1.23% 1.23% 1.93%
Risk Estimator 0.90%
Trans. Costs 0.87% 0.47% 0.83% 0.38% 0.37% 2.32%
Port. Buckets 0.47% 0.51% 0.54% 0.31% 0.36% 0.64%
Rebalancing 0.31% 0.18% 0.29% 0.16% 0.15% 0.79%
Lookback 0.30% 0.18% 0.27% 0.19% 0.21% 0.64%
Drop Size 0.29% 0.18% 0.20% 0.14% 0.15% 0.79%

100-0

Drop Price 0.10% 0.06% 0.06% 0.05% 0.05% 0.27%

Trans. Costs 1.95% 1.46% 2.17% 1.39% 1.38% 3.36%
Weighting 1.69% 1.50% 1.56% 1.46% 1.46% 2.46%
Risk Estimator 1.33%
Drop Size 0.75% 0.68% 0.75% 0.63% 0.63% 1.05%
Rebalancing 0.68% 0.51% 0.83% 0.50% 0.50% 1.06%
Lookback 0.67% 0.55% 0.70% 0.63% 0.64% 0.82%
Port. Buckets 0.55% 0.42% 0.52% 0.45% 0.45% 0.91%

130-30

Drop Price 0.27% 0.25% 0.28% 0.24% 0.24% 0.36%

Trans. Costs 3.49% 3.18% 4.42% 3.25% 3.26% 3.33%
Weighting 2.41% 2.40% 2.59% 2.44% 2.45% 2.18%
Risk Estimator 2.35%
Drop Size 1.96% 2.16% 2.38% 2.16% 2.17% 0.94%
Port. Buckets 1.75% 1.87% 2.20% 1.93% 1.88% 0.88%
Lookback 1.68% 1.76% 1.89% 1.92% 1.92% 0.91%
Rebalancing 1.52% 1.48% 2.01% 1.54% 1.56% 1.01%

100-100

Drop Price 0.72% 0.80% 0.83% 0.81% 0.80% 0.36%
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Table A.2: Mean absolute differences at decision forks with respect to standard deviation
This table presents the average mean absolute standard deviation differences p.a., as defined in Equation 5, for each decision
fork. For each fork, we compare differences in standard deviation between matched decision paths that vary only in the specific
decision under consideration. These mean absolute differences are calculated individually for each risk estimator and averaged
across all matched paths, as well as jointly for all risk estimators. The columns report averages for all risk estimators combined
(Overall) and for individual risk estimators separately. The forks (rows) are ordered by their overall impact in descending order.
The analysis is carried out separately for long-only (100-0), limited-short (130-30), and long-short (100-100) portfolios. Note
that the impact of the risk estimator can only be calculated for the joint analysis across all estimators.

Portfolio Fork Overall Hist. EWMA FF3 FF5 Beta

Risk Estimator 1.71%
Weighting 1.30% 1.54% 1.58% 1.40% 1.39% 0.58%
Port. Buckets 0.73% 1.03% 1.04% 0.44% 0.44% 0.72%
Drop Size 0.23% 0.22% 0.21% 0.11% 0.11% 0.52%
Lookback 0.18% 0.25% 0.20% 0.15% 0.15% 0.15%
Rebalancing 0.15% 0.16% 0.27% 0.07% 0.07% 0.19%
Drop Price 0.08% 0.09% 0.09% 0.05% 0.05% 0.14%

100-0

Trans. Costs 0.01% 0.00% 0.01% 0.00% 0.00% 0.06%

Weighting 1.92% 2.22% 2.52% 1.61% 1.54% 1.69%
Risk Estimator 1.83%
Drop Size 0.47% 0.45% 0.44% 0.45% 0.46% 0.54%
Port. Buckets 0.44% 0.32% 0.33% 0.33% 0.30% 0.92%
Rebalancing 0.25% 0.28% 0.38% 0.17% 0.17% 0.26%
Lookback 0.24% 0.28% 0.23% 0.23% 0.23% 0.21%
Drop Price 0.23% 0.24% 0.25% 0.21% 0.21% 0.23%

130-30

Trans. Costs 0.05% 0.02% 0.04% 0.02% 0.02% 0.12%

Port. Buckets 4.09% 4.01% 4.55% 3.33% 3.30% 5.24%
Weighting 4.00% 5.12% 5.59% 3.79% 3.56% 1.96%
Risk Estimator 2.01%
Lookback 1.13% 1.49% 0.65% 1.05% 0.99% 1.48%
Drop Size 0.76% 0.93% 1.05% 0.74% 0.74% 0.33%
Rebalancing 0.59% 0.58% 0.85% 0.35% 0.34% 0.82%
Drop Price 0.36% 0.35% 0.43% 0.39% 0.40% 0.22%

100-100

Trans. Costs 0.10% 0.10% 0.13% 0.11% 0.11% 0.06%
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Table A.3: Mean absolute differences at decision forks with respect to maximum drawdown
This table presents the average mean absolute maximum drawdown differences, as defined in Equation 5, for each decision fork.
For each fork, we compare differences in maximum drawdown between matched decision paths that vary only in the specific
decision under consideration. These mean absolute differences are calculated individually for each risk estimator and averaged
across all matched paths, as well as jointly for all risk estimators. The columns report averages for all risk estimators combined
(Overall) and for individual risk estimators separately. The forks (rows) are ordered by their overall impact in descending order.
The analysis is carried out separately for long-only (100-0), limited-short (130-30), and long-short (100-100) portfolios. Note
that the impact of the risk estimator can only be calculated for the joint analysis across all estimators.

Portfolio Fork Overall Hist. EWMA FF3 FF5 Beta

Risk Estimator 4.84%
Weighting 3.89% 1.86% 2.21% 1.30% 1.27% 12.82%
Port. Buckets 3.10% 3.63% 3.01% 2.85% 2.83% 3.19%
Drop Size 2.13% 1.56% 1.47% 1.15% 1.15% 5.30%
Lookback 1.28% 1.22% 0.73% 1.44% 1.32% 1.68%
Rebalancing 1.20% 1.01% 1.76% 0.73% 0.66% 1.81%
Drop Price 0.59% 0.42% 0.42% 0.36% 0.36% 1.36%

100-0

Trans. Costs 0.45% 0.22% 0.40% 0.14% 0.14% 1.36%

Weighting 6.62% 4.96% 5.97% 6.17% 6.65% 9.36%
Port. Buckets 5.30% 5.35% 6.83% 3.72% 3.53% 7.08%
Risk Estimator 4.72%
Drop Size 3.56% 3.14% 3.33% 2.68% 2.59% 6.06%
Lookback 3.18% 2.85% 2.74% 3.21% 3.13% 3.95%
Trans. Costs 3.17% 2.23% 4.11% 1.76% 1.71% 6.05%
Rebalancing 2.90% 2.64% 3.13% 2.48% 2.44% 3.82%

130-30

Drop Price 1.61% 1.60% 1.84% 1.47% 1.45% 1.67%

Weighting 6.46% 6.48% 6.28% 6.29% 6.60% 6.65%
Trans. Costs 4.95% 3.91% 4.86% 4.03% 4.05% 7.90%
Port. Buckets 4.75% 3.93% 4.39% 4.31% 4.36% 6.75%
Risk Estimator 3.69%
Drop Size 2.79% 2.78% 2.65% 3.00% 3.19% 2.32%
Lookback 2.57% 2.29% 2.37% 2.80% 3.00% 2.36%
Rebalancing 2.56% 2.34% 3.21% 2.43% 2.51% 2.30%

100-100

Drop Price 1.45% 1.33% 1.40% 1.57% 1.61% 1.34%
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Table A.4: Characteristics of top and bottom portfolios
This table shows the construction choices of the top five and bottom five portfolios in term of average Sharpe ratio. The analysis is conducted separately for each portfolio type:
long-only (100-0) on top, limited-short (130-30) in the middle, and long-short (100-100) on the bottom as well as without transaction costs (left) and with transaction costs
(right). The Sharpe ratio is calculated based on 11,598 daily out-of-sample returns from January 1978 to December 2023.

Top 5 Bottom 5 Top 5 Bottom 5

Top 2 3 4 5 5 4 3 2 Bot. Top 2 3 4 5 5 4 3 2 Bot.

100-0 without transaction costs 100-0 with transaction costs

SR 1.75 1.74 1.72 1.61 1.59 0.45 0.45 0.45 0.39 0.34 0.78 0.75 0.75 0.75 0.75 -0.17 -0.43 -0.51 -0.54 -0.55
Risk Estimator beta beta beta beta beta beta beta beta beta beta beta ewma hist hist ewma beta beta beta beta beta
Drop Size 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Drop Prize 0 0 0 1 0 1 0 0 1 0 5 5 5 1 5 0 1 1 0 0
Lookback 1y 3y 5y 5y 1y 5y 3y 5y 1y 1y 5y 5y 3y 3y 5y 1y 1y 1y 1y 1y
Rebalancing w w w w w y y y y y y w w w q m m w w m
Buckets 10 10 10 10 5 10 10 10 10 10 10 10 10 10 10 5 10 10 10 10
Weighting ew ew ew ew ew vw vw vw vw vw ew ew ew ew ew ew ew ew ew ew

130-30 without transaction costs 130-30 with transaction costs

SR 2.06 2.02 1.99 1.97 1.96 0.29 0.28 0.28 0.18 0.17 0.88 0.87 0.86 0.86 0.85 -0.63 -0.69 -0.81 -0.97 -1.00
Risk Estimator beta beta beta beta beta beta beta beta beta beta ewma ewma ewma ewma ewma ewma beta beta beta beta
Drop Size 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0
Drop Prize 0 0 0 0 0 1 0 1 1 0 5 5 5 5 5 0 1 0 1 0
Lookback 1y 3y 5y 5y 3y 5y 3y 3y 1y 1y 1y 1y 1y 1y 1y 1y 1y 1y 1y 1y
Rebalancing w w w w w y y y y y q q y q y w m m w w
Buckets 5 5 5 10 10 10 10 10 10 10 5 10 10 5 5 10 10 10 10 10
Weighting ew ew ew ew ew vw vw vw vw vw ew ew ew ew ew ew ew ew ew ew

100-100 without transaction costs 100-100 with transaction costs

SR 0.69 0.69 0.65 0.63 0.58 -0.58 -0.58 -0.61 -0.64 -0.65 0.27 0.27 0.27 0.26 0.26 -1.63 -1.64 -1.67 -1.68 -1.85
Risk Estimator ewma ewma ewma ewma ff3 ff5 ff5 hist ff3 ff5 ff5 ewma ff5 ff3 ff3 ewma ff5 ff3 ff5 ewma
Drop Size 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Drop Prize 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Lookback 1y 1y 1y 1y 1y 5y 3y 5y 5y 5y 1y 1y 1y 1y 1y 1y 3y 1y 1y 1y
Rebalancing q q m m q w w w w w y y q q y w w w w w
Buckets 10 10 10 10 10 5 3 3 3 3 10 10 10 10 10 5 10 10 10 10
Weighting ew ew ew ew ew ew ew ew ew ew vw vw vw vw vw ew ew ew ew ew
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B Performance Measures

I Cumulative Return (Cum.): That we also denote as C and is defined as

C =

T∏
t=1

(1 + rp,t)− 1 , (B.1)

where rp,t is the return of portfolio p at time t.

II Average Return (Ret.): That we also denote as r̄p and is defined as

r̄p =
1

T

T∑
t=1

rp,t , (B.2)

III Alpha: Defined as the estimated intercept, α̂, from the regression against the Fama and

French (2015) five-factor model

rep,t = α̂+ β̂p,mrem,t + β̂p,SMBrSMB,t + β̂p,HMLrHML,t

+ β̂p,RMW rRMW,t + β̂p,CMArCMA,t + ε̂p,t ,
(B.3)

where rep,t is the return in excess of the risk free rate for portfolio p and ε̂p,t is the estimated

error term.

IV Standard Deviation (Std.): Defined as

σ̂p =

√√√√ 1

T − 1

T∑
t=1

(rp,t − r̄p)2 , (B.4)

V Sharpe Ratio (SR): Defined as

SR =
1
T

∑T
t=1 r

e
p,t√

1
T−1

∑T
t=1(r

e
p,t)

2
, (B.5)

VI Information Ratio (IR): Defined as

IR =
1
T

∑T
t=1 rp,t − rm,t√

1
T−1

∑T
t=1(rp,t − rm,t)2

, (B.6)
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where rm,t is the return of the market taken from the Fama and French (2015) five-factor

model that serves as our benchmark.

VII Maximum Drawdown (m. DD): Defined as the maximum observed loss from a peak to a

trough of a portfolio before a new peak is attained:

m. DD = max
t∈(0,T )

[
max
τ∈(0,t)

C(τ)− C(t)

C(τ) + 1

]
. (B.7)

C Transaction Costs Calculation

We calculate turnover and transaction costs following Novy-Marx and Velikov (2016). The turnover

at time t of stock i in portfolio p is denoted as toi,p,t. The total transaction costs of portfolio p at

time t is denoted as TCp,t. Both can be expressed as

toi,p,t = |wi,p,t − w̃i,p,t−| , (C.1)

TCp,t =

Np,t∑
i=1

toi,p,tci,p,t , (C.2)

where ci,t represents the one-way transaction cost for stock i at time t, Np,t is the total number of

stocks at time t in p, and wi,p,t is the portfolio weight of stock i after rebalancing at time t, while

w̃i,p,t− denotes the weight of stock i before rebalancing.

The net-of-costs return of the portfolio p, denoted as rnetp , is given by:

rnetp,t = rgrossp,t − TCp,t , (C.3)

where rgrossp,t is the return of p that ignores costs.

Following the literature on transaction costs, we calculate ci,t as half spreads. Our primary measure

for spreads are quoted spread estimates following Chung and Zhang (2014). We discard days with

non-positive close, bid, or ask prices. Additionally, we ensure that bid-ask spreads are non-negative

for each observation. The relative bid-ask half-spreads, sQi,m,t, are given by:
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sQi,m,t =
Ai,m,t −Bi,m,t

Mi,m,t
, (C.4)

where Ai,m,t and Bi,m,t are the closing ask and bid prices quoted on day t of monthm for stock i. We

denote the prevailing end-of-day mid-quote as Mi,m,t =
Ai,m,t+Bi,m,t

2 . Following Chung and Zhang

(2014), we then calculate sQi,m as the average of sQi,m,t estimates over month m, after discarding days

with spreads exceeding 50% of the mid-quote. Furthermore, we treat sQi,m as missing if we have

fewer than 12 valid observations for a given month.

We compute a second set of effective spread estimates, sCHL
i,m , using the methodology proposed by

Abdi and Ranaldo (2017). As recommended by them, we utilize the 2-day corrected version of

their estimator. We discard observations with non-positive close, high, or low prices, and exclude

stock-months with fewer than 12 valid observations. The proportional cost estimator is given by:

sCHL
i,m =

1

Tm

Tm∑
t=1

√
max {(pi,m,t − ηi,m,t)(pi,m,t − ηi,m,t+1), 0} , (C.5)

where pi,m,t and ηi,m,t represent the log of the closing price and the log mid-range, respectively, with

ηi,m,t =
log(Hi,m,t)+log(Li,m,t)

2 on day t. If the leading mid-range ηi,m,t+1 is missing, we substitute it

with the prevailing log midpoint, as suggested by Abdi and Ranaldo (2017). Furthermore, if after

the prevailing imputation the price, high, or low are either missing or zero, we see a day with zero

volume, or the high equals the low, we treat the respective day as missing.

For all stocks, we set si,m equal to sQi,m if available, and use the CHL estimator sCHL
i,m otherwise. For

all stocks where si,m is missing, we employ the non-parametric method proposed by Novy-Marx and

Velikov (2016). We impute missing si,m values with the respective sj,m of stock j, which minimizes

the following distance:

√
(rank(ME)i,m − rank(ME)j,m)2 + (rank(FF3IV OL)i,m − rank(FF3IV OL)j,m)2 , (C.6)

where ME represents market equity, and FF3IV OL refers to the idiosyncratic volatility derived
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from Fama and French (1993) 3-factor model regressions, estimated using three months of daily

data. Because we observe some outliers in our spread estimators, we winsorize our sQi,m and sCHL
i,m

estimators at the 99.5 percentile before we perform the imputation. Our final cost estimate is

calculated as half spread as

ci,m =
si,m
2

. (C.7)

D Cumulative Returns for Long-Short Portfolios

We define the cumulative return, C, of a long-short portfolio as

C =
T∏
t=1

(1 + rL,t − rS,t)− 1 , (D.1)

where rL,t and rS,t represent the daily returns on the long and short portfolios, respectively. This

expression captures the cumulative performance of a strategy that initially buys $1 of the long

portfolio and short-sells $1 of the short portfolio. Motivated by regulation, the strategy posts cash

collateral equal to 50% of the total equity positions in a non-interest-bearing margin account.

Alternatively, this can be viewed as the performance of a trader’s book when the margin account

earns the risk-free rate, but the trader’s firm charges for the use of capital at the same rate. A

common alternative approach, as discussed by Daniel and Moskowitz (2016), assumes that investors

do not pay fees and thus earn the risk-free rate. However, we prefer our formulation because it

more accurately reflects economic profitability and avoids inflating performance in high-inflation

environments.

Furthermore, we allow portfolio weights to float freely between rebalancing dates but long and short

portfolios are scaled to have the same portfolio value over time to ensure that the strategy remains

market neutral. This is in line with standard literature on return modeling including transaction

costs (e.g., Novy-Marx & Velikov, 2016; Detzel et al., 2023).
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E ewma RiskMetrics Specification

In this section we formalize how we match our selection of λ with the respective lookback periods

and demonstrate why the recommendation of λ = 0.94 for daily data (RiskMetrics, 1996; Mina &

Xiao, 2001; Zumbach, 2007) is suboptimal for our analysis.

Rearranging the definition of our ewma estimator in (1) it can be shown that the weights of return

observation rt−k can be calculated as

wt−k = (1− λ) · λk . (E.1)

Following RiskMetrics (1996), the corresponding λ̃ for a given k and cumulative weight target, W ,

can be calculated as

λ̃ = eln(1−W )/k . (E.2)

We set W = 99.9% and calculate λ̃ for one, three and five years respectively. The corresponding

λ̃ is roughly equal to 0.97, 0.99, and 0.995. For more intuition, these λ ensure that the weights

within one, three, and five years sum to 99.9%.

Even for our shortest lookback period our λ is significantly larger than the recommended value of

0.94 for daily data (RiskMetrics, 1996; Mina & Xiao, 2001; Zumbach, 2007). This implies that

the recommended ewma decay factor places substantially more emphasis on recent observations,

allowing it to incorporate new information more quickly. To see whether a more responsive estimator

yields economic gains, we compare average performance metrics for portfolios constructed with our

most responsive λ = 0.97 to the recommended value of λ = 0.94. For each λ we evaluate 1,296

portfolios using all decision variables forks in our decision tree.

The results of the analysis are documented in Table E.1. It holds the average difference between

the portfolios with λ = 0.97 and λ = 0.94. A positive value shows that the portfolios using λ = 0.94

had a higher performance metric and vice versa. Results are reported separately for the different

portfolio types and with/without transaction costs.
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Table E.1: Comparison of summary statistics for ewma with λ = 0.94 and λ = 0.97
The table presents the performance differences of the ewma specifications with λ = 0.94 and λ = 0.97 across various summary
statistics (cumulative return, average return, alpha, standard deviation, Sharpe ratio, and maximum drawdown). Each specifi-
cation generates 1,296 portfolios. The relative difference is assessed by comparing which specification performs better; a value
below zero indicates that the λ = 0.94 specification had a lower average result than the λ = 0.97 specification and vice versa.
The analysis is carried our for a specification without transaction costs (upper row) and with transaction costs(lower row). The
performance measures are based on 11,598 daily out-of-sample returns from January 1978 to December 2023.

Trans. Costs Portfolio Cum. Ret. Alpha Std. SR m. DD

100-0 0.4% 0.0% 0.1% -0.0% 0.00 -0.2%
130-30 12.0% 0.2% 0.3% -0.1% 0.02 1.9%w/o
100-100 47.5% 0.4% 0.5% -0.4% 0.03 1.9%

100-0 -14.6% -0.6% -0.6% -0.0% -0.05 -1.3%
130-30 -9.2% -1.1% -1.0% -0.1% -0.09 -1.5%with
100-100 1.1% -1.7% -1.6% -0.4% -0.07 0.1%

The findings reveal that portfolios with λ = 0.94 achieve a slightly better total risk reduction

compared to those with λ = 0.97. This outcome is intuitive, as a more responsive ewma estimator

improves risk forecasting accuracy. However, after accounting for transaction costs, λ = 0.94

portfolios significantly underperform across all other metrics, making them inferior to the λ = 0.97

specification. The agility of the λ = 0.94 estimator leads to substantially higher portfolio turnover,

which in turn reduces average returns. To maintain comparability among portfolio settings and due

to its inferior performance compared to the λ = 0.97 specification, we exclude λ = 0.94 portfolios

from our main analysis.

F Robustness Over Time

Up to this point, we have only examined the performance of portfolios over the full time hori-

zon. However, it is crucial to determine whether the top-performing portfolios achieve their success

through consistent outperformance or benefit from a one-time event that skews results over the sam-

ple period. Furthermore, as low-risk portfolios are designed to prioritize risk reduction, evaluating

their performance during periods of financial distress and heightened uncertainty is particularly

important.

To go after these two concerns, we perform two analyses that are similar to the analysis in Table 3.

First, to see whether the performance of portfolios is consistent over time, we sort all portfolios

based on their realized Sharpe ratios each month for each portfolio type separately and track
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whether a portfolio is in the upper (“winner”) or lower (“loser”) quartile of portfolios. Table F.1

holds the relative occurrence of construction choices of the top and bottom 100 winner (W) and

loser (L) portfolios. On average, a winning (losing) portfolio occurred 44% (46%) of the time in

the upper (lower) quartile of Sharpe ratios, indicating that certain construction choices result in

consistent out/underperformance rather than being caused by a one-time event.

Comparing the results from this table to the Sharpe ratio column of Table 3 we find that results

are relatively similar. Consistent with the full-horizon findings, size and price filters enhance

performance, particularly by mitigating downside losses. Longer lookback windows and rebalancing

frequencies improve long-term performance, less extreme portfolio buckets bolster results, and equal

weighting leads to more extreme portfolio outcomes.

Contrary to the full-horizon findings, the time-series analysis reveals more extreme outcomes for

the choice of the low-risk estimator. Nearly all winning and losing portfolios in the long-only and

limited-short portfolios are sorted on beta. While beta-sorted portfolios account for most losers in

the full-horizon analysis in Table 3, only a few beta portfolios emerge as winners. This suggests that

beta-sorted portfolios exhibit cyclicality, outperforming in certain periods while underperforming in

others. This is intuitive when considering beta-sorted portfolios as deleveraged market portfolios,

which typically underperform during economic upswings and outperform during downturns. In

contrast, other risk estimators lack this interpretation and are therefore less likely to exhibit such

cyclical behavior.

Second, to assess portfolio performance during periods of market turmoil, we construct Table 3 for

all NBER recession periods in our sample combined. As before, we analyze the top 100 winner

(W) and loser (L) portfolios in Table F.2 using various performance metrics. In this analysis,

alpha and maximum drawdown are omitted due to the need for uninterrupted time-series data for

these two metrics. Instead, we count the number of times that our low-risk portfolios had a higher

return than the benchmark, rp,t ≥ rbm,t, to capture the consistency of relative outperformance or

underperformance of our strategies.

As before, we observe that many construction choices, such as portfolio type, size and price filters,

lookback windows, and weighting schemes, yield results during recession periods consistent with

the full time-horizon analysis. However, during financial distress, more frequent rebalancing proves

beneficial for adapting to market changes. In contrast, the performance of portfolio buckets is less

conclusive compared to the clear advantage of using less extreme buckets in the full-horizon analysis.
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Table F.1: Relative appearance of portfolio construction choices in top 100 winner (W) and loser
(L) portfolios with transaction costs over time
The table shows the relative occurrence of decision variables in the top 100 winner (W) and bottom 100 loser (L) portfolios,
ranked based on consistently high or low Sharpe ratios over time. Portfolios are evaluated net of transaction costs. Each
month, portfolios are sorted into quartiles based on their Sharpe ratios. The portfolios that most frequently appear in the
top quartile (Q4, “winners”) and the bottom quartile (Q1, “losers”) over the evaluation period are identified. From these, the
100 portfolios with the highest frequency in Q4 (winners) and Q1 (losers) are selected. On average, the winning portfolios
are in Q4 43% of the time, while the losing portfolios are in Q1 48% of the time. For the top and bottom 100 portfolios,
the relative occurrence of decision variables is calculated for each decision fork. The analysis is conducted separately for each
portfolio type: long-only (100-0), limited-short (130-30), and long-short (100-100). Results are highlighted in (light) green
if they are more than (two) three standard deviations away from an uniform distribution of variables in a positive direction.
For winning portfolios, this indicates that the variable is overrepresented, while for loser portfolios, it suggests the variable is
underrepresented. Conversely, we apply (light) red coloring for the opposite scenario. The performance metrics are calculated
based on 11,598 daily out-of-sample returns between January 1978 to December 2023.

100-0 130-30 100-100

Variable W L W L W L

Risk Estimator
hist 0% 0% 0% 3% 22% 20%
ewma 0% 0% 3% 7% 23% 23%
ff3 0% 0% 0% 3% 28% 25%
ff5 0% 1% 0% 3% 27% 25%
beta 100% 99% 97% 84% 0% 7%

Size Exclusion
0 41% 88% 38% 86% 100% 100%
10 27% 8% 28% 7% 0% 0%
20 32% 4% 34% 7% 0% 0%

Prize Exclusion
0 24% 44% 30% 52% 70% 40%
1 31% 38% 33% 31% 30% 39%
5 45% 18% 37% 17% 0% 21%

Lookback Window
1y 16% 49% 38% 53% 54% 35%
3y 39% 31% 31% 30% 32% 33%
5y 45% 20% 31% 17% 14% 32%

Rebalancing Frequency
w 8% 35% 3% 53% 0% 100%
m 3% 34% 2% 32% 3% 0%
q 42% 18% 41% 13% 39% 0%
y 47% 13% 54% 2% 58% 0%

Portfolio Buckets
3 9% 15% 55% 12% 14% 38%
5 39% 18% 33% 20% 30% 31%
10 52% 67% 12% 68% 56% 31%

Weighting Scheme
vw 6% 34% 0% 27% 17% 0%
ew 94% 66% 100% 73% 83% 100%
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Table F.2: Relative appearance of portfolio construction choices in top 100 winner (W) and loser
(L) portfolios for long-only and limited-short portfolios with transaction costs during recessions
The table presents the relative occurrence of decision variables in the top 100 winner (W) and bottom 100 loser (L) portfolios,
ranked according to various performance metrics during periods of recessions. These portfolios, encompassing both long-only
and limited-short strategies, are evaluated net of transaction costs. The relative appearance of decision variables is calculated
for each decision fork across the following performance metrics: number of times that the portfolio had a higher return than
the benchmark, rp,t ≥ rbm,t, average return, alpha, volatility, Sharpe ratio, and information ratio. A value-weighted market
portfolio serves as the benchmark. Results are highlighted in (light) green if they are more than (two) three standard deviations
away from an uniform distribution of variables in a positive direction. For winning portfolios, this indicates that the variable is
overrepresented, while for loser portfolios, it suggests the variable is underrepresented. Conversely, we apply (light) red coloring
for the opposite scenario. The performance metrics are calculated based on 1,216 daily out-of-sample returns in recession
periods between January 1978 to December 2023.

rp,t ≥ rbm,t Return Volatility SR IR

Variable W L W L W L W L W L

Risk Estimator
hist 11% 2% 20% 7% 0% 0% 21% 4% 41% 9%
ewma 43% 0% 59% 15% 10% 0% 58% 14% 4% 16%
ff3 5% 53% 13% 6% 0% 45% 10% 1% 30% 9%
ff5 9% 45% 2% 5% 0% 52% 2% 1% 25% 9%
beta 32% 0% 6% 67% 90% 3% 9% 80% 0% 57%

Portfolio Type
100-0 87% 40% 0% 22% 9% 33% 0% 25% 93% 27%
130-30 13% 60% 100% 78% 91% 67% 100% 75% 7% 73%

Size Exclusion
0 13% 60% 40% 97% 88% 89% 38% 96% 18% 99%
10 32% 28% 32% 3% 9% 11% 31% 4% 41% 1%
20 55% 12% 28% 0% 3% 0% 31% 0% 41% 0%

Prize Exclusion
0 38% 40% 29% 49% 25% 74% 27% 36% 40% 53%
1 37% 33% 34% 37% 42% 26% 35% 40% 42% 33%
5 25% 27% 37% 14% 33% 0% 38% 24% 18% 14%

Lookback Window
1y 44% 8% 51% 54% 42% 2% 47% 57% 3% 54%
3y 29% 26% 28% 29% 31% 35% 30% 27% 48% 28%
5y 27% 66% 21% 17% 27% 63% 23% 16% 49% 18%

Rebalancing Frequency
w 16% 45% 0% 58% 38% 27% 0% 48% 67% 64%
m 34% 14% 50% 26% 18% 25% 49% 28% 7% 24%
q 39% 8% 21% 10% 20% 23% 17% 13% 6% 8%
y 11% 33% 29% 6% 24% 25% 34% 11% 20% 4%

Portfolio Buckets
3 82% 49% 0% 9% 18% 60% 1% 8% 32% 17%
5 9% 43% 6% 30% 38% 18% 4% 28% 64% 30%
10 9% 8% 94% 61% 44% 22% 95% 64% 4% 53%

Weighting Scheme
vw 25% 82% 90% 1% 0% 4% 85% 0% 8% 0%
ew 75% 18% 10% 99% 100% 96% 15% 100% 92% 100%
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Among estimators, the ewma estimator performs better during recessions, which is intuitive given

its high respondence to changes in the underlying data. The performance of other risk estimators

remains relatively stable.

Overall, the time-series analysis confirms that the favorable construction choices for low-risk port-

folios are not tied to one-off events. These choices consistently deliver outperformance over time

and provide a valuable edge during periods of financial distress.
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