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Abstract

While artificial intelligence (AI) adoption holds the potential to enhance business operations through im-

proved forecasting and automation, its relationwith average productivity growth remain highly heterogeneous

across firms. This paper shifts the focus and investigates the impact of predictive artificial intelligence (AI) on

the volatility of firms’ productivity growth rates. Using firm-level data from the 2019 French ICT survey, we

provide robust evidence that AI use is associated with increased volatility. This relationship persists across

multiple robustness checks, including analyses addressing causality concerns. To propose a possible mech-

anisms underlying this effect, we compare firms that purchase AI from external providers (łAI buyersž) and

those that develop AI in-house (łAI developersž). Our results show that heightened volatility is concentrated

among AI buyers, whereas firms that develop AI internally experience no such effect. Finally, we find that AI-

induced volatility among łAI buyersž is mitigated in firmswith a higher share of ICT engineers and technicians,

suggesting that AI’s successful integration requires complementary human capital.
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1 Introduction

Adopting new technologies has long posed significant challenges for businesses, especially when it comes to

general-purpose technologies (GPTs) such as computers, information and communication technologies (ICT).

The adoption of GPTs typically requires substantial complementary investments in organizational restructuring,

workforce upskilling, and new business processes (David, 1990; Brynjolfsson and Hitt, 2003). The extent of these

transformations is so profound that scholars have described them as coinvention, emphasizing the need for firms

not only to adopt new technologies but also to innovate in how they are integrated and utilized (Bresnahan et al.,

1996). Institutional inertia may further complicate the integration of GPTs, creating mismatches between techno-

logical potential and existing organization practices.1 These complementary changes have been shown to evolve

incrementally and unevenly across firms and industries, resulting in significant heterogeneity in productivity

impacts (Dosi, 2023). For these reasons, when these technologies hold transformative potential their productivity

benefits often take years to materialize.2

Artificial intelligence (AI) is no exception to this pattern. The adoption of AI has shown great promise for

transforming business operations through predictive analytics and automation, yet its impact on productivity

growth remains uncertain (Agrawal et al., 2022; Brynjolfsson et al., 2021; Acemoglu et al., 2022). Recent stud-

ies have also identified substantial heterogeneity in firms’ ability to leverage AI (Calvino and Fontanelli, 2023;

Czarnitzki et al., 2023), in line with the idea that complementary assets such as advanced digital capabilities and

highly skilled workforces are key for returns to AI use (Brynjolfsson et al., 2018). Firms that develop their own AI

systems in-house (Calvino and Fontanelli, 2024), as well as those patenting AI-related innovations (see, e.g., Mar-

ioni et al., 2024; Damioli et al., 2021; Alderucci et al., 2021), tend to benefit the most. Further, AI has been shown

to impact firms not only through operational efficiency but also via product innovations (Babina et al., 2024).3

All together these evidences underscore the inherent complexities in integrating AI, as with earlier GPTs, into

existing organizational systems as well as the challenges in predicting how AI will impact productivity growth

dynamics within firms.

In contributing to this literature, our work is the first to shift attention away from expected productivity gains

and focus on how the integration of AI systems alters the variability in productivity growth dynamics within

firms. While its commercial use dates back to 2012, AI remains in its early stages of development, exhibiting

strong technological dynamism and a steep learning curve, which is expected to amplify fluctuations in firms’

performance (Bresnahan et al., 2002). Such heightened volatility can deter investment by increasing uncertainty,

disrupt workforce stability by making employment cycles more erratic, and create barriers to AI adoption by

1Dosi et al. (2021), for example, highlight that the absence of hierarchical structures in organizations can hinder coordination and

distort knowledge flows impeding full integration of GPTs.
2Robert Solow provocatively observed already in 1987 that łYou [could] see the computer age everywhere but in the productivity

statisticsž. See łWe’d Better Watch Outž published in The New York Times Book Review on July 12.
3Recent analyses estimating a positive impact of generative AI use on the productivity of certain categories of workers (see also

Brynjolfsson et al., 2023; Noy and Zhang, 2023; Peng et al., 2023; Eloundou et al., 2023; Kreitmeir and Raschky, 2023) complements the

firm-level evidence discussed above. First, generative AI was unlikely to be widely used by the firms before 2023. Also, these studies

primarily focus on specific worker categories and this relationship may depend on whether tasks fall within the current capabilities of AI

systems (Dell’Acqua et al., 2023). Lastly, whether AI-driven gains in worker productivity translate into overall firm productivity remains

an open question, specially in light of the task-specific use made of generative AI by workers (Handa et al., 2025). For instance, Dell’Acqua

et al. (2023) provide experimental evidence suggesting that AI adoption may reduce team performance and increase coordination failures.
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raising the costs of integration and organizational adaptation. This, in turn, would slow the diffusion of AI

technologies across firms and limit their long-term transformative potential (Rosenberg, 2009; Acemoglu, 2024).

Leveraging data from an ICT survey distributed to French firms with 10 or more employees, we find robust

correlational evidence that the use of predictive AI is associated with an increase in the volatility of a firm’s

productivity growth rates. This relationship persists across a range of robustness checks and alternative specifi-

cations, including variations in the computation of the dependent variable, the choice of productivity index, and

adjustments for sectoral composition. Furthermore, we conduct more rigorous identification tests to address key

endogeneity concerns. While not fully definitive, the results strengthen the case that our main finding reflects

more than a simple correlation. First, we account for differences in firm characteristics by employing a Coarsened

Exact Matching (CEM) approach, which balances AI users and non-users ex-ante based on characteristics such

as size, age, productivity, industry, and digitalization measures. We then estimate the effect of AI on volatility us-

ing the matched sample of AI users and non-users. Second, larger, more productive, and more digitized firms are

known to self-select into AI adoption (Calvino and Fontanelli, 2023; Alekseeva et al., 2021; Calvino and Fontanelli,

2024). We address this potential sample selection pre-trends by showing that the AI-volatility relationship did not

exist during a period when AI adoption was not yet possible. Our results confirm the OLS findings, suggesting

that AI use positively affects the volatility of firms’ productivity growth rates.4 This difference is found in the

range between 6% and 10% depending on the specification.

Building on this result, we extend our analysis to examine how firms source AI. As with other GPTs, firms

may develop AI in-house, purchase AI solutions from external providers, or adopt a hybrid approach that inte-

grates both strategies (Hoffreumon et al., 2024). This łmake-or-buyž decision presents a key trade-off: in-house

development enables firms to tailor AI to their specific needs, but demands substantial investment in technical

expertise and organizational adaptation. In contrast, purchased AI solutions can deliver benefit from economies

of scale, lower upfront costs, and embedded best practices but may lack flexibility and require complementary ad-

justments for effective integration. Some firms, recognizing these trade-offs, pursue a mixed strategy to combine

the advantages of internal development with external procurement (Arora and Gambardella, 1994). Indeed firms

with in-house AI expertise can better integrate, customize, and extend third-party solutions, aligning them with

business needs. Moreover, internal capabilities improve firms’ ability to evaluate external technologies, absorb

new knowledge, and implement hybrid solutions that blend proprietary innovations with best-in-class third-party

tools.

Rather than focusing on the determinants of themake-or-buy decision, we investigate its implications.5 Lever-

aging a unique feature of the French ICT survey, we classify firms into three categories: those that purchase

AI externally (łAI buyersž), those that develop AI in-house (łAI developersž), and those that combine both ap-

proaches. We then assess how these sourcing strategies influence the volatility of firms’ productivity growth

trajectories. Using our preferred specification to account for this heterogeneity, we find that higher volatility in

productivity growth is observed only among AI buyers, whereas firms that develop AI in-house or use an hybrid

4Close to our work, but with a different perspective, Bianchini et al. (2022) analyse research activities and show that the impact of AI

use on output quality is highly uncertain.
5Determinants and consequences of decisions of make-or-buy AI systems have been studies in Hoffreumon et al. (2024) and Calvino

and Fontanelli (2024).
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strategy do not exhibit this effect. This divergence suggests that firms’ ability to integrate and leverage AI effec-

tively depends not only on access to the technology per se, but also on their internal capacity to absorb and apply

it productively. Absorptive capacities have been shown to play a crucial role in determining how firms assimi-

late, activate, and exploit new knowledge thereby shaping its complementarities with existing firm-specific assets

(Cohen and Levinthal, 1990). In line with the concept of absorptive capacity, firms that develop AI in-house are

likely better equipped to internalize and refine AI-driven processes, aligning them with existing workflows and

minimizing disruptive fluctuations. In contrast, AI buyers seem to struggle to assimilate and optimize externally

sourced AI, leading to greater instability in productivity growth.

To operationalize one important dimension of absorptive capacity in our context and explore its role in shap-

ing firms’ ability to integrate AI without destabilizing productivity growth, we conclude our investigations turn-

ing our attention to the presence of ICT specialists within AI users. Leveraging a feature of our dataset ś the

matching of employer data with employee information ś, we calculate for each firm the share of hours worked

by ICT engineers and technicians and investigate whether their presence is able to mitigate the volatility effects

associated with AI adoption. Our analysis reveals that the effect of AI on productivity growth volatility among

AI buyers is reduced when firms have a higher proportion of workers with ICT expertise. These new results

corroborates the intuition that a workforce with strong AI expertise is a critical precondition for stabilizing pro-

ductivity growth dynamics. Firms that source AI solutions externally, but have a workforce equipped with ICT

knowledge, are better positioned to integrate AI effectively. This finding contributes to the literature highlight-

ing the importance of complementing AI adoption with ICT- and STEM-specialized human capital (Calvino and

Fontanelli, 2023; Babina et al., 2023; Harrigan et al., 2023; Acemoglu et al., 2022; McElheran et al., 2023; Fontanelli

et al., 2024). We extend this body of work by showing that the risks of inadequate AI integration go beyond

limiting productivity gains, they also introduce greater instability, potentially deterring firms from adopting AI

in the first place.

From a policy perspective, our findings support the case for industrial policies to mitigate the technological

uncertainty associated with the early adoption of general-purpose technologies (GPTs) such as AI systems (see

Bresnahan et al., 2002). Specifically, they highlight that the impact of AI on productivity growth volatility depends

on the type of AI user and the characteristics of firms. Policies aimed at facilitating firms’ access to essential com-

plementary assets during the AI adoption process could yield a double benefit: smoothing productivity growth

dynamics and lowering barriers to AI adoption, thereby fostering further digital investment.

The remainder of the paper is organised as follows. In Section 2we discuss the theoretical framework, method-

ology, data and identification structure that we aim at using for studying the research question at stake. In Section

3 and 4 we discuss the main results and the mechanism mediating the positive effect of AI on the volatility of

productivity growth rates. In Section 5 we draw the conclusions. Four appendices complete the paper with more

details about descriptive statistics (Appendix A), robustness check of the baseline OLS models (Appendix B), of

the CEM models (Appendix C), and of the models accounting for heterogeneity in the AI adoption strategies

(Appendix D).
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2 Data, empirical framework and identification strategy

2.1 Data

In this work we make use of an ICT representative survey distributed to about 9,000 French firms with 10 or more

employees in 2019. We complement information provided by the survey with administrative data from balance-

sheets and income statements and with employers-employees matched data. All data sources are provided by the

French National Institute of Statistics and Economic Studies (INSEE).6 Below we describe the basic features of

these data in presenting the way we define our empirical proxies.

AI use. Our variable of interest is a dummy that proxies the use of predictive AI. To build this proxy we lever-

age the French ICT survey distributed in 2019 encompassing a representative sample of approximately 9,000 firms

with a workforce of 10 employees or more and spanning the manufacturing and non-financial services sectors.

This sample contains firms with on average 50 employees and 20 years of age. Our data exhibits an exceptional

degree of detail in contrast to alternative commercial surveys and enables a comprehensive exploration of the

patterns of AI adoption among firms.7 We define a dummy variable AIi that takes the value 1 if firm i reports

using predictive AI technologies as of 2018.

Figure 1: Computing volatility of productivity growth rates.

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 0 (0)

0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (0) 0 0 (0)

1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 1 (1)

1 (0) 1 (0) 1 (0) 1 (0) 1 (1) 1 (1) 1 1 (1)

Firm 1

Firm 2

Firm 3

Firm 4

2012 2013 2014 2015 2016 2017 2018 2019

Notes: AI ’users’ (1) and ’non-user’ (0) status over 2012-2019 for four hypothetical firms. ICT survey provides

factual information on their status of users in 2018. Since in other years this information is not available, we

propagate it backward and forward to cover the entire time span 2012-2019. Then, in the baseline model the

volatility of productivity growth rates σi is computed only over the time window 2014-2019 (dashed green

border). Firms are assumed to have at most one switch from ’non-user’ to ’user’. To illustrate misclassification

mistakes we report in parenthesis the hypothetical true status. If the two indicators within a cell match, our

procedure correctly classifies the firm as a user or non-user (cells with black numbers); if they do not match,

the classification contains some measurement error (cells with red numbers).

Volatility of productivity growth rates. The dependent variable in all the empirical investigations below

is the volatility of the productivity growth rates of the French firms in our sample. To build this measure we first

link to our sample balance-sheet information (sourced in the FICUS/FARE data-sets over the 2007−2019 period)

needed to estimate different indexes of productivity, encompassing both single-factor (value added over labour

ratio) and multi-factor alternatives estimated using the single-stage GMM procedure described in Wooldridge

(2009). We denote a firm’s i productivity level in year t with Ai,t and define its logarithmic growth rate as

6Access to some confidential data, on which is based this work, has been made possible within a secure environment offered by CASD

(Centre d’acces securise aux donnees, Ref. 10.34724/CASD).
7Our data is referred to as the łEnquete sur les Technologies de l’Information et de la Communication (TIC)ž. Further information at

this link.
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ωi,t = lnAi,t − lnAi,t−1.

Deciding over which time window computing the volatility of the firms’ growth rates ωi,t is challenging due

to a data limitation. Specifically, while we know which firms reported using AI in 2018, we lack information

on the timing of their AI adoption or whether they opted in and out in previous years. This information would

indeed be crucial to identify the correct number of times a firm has truly been an adopter during the considered

window. To address this challenge we adopt the following procedure. First, we make the conservative hypothesis

that the surge in firms’ adoption of AI started only after 2011. This hypothesis is justified on the fact that key

advancements in predictive AI applications and technologies, such that the łAlexNetž neural network, marking

the onset of superior performance of deep learning and artificial neural networks compared to prevailing non-AI

methodologies in statistical analyses, took place around that year (see Babina et al., 2024; Engberg et al., 2024).

Next, we consider 2012 as the earliest adoption year for all firms declaring to be AI users in 2018. Second, we

restrict our time horizon up to 2019 to avoid the Covid-19 crisis. Third, we reasonably assume that firms do not

transition in and out of AI technologies more than once over the period 2012 − 2019. Finally, in selecting the

year range [t0, t1] to compute σi, we balance concerns about noise in volatility estimates against potential biases

due to misclassifications and fix as a baseline the interval 2014− 2019 including in the computation five growth

rates.

Advantages and disadvantages of this procedure are illustrated using Figure 1 which presents the case of

four hypothetical firms: non-user (łFirm 1ž and łFirm 2ž) and users (łFirm 3ž and łFirm 4ž). On the one hand,

for firms like łFirm 1ž and łFirm 3ž, our procedure correctly classifies the two firms, although only partially

exploiting the sample size of available growth rates. On the other hand, for firms like łFirm 2ž and łFirm 4ž, the

partial exploitation of the sample helps us mitigating the bias that could arise from incorrect firm classification

when comparing AI users and non-users. In case AI users indeed do exhibit a more volatile productivity growth

profile, our approach seems in a first approximation conservative. By extending firm status over the period,

we introduce a potential bias that overestimates volatility for non-AI users and underestimates it for AI users.

This bias makes it more challenging to detect differences in volatility between the two groups, meaning that

any significant difference we do observe is likely a lower bound of the true effect. In any case, recognizing the

arbitrariness of our classification procedure, we conduct robustness checks in our empirical analysis by computing

σi over different time windows.

Firm-level controls. We build two sets of control variables. First, we consider firmographics ś including

variables such as size, age, industrial sector, geographical localization ś come from balance-sheet data.8 To sim-

plify the notation, we collectively represent them as FGPi,t where t spans the entire time window 2012-2019.

Second, leveraging again the ICT survey, we build proxies capturing the extent to which a firm uses digital tech-

nologies other than AI. In particular, we build a a categorical variable accounting for the number of other than

AI digital technologies in use at the same firm and a dummy capturing the presence of a fast broadband connec-

tion.9 We collectively represent these variables with ICTi, that do not present any time index since they are all

observed only in 2018.

8Firmographics, also known as firm demographics, represents are sets of characteristics to segment organizations.
9The survey asks explicit questions on the use of Customer Relationship Management (CRM) systems, Enterprise Resource Planning

(ERP) software, and involvement in e-commerce activities.
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2.2 Empirical framework and identification strategy

LetAi,t represents amulti-factor productivity index of a Hicks-neutral technology. Following the well-established

literature (see e.g. Jovanovic, 1982; Hopenhayn, 1992; Luttmer, 2007; Dosi et al., 2016; Fontanelli et al., 2023), we

assume that a firm’s productivity evolves in time as a simple multiplicative process Ai,t = Ai,t−1e
ωi,t where

ωi,t represents a firm-specific idiosyncratic term capturing capital deepening, institutional factors or learning

dynamics in our productivity measure.

We characterize the vector of firm-specific productivity growth shocks in terms of a density function G. We

assume that such a distribution is determined by some firm characteristics FGPi,t as well as by the firm decisions

to use predictive artificial intelligence AIi,t or other ICT technologies ICT i,t. Formally, we can write:

ωi,t ∼ G(µi, σi) with







µi = Fµ(FGPi,t, AIi, ICT i)

σi = Fσ(FGPi,t, AIi, ICT i)

where µi and σi denote the location and scale parameters of the distribution allowed to be heterogeneous across

firms. The functional form F is assumed instead identical across firms. While hyper-simplified, this framework

has the merit to provide a simple representation of the impact of diverse firm characteristics, including the use

of AI and of other technologies, on the productivity growth distribution G, in terms of partial derivatives of the

functions Fµ and Fσ with respect to X , AI and ICT respectively.

This paper is interested in studying
∂Fσ

∂AIi
when AIi represents the use of predictive AI technologies. As

discussed in the Introduction firms may use AI and machine learning to improve the quality of forecasts for sales,

inventory, and supply chain management hence moderating productivity growth volatility. However, without

proper capabilities to master AI and interpret its outcomes firms may also face an exacerbation of fluctuations

in productivity dynamics. To resolve this ambiguity we take
∂Fσ

∂AIi
to the data. Our paper is the first tackling

this issue. To carry out this task, we regress the (log) volatility computed over the time span 2014-2019 on an AI

adoption indicator while controlling for other ICT technologies adoption, firm characteristics, and sector (2-digit)

and region fixed effects

lnσi = α+ βAIi + γ1 lnFGPi,2014 + γ2ICT i + δs + δr + ϵi , (1)

where FGPi,2014 includes a firm’s size, age and productivity, ICTi a categorical variable capturing the number

of ICT technologies other than AI and a dummy for fast broadband use, and δs and δr represent sector and region

fixed effects. Firmographics are measured in 2014 to alleviate reverse-causality concerns. The identification of β,

our parameter of interest, relies on variation in AI adoption across firms within the same sector and region that

is not systematically related to unobserved determinants of volatility. Specifically, β is identified from differences

in AI adoption among firms with similar pre-existing characteristics, conditional on other ICT usage and fixed

effects. While in equation (1) we control for several firm characteristics and for two different sources of unob-

served heterogeneity, OLS estimates may be biased for reasons we discuss in the remaining of this section, where

we also propose a matching procedure to alleviate endogeneity concerns threatening our identification strategy.

To refine the credibility of our estimation strategy, we implement a Coarsened Exact Matching (CEM) estima-
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tor following the approach in Iacus et al. (2012, 2011). CEM is a matching method that reduces model dependence

and imbalance between treated and control groups by coarsening the covariates into discrete strata and then

performing exact matching within these strata. Unlike OLS, CEM improves covariate balance ex ante, ensuring

that treated and control groups are comparable in terms of observable characteristics before estimating the effect

of AI adoption. By reducing potential bias from systematic differences between AI adopters and non-adopters,

CEM is aimed at strengthening the credibility of the comparison between the treated (AI users) and control (non

AI users) groups.

Building CEM estimators entails a two-step procedure. The first step involves coarsening the continuous and

categorical covariates into discrete intervals or bins. In implementing CEM, the choice of coarsening levels is

crucial: too coarse a classification may lead to poor balance, while too fine a classification may result in excessive

pruning of observations, reducing statistical power. The goal is to group observations into strata, where treated

and control units belong to the same strata in each coarsened covariate. In our baseline, we build strata using a

firm’s age, size, productivity, ICT technologies other than AI and industrial sector. For age and size we classify

firms using [5, 10, 20] and [10, 20, 50, 100, 250, 500] as break points. The logarithmic transformation of produc-

tivity is divided based on 15 equidistant cutpoints, ensuring that the bin distances in levels correspond to fixed

percentage differences. ICT technologies and fast broadband are summarized in a single dummy equal one if at

least one of them is available to the firm. For sectors, we use the 29 survey classes used in the ICT survey.10 Note

that the choice to prioritize firmographics over the intensity of ICT use (excluding AI) is intentional and reflects

the apparent strong complementarity between AI and other digital technologies.

In the second step, we compare AI users and AI non-users in the matched sample estimating an average

treatment effect. Unlike other matching estimators, like the Propensity Score Matching, in CEM observations in

this second step are weighted based on the number of treated and control units within each stratum. While CEM

increases the credibility of our identification strategy, it assumes that firms with identical coarsened covariates

are comparable. In practice, some selection bias may remain if other determinants of AI adoption are omitted

from the stratification. This is why we add other controls, not used in the matching procedure. Furthermore we

control for productivity level at the start of the period and 2019 to at least limit possible reverse causality. Indeed

CEM, while effective in addresses selection on observables, does not solve concerns regarding firms adopting AI

in response to volatility shocks. Finally, we also explore different approaches to define strata in the matching

procedure and we test our results against the use of an alternative matching technique.

3 AI-volatility link

This section presents our empirical results, progressing from descriptive evidence to robust OLS results and con-

cluding with a more credible identification strategy based on a coarsend exact matching (CEM). We complement

baseline results with a series of robusteness checks to address the main threats to our identification. Our findings

robustly indicate that predictive AI use is associated with greater volatility in productivity growth and provide

10Classes are based on the 3-digit NAF classification: 100-129, 130-159, 160-189, 190-239, 240-259, 265-267, 261-264 + 268, 270-289,

290-309, 310-339, 350-399, 410-439, 450-459, 460-469 (excluding 465), 465, 47, 49-53, 55, 56, 582, 58-61 (excluded 582), 61, 62 and 631, 639,

68, 69-74, 77-78 joint to 80-82, 79, 951.
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support that this link goes beyond a simple correlation.

3.1 Descriptive evidence

From the representative sample of about 9,000 firms with 10 or more employees used in the 2019 French ICT

survey we extract 7,915 firms for which we can build the variables needed in our investigations.11 As reported in

Table 1, in 2018 these firms are, on average, around 22 years old and primarily medium to large-sized enterprises,

with a mean of approximately 50 employees. They operate across a diverse range of 61 sectors ranging from

manufacturing of food products (#10) to services like the repair of computers (#95), reflecting a broad industrial

coverage. Consistent with the existing literature, we observe substantial heterogeneity in productivity across

firms. Even within narrowly defined sectors, the ratio between the top and bottom 5% of firms’ productivity is of

the order of 40 when we use a multi-factor productivity index.12

Table 1: Comparing AI users and non AI users.

Full sample Non AI users AI users

Age 21.7 21.8 22.2

Size 52.3 43.3 121.4∗∗∗

Productivity 203.0 195.0 263.5∗∗∗

Fast Broadband 0.13 0.12 0.20∗∗∗

# other digital technologies 0.90 0.87 1.15∗∗∗

Volatility of prod. growth rates (σi) 0.20 0.20 0.23∗∗∗

Obs. 7,915 6,715 1,200

Notes: Volatility of productivity growth rates is computed over the time span 2014 − 2019, de-
mographic variables (’Age’, ’Size’, ’Productivity’) are measured in 2014 while ICT technological

variables in 2018 where the ’user’ and ’non-user’ status is recorded. Means are computed using

survey weights as well as the corresponding t-tests.

* p < 0.1, ** p < 0.05, *** p < 0.01.

Among the 7,915 firms, 1,200 (approximately 15% unweighted and 11.13% when using sample weights) re-

ported using predictive AI technologies. As shown in Table 1, AI users tend to be significantly larger and more

productive than their non-user counterparts. They are also more likely to adopt other digital technologies, such as

fast broadband, reinforcing the notion that AI adoption is part of a broader technological transformation. Our key

empirical question concerns whether AI use is associated with differences in the volatility of productivity growth

trajectories. The unconditional figures in Table 1 suggest that AI users exhibit significantly higher volatility com-

pared to non-users. While still based on preliminary evidence, this result already reveals a somewhat unexpected

pattern at least within industrial dynamics. Indeed, prior literature indicates that larger firms typically exhibit

less volatile growth trajectories in terms of size (see Stanley et al., 1996; Bottazzi and Secchi, 2006; Calvino et al.,

2018, among others). However, our findings points in the direction that this relationship does not extend to

productivity growth, as AI-adopting firms, despite being larger on average, experience greater volatility in their

productivity growth trajectories. This divergence may well hint at the possibility that AI adoption introduces

firm-level dynamics that are specific to productivity rather than overall growth stability.

11See Table A.1 in Appendix A for details about the sample size and its composition.
12Reassuring on the quality of our data, similar patterns emerge analysing data in other from other surveys (Zolas et al., 2020; McElheran

et al., 2023; Calvino and Fontanelli, 2023).
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In any case this raw comparison of volatilities in Table 1 does not account for potential composition effects

that would indicate that the difference of volatilities between groups are due to differences in firm size, sector

composition, or other technological investments. To address these and other concerns, we next turn to a re-

gression framework and estimate the relationship between AI adoption and productivity growth volatility using

OLS specification with extensive controls for observable firm characteristics and other unobservable sources of

heterogeneity.

3.2 OLS estimates

Table 2 reports these OLS estimates. In the first two columns we focus on the volatility of productivity growth

computed over 2014-2019 and progressively add controls, starting with only industry and region fixed effects in

Column (1) and then adding firmographics and ICT controls in Column (2). To reduce reverse causality concerns,

firm characteristics are measured in 2014, the initial year of the window used to compute volatilities. Across

these two specifications, the coefficient on the AI User dummy is positive and statistically significant indicating

that firms adopting AI exhibit higher productivity growth volatility than non-AI users even after accounting for

multiple sources of omitted variable bias. Although narrowing from a difference of about 15% (computed from the

unconditional comparison in Table 1), the difference of about 11% highlighted in Column (2)remains economic

seizable. Column (3) shows that the result does not change if we introduce the (log) productivity in 2019 thus

controlling for the total 2014-2019 productivity growth. Table B.1 in the appendix reports results tables including

estimates for control variables. Estimates for controls are in line with expectations. Reconciling with existing

literature older and larger firms are associated with a less turbulent productivity dynamics. The existence of a

fast broadband connection with a higher volatility.

Table 2: OLS estimates of Equation (1).

σi (2014-2019) σi (2015-2019) σi (2012-2019) σi (2007-2012)

(1) (2) (3) (4) (5) (6)

AI 0.083∗∗∗ 0.940∗∗∗ 0.098∗∗∗ 0.057∗∗ 0.090∗∗∗ 0.079

(0.025) (0.024) (0.023) (0.025) (0.022) (0.049)

log Productivity (2019) -0.152∗∗∗ -0.199∗∗∗ -0.132∗∗∗

(0.049) (0.044) (0.034)

Controls Xi,t0 No Yes Yes Yes Yes Yes

Controls ICTi No Yes Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes Yes Yes

Region FE Yes Yes Yes Yes Yes Yes

Observations 7,915 7,915 7,915 7,879 7,462 6,379

Adj. R2 0.051 0.099 0.108 0.095 0.119 0.112

Clustered SE Industry Industry Industry Industry Industry Industry

Notes: Volatility of productivity growth rates σi is computed over the time span 2014−2019 in columns (1)-(3), and over 2015−2019,
2012−2019 and 2007−2012 in columns (4), (5), and (6) respectively. Firmographics variables (’Age’, ’Size’, ’Productivity’) aremeasured

at t0, the initial year of the span over which volatility are computed, that is 2014 for the first three columns and 2015, 2012, 2007 for

the last three columns. ICT technological variables are measured in 2018, the year in which the AI-related status is recorded. Industry

are defined at 2-digit level. Regions correspond to administrative regions of metropolitan France. All the specifications are estimated

using survey weights. The complete table is reported on Table B.1 in Appendix B.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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Given our data limitations, one might be concerned that measurement error affects our estimates of produc-

tivity growth volatility, particularly due to potential misclassification of AI adoption timing. As discussed above,

our approach seeks to balance the trade-off between minimizing noise in volatility estimates and reducing bias

from firm misclassification. To assess the robustness of our findings in this regard, we examine how our results

change when varying the timewindow used to compute volatilities. Specifically, we extend the window backward

to incorporate earlier growth rates and, also, restrict it forward to focus on more recent periods. Columns (4) and

(5) present results of this investigation, using our preferred specification, which includes all controls, fixed-effects

and accounts for productivity level in 2019. When we shorten the time window to 2015 − 2019 in Column (5),

our coefficient of interest remains statistically significant, but nearly halves in magnitude, suggesting a smaller

gap, around 6%, in volatility between AI users and non-users. Conversely, when we extend the window to its

maximum span of 2012−2019 in Column (5), the estimated coefficient β remains very close to our baseline spec-

ification and highly statistically significant. These results confirms that the procedure for computing σi performs

as expected based on our working hypothesis. The potential bias introduced by firm misclassification does not

appear to materially affect our findings, suggesting that our approach remains a valid and conservative strategy.

At the same time, when we reduce the number of growth rates involved in the computation of σi, the associated

coefficient attenuates, but this effect aligns with our expectations in case of a greater measurement error.

A second concern is selection bias: if firms with inherently more volatile productivity growth are more likely

to adopt AI, our results could be driven by pre-existing differences rather than being the effect of predictive AI

use itself. To address this, we conduct a placebo-style exercise using the period 2007− 2012, a time frame of the

same length as our baseline window, but before AI adoption could have spread. If our findings were purely the

result of firms with more volatile productivity growth self-selecting into AI use, we would expect to see a similar

association between AI user status (as recorded in 2018) and productivity volatility in this earlier period. Column

(6) presents the results, showing no significant relationship between AI user status and volatility in 2007˘2012

and suggesting that our main findings do not seem imputable to pre-existing differences between firms.

Finally we conduct three tests to check that our results are not driven by the specific way we compute the

productivity index or by sectoral composition. We first evaluate whether our findings hold when employing a

different proxy for productivity (namely labour productivity instead of MFP); second, when a different functional

form for volatility is employed (namely the mean absolute deviation); third, when we exclude firms operating in

sectors that primarily declare an ICT-related main activity (NACE 58-63). Results of these tests are aligned with

those presented in this section and reported in Table B.2 in Appendix B.

In summary, the key insight from OLS estimates is that difference in volatility between AI users and non-

users is robust and does not disappear when we condition on firmographic and technological factors, as well as

industry and region fixed effects. This difference in volatilities, estimated to be around 10%, holds true when

we address potential measurement issues with our dependent variable but disappears in a placebo test further

reducing concerns that our result is purely driven by self-selection. Notwithstanding these tests, our evidence

remains largely correlational, and identification persists to be a challenge. In the next section, we employ a

matching estimator to improve our empirical strategy and move closer to causal inference.

11



3.3 Refining identification: OLS estimates after CEM balancing

In this sectionwe implement a Coarsened ExactMatching (CEM) estimator. This estimator improves identification

by explicitly balancing the distribution of observed covariates between AI users and non-users before estimation.

CEM ensures that treated and control firms are more comparable ex ante by pruning observations that lack

suitablematches. Thismatching process improves internal validity, particularlywhen the overlap between treated

and control groups is limited or when nonlinearities in the relationship between controls and outcomes may bias

OLS estimates.

Table 3: Comparing AI users and non AI users after CEM balance.

Non AI users AI users

log Age 3.06 3.08

log Size 4.78 4.82

log Productivity 5.78 5.80

Fast Broadband 0.34 0.41∗∗∗

# other digital technologies 1.52 1.69∗∗∗

Obs. 3,897 1,031

Notes: Volatility of productivity growth rates is computed over the

time span 2014 − 2019, demographic variables (’Age’, ’Size’, ’Pro-

ductivity’) are measured in 2014 while ICT technological variables

in 2018 where the ’user’ and ’non-user’ status is recorded. Strata are

built following Section 2.2 generating 1,885 strata, 503 of which are

matched reducing the sample size to 4,928 observations. Means are

computed using CEM weights as well as the corresponding t-tests.

* p < 0.1, ** p < 0.05, *** p < 0.01.

The first step in our CEM implementation involves constructing strata that group firms into comparable

categories based on some observable characteristics. The trade-off here is between using overly fine categories,

in turn reducing sample size and statistical power, and coarsening too much, weakening the balance between

treated and control groups. As discussed in Section 2.2, in the baseline specification of the CEM, we consider

5 dimensions: size, age, productivity, ICT use and industrial activity. Specifically, we classify firm age using

three breakpoints [5, 10, 20], dividing firms into start-ups, young, mature and old ones; firm size is coarsened

by means of 6 breakpoints [10, 20, 50, 100, 250, 500], which is equivalent to the sampling structure of the ICT

survey (≤20, 20-49, 50-249, 250-499, 500+) except for the fact that we also account formicro-firmswith less than 10

employees. The logarithmic transformation of productivity is divided based on 15 equidistant cutpoints, ensuring

that the bin distances in levels correspond to fixed percentage differences. We then use a binary classification

to separate firms using fast broadband services or other ICT technologies (different from AI) and 29 classes for

industrial sectors. CEM generates 1,885 strata, 503 of which are matched, reducing the sample size to 4,928

observations. As a consequence, about 3k firms are lost in the matching process. Table 3 presents the covariates

balance between AI users and non-users after implementing CEM. Given our choice to allow finer classification

for firm characteristics, the distributions of firm age, size, and productivity are now closely aligned between the

two groups. The gap in digital technology adoption remains statistically significant, but it is now smaller than

in the original sample. Overall, the balancing process effectively enhances the credibility of our comparisons by

making AI users and non-users more similar in observable characteristics.
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After preprocessing data with CEM, we compare AI users and non AI reverting to regression analysis. As

baseline, we consider the specification used in OLS with controls for firm characteristics, industry and region

fixed-effects and a control for productivity measured in 2019 ś i.e., Table 2, column (3). Estimates for this baseline

are reported in Table 4, column (1). The estimated effect of AI adoption on productivity growth volatility remains

positive and statistically significant even under the more rigorous identification strategy of the CEM estimator,

reinforcing the idea that the relationship between AI adoption and increased volatility extends beyond a simple

correlation. The magnitude of the effect decreases compared to 0.098 in the OLS estimates, suggesting that part

of the initial effect was driven by ex ante differences between firm characteristics that CEM helps to balance.

Nonetheless, the difference remains of the order of about 6%. As for the OLS, controls enter the regression with

the expected sign (cfr. Table C.1 in Appendix C).

Table 4: OLS estimates of Equation (1) after CEM balancing.

σi (2014-2019) σi (2015-2019) σi (2012-2019) σi (2014-2019) PSM

(1) (2) (3) (4) (5) (6)

AI 0.057∗∗ 0.056∗ 0.098∗∗∗ 0.065∗∗ 0.061∗∗ 0.104∗∗∗

(0.027) (0.031) (0.033) (0.027) (0.027) (0.033)

log Productivity (2019) -0.234∗∗∗ -0.319∗∗∗ -0.104∗ -0.176∗∗∗ -0.212∗∗ -0.203∗∗

(0.070) (0.067) (0.055) (0.067) (0.075) (0.060)

Controls Xi,t0 Yes Yes Yes Yes Yes Yes

Controls ICTi,2018 Yes Yes Yes Yes Yes Yes

Ind. FE Yes Yes Yes Yes Yes Yes

Reg. FE Yes Yes Yes Yes Yes Yes

Observations 4,928 4,833 4,585 5,462 6,000 2,399

Adj. R2 0.192 0.188 0.204 0.182 0.188 0.164

Starting Imbalance 0.811 0.825 0.805 0.811 0.811

Ending Imbalance 0.712 0.724 0.690 0.721 0.756

Number Strata 1,885 2,139 1,877 1,530 1,201

Number Matched Strata 503 518 502 460 376

Clustered SE CEM bin CEM bin CEM bin CEM bin CEM bin

Notes: Volatility of productivity growth rates σi is computed over the time span 2014 − 2019 in columns (1) and (4)-(6), and over

2015 − 2019, 2012 − 2019 in columns (2), (3) respectively. Firmographics variables (’Age’, ’Size’, ’Productivity’) are measured at t0,

the initial year of the span over which volatility are computed. ICT technological variables are measured in 2018 where the ’user’ and

’non-user’ status is recorded. Industry are defined at 2-digit level and all the specifications are estimated using CEM weights. CEM

balancing is performed using baseline classification described in Section 2.2 in columns (1)-(3), with only 10 productivity bins in column

(4), with broader classes for age and size in column (5). Column (6) reports results of a PSM estimator. Industry are defined at 2-digit

level. Regions correspond to administrative regions of metropolitan France. Number Strata and Number Matched Strata are the total

number of strata in total and the one with matches. All the specifications are estimated using CEM weights. The complete table is

reported on Table C.1 in Appendix C.

* p < 0.1, ** p < 0.05, *** p < 0.01.

Next, in column (2) and (3) we evaluate whether our findings hold adjusting the time window used to compute

volatility by both restricting and expanding (2012− 2019) the period. Reducing the time window to 2015− 2019

leads to a further decline in the estimated effect with respect to the corresponding baseline, mirroring the pattern

observed in OLS (cfr. Table 2). However, with CEM this reduction also results in a loss of statistical significance,

making it the first and only case in our analysis where the AI-volatility relationship is no longer significant at

the 5% level. In contrast, expanding the time window to 2012 − 2019 generates a positive and significant point

estimate almost 10% larger than in the baseline. Although directly assessing the significance of this difference is

13



challenging, the direction of the change in both the estimate and its standard error appears consistent. Expanding

the time window allows for the inclusion of more treated growth rates in the computation, but may also introduce

additional noise.

Proceeding to columns (4) and (5), we explore the sensitivity of our results to alternative coarsening choices in

the CEM matching procedure. In particular, we broaden the stratification strategy. First, by reducing the number

of productivity bins from 15 to 10 (column 4). Secondly, by reducing the number of break points for age and

size (column 5).13 The AI User coefficient β remains positive and statistically significant in both the specifications

with no relevant changes in its magnitude and in the corresponding standard errors. This suggests that the overall

relationship is not highly sensitive to changes in stratification, and that the change in sample size does not impact

too much on the precision of the estimator.

Finally, in column (6) we further validate our identification strategy by presenting the results derived from

an estimator adopting a different matching strategy, namely the Propensity Score Matching (PSM) estimator.

While CEM (ex-ante) coarsens covariates into discrete bins before matching and discards observations that do

not find a match, PSM estimates the probability of treatment assignment given observed covariates and matches

(ex-post) treated and control units based on their similarity in propensity scores. In terms of sample construction,

the PSM results to be much more restrictive than CEM, with only 2399 observations preserved, against 4928

with CEM. Compared to CEM, PSM produces a larger point estimate for β (0.117 vs. 0.057), with a slightly larger

standard error and a smaller matched sample. Nonetheless, the effect remains positive and statistically significant

across both approaches, providing reassuring evidence that the association between AI adoption and productivity

growth volatility is robust also across different matching designs.

As with the OLS estimates, we also conduct a battery of robustness tests to ensure that our results are not

driven by specific modelling choices or sectoral composition. Once again, we evaluate whether our findings hold

when employing a different proxy for productivity (labour productivity instead ofMFP), when using an alternative

measure of volatility (mean absolute deviation instead of standard deviation), and when excluding firms operating

in sectors that primarily declare an ICT-related main activity. Results adhere to the findings reported in the main

text and are collected in Table C.2 of Appendix C.

Overall, this section confirms that the observed positive relationship between AI adoption and productivity

growth volatility persists even under stricter identification strategies, suggesting that it goes beyond a simple

correlation. Having established this pattern, we now turn to investigating a potential mechanism that could

explain why AI adoption leads to greater volatility in productivity growth.

4 Unpacking the AI-volatility link

Our empirical findings so far indicate that predictive AI use is associated with increased volatility in firms’ pro-

ductivity growth rates. However, they provide little insight into the economic mechanisms through which AI

adoption influences firms’ productivity growth and the factors that shape its impact. In this section, we examine

whether the impact of AI use depends on how firms source AI. We then assess to what extent differences across

13Precisely in column (5) we use, [5, 10] and [10, 50, 250, 500] as break points for age and size respectively.
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AI sourcing strategies are mediated by firms’ absorptive capacities making them better able to assimilate and

exploit new knowledge embedded in AI.

As discussed in the Introduction, the impact of AI on productivity growth volatility is likely to vary across

firms depending on their AI sourcing strategy (Arora and Gambardella, 1994; Hoffreumon et al., 2024). Yet the

direction of this effect is not obvious ex-ante. Developing AI in-house enables greater customization and inte-

gration with existing workflows, potentially reducing volatility. However, it also requires significant investment

in technical expertise and organizational adaptation, the absence of which could instead increase volatility. Sim-

ilarly, purchasing AI solutions generate benefits in terms of economies of scale and lowers upfront costs, which

may stabilize operations. At the same time, integration challenges and dependence on external providers could

introduce uncertainties, pushing volatility in the opposite direction. To empirically assess how these trade-offs

impact volatility, we exploit a key feature of our dataset: the ability to distinguish firms that purchase AI exter-

nally, develop it in-house, or do both.

Table 5: Comparing AI buyers, AI developers and AI buyer-developers with non AI users.

AI non users AI buyers AI developers AI buyer-developers

Age 21.7 22.4 19.8 21.1

Size 45.5 82.4∗∗ 259.4∗∗∗ 220.8∗∗∗

Productivity 195.3 238.4∗∗∗ 293.7∗∗∗ 381.3∗∗∗

Fast Broadband 0.12 0.15∗ 0.41∗∗∗ 0.33∗∗∗

# other digital technologies 0.87 1.0∗∗∗ 1.59∗∗∗ 1.55∗∗∗

Volatility of prod. growth rates (σi) 0.20 0.24∗∗ 0.21 0.24∗

Obs. 6,603 686 230 266

Notes: Volatility of productivity growth rates is computed over the time span 2014 − 2019, demographic variables (’Age’, ’Size’,

’Productivity’) are measured in 2014 while ICT technological variables in 2018 where the ’buyer’ or ’developer’ status is recorded.

Means are computed using survey weights as well as the corresponding t-tests run against non AI users. The difference of the sample

size here with respect to that in Table 1 is due to the loss of 130 firms declaring in the survey to be both buyers and developers or

for which we do not have information on workforce.

Table 5 presents descriptive evidence comparing these three groups of AI users with the control group of non-

AI users. Among the 1182 firms reporting the use of predictive AI solutions, 686 (approximately 58%) classify

themselves as pure buyers, 230 (approximately 20%) as pure developers, and 266 (approximately 22%) as both

buyers and developers. As expected, all AI users tend to be larger, more productive, and more intensive users

of other ICT technologies comparad to non-AI users. However, when focusing only on AI users, non-trivial

differences emerge between groups. AI developers stand out as a distinct group: they are larger, more productive,

and significantly more engaged in other ICT technologies than AI buyers, suggesting the presence of a group

of AI ’super-users’ deeply embedded in digital transformation. Among these super-user firms, those being pure

developers looks larger, significantly less productive and slightly younger than firms adopting an hybrid sourcing

strategy.14 More importantly for our analysis, while both AI buyers and AI buyer-developers exhibit significantly

higher unconditional volatility in productivity growth compared to non-users, this is not the case for pure AI

developers. This preliminary evidence clearly warrants further investigation into whether the volatility-inducing

effect of AI adoption is primarily concentrated among firms relying on external AI solutions rather than those

14When comparingwith a t-test pure developers and buyer-developers amongAI users they significantly differ only in their productivity

averages.
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developing AI in-house.

With this aim we turn to regression analysis and present the results in Table 6. We begin by replicating

our preferred specification, including firmographic and ICT intensity controls, as well as region and industry

fixed effects, while adding dummies for the three AI user groups. Non-AI users serve as the baseline category.

Consistent with our preliminary statistics, the OLS estimates in column (1) indicate that AI adoption is strongly

associated with increased productivity growth volatility among AI buyers. For firms adopting a hybrid sourcing

strategy, the effect remains positive but is less statistically significant, while for pure AI developers, it disappears.

The magnitude of the coefficient for AI buyers is comparable with that found in the OLS estimates for generic

AI users (Table 2, column 3), corresponding to an elasticity of about 11%. As above the full set of estimated

parameters is reported in Table D.4 of Appendix D, suggesting that controls enter the regression with expected

signs.

Table 6: OLS estimates of Equation (1) for different categories of AI users.

AI users AI buyers AI developers AI buyer-developers

(1) (2) (3) (4) (5) (6) (7)

AI buyers 0.106∗∗∗ 0.107∗∗∗ 0.055∗

(0.030) (0.030) (0.033)

AI developers 0.068 0.050 0.064

(0.057) (0.058) (0.057)

AI buyer-developers 0.123∗ 0.109 0.073

(0.067) (0.067) (0.063)

log Productivity (2019) -0.152∗∗∗ -0.158∗∗∗ -0.188∗∗∗ -0.157∗∗∗ -0.210 -0.155∗∗∗ -0.404∗∗∗

(0.042) (0.043) (0.060) (0.043) (0.126) (0.043) (0.128)

Controls Xi,t0 Yes Yes Yes Yes Yes Yes Yes

Controls ICTi,2018 Yes Yes Yes Yes Yes Yes Yes

Ind. FE Yes Yes Yes Yes Yes Yes Yes

Reg. FE Yes Yes Yes Yes Yes Yes Yes

Observations 7,785 7,289 3,929 6,833 1,253 6,869 1,738

Adj. R2 0.110 0.107 0.190 0.116 0.235 0.116 0.278

Starting Imbalance 0.86 0.96 0.95

Ending Imbalance 0.71 0.70 0.83

Number Strata 1,805 1,764 1,768

Number Matched Strata 366 145 152

Clustered SE Industry Industry CEM bin Industry CEM bin Industry CEM bin

Notes: Column (1) reports the results of OLS estimation on the full sample when AI users are unpacked into different categories.

Columns (2) and (3) report the OLS estimation results before and after CEM for AI buyers, columns (4) and (5) for AI developers

and (6) and (7) for AI buyer-developers. Volatility of productivity growth rates is computed over the time span 2014 − 2019,
demographic variables (’Age’, ’Size’, ’Productivity’) are measured in 2014 while ICT technological variables in 2018 where the AI-

related status is recorded.The specifications in columns (3), (5) and (7) are estimated using CEM weights, the ones in columns (1),

(2), (4) and (6) with survey weights. Strata are built following Section 2.2. Industry are defined at 2-digit level. Regions correspond

to 11 French administrative regions. Number Strata and Number Matched Strata are the total number of strata in total and the one

with matches.

While these initial OLS estimates are in line with unconditional comparisons, a more robust identification

strategy is needed to address potential endogeneity concerns, as done in the previous section. However, with

multiple AI user groups, applying CEM balancing is not straightforward, as achieving a well-balanced match

across all categories simultaneously is data demanding. Implementing CEM with three treatment groups and
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jointly balancing all groups ensures the best comparability across treatments, but may significantly reduce the

matched sample size due to the need for common support across all groups. The alternative of conducting pairwise

matching between each treatment and the control separately, maximizes sample retention for each comparison

with the potential cost of leading to different control group compositions, complicating cross-treatment compar-

isons. Given the size and composition of our sample, we opt for the second strategy. We split the sample, keeping

non-AI users as the control group while varying the treated group across the three AI user types. This strategy

ensures comparability within each pairwise comparison, while preserving the structure of the original identifi-

cation framework. A key advantage is that it allows us to maintain well-balanced samples, improving internal

validity. The limitation is that it does not allow for direct statistical testing of differences across AI user groups,

requiring caution when comparing effect sizes across specifications.

Columns (3), (5), and (7) present OLS estimates after applying CEM balancing.15 The results show that for

AI buyers, the coefficient remains positive and statistically significant, but is nearly halved compared to the OLS

estimate in column (1). This mirrors the pattern observed in the previous section, suggesting that part of the

initial effect stems from firm characteristics rather than AI adoption per se, though a meaningful association with

volatility persists. For AI developers, the coefficient remains unchanged from the simple OLS estimate and is

still not statistically different from zero. Finally, for buyer-developers, the coefficient declines and loses statistical

significance. For comparison, columns (2), (4), and (6) report OLS estimates for the split samples. The sign and

magnitude of the coefficient remain consistent with the patterns observed when using the full sample, as in

column (1). Furthermore, we propose specific robustness checks wherein we couple AI buyer-developers either

with AI buyers or developers. Results are reported on Table D.3 and broadly confirms the results: differently from

AI developers, AI buyers are more volatile.

Overall, these results support the idea that buyers, developers, and buyer-developers represent distinct types

of firms in terms of howAI integration affects their production and organizational routines. Specifically, firms that

rely on purchased AI solutions tend to face greater uncertainty when incorporating these technologies into their

workflows. Several factors may contribute to these difficulties. First, externally sourced AI solutions, designed

for broad applicability, may not fully align with a firm’s specific business processes. Second, dependence on

external providers for updates, maintenance, and troubleshooting can make AI integration more time-consuming,

complex, and uncertain. Third, the lack of full control over the technology means that employees, especially

those unfamiliar with AI-driven processes, are more prone to misinterpret AI outputs, potentially overreacting

to signals they receive. In contrast, firms that develop AI in-house seems to experience a smoother integration

process, as they are likely to engage with the technology from its inception. Beyond the ability to fine-tune

models to their needs, results suggest that these firms are more likely to foster an internal culture of technological

understanding and development, where AI is not just a tool, but an evolving component of the decision-making

framework. Employees, whether technical experts or not, are exposed to AI-driven insights early on, facilitating a

learning process that reduces uncertainty. As a result, their productivity trajectories may reflect a more deliberate

and controlled adoption process, rather than abrupt adjustments driven by external factors. Hybrid firms that

both develop AI in-house and purchase external solutions likely fall somewhere between these two extremes.

15Table D.1 in Appendix D reports descriptive statistics on comparisons between groups of AI users after CEM balance.
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While they rely on external AI solutions, they also benefit from the flexibility and customization of internal

development. This combination looks enough to mitigate some of the integration challenges faced by pure AI

buyers. Our preferred estimates, after CEM balancing, suggest that hybrid firms do not experience the same

increase in productivity growth volatility observed for firms that rely solely on external off-the-shelf AI solutions.

We interpret these findings as suggesting that differences in firms’ absorptive capacity, that is in their ability

to internalize, adapt, and effectively use new technology, drive the heterogeneous effects of AI on productivity

growth volatility (Cohen and Levinthal, 1990). In the remainder of this section, we focus on one key determinant

of absorptive capacity: workforce composition. Specifically, we posit that firms developing AI in-house are inher-

ently better equipped to integrate AI into their operations. Their strategic approach to AI adoption necessitates

employing ICT technicians and engineers from the outset, ensuring a smoother transition and minimizing dis-

ruptions to productivity growth. In contrast, AI buyers may or may not have the requisite digital competencies

to integrate AI effectively. If the tacit knowledge embedded in technically skilled workers plays a crucial role in

facilitating AI adoption, we should observe that among AI buyers, firms with a higher share of ICT engineers and

technicians experience a more moderated impact of AI on productivity growth volatility.

To conduct this analysis, we focus on firms that source AI externally (i.e., pure buyers or hybrid buyer-

developers), for which we have estimated at last one statisticall significant effect in Tables 3 and 7. We leverage

an additional dataset containing French matched employer-employee data (DADS) and link it to our sample of

firms. DADS provides detailed information on the occupations and work hours of employees in French firms,

allowing us to identify ICT engineers and technicians and measure their total hours worked in a given year.16

Using this information, we compute the share of hours worked by ICT engineers and technicians within each firm,

denoted as ICTW i,t0 where t0 is 2014, the first year of calculation of our dependend variable. To incorporate

this dimension, we extend our baseline specification (1) as follows:

lnσi =β0 + βAIi + βwAIi × ICTW i,2014 + γ1ICTW i,2014 + γ3 lnFGPi,2014 + γ4ICT i + δs + δr + ϵi , (2)

where the interaction term captures the extent to which the impact of externally acquired AI solutions on MFP

growth volatility is dampened by a firm’s ability to rely upon a technically competentworkforce. Our specification

also directly controls for the share of hours worked by ICT engineers and technicians. We estimate βw, our

parameter of interest, following the same identification strategy as before, starting with OLS for comparability

before applying the CEM estimator. From a purely descriptive viewpoint, we record that companies classified

as non users and pure buyers are characterized by very low shares of ICT hours worked (respectively 2.89% and

2.76%), while a substantially larger share of ICT hours worked is instead achieved by companies with a hybrid AI

adoption strategy (17.03%) and by the AI developers (23.08%).

Table 7 presents the OLS estimates of Equation (2) for AI buyers (colums 1 and 2) and for AI buyers or AI

buyer-developers (columns 3 and 4).The estimates confirm the previous result that AI adoption is associated with

higher productivity growth volatility, but crucially, this effect depends on the presence of ICT specialists within

the firm. In column (1), before CEM balancing, the coefficient on AI buyers is significant and found equal to 0.132,

reaffirming that firms relying on externally sourced AI experience significantly greater volatility. However, the

16Details can be found [here]. We define ICT engineers using occupation codes [388a, 388b, 388c, 388d, 388e] and ICT technicians using

codes [478a, 478b, 478c, 478d] according to the 2003 PCS classification.
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Table 7: OLS estimates of Equation (2) for AI buyers without and with buyer-developers only before and after

the CEM balance.

AI buyers AI buyers and AI buyer-developers

(1) (2) (3) (4)

AI 0.132*** 0.075** 0.137*** 0.083***

(0.029) (0.034) (0.027) (0.031)

ICTWi,t0 0.090 0.254 0.041 -0.107

(0.153) (0.164) (0.158) (0.161)

AI×ICTWi,t0 -0.911*** -0.404** -0.588*** -0.266*

(0.252) (0.180) (0.082) (0.160)

log Productivity (2019) -0.158*** -0.191*** -0.155*** -0.236***

(0.043) (0.060) (0.041) (0.069)

Controls Xi,t0 Yes Yes Yes Yes

Controls ICTi,2018 Yes Yes Yes Yes

Ind. FE Yes Yes Yes Yes

Reg. FE Yes Yes Yes Yes

Observations 7,289 3,929 7,555 4,422

Adj. R2 0.108 0.191 0.114 0.197

Starting Imbalance 0.86 0.86

Ending Imbalance 0.71 0.71

Number Strata 1,805 1,842

Number Matched Strata 366 437

Clustered SE Industry CEM bin Industry CEM bin

Notes:

Notes: Columns (1) and (2) report the OLS estimation results before and after CEM for non-users and AI

buyers, and columns (3) and (4) report the OLS estimation results before and after CEM for non-users,

AI buyers and buyer-developers. Volatility of productivity growth rates is computed over the time span

2014 − 2019, demographic variables (’Age’, ’Size’, ’Productivity’) and the share of hours worked by ICT

technicians and engineers are measured in 2014 while ICT technological variables in 2018 where the AI-

related status is recorded. Industry are defined at 2-digit level.Regions correspond to administrative regions

of metropolitan France. Strata are built following Section 2.2. Number Strata and Number Matched Strata

are the total number of strata in total and the one with matches. The specifications in columns (2), and (4)

are estimated using CEM weights, the ones in columns (1) and (3) with survey weights.

interaction term between AI buyers and ICT share is negative, significant and large enough to indicate that firms

with a higher intensity of ICT workers experience a substantially weaker volatility effect. After CEM balancing

(column 2), which ensures a more comparable set of AI buyers and non-users, the story does not change. The

coefficient on AI buyers decreases by nearly half to 0.075 remaining significant in large part following the same

pattern observed in previous sections. Also, the same is true for the interaction term which remains negative and

significant halving in size even in the context of CEM-based identification.

Interestingly, these new point estimates suggest the presence of a threshold effect. Our estimates in column

(2), for example, indicate that the marginal impact of AI technologies on the volatility of MFP growth ( ∂σ
∂AI

can be

cancelled only by buyers that have a share of ICT working hours of about 18%. This threshold is approximately 6

times larger than the average share of ICT working hours displayed by AI buyer. Hence, our estimates align well

with the absorptive capacity framework, indicating that what matters is not merely the presence of a few highly

skilled experts, potentially confined to specialized research units, but rather a critical mass of ICT competence

diffused across the organization, ensuring AI technologies are effectively integrated into firm-wide processes.
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We report robustness checks in Table D.5 in Appendix D. We explore a different specification augmented with

a quadratic term for ICTW , and report results for the sample of developers, including their interaction with ICT

workers, which is not significantly different from 0.

Taking stock of these evidence leads to the important conclusion that the first waves of predictive AI tech-

nologies, developed and adopted between 2012 and 2018, were not meant for łdilettantesž, and only firms with

a widespread absortive capacity have been able to unleash the potential of these technologies without the perils

derived from higher risk.

5 Conclusion

With this study, we provide novel insights into the relationship between AI use and the volatility of firms’ pro-

ductivity growth rates in the early stages of predictive AI diffusion, an aspect largely unexplored by the emerging

literature on AI’s impact. Our main finding indicates that AI adoption increases the volatility of productivity

growth, highlighting the challenges that firms face when integrating predictive AI technologies into their pro-

cesses. In particular, we find that firms that develop AI systems in-house do not experience this volatility surge,

unlike firms that procure AI from external providers. This suggests that firms with established AI capabilities that

tailor AI technologies to their specific needs, do not experience drawbacks from AI use. Conversely, AI buyers

that purchase predictive AI systems from third parties may lack flexibility and require complementary adjust-

ments for effective integration. Corroborating this interpretation, we find that AI-buying firms endowed with

a larger share of ICT workers exhibit lower volatility in productivity growth. This points to the critical role of

ICT-related complementary assets in mitigating AI-induced volatility.

Our contribution is twofold. First, we provide empirical evidence on AI adoption’s effect on firm-level pro-

ductivity growth volatility, addressing a gap in the literature. Because prior research has mostly focused on AI’s

impact on productivity levels, our study underscores the importance of volatility as a key dimension for under-

standing AI’s broader implications. Second, we extend the literature on complementary assets for AI adoption,

demonstrating that firms with stronger ICT capabilities and with more absortive capacity are better equipped

to manage AI-induced disruptions. These findings align with past experiences with other GPTs (David, 1990;

Bresnahan et al., 1996; Brynjolfsson and Hitt, 2003).

Reducing the negative effects of AI-driven volatility could be a relevant policy target, as more uncertainty

may deter firms from investing in AI, ultimately limiting its diffusion. Our findings suggest that policymakers

can support firms by promoting investments in AI capabilities and ICT human capital, facilitating smoother AI

integration.

This study can be extended in several directions. First, a more granular analysis of AI technologies could

reveal whether certain AI applications contribute more than others to volatility in productivity growth. Second,

future research could examine the long-term effects of AI adoption on volatility. While our study focuses on

AI’s early diffusion, as firms refine their AI integration strategies, volatility patterns may reverse, with AI users

eventually becoming less volatile due to AI-driven improvements in data analytics and predictive capabilities.
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A Descriptive evidence

Table A.1: Samples size and composition.

Full sample Non AI users AI buyers AI developers AI buyer-developers

(n. obs.) (n. obs.) (n. obs.) (n. firms) (n. firms)

no controls 8,877 7,514 769 280 314

adding FGPi,t0 and ICTi controls 7,915 6,715 700 232 268

adding also ICTWi,t0 7,785 6,603 686 230 266
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B OLS estimates

Table B.1: OLS estimates of Equation (1).

σi (2014-2019) σi (2015-2019) σi (2012-2019) σi (2007-2012)

(1) (2) (3) (4) (5) (6)

AI 0.083*** 0.094*** 0.098*** 0.057** 0.090*** 0.079

(0.025) (0.024) (0.023) (0.025) (0.027) (0.049)

log Productivity (2019) -0.152*** -0.199*** -0.132***

(0.041) (0.044) (0.034)

log Productivity (2014) -0.151*** -0.049

(0.052) (0.060)

log Size (2014) -0.093*** -0.079***

(0.021) (0.024)

log Age (2014) -0.049*** -0.052***

(0.016) (0.016)

log Productivity (2015) -0.005

(0.059)

log Size (2015) -0.085***

(0.027)

log Age (2015) -0.041*

(0.022)

log Productivity (2012) -0.032 0.005

(0.060) (0.067)

log Size (2012) -0.084***

(0.019)

log Age (2012) -0.046**

(0.019)

log Productivity (2007) -0.007

(0.049)

log Size (2007) -0.096***

(0.018)

log Age (2007) -0.033***

(0.011)

Fast Broadband 0.053*** 0.066*** 0.057** 0.079*** 0.106***

(0.019) (0.019) (0.022) (0.020) (0.026)

Number of Other Digital Technologies = 1 0.031 0.034 0.031 0.015 0.063*

(0.033) (0.034) (0.035) (0.032) (0.037)

Number of Other Digital Technologies = 2 0.058 0.063 0.069* 0.024 0.062

(0.037) (0.038) (0.039) (0.035) (0.058)

Number of Other Digital Technologies = 3 0.037 0.039 0.040 0.039 0.099

(0.059) (0.059) (0.058) (0.062) (0.093)

Constant -1.913*** -0.783*** -0.565** -0.589** -0.707*** -1.538***

(0.003) (0.213) (0.237) (0.244) (0.210) (0.278)

Controls Xi,t0 No Yes Yes Yes Yes Yes

Controls ICTi No Yes Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes Yes Yes

Region FE Yes Yes Yes Yes Yes Yes

Observations 7,915 7,915 7,915 7,879 7,462 6,379

Adj. R2 0.051 0.099 0.108 0.095 0.119 0.112

Clustered SE Industry Ind. 2d Ind. 2d Ind. 2d Ind. 2d Ind. 2d

Notes: Volatility of productivity growth rates σi is computed over the time span 2014 − 2019 in columns (1)-(3), and over 2015 − 2019, 2012 − 2019 and

2007 − 2012 in columns (4), (5), and (6) respectively. Firmographics variables (’Age’, ’Size’, ’Productivity’) are measured at t0, the initial year of the span

over which volatility are computed, that is 2014 for the first three columns and 2015, 2012, 2007 for the last three columns. ICT technological variables are

measured in 2018, the year in which the AI-related status is recorded. Industry are defined at 2-digit level. Regions correspond to administrative regions of

metropolitan France. All the specifications are estimated using survey weights.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table B.2: Robustness checks - OLS estimates of Equation (1).

Lab. Productivity Excluding NACE 62-63 Excluding NACE 58-63 MAD

(1) (2) (3) (4)

AI 0.073*** 0.105*** 0.111*** 0.087***

(0.021) (0.023) (0.023) (0.023)

log Productivity (2019) -0.043 -0.157*** -0.157*** -0.131***

(0.045) (0.041) (0.043) (0.042)

log Productivity (2014) -0.110* -0.046 -0.045 -0.061

(0.059) (0.062) (0.067) (0.049)

log Size (2014) -0.181*** -0.076*** -0.076*** -0.077***

(0.013) (0.024) (0.026) (0.022)

log Age (2014) -0.035** -0.050*** -0.049*** -0.047***

(0.016) (0.016) (0.017) (0.014)

Fast Broadband 0.057*** 0.075*** 0.071*** 0.068***

(0.018) (0.019) (0.020) (0.018)

Number of Other Digital Technologies = 1 -0.006 0.031 0.034 0.042

(0.031) (0.034) (0.034) (0.031)

Number of Other Digital Technologies = 2 0.036 0.057 0.065* 0.053

(0.029) (0.038) (0.038) (0.036)

Number of Other Digital Technologies = 3 0.026 0.037 0.043 0.054

(0.046) (0.060) (0.061) (0.057)

Constant -0.935*** -0.571** -0.591** -0.843***

(0.075) (0.244) (0.256) (0.225)

Controls Xi,t0 Yes Yes Yes Yes

Controls ICTi Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes

Region FE Yes Yes Yes Yes

Observations 7,915 7,691 7,346 7,915

Adj. R2 0.108 0.106 0.0962 0.116

Clustered SE Industry Industry Industry Industry

Notes: Volatility of productivity growth rates σi is computed using the ratio of value addded to total employees over the time span 2014 − 2019 in column

(1). Columns (2) and (3) exclude forms with main activity in the ICT service sectors NACE 62-63 and NACE 58-63. Column (4) employes the Mean Absolute

Deviation in place of the standard deviation to compute the volatility of productivity growth rates. Firmographics variables (’Age’, ’Size’, ’Productivity’) are

measured at t0, the initial year of the span over which volatility are computed, that is 2014 for the first three columns and 2015, 2012, 2007 for the last three

columns. ICT technological variables are measured in 2018, the year in which the ’user’ and ’non-user’ status is recorded. Industry are defined at 2-digit level.

Regions correspond to administrative regions of metropolitan France. All the specifications are estimated using survey weights.

* p < 0.1, ** p < 0.05, *** p < 0.01.

27



C CEM estimates

Table C.1: OLS estimates of Equation (1) after CEM balancing.

σi (2014-2019) σi (2012-2019) σi (2014-2019) PSM

(1) (2) (3) (4) (5) (6)

AI 0.057** 0.056* 0.098*** 0.065** 0.061** 0.104***

(0.027) (0.031) (0.033) (0.027) (0.027) (0.033)

log Productivity (2019) -0.234*** -0.319*** -0.104* -0.186*** -0.212*** -0.203***

(0.070) (0.067) (0.055) (0.061) (0.075) (0.060)

log Productivity (2014) 0.289*** 0.213*** 0.235*** 0.184***

(0.081) (0.074) (0.087) (0.063)

log Size (2014) -0.163*** -0.166*** -0.154*** -0.156***

(0.019) (0.020) (0.020) (0.015)

log Age (2014) -0.077*** -0.064*** -0.061** -0.102***

(0.023) (0.021) (0.024) (0.020)

log Productivity (2015) 0.327***

(0.080)

log Size (2015) -0.132***

(0.026)

log Age (2015) -0.090***

(0.027)

log Productivity (2012) 0.163***

(0.062)

log Size (2012) -0.174***

(0.022)

log Age (2012) -0.048**

(0.024)

Fast Broadband 0.051 0.103** 0.079** 0.058 0.063* 0.060

(0.035) (0.044) (0.039) (0.038) (0.035) (0.040)

Number of Other Digital Technologies = 1 0.018 0.034 0.024 0.067 -0.002 0.056

(0.051) (0.056) (0.048) (0.042) (0.051) (0.053)

Number of Other Digital Technologies = 2 0.006 -0.029 0.026 0.052 -0.021 0.052

(0.057) (0.058) (0.052) (0.047) (0.057) (0.055)

Number of Other Digital Technologies = 3 -0.015 -0.042 0.071 0.037 -0.005 0.062

(0.071) (0.081) (0.064) (0.060) (0.078) (0.069)

Constant -1.269*** -1.234*** -1.360*** -1.135*** -1.186***

(0.284) (0.307) (0.242) (0.283) (0.277)

Controls Xi,t0 Yes Yes Yes Yes Yes Yes

Controls ICTi,2018 Yes Yes Yes Yes Yes Yes

Ind. FE Yes Yes Yes Yes Yes Yes

Reg. FE Yes Yes Yes Yes Yes Yes

Observations 4,928 4,833 4,585 5,462 6,000 2,399

Adj. R2 0.192 0.188 0.204 0.182 0.188 0.164

Starting Imbalance 0.811 0.825 0.805 0.811 0.811

Ending Imbalance 0.712 0.724 0.690 0.721 0.756

Number Strata 1,885 2,139 1,877 1,530 1,201

Number Matched Strata 503 518 502 460 376

Clustered SE CEM bin CEM bin CEM bin CEM bin CEM bin

Notes: Volatility of productivity growth rates σi is computed over the time span 2014 − 2019 in columns (1) and (4)-(6), and over 2015 − 2019,
2012 − 2019 in columns (2), (3) respectively. Firmographics variables (’Age’, ’Size’, ’Productivity’) are measured at t0, the initial year of the span

over which volatility are computed. ICT technological variables are measured in 2018 where the ’user’ and ’non-user’ status is recorded. Industry are

defined at 2-digit level and all the specifications are estimated using CEM weights. CEM balancing is performed using baseline classification described

in Section 2.2 in columns (1)-(3), with only 10 productivity bins in column (4), with broader classes for age and size in column (5). Column (6) reports

results of a PSM estimator. Industry are defined at 2-digit level. Regions correspond to administrative regions of metropolitan France. Number Strata

and Number Matched Strata are the total number of strata in total and the one with matches. All the specifications are estimated using CEM weights.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table C.2: Robustness checks - OLS estimates of Equation (1) after CEM balancing.

Lab. Productivity Excluding NACE 62-63 Excluding NACE 58-63 MAD

(1) (2) (3) (4)

AI 0.057** 0.068** 0.074** 0.048*

(0.028) (0.028) (0.029) (0.025)

log Productivity (2019) -0.096* -0.228*** -0.224*** -0.200***

(0.057) (0.082) (0.081) (0.066)

log Productivity (2014) 0.107 0.262*** 0.251*** 0.267***

(0.073) (0.091) (0.092) (0.075)

log Size (2014) -0.169*** -0.142*** -0.141*** -0.163***

(0.010) (0.022) (0.024) (0.017)

log Age (2014) -0.074*** -0.079*** -0.069*** -0.073***

(0.023) (0.025) (0.026) (0.021)

Fast Broadband 0.050 0.065* 0.066* 0.057*

(0.033) (0.039) (0.040) (0.031)

Number of Other Digital Technologies = 1 0.075* 0.010 0.010 0.018

(0.040) (0.053) (0.054) (0.046)

Number of Other Digital Technologies = 2 0.055 -0.018 -0.025 0.006

(0.044) (0.058) (0.058) (0.050)

Number of Other Digital Technologies = 3 -0.014 -0.041 -0.030 0.001

(0.057) (0.080) (0.082) (0.062)

Constant -0.873*** -1.235*** -1.226*** -1.548***

(0.141) (0.310) (0.315) (0.244)

Controls Xi,t0 Yes Yes Yes Yes

Controls ICTi Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes

Region FE Yes Yes Yes Yes

Observations 7,915 7,691 7,346 7,915

Adj. R2 0.215 0.171 0.159 0.205

Starting Imbalance 0.821 0.809 0.793 0.811

Ending Imbalance 0.770 0.688 0.683 0.712

Number Strata 1,804 1,897 1,783 1,885

Number Matched Strata 481 489 461 503

Clustered SE CEM bin CEM bin CEM bin CEM bin

Notes: Volatility of productivity growth rates σi is computed using the ratio of value addded to total employees over the time span 2014 − 2019 in column

(1). Columns (2) and (3) exclude forms with main activity in the ICT service sectors NACE 62-63 and NACE 58-63. Column (4) employes the Mean Absolute

Deviation in place of the standard deviation to compute the volatility of productivity growth rates. Firmographics variables (’Age’, ’Size’, ’Productivity’) are

measured at t0, the initial year of the span over which volatility are computed. ICT technological variables are measured in 2018 where the ’user’ and ’non-user’

status is recorded. Strata are built following Section 2.2. Industry are defined at 2-digit level. Regions correspond to administrative regions of metropolitan

France. Number Strata and Number Matched Strata are the total number of strata in total and the one with matches. All the specifications are estimated using

CEM weights.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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D Unpacking the AI-volatility link

Table D.1: Comparing AI buyers, AI developers and AI buyer-developers with non AI users after CEM balance.

Non AI users AI buyers Non AI users AI developers Non AI users AI buyer-developers

log Age 3.03 3.07 3.01 3.05 3.12 3.12

log Size 4.37 4.41∗ 5.31 5.36 5.50 5.56∗

log Productivity 5.65 5.65 5.84 5.84 6.11 6.17

Fast Broadband 0.27 0.33∗∗∗ 0.46 0.52 0.46 0.53∗

# other digital technologies 1.42 1.54∗∗∗ 1.73 1.93∗∗∗ 1.66 1.95∗∗∗

Obs. 3,243 686 1,023 230 1472 266

Notes: Volatility of productivity growth rates is computed over the time span 2014− 2019, demographic variables (’Age’, ’Size’, ’Productivity’) are measured in 2014
while ICT technological variables in 2018 where the AI-related status is recorded. Strata are built following Section 2.2. Means are computed using CEM weights as

well as the corresponding t-tests.
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Table D.2: OLS estimates of Equation (1) for different categories of AI users.

AI users AI buyers AI developers AI buyer-developers

(1) (2) (3) (4) (5) (6) (7)

AI buyers 0.106*** 0.107*** 0.055*

(0.030) (0.030) (0.033)

AI developers 0.068 0.050 0.064

(0.057) (0.058) (0.057)

AI buyer-developers 0.123* 0.109 0.073

(0.067) (0.067) (0.063)

log Productivity (2019) -0.152*** -0.158*** -0.188*** -0.157*** -0.210 -0.159*** -0.404***

(0.041) (0.043) (0.060) (0.044) (0.148) (0.043) (0.138)

log Productivity (2014) -0.054 -0.050 0.129 -0.049 0.374*** -0.047 0.554***

(0.060) (0.063) (0.086) (0.060) (0.142) (0.062) (0.151)

log Size (2014) -0.075*** -0.074*** -0.126*** -0.071*** -0.181*** -0.072*** -0.202***

(0.024) (0.025) (0.023) (0.024) (0.031) (0.023) (0.031)

log Age (2014) -0.055*** -0.054*** -0.086*** -0.053*** -0.094** -0.054*** -0.053

(0.016) (0.016) (0.026) (0.016) (0.047) (0.017) (0.048)

Fast Broadband 0.069*** 0.076*** 0.091** 0.076*** 0.006 0.071*** 0.078

(0.020) (0.021) (0.041) (0.021) (0.059) (0.022) (0.062)

Number of Other Digital Technologies = 1 0.039 0.040 0.021 0.046 0.161 0.045 -0.024

(0.034) (0.034) (0.051) (0.032) (0.125) (0.032) (0.189)

Number of Other Digital Technologies = 2 0.062 0.057 0.005 0.066 0.096 0.074* 0.033

(0.039) (0.041) (0.060) (0.040) (0.132) (0.038) (0.197)

Number of Other Digital Technologies = 3 0.040 0.022 0.022 0.033 0.089 0.052 -0.117

(0.058) (0.060) (0.074) (0.063) (0.147) (0.064) (0.198)

Constant -0.549** -0.550** -0.747** -0.568** -2.120*** -0.566** -1.729***

(0.240) (0.251) (0.366) (0.238) (0.502) (0.244) (0.471)

Controls Xi,t0 Yes Yes Yes Yes Yes Yes Yes

Controls ICTi,2018 Yes Yes Yes Yes Yes Yes Yes

Ind. FE Yes Yes Yes Yes Yes Yes Yes

Reg. FE Yes Yes Yes Yes Yes Yes Yes

Observations 7,785 7,289 3,929 6,833 1,253 6,869 1,738

Adj. R2 0.110 0.107 0.190 0.116 0.235 0.116 0.278

Starting Imbalance 0.86 0.96 0.95

Ending Imbalance 0.71 0.70 0.83

Number Strata 1,805 1,764 1,768

Number Matched Strata 366 145 152

Clustered SE Industry Industry CEM bin Industry CEM bin Industry CEM bin

Notes: Column (1) reports the results of OLS estimation on the full sample when AI users are unpacked into different categories. Columns (2) and (3)

report the OLS estimation results before and after CEM for AI buyers, columns (4) and (5) for AI developers and (6) and (7) for AI buyer-developers.

Volatility of productivity growth rates is computed over the time span 2014−2019, demographic variables (’Age’, ’Size’, ’Productivity’) are measured in

2014 while ICT technological variables in 2018 where the AI-related status is recorded.The specifications in columns (3), (5) and (7) are estimated using

CEM weights, the ones in columns (1), (2), (4) and (6) with survey weights. Strata are built following Section 2.2. Industry are defined at 2-digit level.

Regions correspond to 11 French administrative regions. Number Strata and Number Matched Strata are the total number of strata in total and the one

with matches.
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Table D.3: OLS estimates of Equation (2) for AI buyers only before and after the CEM balance.

AI developers and buyer-developers AI buyers and buyer-developers

(1) (2) (3) (4)

AI developers and buyer-developers 0.083** 0.058

(0.037) (0.044)

AI buyers and buyer-developers 0.109*** 0.064**

(0.027) (0.030)

log Productivity (2019) -0.155*** -0.295** -0.156*** -0.238***

(0.043) (0.126) (0.041) (0.070)

log Productivity (2014) -0.050 0.461*** -0.051 0.251***

(0.059) (0.131) (0.063) (0.087)

log Size (2014) -0.072*** -0.194*** -0.074*** -0.151***

(0.023) (0.024) (0.024) (0.021)

log Age (2014) -0.054*** -0.062* -0.055*** -0.079***

(0.017) (0.035) (0.016) (0.024)

Fast Broadband 0.069*** 0.026 0.070*** 0.087**

(0.021) (0.047) (0.020) (0.038)

Number of Other Digital Technologies = 1 0.045 0.059 0.039 -0.002

(0.032) (0.132) (0.034) (0.053)

Number of Other Digital Technologies = 2 0.072* 0.076 0.064 0.013

(0.038) (0.136) (0.039) (0.059)

Number of Other Digital Technologies = 3 0.052 0.000 0.040 -0.021

(0.062) (0.144) (0.059) (0.075)

Constant -0.567** -1.993*** -0.548** -1.087***

(0.235) (0.395) (0.248) (0.322)

Controls Xi,t0 Yes Yes Yes Yes

Controls ICTi,2018 Yes Yes Yes Yes

Ind. FE Yes Yes Yes Yes

Reg. FE Yes Yes Yes Yes

Observations 7,099 2,364 7,555 4,422

Adj. R2 0.107 0.206 0.108 0.192

Starting Imbalance 0.83 0.86

Ending Imbalance 0.72 0.71

Number Strata 1,800 1,842

Number Matched Strata 242 437

Clustered SE Industry CEM bin Industry CEM bin

Notes: Columns (1) and (2) reports the OLS estimation results before and after CEM for non-users, AI developers and buyer-developers, columns

(3) and (4) for non-users, AI buyers and buyer-developers. Volatility of productivity growth rates is computed over the time span 2014 − 2019,
demographic variables (’Age’, ’Size’, ’Productivity’) and the share of hours worked by ICT technicians and engineers are measured in 2014 while

ICT technological variables in 2018 where AI-releated status is recorded. Industry are defined at 2-digit level. Regions correspond to administrative

regions of metropolitan France. Strata are built following Section 2.2. Number Strata and Number Matched Strata are the total number of strata in

total and the one with matches. The specifications in columns (2), and (4) are estimated using CEM weights, the ones in columns (1) and (3) with

survey weights.
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Table D.4: OLS estimates of Equation (2) for AI buyers without and with buyer-developers only before and after the CEM balance.

AI buyers AI buyers and AI buyer-developers

(1) (2) (3) (4)

AI 0.132*** 0.075** 0.137*** 0.083***

(0.029) (0.034) (0.027) (0.031)

ICTWi,t0 0.090 0.254 0.041 -0.107

(0.153) (0.164) (0.158) (0.161)

AI×ICTWi,t0 -0.911*** -0.404** -0.588*** -0.266*

(0.252) (0.180) (0.082) (0.160)

log Productivity (2019) -0.158*** -0.191*** -0.155*** -0.236***

(0.043) (0.060) (0.041) (0.069)

log Productivity (2014) -0.048 0.130 -0.050 0.251***

(0.064) (0.086) (0.063) (0.087)

log Size (2014) -0.073*** -0.125*** -0.074*** -0.151***

(0.024) (0.023) (0.024) (0.021)

log Age (2014) -0.054*** -0.085*** -0.056*** -0.080***

(0.016) (0.026) (0.016) (0.024)

Fast Broadband 0.079*** 0.089** 0.074*** 0.090**

(0.020) (0.041) (0.020) (0.038)

Number of Other Digital Technologies = 1 0.039 0.017 0.039 0.001

(0.034) (0.052) (0.034) (0.053)

Number of Other Digital Technologies = 2 0.057 0.001 0.065 0.016

(0.041) (0.060) (0.039) (0.060)

Number of Other Digital Technologies = 3 0.022 0.019 0.039 -0.020

(0.060) (0.074) (0.059) (0.075)

Constant -0.559** -0.750** -0.555** -1.096***

(0.252) (0.366) (0.249) (0.322)

Controls Xi,t0 Yes Yes Yes Yes

Controls ICTi,2018 Yes Yes Yes Yes

Ind. FE Yes Yes Yes Yes

Reg. FE Yes Yes Yes Yes

Observations 7,289 3,929 7,555 4,422

Adj. R2 0.108 0.191 0.114 0.197

Starting Imbalance 0.86 0.86

Ending Imbalance 0.71 0.71

Number Strata 1,805 1,842

Number Matched Strata 366 437

Clustered SE Industry CEM bin Industry CEM bin

Notes: Columns (1) and (2) report the OLS estimation results before and after CEM for non-users and AI buyers, and columns

(3) and (4) report the OLS estimation results before and after CEM for non-users, AI buyers and buyer-developers. Volatility of

productivity growth rates is computed over the time span 2014− 2019, demographic variables (’Age’, ’Size’, ’Productivity’) and

the share of hours worked by ICT technicians and engineers are measured in 2014 while ICT technological variables in 2018

where the AI-related status is recorded. Industry are defined at 2-digit level.Regions correspond to administrative regions of

metropolitan France. Strata are built following Section 2.2. Number Strata and Number Matched Strata are the total number of

strata in total and the one with matches. The specifications in columns (2), and (4) are estimated using CEM weights, the ones in

columns (1) and (3) with survey weights.
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Table D.5: OLS estimates of Equation (2) for AI buyers, buyers and buyer-developers, and developers only.

AI buyers AI buyers and buyer-developers AI developers

(1) (2) (3) (4)

AI buyers 0.071**

(0.034)

AI buyers and buyer-developers 0.082***

(0.031)

AI developers 0.114 0.034

(0.090) (0.069)

ICTWi,t0 1.601*** 1.281*** 0.024 -0.100

(0.424) (0.400) (0.180) (0.243)

AI×ICTWi,t0 -0.389** -0.295* -0.293* 0.162

(0.184) (0.157) (0.169) (0.153)

ICTWi,t0
2 -1.775*** -1.720***

(0.493) (0.449)

log Productivity (2019) -0.195*** -0.242*** -0.157*** -0.211

(0.060) (0.069) (0.044) (0.148)

log Productivity (2014) 0.127 0.250*** -0.050 0.374***

(0.085) (0.086) (0.061) (0.141)

log Size (2014) -0.122*** -0.147*** -0.071*** -0.180***

(0.023) (0.021) (0.024) (0.031)

log Age (2014) -0.088*** -0.082*** -0.053*** -0.093*

(0.026) (0.024) (0.017) (0.047)

Fast Broadband 0.086** 0.080** 0.077*** 0.008

(0.041) (0.038) (0.021) (0.059)

Number of Other Digital Technologies = 1 0.012 -0.006 0.046 0.159

(0.052) (0.053) (0.032) (0.125)

Number of Other Digital Technologies = 2 -0.007 0.005 0.065 0.096

(0.060) (0.059) (0.040) (0.132)

Number of Other Digital Technologies = 3 0.002 -0.038 0.032 0.088

(0.074) (0.074) (0.064) (0.147)

Constant -0.707* -1.059*** -0.569** -2.109***

(0.366) (0.321) (0.238) (0.502)

Controls Xi,t0 Yes Yes Yes Yes

Controls ICTi,2018 Yes Yes Yes Yes

Ind. FE Yes Yes Yes Yes

Reg. FE Yes Yes Yes Yes

Observations 3,929 4,422 6,833 1,253

Adj. R2 0.194 0.197 0.106 0.190

Starting Imbalance 0.86 0.86 0.964

Ending Imbalance 0.71 0.71 0.696

Number Strata 1,805 1,842 1764

Number Matched Strata 366 437 145

Clustered SE CEM bin CEM bin Industry CEM bin

Notes: Columns (1) and (2) report the OLS estimation results after CEM for non-users and AI buyers without and with AI buyer-developers

respectively. Columns (3) and (4) report the OLS estimation results before and after CEM for non-users, AI developers. Volatility of productivity

growth rates is computed over the time span 2014− 2019, demographic variables (’Age’, ’Size’, ’Productivity’, ICTW) are measured in 2014,
while ICT technological variables in 2018 where the AI-releated status is recorded. Industry are defined at 2-digit level. Regions correspond

to administrative regions of metropolitan France. Strata are built following Section 2.2. Number Strata and Number Matched Strata are the

total number of strata in total and the one with matches. The specifications in columns (2), and (4) are estimated using CEM weights, the one

in column (3) with survey weights.
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