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1 Introduction

Adopting new technologies has long posed significant challenges for businesses, especially when it comes to
general-purpose technologies (GPTs) such as computers, information and communication technologies (ICT).
The adoption of GPTs typically requires substantial complementary investments in organizational restructuring,
workforce upskilling, and new business processes (David, 1990; Brynjolfsson and Hitt, 2003). The extent of these
transformations is so profound that scholars have described them as coinvention, emphasizing the need for firms
not only to adopt new technologies but also to innovate in how they are integrated and utilized (Bresnahan et al.,
1996). Institutional inertia may further complicate the integration of GPTs, creating mismatches between techno-
logical potential and existing organization practices.1 These complementary changes have been shown to evolve
incrementally and unevenly across firms and industries, resulting in significant heterogeneity in productivity
impacts (Dosi, 2023). For these reasons, when these technologies hold transformative potential their productivity
benefits often take years to materialize.2

Artificial intelligence (AI) is no exception to this pattern. The adoption of AI has shown great promise for
transforming business operations through predictive analytics and automation, yet its impact on productivity
growth remains uncertain (Agrawal et al., 2022; Brynjolfsson et al., 2018; Acemoglu et al., 2022). Recent stud-
ies have also identified substantial heterogeneity in firms’ ability to leverage AI (Calvino and Fontanelli, 2023;
Czarnitzki et al., 2023), in line with the idea that complementary assets such as advanced digital capabilities and
highly skilled workforces are key for returns to AI use (Brynjolfsson et al., 2018). Firms that develop their own AI
systems in-house (Calvino and Fontanelli, 2024), as well as those patenting AI-related innovations (see, e.g., Mar-
ioni et al., 2024; Damioli et al., 2021; Alderucci et al., 2021), tend to benefit the most. Further, AI has been shown
to impact firms not only through operational efficiency but also via product innovations (Babina et al., 2024).3

All together these evidences underscore the inherent complexities in integrating AI, as with earlier GPTs, into
existing organizational systems as well as the challenges in predicting how AI will impact productivity growth
dynamics within firms.

In contributing to this literature, our work is the first to shift attention away from expected productivity gains
and focus on how the integration of AI systems alters the variability in productivity growth dynamics within
firms. While its commercial use dates back to 2012, AI remains in its early stages of development, exhibiting
strong technological dynamism and a steep learning curve, which is expected to amplify fluctuations in firms’
performance (Bresnahan et al., 2002). Such heightened volatility can deter investment by increasing uncertainty,
disrupt workforce stability by making employment cycles more erratic, and create barriers to AI adoption by

1Dosi et al. (2021), for example, highlight that the absence of hierarchical structures in organizations can hinder coordination and
distort knowledge flows impeding full integration of GPTs.

2Robert Solow provocatively observed already in 1987 that “You [could] see the computer age everywhere but in the productivity
statistics”. See “We’d Better Watch Out” published in The New York Times Book Review on July 12.

3Recent analyses estimating a positive impact of generative AI use on the productivity of certain categories of workers (see also
Brynjolfsson et al., 2023; Noy and Zhang, 2023; Peng et al., 2023; Eloundou et al., 2023; Kreitmeir and Raschky, 2023) complements the
firm-level evidence discussed above. First, generative AI was unlikely to be widely used by the firms before 2023. Also, these studies
primarily focus on specific worker categories and this relationship may depend on whether tasks fall within the current capabilities of AI
systems (Dell’Acqua et al., 2023). Lastly, whether AI-driven gains in worker productivity translate into overall firm productivity remains
an open question, specially in light of the task-specific use made of generative AI by workers (Handa et al., 2025). For instance, Dell’Acqua
et al. (2023) provide experimental evidence suggesting that AI adoption may reduce team performance and increase coordination failures.

2



raising the costs of integration and organizational adaptation. This, in turn, would slow the diffusion of AI
technologies across firms and limit their long-term transformative potential (Rosenberg, 2009; Acemoglu, 2024).

Leveraging data from an ICT survey distributed to French firms with 10 or more employees, we find robust
correlational evidence that the use of predictive AI is associated with an increase in the volatility of a firm’s
productivity growth rates. This relationship persists across a range of robustness checks and alternative specifi-
cations, including variations in the computation of the dependent variable, the choice of productivity index, and
adjustments for sectoral composition. Furthermore, we conduct more rigorous identification tests to address key
endogeneity concerns. While not fully definitive, the results strengthen the case that our main finding reflects
more than a simple correlation. First, we account for differences in firm characteristics by employing a Coarsened
Exact Matching (CEM) approach, which balances AI users and non-users ex-ante based on characteristics such as
size, age, productivity, industry, and digitalization measures. We then estimate the effect of AI on volatility us-
ing the matched sample of AI users and non-users. Second, larger, more productive, and more digitized firms are
known to self-select into AI adoption (Calvino and Fontanelli, 2023; Alekseeva et al., 2021; Calvino and Fontanelli,
2024). We address this potential sample selection pre-trends by showing that the AI-volatility relationship did not
exist during a period when AI adoption was not yet possible. Our results confirm the OLS findings, suggesting
that AI use positively affects the volatility of firms’ productivity growth rates.4 This difference is found in the
range between 6% and 10% depending on the specification.

Building on this result, we extend our analysis to examine how firms source AI. As with other GPTs, firms
may develop AI in-house, purchase AI solutions from external providers, or adopt a hybrid approach that inte-
grates both strategies (Hoffreumon et al., 2024). This “make-or-buy” decision presents a key trade-off: in-house
development enables firms to tailor AI to their specific needs, but demands substantial investment in technical
expertise and organizational adaptation. In contrast, purchased AI solutions can deliver benefit from economies
of scale, lower upfront costs, and embedded best practices but may lack flexibility and require complementary
adjustments for effective integration. Some firms, recognizing these trade-offs, pursue a mixed strategy to com-
bine the advantages of internal development with external procurement (Arora and Gambardella, 1994). Indeed
firms with in-house AI expertise can better integrate, customize, and extend third-party solutions, aligning them
with business needs. Moreover, internal capabilities improve firms’ ability to evaluate external technologies,
absorb new knowledge, and implement hybrid solutions that blend proprietary innovations with best-in-class
third-party tools.

Rather than focusing on the determinants of themake-or-buy decision, we investigate its implications.5 Lever-
aging a unique feature of the French ICT survey, we classify firms into three categories: those that purchase
AI externally (“AI buyers”), those that develop AI in-house (“AI developers”), and those that combine both ap-
proaches. We then assess how these sourcing strategies influence the volatility of firms’ productivity growth
trajectories. Using our preferred specification to account for this heterogeneity, we find that higher volatility in
productivity growth is observed only among AI buyers, whereas firms that develop AI in-house or use an hybrid

4Close to our work, but with a different perspective, Bianchini et al. (2022) analyse research activities and show that the impact of AI
use on output quality is highly uncertain.

5Determinants and consequences of decisions of make-or-buy AI systems have been studies in Hoffreumon et al. (2024) and Calvino
and Fontanelli (2024).
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strategy do not exhibit this effect. This divergence suggests that firms’ ability to integrate and leverage AI effec-
tively depends not only on access to the technology per se, but also on their internal capacity to absorb and apply
it productively. Absorptive capacities have been shown to play a crucial role in determining how firms assimi-
late, activate, and exploit new knowledge thereby shaping its complementarities with existing firm-specific assets
(Cohen and Levinthal, 1990). In line with the concept of absorptive capacity, firms that develop AI in-house are
likely better equipped to internalize and refine AI-driven processes, aligning them with existing workflows and
minimizing disruptive fluctuations. In contrast, AI buyers seem to struggle to assimilate and optimize externally
sourced AI, leading to greater instability in productivity growth.

To operationalize one important dimension of absorptive capacity in our context and explore its role in shap-
ing firms’ ability to integrate AI without destabilizing productivity growth, we conclude our investigations turn-
ing our attention to the presence of ICT specialists within AI users. Leveraging a feature of our dataset – the
matching of employer data with employee information –, we calculate for each firm the share of hours worked
by ICT engineers and technicians and investigate whether their presence is able to mitigate the volatility effects
associated with AI adoption. Our analysis reveals that the effect of AI on productivity growth volatility among
AI buyers is reduced when firms have a higher proportion of workers with ICT expertise. These new results
corroborates the intuition that a workforce with strong AI expertise is a critical precondition for stabilizing pro-
ductivity growth dynamics. Firms that source AI solutions externally, but have a workforce equipped with ICT
knowledge, are better positioned to integrate AI effectively. This finding contributes to the literature highlight-
ing the importance of complementing AI adoption with ICT- and STEM-specialized human capital (Calvino and
Fontanelli, 2023; Babina et al., 2023; Harrigan et al., 2023; Acemoglu et al., 2022; McElheran et al., 2023; Fontanelli
et al., 2024). We extend this body of work by showing that the risks of inadequate AI integration go beyond
limiting productivity gains, they also introduce greater instability, potentially deterring firms from adopting AI
in the first place.

From a policy perspective, our findings support the case for industrial policies to mitigate the technological
uncertainty associated with the early adoption of general-purpose technologies (GPTs) such as AI systems (see
Bresnahan et al., 2002). Specifically, they highlight that the impact of AI on productivity growth volatility depends
on the type of AI user and the characteristics of firms. Policies aimed at facilitating firms’ access to essential com-
plementary assets during the AI adoption process could yield a double benefit: smoothing productivity growth
dynamics and lowering barriers to AI adoption, thereby fostering further digital investment.

The remainder of the paper is organised as follows. In Section 2we discuss the theoretical framework, method-
ology, data and identification structure that we aim at using for studying the research question at stake. In Section
3 and 4 we discuss the main results and the mechanism mediating the positive effect of AI on the volatility of
productivity growth rates. In Section 5 we draw the conclusions. Four appendices complete the paper with more
details about descriptive statistics (Appendix A), robustness check of the baseline OLS models (Appendix B), of
the CEM models (Appendix C), and of the models accounting for heterogeneity in the AI adoption strategies
(Appendix D).
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2 Data, empirical framework and identification strategy

2.1 Data

In this work we make use of an ICT representative survey distributed to about 9,000 French firms with 10 or more
employees in 2019. We complement information provided by the survey with administrative data from balance-
sheets and income statements and with employers-employees matched data. All data sources are provided by
the French National Institute of Statistics and Economic Studies (INSEE).6 Below we describe the basic features
of these data in presenting the way we define our empirical proxies.

AI use. Our variable of interest is a dummy that proxies the use of predictive AI. To build this proxy we lever-
age the French ICT survey distributed in 2019 encompassing a representative sample of approximately 9,000 firms
with a workforce of 10 employees or more and spanning the manufacturing and non-financial services sectors.
This sample contains firms with on average 50 employees and 20 years of age. Our data exhibits an exceptional
degree of detail in contrast to alternative commercial surveys and enables a comprehensive exploration of the
patterns of AI adoption among firms.7 We define a dummy variable AIi that takes the value 1 if firm i reports
using predictive AI technologies as of 2018.

Figure 1: Computing volatility of productivity growth rates.

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 0 (0)

0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (0) 0 0 (0)

1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 1 (1)

1 (0) 1 (0) 1 (0) 1 (0) 1 (1) 1 (1) 1 1 (1)

Firm 1

Firm 2

Firm 3

Firm 4

2012 2013 2014 2015 2016 2017 2018 2019

Notes: AI ’users’ (1) and ’non-user’ (0) status over 2012-2019 for four hypothetical firms. ICT survey provides
factual information on their status of users in 2018. Since in other years this information is not available, we
propagate it backward and forward to cover the entire time span 2012-2019. Then, in the baseline model the
volatility of productivity growth rates σi is computed only over the time window 2014-2019 (dashed green
border). Firms are assumed to have at most one switch from ’non-user’ to ’user’. To illustratemisclassification
mistakes we report in parenthesis the hypothetical true status. If the two indicators within a cell match, our
procedure correctly classifies the firm as a user or non-user (cells with black numbers); if they do not match,
the classification contains some measurement error (cells with red numbers).

Volatility of productivity growth rates. The dependent variable in all the empirical investigations below
is the volatility of the productivity growth rates of the French firms in our sample. To build this measure we first
link to our sample balance-sheet information (sourced in the FICUS/FARE data-sets over the 2007−2019 period)
needed to estimate different indexes of productivity, encompassing both single-factor (value added over labour
ratio) and multi-factor alternatives estimated using the single-stage GMM procedure described in Wooldridge
(2009). We denote a firm’s i productivity level in year t with Ai,t and define its logarithmic growth rate as
ωi,t = lnAi,t − lnAi,t−1.

6Access to some confidential data, on which is based this work, has been made possible within a secure environment offered by CASD
(Centre d’acces securise aux donnees, Ref. 10.34724/CASD).

7Our data is referred to as the “Enquete sur les Technologies de l’Information et de la Communication (TIC)”. Further information at
this link.
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Deciding over which time window computing the volatility of the firms’ growth rates ωi,t is challenging due
to a data limitation. Specifically, while we know which firms reported using AI in 2018, we lack information
on the timing of their AI adoption or whether they opted in and out in previous years. This information would
indeed be crucial to identify the correct number of times a firm has truly been an adopter during the considered
window. To address this challenge we adopt the following procedure. First, we make the conservative hypothesis
that the surge in firms’ adoption of AI started only after 2011. This hypothesis is justified on the fact that key
advancements in predictive AI applications and technologies, such that the “AlexNet” neural network, marking
the onset of superior performance of deep learning and artificial neural networks compared to prevailing non-AI
methodologies in statistical analyses, took place around that year (see Babina et al., 2024; Engberg et al., 2024).
Next, we consider 2012 as the earliest adoption year for all firms declaring to be AI users in 2018. Second, we
restrict our time horizon up to 2019 to avoid the Covid-19 crisis. Third, we reasonably assume that firms do not
transition in and out of AI technologies more than once over the period 2012 − 2019. Finally, in selecting the
year range [t0, t1] to compute σi, we balance concerns about noise in volatility estimates against potential biases
due to misclassifications and fix as a baseline the interval 2014− 2019 including in the computation five growth
rates.

Advantages and disadvantages of this procedure are illustrated using Figure 1 which presents the case of
four hypothetical firms: non-user (“Firm 1” and “Firm 2”) and users (“Firm 3” and “Firm 4”). On the one hand,
for firms like “Firm 1” and “Firm 3”, our procedure correctly classifies the two firms, although only partially
exploiting the sample size of available growth rates. On the other hand, for firms like “Firm 2” and “Firm 4”, the
partial exploitation of the sample helps us mitigating the bias that could arise from incorrect firm classification
when comparing AI users and non-users. In case AI users indeed do exhibit a more volatile productivity growth
profile, our approach seems in a first approximation conservative. By extending firm status over the period,
we introduce a potential bias that overestimates volatility for non-AI users and underestimates it for AI users.
This bias makes it more challenging to detect differences in volatility between the two groups, meaning that
any significant difference we do observe is likely a lower bound of the true effect. In any case, recognizing the
arbitrariness of our classification procedure, we conduct robustness checks in our empirical analysis by computing
σi over different time windows.

Firm-level controls. We build two sets of control variables. First, we consider firmographics – including
variables such as size, age, industrial sector, geographical localization – come from balance-sheet data.8 To sim-
plify the notation, we collectively represent them as FGPi,t where t spans the entire time window 2012-2019.
Second, leveraging again the ICT survey, we build proxies capturing the extent to which a firm uses digital tech-
nologies other than AI. In particular, we build a a categorical variable accounting for the number of other than
AI digital technologies in use at the same firm and a dummy capturing the presence of a fast broadband connec-
tion.9 We collectively represent these variables with ICTi, that do not present any time index since they are all
observed only in 2018.

8Firmographics, also known as firm demographics, represents are sets of characteristics to segment organizations.
9The survey asks explicit questions on the use of Customer Relationship Management (CRM) systems, Enterprise Resource Planning

(ERP) software, and involvement in e-commerce activities.
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2.2 Empirical framework and identification strategy

LetAi,t represents amulti-factor productivity index of a Hicks-neutral technology. Following thewell-established
literature (see e.g. Jovanovic, 1982; Hopenhayn, 1992; Luttmer, 2007; Dosi et al., 2016; Fontanelli et al., 2023), we
assume that a firm’s productivity evolves in time as a simple multiplicative process Ai,t = Ai,t−1e

ωi,t where
ωi,t represents a firm-specific idiosyncratic term capturing capital deepening, institutional factors or learning
dynamics in our productivity measure.

We characterize the vector of firm-specific productivity growth shocks in terms of a density function G. We
assume that such a distribution is determined by some firm characteristics FGPi,t as well as by the firm decisions
to use predictive artificial intelligence AIi,t or other ICT technologies ICT i,t. Formally, we can write:

ωi,t ∼ G(µi, σi) with

µi = Fµ(FGPi,t, AI i, ICT i)

σi = Fσ(FGPi,t, AI i, ICT i)

where µi and σi denote the location and scale parameters of the distribution allowed to be heterogeneous across
firms. The functional form F is assumed instead identical across firms. While hyper-simplified, this framework
has the merit to provide a simple representation of the impact of diverse firm characteristics, including the use
of AI and of other technologies, on the productivity growth distribution G, in terms of partial derivatives of the
functions Fµ and Fσ with respect to X , AI and ICT respectively.

This paper is interested in studying ∂Fσ

∂AI i
when AIi represents the use of predictive AI technologies. As

discussed in the Introduction firms may use AI and machine learning to improve the quality of forecasts for sales,
inventory, and supply chain management hence moderating productivity growth volatility. However, without
proper capabilities to master AI and interpret its outcomes firms may also face an exacerbation of fluctuations
in productivity dynamics. To resolve this ambiguity we take ∂Fσ

∂AI i
to the data. Our paper is the first tackling

this issue. To carry out this task, we regress the (log) volatility computed over the time span 2014-2019 on an AI
adoption indicator while controlling for other ICT technologies adoption, firm characteristics, and sector (2-digit)
and region fixed effects

lnσi = α+ βAI i + γ1 lnFGPi,2014 + γ2ICT i + δs + δr + ϵi , (1)

where FGPi,2014 includes a firm’s size, age and productivity, ICTi a categorical variable capturing the number
of ICT technologies other than AI and a dummy for fast broadband use, and δs and δr represent sector and region
fixed effects. Firmographics are measured in 2014 to alleviate reverse-causality concerns. The identification of β,
our parameter of interest, relies on variation in AI adoption across firms within the same sector and region that is
not systematically related to unobserved determinants of volatility. Specifically, β is identified from differences
in AI adoption among firms with similar pre-existing characteristics, conditional on other ICT usage and fixed
effects. While in equation (1) we control for several firm characteristics and for two different sources of unob-
served heterogeneity, OLS estimates may be biased for reasons we discuss in the remaining of this section, where
we also propose a matching procedure to alleviate endogeneity concerns threatening our identification strategy.

To refine the credibility of our estimation strategy, we implement a Coarsened Exact Matching (CEM) estima-
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tor following the approach in Iacus et al. (2012, 2011). CEM is a matching method that reduces model dependence
and imbalance between treated and control groups by coarsening the covariates into discrete strata and then
performing exact matching within these strata. Unlike OLS, CEM improves covariate balance ex ante, ensuring
that treated and control groups are comparable in terms of observable characteristics before estimating the effect
of AI adoption. By reducing potential bias from systematic differences between AI adopters and non-adopters,
CEM is aimed at strengthening the credibility of the comparison between the treated (AI users) and control (non
AI users) groups.

Building CEM estimators entails a two-step procedure. The first step involves coarsening the continuous and
categorical covariates into discrete intervals or bins. In implementing CEM, the choice of coarsening levels is
crucial: too coarse a classification may lead to poor balance, while too fine a classification may result in excessive
pruning of observations, reducing statistical power. The goal is to group observations into strata, where treated
and control units belong to the same strata in each coarsened covariate. In our baseline, we build strata using a
firm’s age, size, productivity, ICT technologies other than AI and industrial sector. For age and size we classify
firms using [5, 10, 20] and [10, 20, 50, 100, 250, 500] as break points while for productivity we build 15 bins with
an approximately equal number of observations. ICT technologies and fast broadband are summarized in a single
dummy equal one if at least one of them is available to the firm. For sectors, we use the 29 survey classes used in
the ICT survey.10 Note that the choice to prioritize firmographics over the intensity of ICT use (excluding AI) is
intentional and reflects the apparent strong complementarity between AI and other digital technologies.

In the second step, we compare AI users and AI non-users in the matched sample estimating an average
treatment effect. Unlike other matching estimators, like the Propensity Score Matching, in CEM observations in
this second step are weighted based on the number of treated and control units within each stratum. While CEM
increases the credibility of our identification strategy, it assumes that firms with identical coarsened covariates
are comparable. In practice, some selection bias may remain if other determinants of AI adoption are omitted
from the stratification. This is why we add other controls, not used in the matching procedure. Furthermore we
control for productivity level at the start of the period and 2019 to at least limit possible reverse causality. Indeed
CEM, while effective in addresses selection on observables, does not solve concerns regarding firms adopting AI
in response to volatility shocks. Finally, we also explore different approaches to define strata in the matching
procedure and we test our results against the use of an alternative matching technique.

3 AI-volatility link

This section presents our empirical results, progressing from descriptive evidence to robust OLS results and con-
cluding with a more credible identification strategy based on a coarsend exact matching (CEM). We complement
baseline results with a series of robusteness checks to address the main threats to our identification. Our findings
robustly indicate that predictive AI use is associated with greater volatility in productivity growth and provide
support that this link goes beyond a simple correlation.

10Classes are based on the 3-digit NAF classification: 100-129, 130-159, 160-189, 190-239, 240-259, 265-267, 261-264 + 268, 270-289,
290-309, 310-339, 350-399, 410-439, 450-459, 460-469 (excluding 465), 465, 47, 49-53, 55, 56, 582, 58-61 (excluded 582), 61, 62 and 631, 639,
68, 69-74, 77-78 joint to 80-82, 79, 951.
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3.1 Descriptive evidence

From the representative sample of about 9,000 firms with 10 or more employees used in the 2019 French ICT
survey we extract 7,915 firms for which we can build the variables needed in our investigations.11 As reported in
Table 1, in 2018 these firms are, on average, around 22 years old and primarily medium to large-sized enterprises,
with a mean of approximately 50 employees. They operate across a diverse range of 61 sectors ranging from
manufacturing of food products (#10) to services like the repair of computers (#95), reflecting a broad industrial
coverage. Consistent with the existing literature, we observe substantial heterogeneity in productivity across
firms. Even within narrowly defined sectors, the ratio between the top and bottom 5% of firms’ productivity is of
the order of 40 when we use a multi-factor productivity index.12

Table 1: Comparing AI users and non AI users.

Full sample Non AI users AI users

Age 21.7 21.8 22.2
Size 52.3 43.3 121.4∗∗∗
Productivity 203.0 195.0 263.5∗∗∗
Fast Broadband 0.13 0.12 0.20∗∗∗
# other digital technologies 0.90 0.87 1.15∗∗∗

Volatility of prod. growth rates (σi) 0.20 0.20 0.23∗∗∗

Obs. 7,915 6,715 1,200
Notes: Volatility of productivity growth rates is computed over the time span 2014 − 2019, de-
mographic variables (’Age’, ’Size’, ’Productivity’) are measured in 2014 while ICT technological
variables in 2018 where the ’user’ and ’non-user’ status is recorded. Means are computed using
survey weights as well as the corresponding t-tests.
* p < 0.1, ** p < 0.05, *** p < 0.01.

Among the 7,915 firms, 1,200 (approximately 15% unweighted and 11.13% when using sample weights) re-
ported using predictive AI technologies. As shown in Table 1, AI users tend to be significantly larger and more
productive than their non-user counterparts. They are also more likely to adopt other digital technologies, such as
fast broadband, reinforcing the notion that AI adoption is part of a broader technological transformation. Our key
empirical question concerns whether AI use is associated with differences in the volatility of productivity growth
trajectories. The unconditional figures in Table 1 suggest that AI users exhibit significantly higher volatility com-
pared to non-users. While still based on preliminary evidence, this result already reveals a somewhat unexpected
pattern at least within industrial dynamics. Indeed, prior literature indicates that larger firms typically exhibit
less volatile growth trajectories in terms of size (see Stanley et al., 1996; Bottazzi and Secchi, 2006; Calvino et al.,
2018, among others). However, our findings points in the direction that this relationship does not extend to
productivity growth, as AI-adopting firms, despite being larger on average, experience greater volatility in their
productivity growth trajectories. This divergence may well hint at the possibility that AI adoption introduces
firm-level dynamics that are specific to productivity rather than overall growth stability.

In any case this raw comparison of volatilities in Table 1 does not account for potential composition effects
that would indicate that the difference of volatilities between groups are due to differences in firm size, sector

11See Table A.1 in Appendix A for details about the sample size and its composition.
12Reassuring on the quality of our data, similar patterns emerge analysing data in other from other surveys (Zolas et al., 2020; McElheran

et al., 2023; Calvino and Fontanelli, 2023).
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composition, or other technological investments. To address these and other concerns, we next turn to a re-
gression framework and estimate the relationship between AI adoption and productivity growth volatility using
OLS specification with extensive controls for observable firm characteristics and other unobservable sources of
heterogeneity.

3.2 OLS estimates

Table 2 reports these OLS estimates. In the first two columns we focus on the volatility of productivity growth
computed over 2014-2019 and progressively add controls, starting with only industry and region fixed effects in
Column (1) and then adding firmographics and ICT controls in Column (2). To reduce reverse causality concerns,
firm characteristics are measured in 2014, the initial year of the window used to compute volatilities. Across
these two specifications, the coefficient on the AI User dummy is positive and statistically significant indicating
that firms adopting AI exhibit higher productivity growth volatility than non-AI users even after accounting for
multiple sources of omitted variable bias. Although narrowing from a difference of about 15% (computed from the
unconditional comparison in Table 1), the difference of about 11% highlighted in Column (2)remains economic
seizable. Column (3) shows that the result does not change if we introduce the (log) productivity in 2019 thus
controlling for the total 2014-2019 productivity growth. Table B.1 in the appendix reports results tables including
estimates for control variables. Estimates for controls are in line with expectations. Reconciling with existing
literature older and larger firms are associated with a less turbulent productivity dynamics. The existence of a
fast broadband connection with a higher volatility.

Table 2: OLS estimates of Equation (1).

σi (2014-2019) σi (2015-2019) σi (2012-2019) σi (2007-2012)
(1) (2) (3) (4) (5) (6)

AI 0.083∗∗∗ 0.940∗∗∗ 0.098∗∗∗ 0.057∗∗ 0.090∗∗∗ 0.079
(0.025) (0.024) (0.023) (0.025) (0.022) (0.049)

log Productivity (2019) -0.152∗∗∗ -0.199∗∗∗ -0.132∗∗∗
(0.049) (0.044) (0.034)

Controls Xi,t0 No Yes Yes Yes Yes Yes
Controls ICTi No Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes
Region FE Yes Yes Yes Yes Yes Yes

Observations 7,915 7,915 7,915 7,879 7,462 6,379
Adj. R2 0.051 0.099 0.108 0.095 0.119 0.112
Clustered SE Industry Industry Industry Industry Industry Industry

Notes: Volatility of productivity growth rates σi is computed over the time span 2014−2019 in columns (1)-(3), and over 2015−2019,
2012 − 2019 and 2007 − 2012 in columns (4), (5), and (6) respectively. Firmographics variables (’Age’, ’Size’, ’Productivity’) are
measured at t0, the initial year of the span over which volatility are computed, that is 2014 for the first three columns and 2015, 2012,
2007 for the last three columns. ICT technological variables are measured in 2018, the year in which the AI-related status is recorded.
Industry are defined at 2-digit level. Regions correspond to administrative regions of metropolitan France. All the specifications are
estimated using survey weights. The complete table is reported on Table B.1 in Appendix B.
* p < 0.1, ** p < 0.05, *** p < 0.01.

Given our data limitations, one might be concerned that measurement error affects our estimates of produc-
tivity growth volatility, particularly due to potential misclassification of AI adoption timing. As discussed above,
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our approach seeks to balance the trade-off between minimizing noise in volatility estimates and reducing bias
from firm misclassification. To assess the robustness of our findings in this regard, we examine how our results
change when varying the time window used to compute volatilities. Specifically, we extend the window back-
ward to incorporate earlier growth rates and, also, restrict it forward to focus on more recent periods. Columns
(4) and (5) present results of this investigation, using our preferred specification, which includes all controls,
fixed-effects and accounts for productivity level in 2019. When we shorten the time window to 2015 − 2019 in
Column (5), our coefficient of interest remains statistically significant, but nearly halves in magnitude, suggesting
a smaller gap, around 6%, in volatility between AI users and non-users. Conversely, when we extend the window
to its maximum span of 2012 − 2019 in Column (5), the estimated coefficient β remains very close to our base-
line specification and highly statistically significant. These results confirms that the procedure for computing σi

performs as expected based on our working hypothesis. The potential bias introduced by firm misclassification
does not appear to materially affect our findings, suggesting that our approach remains a valid and conservative
strategy. At the same time, when we reduce the number of growth rates involved in the computation of σi, the
associated coefficient attenuates, but this effect aligns with our expectations in case of a greater measurement
error.

A second concern is selection bias: if firms with inherently more volatile productivity growth are more likely
to adopt AI, our results could be driven by pre-existing differences rather than being the effect of predictive AI
use itself. To address this, we conduct a placebo-style exercise using the period 2007− 2012, a time frame of the
same length as our baseline window, but before AI adoption could have spread. If our findings were purely the
result of firms with more volatile productivity growth self-selecting into AI use, we would expect to see a similar
association between AI user status (as recorded in 2018) and productivity volatility in this earlier period. Column
(6) presents the results, showing no significant relationship between AI user status and volatility in 2007–2012
and suggesting that our main findings do not seem imputable to pre-existing differences between firms.

Finally we conduct three tests to check that our results are not driven by the specific way we compute the
productivity index or by sectoral composition. We first evaluate whether our findings hold when employing a
different proxy for productivity (namely labour productivity instead of MFP); second, when a different functional
form for volatility is employed (namely the mean absolute deviation); third, when we exclude firms operating in
sectors that primarily declare an ICT-related main activity (NACE 58-63). Results of these tests are aligned with
those presented in this section and reported in Table B.2 in Appendix B.

In summary, the key insight from OLS estimates is that difference in volatility between AI users and non-
users is robust and does not disappear when we condition on firmographic and technological factors, as well as
industry and region fixed effects. This difference in volatilities, estimated to be around 10%, holds true when
we address potential measurement issues with our dependent variable but disappears in a placebo test further
reducing concerns that our result is purely driven by self-selection. Notwithstanding these tests, our evidence
remains largely correlational, and identification persists to be a challenge. In the next section, we employ a
matching estimator to improve our empirical strategy and move closer to causal inference.
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3.3 Refining identification: OLS estimates after CEM balancing

In this sectionwe implement a Coarsened ExactMatching (CEM) estimator. This estimator improves identification
by explicitly balancing the distribution of observed covariates between AI users and non-users before estimation.
CEM ensures that treated and control firms are more comparable ex ante by pruning observations that lack
suitablematches. Thismatching process improves internal validity, particularlywhen the overlap between treated
and control groups is limited or when nonlinearities in the relationship between controls and outcomes may bias
OLS estimates.

Table 3: Comparing AI users and non AI users after CEM balance.

Non AI users AI users

log Age 3.06 3.08
log Size 4.78 4.82
log Productivity 5.78 5.80
Fast Broadband 0.34 0.41∗∗∗
# other digital technologies 1.52 1.69∗∗∗

Obs. 3,897 1,031
Notes: Volatility of productivity growth rates is computed over the
time span 2014 − 2019, demographic variables (’Age’, ’Size’, ’Pro-
ductivity’) are measured in 2014 while ICT technological variables
in 2018 where the ’user’ and ’non-user’ status is recorded. Strata are
built following Section 2.2 generating 1,885 strata, 503 of which are
matched reducing the sample size to 4,928 observations. Means are
computed using CEM weights as well as the corresponding t-tests.
* p < 0.1, ** p < 0.05, *** p < 0.01.

The first step in our CEM implementation involves constructing strata that group firms into comparable
categories based on some observable characteristics. The trade-off here is between using overly fine categories,
in turn reducing sample size and statistical power, and coarsening too much, weakening the balance between
treated and control groups. As discussed in Section 2.2, in the baseline specification of the CEM, we consider
5 dimensions: size, age, productivity, ICT use and industrial activity. Specifically, we classify firm age using
three breakpoints [5, 10, 20], dividing firms into start-ups, young, mature and old ones; firm size is coarsened
by means of 6 breakpoints [10, 20, 50, 100, 250, 500], which is equivalent to the sampling structure of the ICT
survey (≤20, 20-49, 50-249, 250-499, 500+) except for the fact that we also account formicro-firmswith less than 10
employees. The logarithmic transformation of productivity is divided based on 15 equidistant cutpoints, ensuring
that the bin distances in levels correspond to fixed percentage differences. We then use a binary classification
to separate firms using fast broadband services or other ICT technologies (different from AI) and 29 classes for
industrial sectors. CEM generates 1,885 strata, 503 of which are matched, reducing the sample size to 4,928
observations. As a consequence, about 3k firms are lost in the matching process. Table 3 presents the covariates
balance between AI users and non-users after implementing CEM. Given our choice to allow finer classification
for firm characteristics, the distributions of firm age, size, and productivity are now closely aligned between the
two groups. The gap in digital technology adoption remains statistically significant, but it is now smaller than
in the original sample. Overall, the balancing process effectively enhances the credibility of our comparisons by
making AI users and non-users more similar in observable characteristics.
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After preprocessing data with CEM, we compare AI users and non AI reverting to regression analysis. As
baseline, we consider the specification used in OLS with controls for firm characteristics, industry and region
fixed-effects and a control for productivity measured in 2019 – i.e., Table 2, column (3). Estimates for this baseline
are reported in Table 4, column (1). The estimated effect of AI adoption on productivity growth volatility remains
positive and statistically significant even under the more rigorous identification strategy of the CEM estimator,
reinforcing the idea that the relationship between AI adoption and increased volatility extends beyond a simple
correlation. The magnitude of the effect decreases compared to 0.098 in the OLS estimates, suggesting that part
of the initial effect was driven by ex ante differences between firm characteristics that CEM helps to balance.
Nonetheless, the difference remains of the order of about 6%. As for the OLS, controls enter the regression with
the expected sign (cfr. Table C.1 in Appendix C).

Table 4: OLS estimates of Equation (1) after CEM balancing.

σi (2014-2019) σi (2015-2019) σi (2012-2019) σi (2014-2019) PSM
(1) (2) (3) (4) (5) (6)

AI 0.057∗∗ 0.056∗ 0.098∗∗∗ 0.065∗∗ 0.061∗∗ 0.104∗∗∗
(0.027) (0.031) (0.033) (0.027) (0.027) (0.033)

log Productivity (2019) -0.234∗∗∗ -0.319∗∗∗ -0.104∗ -0.176∗∗∗ -0.212∗∗ -0.203∗∗
(0.070) (0.067) (0.055) (0.067) (0.075) (0.060)

Controls Xi,t0 Yes Yes Yes Yes Yes Yes
Controls ICTi,2018 Yes Yes Yes Yes Yes Yes
Ind. FE Yes Yes Yes Yes Yes Yes
Reg. FE Yes Yes Yes Yes Yes Yes

Observations 4,928 4,833 4,585 5,462 6,000 2,399
Adj. R2 0.192 0.188 0.204 0.182 0.188 0.164
Starting Imbalance 0.811 0.825 0.805 0.811 0.811
Ending Imbalance 0.712 0.724 0.690 0.721 0.756
Number Strata 1,885 2,139 1,877 1,530 1,201
Number Matched Strata 503 518 502 460 376
Clustered SE CEM bin CEM bin CEM bin CEM bin CEM bin

Notes: Volatility of productivity growth rates σi is computed over the time span 2014 − 2019 in columns (1) and (4)-(6), and over
2015 − 2019, 2012 − 2019 in columns (2), (3) respectively. Firmographics variables (’Age’, ’Size’, ’Productivity’) are measured at t0,
the initial year of the span over which volatility are computed. ICT technological variables are measured in 2018 where the ’user’ and
’non-user’ status is recorded. Industry are defined at 2-digit level and all the specifications are estimated using CEM weights. CEM
balancing is performed using baseline classification described in Section 2.2 in columns (1)-(3), with only 10 productivity bins in column
(4), with broader classes for age and size in column (5). Column (6) reports results of a PSM estimator. Industry are defined at 2-digit
level. Regions correspond to administrative regions of metropolitan France. Number Strata and Number Matched Strata are the total
number of strata in total and the one with matches. All the specifications are estimated using CEM weights. The complete table is
reported on Table C.1 in Appendix C.
* p < 0.1, ** p < 0.05, *** p < 0.01.

Next, in column (2) and (3) we evaluate whether our findings hold adjusting the time window used to compute
volatility by both restricting and expanding (2012−2019) the period. Reducing the time window to 2015−2019

leads to a further decline in the estimated effect with respect to the corresponding baseline, mirroring the pattern
observed in OLS (cfr. Table 2). However, with CEM this reduction also results in a loss of statistical significance,
making it the first and only case in our analysis where the AI-volatility relationship is no longer significant at
the 5% level. In contrast, expanding the time window to 2012 − 2019 generates a positive and significant point
estimate almost 10% larger than in the baseline. Although directly assessing the significance of this difference is
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challenging, the direction of the change in both the estimate and its standard error appears consistent. Expanding
the time window allows for the inclusion of more treated growth rates in the computation, but may also introduce
additional noise.

Proceeding to columns (4) and (5), we explore the sensitivity of our results to alternative coarsening choices in
the CEM matching procedure. In particular, we broaden the stratification strategy. First, by reducing the number
of productivity bins from 15 to 10 (column 4). Secondly, by reducing the number of break points for age and
size (column 5).13 TheAI User coefficient β remains positive and statistically significant in both the specifications
with no relevant changes in its magnitude and in the corresponding standard errors. This suggests that the overall
relationship is not highly sensitive to changes in stratification, and that the change in sample size does not impact
too much on the precision of the estimator.

Finally, in column (6) we further validate our identification strategy by presenting the results derived from an
estimator adopting a different matching strategy, namely the Propensity Score Matching (PSM) estimator. While
CEM (ex-ante) coarsens covariates into discrete bins before matching and discards observations that do not find
a match, PSM estimates the probability of treatment assignment given observed covariates and matches (ex-
post) treated and control units based on their similarity in propensity scores. In terms of sample construction,
the PSM results to be much more restrictive than CEM, with only 2399 observations preserved, against 4928
with CEM. Compared to CEM, PSM produces a larger point estimate for β (0.117 vs. 0.057), with a slightly larger
standard error and a smaller matched sample. Nonetheless, the effect remains positive and statistically significant
across both approaches, providing reassuring evidence that the association between AI adoption and productivity
growth volatility is robust also across different matching designs.

As with the OLS estimates, we also conduct a battery of robustness tests to ensure that our results are not
driven by specific modelling choices or sectoral composition. Once again, we evaluate whether our findings hold
when employing a different proxy for productivity (labour productivity instead ofMFP), when using an alternative
measure of volatility (mean absolute deviation instead of standard deviation), and when excluding firms operating
in sectors that primarily declare an ICT-related main activity. Results adhere to the findings reported in the main
text and are collected in Table C.2 of Appendix C.

Overall, this section confirms that the observed positive relationship between AI adoption and productivity
growth volatility persists even under stricter identification strategies, suggesting that it goes beyond a simple
correlation. Having established this pattern, we now turn to investigating a potential mechanism that could
explain why AI adoption leads to greater volatility in productivity growth.

4 Unpacking the AI-volatility link

Our empirical findings so far indicate that predictive AI use is associated with increased volatility in firms’ pro-
ductivity growth rates. However, they provide little insight into the economic mechanisms through which AI
adoption influences firms’ productivity growth and the factors that shape its impact. In this section, we examine
whether the impact of AI use depends on how firms source AI. We then assess to what extent differences across

13Precisely in column (5) we use, [5, 10] and [10, 50, 250, 500] as break points for age and size respectively.
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AI sourcing strategies are mediated by firms’ absorptive capacities making them better able to assimilate and
exploit new knowledge embedded in AI.

As discussed in the Introduction, the impact of AI on productivity growth volatility is likely to vary across
firms depending on their AI sourcing strategy (Arora and Gambardella, 1994; Hoffreumon et al., 2024). Yet the
direction of this effect is not obvious ex-ante. Developing AI in-house enables greater customization and inte-
gration with existing workflows, potentially reducing volatility. However, it also requires significant investment
in technical expertise and organizational adaptation, the absence of which could instead increase volatility. Sim-
ilarly, purchasing AI solutions generate benefits in terms of economies of scale and lowers upfront costs, which
may stabilize operations. At the same time, integration challenges and dependence on external providers could
introduce uncertainties, pushing volatility in the opposite direction. To empirically assess how these trade-offs
impact volatility, we exploit a key feature of our dataset: the ability to distinguish firms that purchase AI exter-
nally, develop it in-house, or do both.

Table 5: Comparing AI buyers, AI developers and AI buyer-developers with non AI users.

AI non users AI buyers AI developers AI buyer-developers

Age 21.7 22.4 19.8 21.1
Size 45.5 82.4∗∗ 259.4∗∗∗ 220.8∗∗∗
Productivity 195.3 238.4∗∗∗ 293.7∗∗∗ 381.3∗∗∗
Fast Broadband 0.12 0.15∗ 0.41∗∗∗ 0.33∗∗∗
# other digital technologies 0.87 1.0∗∗∗ 1.59∗∗∗ 1.55∗∗∗

Volatility of prod. growth rates (σi) 0.20 0.24∗∗ 0.21 0.24∗

Obs. 6,603 686 230 266
Notes: Volatility of productivity growth rates is computed over the time span 2014 − 2019, demographic variables (’Age’, ’Size’,
’Productivity’) are measured in 2014 while ICT technological variables in 2018 where the ’buyer’ or ’developer’ status is recorded.
Means are computed using survey weights as well as the corresponding t-tests run against non AI users. The difference of the sample
size here with respect to that in Table 1 is due to the loss of 130 firms declaring in the survey to be both buyers and developers or
for which we do not have information on workforce.

Table 5 presents descriptive evidence comparing these three groups of AI users with the control group of non-
AI users. Among the 1182 firms reporting the use of predictive AI solutions, 686 (approximately 58%) classify
themselves as pure buyers, 230 (approximately 20%) as pure developers, and 266 (approximately 22%) as both
buyers and developers. As expected, all AI users tend to be larger, more productive, and more intensive users
of other ICT technologies comparad to non-AI users. However, when focusing only on AI users, non-trivial
differences emerge between groups. AI developers stand out as a distinct group: they are larger, more productive,
and significantly more engaged in other ICT technologies than AI buyers, suggesting the presence of a group
of AI ’super-users’ deeply embedded in digital transformation. Among these super-user firms, those being pure
developers looks larger, significantly less productive and slightly younger than firms adopting an hybrid sourcing
strategy.14 More importantly for our analysis, while both AI buyers and AI buyer-developers exhibit significantly
higher unconditional volatility in productivity growth compared to non-users, this is not the case for pure AI
developers. This preliminary evidence clearly warrants further investigation into whether the volatility-inducing
effect of AI adoption is primarily concentrated among firms relying on external AI solutions rather than those

14When comparingwith a t-test pure developers and buyer-developers amongAI users they significantly differ only in their productivity
averages.
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developing AI in-house.
With this aim we turn to regression analysis and present the results in Table 6. We begin by replicating

our preferred specification, including firmographic and ICT intensity controls, as well as region and industry
fixed effects, while adding dummies for the three AI user groups. Non-AI users serve as the baseline category.
Consistent with our preliminary statistics, the OLS estimates in column (1) indicate that AI adoption is strongly
associated with increased productivity growth volatility among AI buyers. For firms adopting a hybrid sourcing
strategy, the effect remains positive but is less statistically significant, while for pure AI developers, it disappears.
The magnitude of the coefficient for AI buyers is comparable with that found in the OLS estimates for generic
AI users (Table 2, column 3), corresponding to an elasticity of about 11%. As above the full set of estimated
parameters is reported in Table D.4 of Appendix D, suggesting that controls enter the regression with expected
signs.

Table 6: OLS estimates of Equation (1) for different categories of AI users.

AI users AI buyers AI developers AI buyer-developers
(1) (2) (3) (4) (5) (6) (7)

AI buyers 0.106∗∗∗ 0.107∗∗∗ 0.055∗
(0.030) (0.030) (0.033)

AI developers 0.068 0.050 0.064
(0.057) (0.058) (0.057)

AI buyer-developers 0.123∗ 0.109 0.073
(0.067) (0.067) (0.063)

log Productivity (2019) -0.152∗∗∗ -0.158∗∗∗ -0.188∗∗∗ -0.157∗∗∗ -0.210 -0.155∗∗∗ -0.404∗∗∗
(0.042) (0.043) (0.060) (0.043) (0.126) (0.043) (0.128)

Controls Xi,t0 Yes Yes Yes Yes Yes Yes Yes
Controls ICTi,2018 Yes Yes Yes Yes Yes Yes Yes
Ind. FE Yes Yes Yes Yes Yes Yes Yes
Reg. FE Yes Yes Yes Yes Yes Yes Yes

Observations 7,785 7,289 3,929 6,833 1,253 6,869 1,738
Adj. R2 0.110 0.107 0.190 0.116 0.235 0.116 0.278
Starting Imbalance 0.86 0.96 0.95
Ending Imbalance 0.71 0.70 0.83
Number Strata 1,805 1,764 1,768
Number Matched Strata 366 145 152
Clustered SE Industry Industry CEM bin Industry CEM bin Industry CEM bin

Notes: Column (1) reports the results of OLS estimation on the full sample when AI users are unpacked into different categories.
Columns (2) and (3) report the OLS estimation results before and after CEM for AI buyers, columns (4) and (5) for AI developers
and (6) and (7) for AI buyer-developers. Volatility of productivity growth rates is computed over the time span 2014 − 2019,
demographic variables (’Age’, ’Size’, ’Productivity’) are measured in 2014 while ICT technological variables in 2018 where the AI-
related status is recorded.The specifications in columns (3), (5) and (7) are estimated using CEM weights, the ones in columns (1),
(2), (4) and (6) with survey weights. Strata are built following Section 2.2. Industry are defined at 2-digit level. Regions correspond
to 11 French administrative regions. Number Strata and Number Matched Strata are the total number of strata in total and the one
with matches.

While these initial OLS estimates are in line with unconditional comparisons, a more robust identification
strategy is needed to address potential endogeneity concerns, as done in the previous section. However, with
multiple AI user groups, applying CEM balancing is not straightforward, as achieving a well-balanced match
across all categories simultaneously is data demanding. Implementing CEM with three treatment groups and
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jointly balancing all groups ensures the best comparability across treatments, but may significantly reduce the
matched sample size due to the need for common support across all groups. The alternative of conducting pairwise
matching between each treatment and the control separately, maximizes sample retention for each comparison
with the potential cost of leading to different control group compositions, complicating cross-treatment compar-
isons. Given the size and composition of our sample, we opt for the second strategy. We split the sample, keeping
non-AI users as the control group while varying the treated group across the three AI user types. This strategy
ensures comparability within each pairwise comparison, while preserving the structure of the original identifi-
cation framework. A key advantage is that it allows us to maintain well-balanced samples, improving internal
validity. The limitation is that it does not allow for direct statistical testing of differences across AI user groups,
requiring caution when comparing effect sizes across specifications.

Columns (3), (5), and (7) present OLS estimates after applying CEM balancing.15 The results show that for
AI buyers, the coefficient remains positive and statistically significant, but is nearly halved compared to the OLS
estimate in column (1). This mirrors the pattern observed in the previous section, suggesting that part of the
initial effect stems from firm characteristics rather than AI adoption per se, though a meaningful association with
volatility persists. For AI developers, the coefficient remains unchanged from the simple OLS estimate and is
still not statistically different from zero. Finally, for buyer-developers, the coefficient declines and loses statistical
significance. For comparison, columns (2), (4), and (6) report OLS estimates for the split samples. The sign and
magnitude of the coefficient remain consistent with the patterns observed when using the full sample, as in
column (1). Furthermore, we propose specific robustness checks wherein we couple AI buyer-developers either
with AI buyers or developers. Results are reported on Table D.3 and broadly confirms the results: differently from
AI developers, AI buyers are more volatile.

Overall, these results support the idea that buyers, developers, and buyer-developers represent distinct types
of firms in terms of howAI integration affects their production and organizational routines. Specifically, firms that
rely on purchased AI solutions tend to face greater uncertainty when incorporating these technologies into their
workflows. Several factors may contribute to these difficulties. First, externally sourced AI solutions, designed
for broad applicability, may not fully align with a firm’s specific business processes. Second, dependence on
external providers for updates, maintenance, and troubleshooting canmake AI integration more time-consuming,
complex, and uncertain. Third, the lack of full control over the technology means that employees, especially
those unfamiliar with AI-driven processes, are more prone to misinterpret AI outputs, potentially overreacting
to signals they receive. In contrast, firms that develop AI in-house seems to experience a smoother integration
process, as they are likely to engage with the technology from its inception. Beyond the ability to fine-tune
models to their needs, results suggest that these firms are more likely to foster an internal culture of technological
understanding and development, where AI is not just a tool, but an evolving component of the decision-making
framework. Employees, whether technical experts or not, are exposed to AI-driven insights early on, facilitating a
learning process that reduces uncertainty. As a result, their productivity trajectories may reflect a more deliberate
and controlled adoption process, rather than abrupt adjustments driven by external factors. Hybrid firms that
both develop AI in-house and purchase external solutions likely fall somewhere between these two extremes.

15Table D.1 in Appendix D reports descriptive statistics on comparisons between groups of AI users after CEM balance.
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While they rely on external AI solutions, they also benefit from the flexibility and customization of internal
development. This combination looks enough to mitigate some of the integration challenges faced by pure AI
buyers. Our preferred estimates, after CEM balancing, suggest that hybrid firms do not experience the same
increase in productivity growth volatility observed for firms that rely solely on external off-the-shelf AI solutions.

We interpret these findings as suggesting that differences in firms’ absorptive capacity, that is in their ability
to internalize, adapt, and effectively use new technology, drive the heterogeneous effects of AI on productivity
growth volatility (Cohen and Levinthal, 1990). In the remainder of this section, we focus on one key determi-
nant of absorptive capacity: workforce composition. Specifically, we posit that firms developing AI in-house are
inherently better equipped to integrate AI into their operations. Their strategic approach to AI adoption necessi-
tates employing ICT technicians and engineers from the outset, ensuring a smoother transition and minimizing
disruptions to productivity growth. In contrast, AI buyers may or may not have the requisite digital competencies
to integrate AI effectively. If the tacit knowledge embedded in technically skilled workers plays a crucial role in
facilitating AI adoption, we should observe that among AI buyers, firms with a higher share of ICT engineers and
technicians experience a more moderated impact of AI on productivity growth volatility.

To conduct this analysis, we focus on firms that source AI externally (i.e., pure buyers or hybrid buyer-
developers), for which we have estimated at last one statisticall significant effect in Tables 3 and 7. We leverage
an additional dataset containing French matched employer-employee data (DADS) and link it to our sample of
firms. DADS provides detailed information on the occupations and work hours of employees in French firms,
allowing us to identify ICT engineers and technicians and measure their total hours worked in a given year.16

Using this information, we compute the share of hours worked by ICT engineers and technicians within each firm,
denoted as ICTW i,t0 where t0 is 2014, the first year of calculation of our dependend variable. To incorporate
this dimension, we extend our baseline specification (1) as follows:

lnσi =β0 + βAIi + βwAIi × ICTW i,2014 + γ1ICTW i,2014 + γ3 lnFGPi,2014 + γ4ICT i + δs + δr + ϵi , (2)

where the interaction term captures the extent to which the impact of externally acquired AI solutions on MFP
growth volatility is dampened by a firm’s ability to rely upon a technically competentworkforce. Our specification
also directly controls for the share of hours worked by ICT engineers and technicians. We estimate βw, our
parameter of interest, following the same identification strategy as before, starting with OLS for comparability
before applying the CEM estimator. From a purely descriptive viewpoint, we record that companies classified
as non users and pure buyers are characterized by very low shares of ICT hours worked (respectively 2.89% and
2.76%), while a substantially larger share of ICT hours worked is instead achieved by companies with a hybrid AI
adoption strategy (17.03%) and by the AI developers (23.08%).

Table 7 presents the OLS estimates of Equation (2) for AI buyers (colums 1 and 2) and for AI buyers or AI
buyer-developers (columns 3 and 4).The estimates confirm the previous result that AI adoption is associated with
higher productivity growth volatility, but crucially, this effect depends on the presence of ICT specialists within
the firm. In column (1), before CEM balancing, the coefficient on AI buyers is significant and found equal to 0.132,
reaffirming that firms relying on externally sourced AI experience significantly greater volatility. However, the

16Details can be found [here]. We define ICT engineers using occupation codes [388a, 388b, 388c, 388d, 388e] and ICT technicians using
codes [478a, 478b, 478c, 478d] according to the 2003 PCS classification.
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Table 7: OLS estimates of Equation (2) for AI buyers without and with buyer-developers only before and after
the CEM balance.

AI buyers AI buyers and AI buyer-developers
(1) (2) (3) (4)

AI 0.132*** 0.075** 0.137*** 0.083***
(0.029) (0.034) (0.027) (0.031)

ICTWi,t0 0.090 0.254 0.041 -0.107
(0.153) (0.164) (0.158) (0.161)

AI×ICTWi,t0 -0.911*** -0.404** -0.588*** -0.266*
(0.252) (0.180) (0.082) (0.160)

log Productivity (2019) -0.158*** -0.191*** -0.155*** -0.236***
(0.043) (0.060) (0.041) (0.069)

Controls Xi,t0 Yes Yes Yes Yes
Controls ICTi,2018 Yes Yes Yes Yes
Ind. FE Yes Yes Yes Yes
Reg. FE Yes Yes Yes Yes

Observations 7,289 3,929 7,555 4,422
Adj. R2 0.108 0.191 0.114 0.197
Starting Imbalance 0.86 0.86
Ending Imbalance 0.71 0.71
Number Strata 1,805 1,842
Number Matched Strata 366 437
Clustered SE Industry CEM bin Industry CEM bin

Notes:
Notes: Columns (1) and (2) report the OLS estimation results before and after CEM for non-users and AI
buyers, and columns (3) and (4) report the OLS estimation results before and after CEM for non-users,
AI buyers and buyer-developers. Volatility of productivity growth rates is computed over the time span
2014 − 2019, demographic variables (’Age’, ’Size’, ’Productivity’) and the share of hours worked by ICT
technicians and engineers are measured in 2014 while ICT technological variables in 2018 where the AI-
related status is recorded. Industry are defined at 2-digit level.Regions correspond to administrative regions
of metropolitan France. Strata are built following Section 2.2. Number Strata and Number Matched Strata
are the total number of strata in total and the one with matches. The specifications in columns (2), and (4)
are estimated using CEM weights, the ones in columns (1) and (3) with survey weights.

interaction term between AI buyers and ICT share is negative, significant and large enough to indicate that firms
with a higher intensity of ICT workers experience a substantially weaker volatility effect. After CEM balancing
(column 2), which ensures a more comparable set of AI buyers and non-users, the story does not change. The
coefficient on AI buyers decreases by nearly half to 0.075 remaining significant in large part following the same
pattern observed in previous sections. Also, the same is true for the interaction term which remains negative and
significant halving in size even in the context of CEM-based identification.

Interestingly, these new point estimates suggest the presence of a threshold effect. Our estimates in column
(2), for example, indicate that the marginal impact of AI technologies on the volatility of MFP growth ( ∂σ

∂AI can be
cancelled only by buyers that have a share of ICT working hours of about 18%. This threshold is approximately 6
times larger than the average share of ICT working hours displayed by AI buyer. Hence, our estimates align well
with the absorptive capacity framework, indicating that what matters is not merely the presence of a few highly
skilled experts, potentially confined to specialized research units, but rather a critical mass of ICT competence
diffused across the organization, ensuring AI technologies are effectively integrated into firm-wide processes.
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We report robustness checks in Table D.5 in Appendix D. We explore a different specification augmented with
a quadratic term for ICTW , and report results for the sample of developers, including their interaction with ICT
workers, which is not significantly different from 0.

Taking stock of these evidence leads to the important conclusion that the first waves of predictive AI tech-
nologies, developed and adopted between 2012 and 2018, were not meant for “dilettantes”, and only firms with
a widespread absortive capacity have been able to unleash the potential of these technologies without the perils
derived from higher risk.

5 Conclusion

With this study, we provide novel insights into the relationship between AI use and the volatility of firms’ produc-
tivity growth rates in the early stages of predictive AI diffusion, an aspect largely unexplored by the emerging
literature on AI’s impact. Our main finding indicates that AI adoption increases the volatility of productivity
growth, highlighting the challenges that firms face when integrating predictive AI technologies into their pro-
cesses. In particular, we find that firms that develop AI systems in-house do not experience this volatility surge,
unlike firms that procure AI from external providers. This suggests that firms with established AI capabilities
that tailor AI technologies to their specific needs, do not experience drawbacks from AI use. Conversely, AI
buyers that purchase predictive AI systems from third parties may lack flexibility and require complementary
adjustments for effective integration. Corroborating this interpretation, we find that AI-buying firms endowed
with a larger share of ICT workers exhibit lower volatility in productivity growth. This points to the critical role
of ICT-related complementary assets in mitigating AI-induced volatility.

Our contribution is twofold. First, we provide empirical evidence on AI adoption’s effect on firm-level pro-
ductivity growth volatility, addressing a gap in the literature. Because prior research has mostly focused on AI’s
impact on productivity levels, our study underscores the importance of volatility as a key dimension for under-
standing AI’s broader implications. Second, we extend the literature on complementary assets for AI adoption,
demonstrating that firms with stronger ICT capabilities and with more absortive capacity are better equipped
to manage AI-induced disruptions. These findings align with past experiences with other GPTs (David, 1990;
Bresnahan et al., 1996; Brynjolfsson and Hitt, 2003).

Reducing the negative effects of AI-driven volatility could be a relevant policy target, as more uncertainty
may deter firms from investing in AI, ultimately limiting its diffusion. Our findings suggest that policymakers
can support firms by promoting investments in AI capabilities and ICT human capital, facilitating smoother AI
integration.

This study can be extended in several directions. First, a more granular analysis of AI technologies could
reveal whether certain AI applications contribute more than others to volatility in productivity growth. Second,
future research could examine the long-term effects of AI adoption on volatility. While our study focuses on
AI’s early diffusion, as firms refine their AI integration strategies, volatility patterns may reverse, with AI users
eventually becoming less volatile due to AI-driven improvements in data analytics and predictive capabilities.
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A Descriptive evidence

Table A.1: Samples size and composition.

Full sample Non AI users AI buyers AI developers AI buyer-developers

(n. obs.) (n. obs.) (n. obs.) (n. firms) (n. firms)

no controls 8,877 7,514 769 280 314
adding FGPi,t0 and ICTi controls 7,915 6,715 700 232 268
adding also ICTWi,t0 7,785 6,603 686 230 266
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B OLS estimates

Table B.1: OLS estimates of Equation (1).

σi (2014-2019) σi (2015-2019) σi (2012-2019) σi (2007-2012)
(1) (2) (3) (4) (5) (6)

AI 0.083*** 0.094*** 0.098*** 0.057** 0.090*** 0.079
(0.025) (0.024) (0.023) (0.025) (0.027) (0.049)

log Productivity (2019) -0.152*** -0.199*** -0.132***
(0.041) (0.044) (0.034)

log Productivity (2014) -0.151*** -0.049
(0.052) (0.060)

log Size (2014) -0.093*** -0.079***
(0.021) (0.024)

log Age (2014) -0.049*** -0.052***
(0.016) (0.016)

log Productivity (2015) -0.005
(0.059)

log Size (2015) -0.085***
(0.027)

log Age (2015) -0.041*
(0.022)

log Productivity (2012) -0.032 0.005
(0.060) (0.067)

log Size (2012) -0.084***
(0.019)

log Age (2012) -0.046**
(0.019)

log Productivity (2007) -0.007
(0.049)

log Size (2007) -0.096***
(0.018)

log Age (2007) -0.033***
(0.011)

Fast Broadband 0.053*** 0.066*** 0.057** 0.079*** 0.106***
(0.019) (0.019) (0.022) (0.020) (0.026)

Number of Other Digital Technologies = 1 0.031 0.034 0.031 0.015 0.063*
(0.033) (0.034) (0.035) (0.032) (0.037)

Number of Other Digital Technologies = 2 0.058 0.063 0.069* 0.024 0.062
(0.037) (0.038) (0.039) (0.035) (0.058)

Number of Other Digital Technologies = 3 0.037 0.039 0.040 0.039 0.099
(0.059) (0.059) (0.058) (0.062) (0.093)

Constant -1.913*** -0.783*** -0.565** -0.589** -0.707*** -1.538***
(0.003) (0.213) (0.237) (0.244) (0.210) (0.278)

Controls Xi,t0 No Yes Yes Yes Yes Yes
Controls ICTi No Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes
Region FE Yes Yes Yes Yes Yes Yes

Observations 7,915 7,915 7,915 7,879 7,462 6,379
Adj. R2 0.051 0.099 0.108 0.095 0.119 0.112
Clustered SE Industry Ind. 2d Ind. 2d Ind. 2d Ind. 2d Ind. 2d

Notes: Volatility of productivity growth rates σi is computed over the time span 2014 − 2019 in columns (1)-(3), and over 2015 − 2019, 2012 − 2019 and
2007 − 2012 in columns (4), (5), and (6) respectively. Firmographics variables (’Age’, ’Size’, ’Productivity’) are measured at t0, the initial year of the span
over which volatility are computed, that is 2014 for the first three columns and 2015, 2012, 2007 for the last three columns. ICT technological variables are
measured in 2018, the year in which the AI-related status is recorded. Industry are defined at 2-digit level. Regions correspond to administrative regions of
metropolitan France. All the specifications are estimated using survey weights.
* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table B.2: Robustness checks - OLS estimates of Equation (1).

Lab. Productivity Excluding NACE 62-63 Excluding NACE 58-63 MAD
(1) (2) (3) (4)

AI 0.073*** 0.105*** 0.111*** 0.087***
(0.021) (0.023) (0.023) (0.023)

log Productivity (2019) -0.043 -0.157*** -0.157*** -0.131***
(0.045) (0.041) (0.043) (0.042)

log Productivity (2014) -0.110* -0.046 -0.045 -0.061
(0.059) (0.062) (0.067) (0.049)

log Size (2014) -0.181*** -0.076*** -0.076*** -0.077***
(0.013) (0.024) (0.026) (0.022)

log Age (2014) -0.035** -0.050*** -0.049*** -0.047***
(0.016) (0.016) (0.017) (0.014)

Fast Broadband 0.057*** 0.075*** 0.071*** 0.068***
(0.018) (0.019) (0.020) (0.018)

Number of Other Digital Technologies = 1 -0.006 0.031 0.034 0.042
(0.031) (0.034) (0.034) (0.031)

Number of Other Digital Technologies = 2 0.036 0.057 0.065* 0.053
(0.029) (0.038) (0.038) (0.036)

Number of Other Digital Technologies = 3 0.026 0.037 0.043 0.054
(0.046) (0.060) (0.061) (0.057)

Constant -0.935*** -0.571** -0.591** -0.843***
(0.075) (0.244) (0.256) (0.225)

Controls Xi,t0 Yes Yes Yes Yes
Controls ICTi Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Region FE Yes Yes Yes Yes

Observations 7,915 7,691 7,346 7,915
Adj. R2 0.108 0.106 0.0962 0.116
Clustered SE Industry Industry Industry Industry

Notes: Volatility of productivity growth rates σi is computed using the ratio of value addded to total employees over the time span 2014 − 2019 in column
(1). Columns (2) and (3) exclude forms with main activity in the ICT service sectors NACE 62-63 and NACE 58-63. Column (4) employes the Mean Absolute
Deviation in place of the standard deviation to compute the volatility of productivity growth rates. Firmographics variables (’Age’, ’Size’, ’Productivity’) are
measured at t0, the initial year of the span over which volatility are computed, that is 2014 for the first three columns and 2015, 2012, 2007 for the last three
columns. ICT technological variables are measured in 2018, the year in which the ’user’ and ’non-user’ status is recorded. Industry are defined at 2-digit level.
Regions correspond to administrative regions of metropolitan France. All the specifications are estimated using survey weights.
* p < 0.1, ** p < 0.05, *** p < 0.01.
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C CEM estimates

Table C.1: OLS estimates of Equation (1) after CEM balancing.

σi (2014-2019) σi (2012-2019) σi (2014-2019) PSM
(1) (2) (3) (4) (5) (6)

AI 0.057** 0.056* 0.098*** 0.065** 0.061** 0.104***
(0.027) (0.031) (0.033) (0.027) (0.027) (0.033)

log Productivity (2019) -0.234*** -0.319*** -0.104* -0.186*** -0.212*** -0.203***
(0.070) (0.067) (0.055) (0.061) (0.075) (0.060)

log Productivity (2014) 0.289*** 0.213*** 0.235*** 0.184***
(0.081) (0.074) (0.087) (0.063)

log Size (2014) -0.163*** -0.166*** -0.154*** -0.156***
(0.019) (0.020) (0.020) (0.015)

log Age (2014) -0.077*** -0.064*** -0.061** -0.102***
(0.023) (0.021) (0.024) (0.020)

log Productivity (2015) 0.327***
(0.080)

log Size (2015) -0.132***
(0.026)

log Age (2015) -0.090***
(0.027)

log Productivity (2012) 0.163***
(0.062)

log Size (2012) -0.174***
(0.022)

log Age (2012) -0.048**
(0.024)

Fast Broadband 0.051 0.103** 0.079** 0.058 0.063* 0.060
(0.035) (0.044) (0.039) (0.038) (0.035) (0.040)

Number of Other Digital Technologies = 1 0.018 0.034 0.024 0.067 -0.002 0.056
(0.051) (0.056) (0.048) (0.042) (0.051) (0.053)

Number of Other Digital Technologies = 2 0.006 -0.029 0.026 0.052 -0.021 0.052
(0.057) (0.058) (0.052) (0.047) (0.057) (0.055)

Number of Other Digital Technologies = 3 -0.015 -0.042 0.071 0.037 -0.005 0.062
(0.071) (0.081) (0.064) (0.060) (0.078) (0.069)

Constant -1.269*** -1.234*** -1.360*** -1.135*** -1.186***
(0.284) (0.307) (0.242) (0.283) (0.277)

Controls Xi,t0 Yes Yes Yes Yes Yes Yes
Controls ICTi,2018 Yes Yes Yes Yes Yes Yes
Ind. FE Yes Yes Yes Yes Yes Yes
Reg. FE Yes Yes Yes Yes Yes Yes

Observations 4,928 4,833 4,585 5,462 6,000 2,399
Adj. R2 0.192 0.188 0.204 0.182 0.188 0.164
Starting Imbalance 0.811 0.825 0.805 0.811 0.811
Ending Imbalance 0.712 0.724 0.690 0.721 0.756
Number Strata 1,885 2,139 1,877 1,530 1,201
Number Matched Strata 503 518 502 460 376
Clustered SE CEM bin CEM bin CEM bin CEM bin CEM bin

Notes: Volatility of productivity growth rates σi is computed over the time span 2014 − 2019 in columns (1) and (4)-(6), and over 2015 − 2019,
2012 − 2019 in columns (2), (3) respectively. Firmographics variables (’Age’, ’Size’, ’Productivity’) are measured at t0, the initial year of the span
over which volatility are computed. ICT technological variables are measured in 2018 where the ’user’ and ’non-user’ status is recorded. Industry are
defined at 2-digit level and all the specifications are estimated using CEM weights. CEM balancing is performed using baseline classification described
in Section 2.2 in columns (1)-(3), with only 10 productivity bins in column (4), with broader classes for age and size in column (5). Column (6) reports
results of a PSM estimator. Industry are defined at 2-digit level. Regions correspond to administrative regions of metropolitan France. Number Strata
and Number Matched Strata are the total number of strata in total and the one with matches. All the specifications are estimated using CEM weights.
* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table C.2: Robustness checks - OLS estimates of Equation (1) after CEM balancing.

Lab. Productivity Excluding NACE 62-63 Excluding NACE 58-63 MAD
(1) (2) (3) (4)

AI 0.057** 0.068** 0.074** 0.048*
(0.028) (0.028) (0.029) (0.025)

log Productivity (2019) -0.096* -0.228*** -0.224*** -0.200***
(0.057) (0.082) (0.081) (0.066)

log Productivity (2014) 0.107 0.262*** 0.251*** 0.267***
(0.073) (0.091) (0.092) (0.075)

log Size (2014) -0.169*** -0.142*** -0.141*** -0.163***
(0.010) (0.022) (0.024) (0.017)

log Age (2014) -0.074*** -0.079*** -0.069*** -0.073***
(0.023) (0.025) (0.026) (0.021)

Fast Broadband 0.050 0.065* 0.066* 0.057*
(0.033) (0.039) (0.040) (0.031)

Number of Other Digital Technologies = 1 0.075* 0.010 0.010 0.018
(0.040) (0.053) (0.054) (0.046)

Number of Other Digital Technologies = 2 0.055 -0.018 -0.025 0.006
(0.044) (0.058) (0.058) (0.050)

Number of Other Digital Technologies = 3 -0.014 -0.041 -0.030 0.001
(0.057) (0.080) (0.082) (0.062)

Constant -0.873*** -1.235*** -1.226*** -1.548***
(0.141) (0.310) (0.315) (0.244)

Controls Xi,t0 Yes Yes Yes Yes
Controls ICTi Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Region FE Yes Yes Yes Yes

Observations 7,915 7,691 7,346 7,915
Adj. R2 0.215 0.171 0.159 0.205
Starting Imbalance 0.821 0.809 0.793 0.811
Ending Imbalance 0.770 0.688 0.683 0.712
Number Strata 1,804 1,897 1,783 1,885
Number Matched Strata 481 489 461 503
Clustered SE CEM bin CEM bin CEM bin CEM bin

Notes: Volatility of productivity growth rates σi is computed using the ratio of value addded to total employees over the time span 2014 − 2019 in column
(1). Columns (2) and (3) exclude forms with main activity in the ICT service sectors NACE 62-63 and NACE 58-63. Column (4) employes the Mean Absolute
Deviation in place of the standard deviation to compute the volatility of productivity growth rates. Firmographics variables (’Age’, ’Size’, ’Productivity’) are
measured at t0, the initial year of the span over which volatility are computed. ICT technological variables are measured in 2018 where the ’user’ and ’non-user’
status is recorded. Strata are built following Section 2.2. Industry are defined at 2-digit level. Regions correspond to administrative regions of metropolitan
France. Number Strata and Number Matched Strata are the total number of strata in total and the one with matches. All the specifications are estimated using
CEM weights.
* p < 0.1, ** p < 0.05, *** p < 0.01.
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D Unpacking the AI-volatility link

Table D.1: Comparing AI buyers, AI developers and AI buyer-developers with non AI users after CEM balance.

Non AI users AI buyers Non AI users AI developers Non AI users AI buyer-developers

log Age 3.03 3.07 3.01 3.05 3.12 3.12
log Size 4.37 4.41∗ 5.31 5.36 5.50 5.56∗
log Productivity 5.65 5.65 5.84 5.84 6.11 6.17
Fast Broadband 0.27 0.33∗∗∗ 0.46 0.52 0.46 0.53∗
# other digital technologies 1.42 1.54∗∗∗ 1.73 1.93∗∗∗ 1.66 1.95∗∗∗

Obs. 3,243 686 1,023 230 1472 266
Notes: Volatility of productivity growth rates is computed over the time span 2014− 2019, demographic variables (’Age’, ’Size’, ’Productivity’) are measured in 2014
while ICT technological variables in 2018 where the AI-related status is recorded. Strata are built following Section 2.2. Means are computed using CEM weights as
well as the corresponding t-tests.
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Table D.2: OLS estimates of Equation (1) for different categories of AI users.

AI users AI buyers AI developers AI buyer-developers
(1) (2) (3) (4) (5) (6) (7)

AI buyers 0.106*** 0.107*** 0.055*
(0.030) (0.030) (0.033)

AI developers 0.068 0.050 0.064
(0.057) (0.058) (0.057)

AI buyer-developers 0.123* 0.109 0.073
(0.067) (0.067) (0.063)

log Productivity (2019) -0.152*** -0.158*** -0.188*** -0.157*** -0.210 -0.159*** -0.404***
(0.041) (0.043) (0.060) (0.044) (0.148) (0.043) (0.138)

log Productivity (2014) -0.054 -0.050 0.129 -0.049 0.374*** -0.047 0.554***
(0.060) (0.063) (0.086) (0.060) (0.142) (0.062) (0.151)

log Size (2014) -0.075*** -0.074*** -0.126*** -0.071*** -0.181*** -0.072*** -0.202***
(0.024) (0.025) (0.023) (0.024) (0.031) (0.023) (0.031)

log Age (2014) -0.055*** -0.054*** -0.086*** -0.053*** -0.094** -0.054*** -0.053
(0.016) (0.016) (0.026) (0.016) (0.047) (0.017) (0.048)

Fast Broadband 0.069*** 0.076*** 0.091** 0.076*** 0.006 0.071*** 0.078
(0.020) (0.021) (0.041) (0.021) (0.059) (0.022) (0.062)

Number of Other Digital Technologies = 1 0.039 0.040 0.021 0.046 0.161 0.045 -0.024
(0.034) (0.034) (0.051) (0.032) (0.125) (0.032) (0.189)

Number of Other Digital Technologies = 2 0.062 0.057 0.005 0.066 0.096 0.074* 0.033
(0.039) (0.041) (0.060) (0.040) (0.132) (0.038) (0.197)

Number of Other Digital Technologies = 3 0.040 0.022 0.022 0.033 0.089 0.052 -0.117
(0.058) (0.060) (0.074) (0.063) (0.147) (0.064) (0.198)

Constant -0.549** -0.550** -0.747** -0.568** -2.120*** -0.566** -1.729***
(0.240) (0.251) (0.366) (0.238) (0.502) (0.244) (0.471)

Controls Xi,t0 Yes Yes Yes Yes Yes Yes Yes
Controls ICTi,2018 Yes Yes Yes Yes Yes Yes Yes
Ind. FE Yes Yes Yes Yes Yes Yes Yes
Reg. FE Yes Yes Yes Yes Yes Yes Yes

Observations 7,785 7,289 3,929 6,833 1,253 6,869 1,738
Adj. R2 0.110 0.107 0.190 0.116 0.235 0.116 0.278
Starting Imbalance 0.86 0.96 0.95
Ending Imbalance 0.71 0.70 0.83
Number Strata 1,805 1,764 1,768
Number Matched Strata 366 145 152
Clustered SE Industry Industry CEM bin Industry CEM bin Industry CEM bin

Notes: Column (1) reports the results of OLS estimation on the full sample when AI users are unpacked into different categories. Columns (2) and (3)
report the OLS estimation results before and after CEM for AI buyers, columns (4) and (5) for AI developers and (6) and (7) for AI buyer-developers.
Volatility of productivity growth rates is computed over the time span 2014−2019, demographic variables (’Age’, ’Size’, ’Productivity’) are measured in
2014 while ICT technological variables in 2018 where the AI-related status is recorded.The specifications in columns (3), (5) and (7) are estimated using
CEM weights, the ones in columns (1), (2), (4) and (6) with survey weights. Strata are built following Section 2.2. Industry are defined at 2-digit level.
Regions correspond to 11 French administrative regions. Number Strata and Number Matched Strata are the total number of strata in total and the one
with matches.
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Table D.3: OLS estimates of Equation (2) for AI buyers only before and after the CEM balance.

AI developers and buyer-developers AI buyers and buyer-developers
(1) (2) (3) (4)

AI developers and buyer-developers 0.083** 0.058
(0.037) (0.044)

AI buyers and buyer-developers 0.109*** 0.064**
(0.027) (0.030)

log Productivity (2019) -0.155*** -0.295** -0.156*** -0.238***
(0.043) (0.126) (0.041) (0.070)

log Productivity (2014) -0.050 0.461*** -0.051 0.251***
(0.059) (0.131) (0.063) (0.087)

log Size (2014) -0.072*** -0.194*** -0.074*** -0.151***
(0.023) (0.024) (0.024) (0.021)

log Age (2014) -0.054*** -0.062* -0.055*** -0.079***
(0.017) (0.035) (0.016) (0.024)

Fast Broadband 0.069*** 0.026 0.070*** 0.087**
(0.021) (0.047) (0.020) (0.038)

Number of Other Digital Technologies = 1 0.045 0.059 0.039 -0.002
(0.032) (0.132) (0.034) (0.053)

Number of Other Digital Technologies = 2 0.072* 0.076 0.064 0.013
(0.038) (0.136) (0.039) (0.059)

Number of Other Digital Technologies = 3 0.052 0.000 0.040 -0.021
(0.062) (0.144) (0.059) (0.075)

Constant -0.567** -1.993*** -0.548** -1.087***
(0.235) (0.395) (0.248) (0.322)

Controls Xi,t0 Yes Yes Yes Yes
Controls ICTi,2018 Yes Yes Yes Yes
Ind. FE Yes Yes Yes Yes
Reg. FE Yes Yes Yes Yes

Observations 7,099 2,364 7,555 4,422
Adj. R2 0.107 0.206 0.108 0.192
Starting Imbalance 0.83 0.86
Ending Imbalance 0.72 0.71
Number Strata 1,800 1,842
Number Matched Strata 242 437
Clustered SE Industry CEM bin Industry CEM bin

Notes: Columns (1) and (2) reports the OLS estimation results before and after CEM for non-users, AI developers and buyer-developers, columns
(3) and (4) for non-users, AI buyers and buyer-developers. Volatility of productivity growth rates is computed over the time span 2014 − 2019,
demographic variables (’Age’, ’Size’, ’Productivity’) and the share of hours worked by ICT technicians and engineers are measured in 2014 while
ICT technological variables in 2018 where AI-releated status is recorded. Industry are defined at 2-digit level. Regions correspond to administrative
regions of metropolitan France. Strata are built following Section 2.2. Number Strata and Number Matched Strata are the total number of strata in
total and the one with matches. The specifications in columns (2), and (4) are estimated using CEM weights, the ones in columns (1) and (3) with
survey weights.
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Table D.4: OLS estimates of Equation (2) for AI buyers without and with buyer-developers only before and after the CEM balance.

AI buyers AI buyers and AI buyer-developers
(1) (2) (3) (4)

AI 0.132*** 0.075** 0.137*** 0.083***
(0.029) (0.034) (0.027) (0.031)

ICTWi,t0 0.090 0.254 0.041 -0.107
(0.153) (0.164) (0.158) (0.161)

AI×ICTWi,t0 -0.911*** -0.404** -0.588*** -0.266*
(0.252) (0.180) (0.082) (0.160)

log Productivity (2019) -0.158*** -0.191*** -0.155*** -0.236***
(0.043) (0.060) (0.041) (0.069)

log Productivity (2014) -0.048 0.130 -0.050 0.251***
(0.064) (0.086) (0.063) (0.087)

log Size (2014) -0.073*** -0.125*** -0.074*** -0.151***
(0.024) (0.023) (0.024) (0.021)

log Age (2014) -0.054*** -0.085*** -0.056*** -0.080***
(0.016) (0.026) (0.016) (0.024)

Fast Broadband 0.079*** 0.089** 0.074*** 0.090**
(0.020) (0.041) (0.020) (0.038)

Number of Other Digital Technologies = 1 0.039 0.017 0.039 0.001
(0.034) (0.052) (0.034) (0.053)

Number of Other Digital Technologies = 2 0.057 0.001 0.065 0.016
(0.041) (0.060) (0.039) (0.060)

Number of Other Digital Technologies = 3 0.022 0.019 0.039 -0.020
(0.060) (0.074) (0.059) (0.075)

Constant -0.559** -0.750** -0.555** -1.096***
(0.252) (0.366) (0.249) (0.322)

Controls Xi,t0 Yes Yes Yes Yes
Controls ICTi,2018 Yes Yes Yes Yes
Ind. FE Yes Yes Yes Yes
Reg. FE Yes Yes Yes Yes

Observations 7,289 3,929 7,555 4,422
Adj. R2 0.108 0.191 0.114 0.197
Starting Imbalance 0.86 0.86
Ending Imbalance 0.71 0.71
Number Strata 1,805 1,842
Number Matched Strata 366 437
Clustered SE Industry CEM bin Industry CEM bin

Notes: Columns (1) and (2) report the OLS estimation results before and after CEM for non-users and AI buyers, and columns
(3) and (4) report the OLS estimation results before and after CEM for non-users, AI buyers and buyer-developers. Volatility of
productivity growth rates is computed over the time span 2014− 2019, demographic variables (’Age’, ’Size’, ’Productivity’) and
the share of hours worked by ICT technicians and engineers are measured in 2014 while ICT technological variables in 2018
where the AI-related status is recorded. Industry are defined at 2-digit level.Regions correspond to administrative regions of
metropolitan France. Strata are built following Section 2.2. Number Strata and Number Matched Strata are the total number of
strata in total and the one with matches. The specifications in columns (2), and (4) are estimated using CEM weights, the ones in
columns (1) and (3) with survey weights.
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Table D.5: OLS estimates of Equation (2) for AI buyers, buyers and buyer-developers, and developers only.

AI buyers AI buyers and buyer-developers AI developers
(1) (2) (3) (4)

AI buyers 0.071**
(0.034)

AI buyers and buyer-developers 0.082***
(0.031)

AI developers 0.114 0.034
(0.090) (0.069)

ICTWi,t0 1.601*** 1.281*** 0.024 -0.100
(0.424) (0.400) (0.180) (0.243)

AI×ICTWi,t0 -0.389** -0.295* -0.293* 0.162
(0.184) (0.157) (0.169) (0.153)

ICTWi,t0
2 -1.775*** -1.720***

(0.493) (0.449)
log Productivity (2019) -0.195*** -0.242*** -0.157*** -0.211

(0.060) (0.069) (0.044) (0.148)
log Productivity (2014) 0.127 0.250*** -0.050 0.374***

(0.085) (0.086) (0.061) (0.141)
log Size (2014) -0.122*** -0.147*** -0.071*** -0.180***

(0.023) (0.021) (0.024) (0.031)
log Age (2014) -0.088*** -0.082*** -0.053*** -0.093*

(0.026) (0.024) (0.017) (0.047)
Fast Broadband 0.086** 0.080** 0.077*** 0.008

(0.041) (0.038) (0.021) (0.059)
Number of Other Digital Technologies = 1 0.012 -0.006 0.046 0.159

(0.052) (0.053) (0.032) (0.125)
Number of Other Digital Technologies = 2 -0.007 0.005 0.065 0.096

(0.060) (0.059) (0.040) (0.132)
Number of Other Digital Technologies = 3 0.002 -0.038 0.032 0.088

(0.074) (0.074) (0.064) (0.147)
Constant -0.707* -1.059*** -0.569** -2.109***

(0.366) (0.321) (0.238) (0.502)

Controls Xi,t0 Yes Yes Yes Yes
Controls ICTi,2018 Yes Yes Yes Yes
Ind. FE Yes Yes Yes Yes
Reg. FE Yes Yes Yes Yes

Observations 3,929 4,422 6,833 1,253
Adj. R2 0.194 0.197 0.106 0.190
Starting Imbalance 0.86 0.86 0.964
Ending Imbalance 0.71 0.71 0.696
Number Strata 1,805 1,842 1764
Number Matched Strata 366 437 145
Clustered SE CEM bin CEM bin Industry CEM bin

Notes: Columns (1) and (2) report the OLS estimation results after CEM for non-users and AI buyers without and with AI buyer-developers
respectively. Columns (3) and (4) report the OLS estimation results before and after CEM for non-users, AI developers. Volatility of productivity
growth rates is computed over the time span 2014− 2019, demographic variables (’Age’, ’Size’, ’Productivity’, ICTW) are measured in 2014,
while ICT technological variables in 2018 where the AI-releated status is recorded. Industry are defined at 2-digit level. Regions correspond
to administrative regions of metropolitan France. Strata are built following Section 2.2. Number Strata and Number Matched Strata are the
total number of strata in total and the one with matches. The specifications in columns (2), and (4) are estimated using CEM weights, the one
in column (3) with survey weights.
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