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Abstract
After the temporary shock of the Covid-19 pandemic, the rapid recovery and 
resumed growth of the tourism sectors accelerates unsustainable tourism, resulting 
in local (over-)crowding, environmental damage, increased emissions, and dimin-
ished tourism acceptance. Addressing these challenges requires an active visitor 
management system at points of interest (POI), which requires local and timely 
POI-specific occupancy predictions to predict and mitigate crowding. Therefore, we 
present a new approach to measure visitor movement at an open-spaced, and freely 
accessible POI and evaluate the prediction performance of multiple occupancy and 
visitor count machine learning prediction models. We analyze multiple case combi-
nations regarding spatial granularity, time granularity, and prediction time horizons. 
With an analysis of the SHAP values we determine the influence of the most impor-
tant features on the prediction and extract transferable knowledge for similar regions 
lacking visitor movement data. The results underline that POI-specific prediction is 
achievable with a moderate relation for occupancy prediction and a strong relation 
for visitor count prediction. Across all cases, XGBoost and Random Forest outper-
form other models, with prediction accuracy increasing as the prediction time hori-
zon shortens. For effective active visitor management, combining multiple models 
with different spatial aggregations and prediction time horizons provides the best 
information basis to identify appropriate steering measures. This innovative appli-
cation of digital technologies facilitates information exchange between destination 
management organizations and tourists, promoting sustainable destination develop-
ment and enhancing tourism experience.

Keywords  Visitor management · Tourism demand · Machine learning prediction · 
Sustainable tourism · Overcrowding
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Abbreviations
DMO	� Destination Management Organization
DST	� Data Science Trajectories
LR	� Multilinear Regression
POI	� Point of Interest
RF	� Random Forest
SHAP	� SHapley Additive explanation
SVR	� Support Vector Regression

1  Introduction

After the tremendous external shock of the COVID-19 pandemic on the tourism 
industry, the recovery is progressing rapidly (UNWTO 2023). Recovery times, how-
ever, exhibit variations due to country-specific restrictions and global dependencies 
(Škare et  al. 2021). While Europe and the Middle East demonstrate a fast recov-
ery characterized by substantial intraregional demand, Asia recovers rather slowly 
(UNWTO 2023, 2022). This growth in Europe and the Middle East beyond 2019 
levels and potential additional peaks due to a shift in tourism demand from Asia 
may lead to exceptionally high tourist numbers.

Despite all the benefits, such as economic growth and employment opportuni-
ties, this trend of continuous growth also drives unsustainable tourism, including 
overtourism and local overcrowding (Butler 2018a; Mihalic 2020). Overcrowding, 
characterized by the interplay between utilization and environmental damage (Monz 
et al. 2013), manifests in changes such as alterations in vegetation, shifts in wildlife 
behaviour, compromised water quality, and elevated levels of noise and air pollu-
tion (Liddle 1997; Newsome et  al. 2012; Wall 2019). In addition to environmen-
tal impacts, overcrowding leads to social effects, such as cultural change and ris-
ing conflicts between different interests (Koens et al. 2018; Spenceley et al. 2015). 
Furthermore, the impact extends beyond local POIs, given that emission-emitting 
vehicles are still the predominant mode of transport. Thereby, overcrowding causes 
increased congestion and extended search times for parking (Paidi et al. 2022), lead-
ing to rising emissions and, thus, accelerating climate change. Regarding location, 
overcrowding primarily occurs at freely accessible tourist destinations and POIs 
without access restrictions, such as beaches or summits. The transition from crowd-
ing to overcrowding lies at the intersection of nature, social impacts, and politics and 
can only be determined locally for each individual POI. Therefore, without effective 
management measures, areas with frequent crowding may become hotspots for the 
detrimental effects of overtourism and overcrowding.

The United Nations already demanded in 2016 the transformation towards more 
sustainable tourism as part of the 17 sustainable development goals to address 
these issues (DESA 2016). Consequently, POIs must actively embrace transfor-
mation towards more sustainable and smart tourism (Tauber and Bausch 2022), 
focusing on implementing active visitor management strategies (Schmücker et al. 
2022). Effective active visitor management entails the spatial distribution of visi-
tors among nearby POIs and strategically times arrivals to prevent overcrowding 
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at any single location (Hall and McArthur 1996; Mason 2005). However, trig-
gering suitable steering measures by the active visitor management system, once 
a problematic benchmark is met, requires a smart occupancy prediction system. 
Such an occupancy prediction system, enabled by continuous monitoring, pre-
dicts peak demand situations and serves as a fundamental component for making 
data-driven decisions and adapting to rapidly changing external factors (Archer 
1987; Zelenka and Kacetl 2013). Occupancy prediction is covered by the field 
of tourism demand prediction, also named tourism flow or visitor monitoring, 
which is a well-established research topic (Sun et al. 2023; Ghalehkhondabi et al. 
2019; Song et al. 2019; Song and Li 2008). However, existing literature primar-
ily focuses on predicting tourism demand for larger regions and rarely addresses 
specific POIs. The studies that include a particular POI do not incorporate the 
actual occupancy at open-spaced, publicly freely accessible POIs, which are at 
high risk of overcrowding. By an open-spaced POI, we understand a site that does 
not include a clear boundary allowing people to move freely and widely. Further, 
the studies exhibit a large time granularity with, for example, weekly or monthly 
prediction and rarely exhibit daily or hourly prediction. Moreover, although 
machine learning models have gained more attention in recent years, promising 
gradient-boosting models are seldom considered. In summary, the current state of 
tourism demand prediction analysis falls short of enabling active visitor manage-
ment, which requires an occupancy prediction of open-spaced and freely acces-
sible POIs with low time granularity within one day.

The identified research gap in predicting tourism demand raises the following 
questions:

	RQ1.	How do various prediction models perform in predicting occupancy, especially 
peak occupancy, at open-spaced and freely accessible POIs to enable active 
visitor management?

	RQ2.	What impact does search query data have on the prediction performance?
	RQ3.	How do the individual features influence the predicted value?

We aim to address the research questions by introducing a novel method for 
collecting detailed visitor movement data and leveraging digital technologies to 
predict short-term occupancy at an open-spaced POI. Therefore, we conduct a 
case study focusing on beach occupancy at the Bay in Lübeck, Scharbeutz located 
on the Baltic Sea in northern Germany. We shed light on the optimal time and 
spatial granularity, as well as the optimal time horizon and compare the pre-
diction quality of various ML models with a persistence model and an ARIMA 
model. Further, we compare the usability of visitor count prediction in contrast 
to POI occupancy prediction in the context of active visitor management. Addi-
tionally, for the most promising ML models, we examine whether incorporating 
search query data enhances model accuracy. Moreover, to uncover the most influ-
ential features and comprehend their impact on occupancy prediction, we utilise 
SHapley Additive exPlanation (SHAP) values. Our contribution to the current 
state of research lies in the development, implementation, and analysis of a novel 
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approach to locally-specific and timely fine-grained prediction models These 
models hold significant relevance for tourist-related businesses, policymakers, 
and decision-makers as they pave the way for sustainable development through 
digitalization (Bi et al. 2022; Rodrigues et al. 2023). By facilitating an improved 
flow of information between tourists and destination management organizations 
(DMOs), our work enables data-driven, localized active visitor management, 
thereby fostering sustainable destination development and offering direct recom-
mendations for practical implementation.

The present paper is structured as follows: In Sect.  2, we provide an overview 
of related literature concerning overtourism, overcrowding, and active visitor man-
agement. We also discuss existing methodologies for tourist demand prediction and 
pinpoint research gaps. Section 3 outlines the methods employed in our study, along 
with a detailed account of the case study conducted, with the corresponding results 
presented in Sect. 4. We proceed to interpret and discuss these findings in Sect. 5. 
Finally, Sect. 6 offers conclusions along with limitations and suggests an outlook for 
future research.

2 � Background and related work

In the following sections, we introduce the core concepts and related work, includ-
ing the reasons, effects, and mitigation approaches of overtourism and overcrowd-
ing. Furthermore, we present related research on occupancy and tourism demand 
prediction as the enabler and partly solution for advanced systems for (digital) active 
visitor management.

2.1 � Overtourism and overcrowding

The phenomenon of overtourism and overcrowding typically occurs within tourist 
destinations, defined as a collection of tourism related services, products, and facili-
ties (Hu and Ritchie 1993). Tourist destinations are typically managed by DMOs, 
which handle the internal destination development (Sheehan and Ritchie 2005). 
Although this includes the development of sustainable tourism that meets the cur-
rent needs of tourists without diminishing future opportunities (UNWTO 1998), 
DMOs have often prioritized fast economic growth resulting in an uncontrolled 
tourism growth (Séraphin et al. 2019; Butler and Dodds 2022). Due to insufficient 
implementation of sustainability-oriented tourism, the non-scientific community 
came up with the term overtourism to describe the negative impacts stemming from 
the constant growth of tourism (Ali 2016, 2018). While this term was quickly picked 
up by the scientific and economic community, research focused on urban areas 
rather than rural or natural areas, such as the here considered open-spaced POI of 
a beach (Butler and Dodds 2022; McKinsey&Company 2017; Mihalic 2020). How-
ever, nature-based tourism enjoys great popularity (Balmford et al. 2009) and can 
impose a heavy burden on the sensitive environment, even at seemingly manageable 
visitor numbers (Butler 2018b). Additionally, the global relevance of social media 
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can significantly highlight individual POIs and lead to overcrowding, while com-
parable POIs experience only moderate utilization (Gretzel 2019). Hence, even if 
the underlying problems of overtourism date back to the 1960s (Koens et al. 2018) 
the new framing allows for alternative perspectives and an increased focus on rural 
areas (Butler 2018b; Capocchi et al. 2020; Wall 2019). As Wall (2020, 2019) further 
argues, overtourism is beyond the concept of carrying capacity as it depends on indi-
vidual expectations, activity types, POI infrastructure, and impact on social, envi-
ronmental and economic structures. These extensive perspectives combined Mihalic 
(2020) in a holistic framework to connect the pillars of sustainability with account-
able stakeholders to enable the identification of potential risks to POIs including 
overtourism. Closely related to overtourism is the concept of overcrowding, which 
refers to the temporary accumulation of people rather than the long-term problem-
atic development of unsustainable tourism (Butler 2018a; Oklevik et al. 2019). In 
tourism, human crowding (i.e., limited space) and physical crowding (i.e., limited 
activities) are particularly relevant (Yin et al. 2020). Similar to overtourism, over-
crowding is concerned with the subjective perception of the situation and its meas-
urable impacts, rather than relying on an absolute measurement of carrying capacity 
(Dogru-Dastan 2022; Wall 2019). The perception of crowding depends on the travel 
circumstances, whereby particularly among non-guided day visitors (Kalisch and 
Klaphake 2007) who independently plan their trips to natural POIs known for their 
remoteness (Jacobsen et al. 2019; Oklevik et al. 2019), demonstrate a low tolerance 
for crowdedness.

Because of the close connection between overtourism and overcrowding, they 
have similar impacts on a tourism destination, and the two terms are often used 
interchangeably. According to Wall (2019), one can differentiate between scientifi-
cally verifiable physical impacts and individually perceived impacts. The physical 
impacts can be classified into five categories (McKinsey&Company, 2017): (1) 
conflict with local residents, (2) degraded tourist experience, (3) overloaded infra-
structure, (4) environmental damage, and (5) threats to culture and heritage. For 
nature-based POIs the environmental damage due to pollution, exploitation of natu-
ral resources, waste, and disturbance of wildlife (Liddle 1997; Monz et  al. 2013; 
Newsome et al. 2012; Wall 2019) is next to overloaded infrastructures such as waste, 
water and energy management the most critical factor. Turning to the perceptual 
consequences of overcrowding and overtourism, negative associations dominate 
such as stress (Popp 2012), reduced destination attractiveness (Yin et al. 2020), low 
revisit intentions (Oklevik et  al. 2019), reduced feeling of uniqueness (Jacobsen 
et al. 2019), and overall decreased tourist experience (Dogru-Dastan 2022).

To mitigate the harmful effects of overtourism and overcrowding, implementing 
visitor management measures is crucial for distributing tourists both temporally and 
spatially (McKinsey&Company 2017; Zelenka and Kacetl 2013). If there are already 
too many visitors at the POI, hard measures are no longer sufficient. Instead, pre-
ventive measures with close monitoring and active visitor management are required 
specifically at open-spaced natural POIs. Schmücker et al. (2022) distinguish active 
visitor management from general visitor guidance by emphasizing that it should rely 
on soft measures. Combined with digital technologies, these soft measures such as 
recommendation systems provide often untapped potential to effectively prevent 
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overcrowding before it even occurs (Spenceley et al. 2015; Veiga et al. 2018). The 
utilization of digital technologies enables DMOs to gather a higher flow of informa-
tion from tourists and engage in direct communication to enhance visitor experience 
and sustain POIs (Rodrigues et  al. 2023). Effective visitor management, however, 
relies on local data and appropriate analytics (Neubig et al. 2022). Visitors are more 
likely to follow alternative suggestions, which match their interests, such as sports, 
recreation, or sightseeing, if they trust the occupancy predictions. Our approach pre-
dicts the occupancy at an open-spaced and freely accessible touristic POI, laying a 
data foundation for DMOs to determine potential overcrowding situations. Further, 
it enables the development of novel, digital visitor management strategies and infor-
mation systems that automatically initiate steering measures before overcrowding 
even occurs and promote sustainable, long-term economic growth.

2.2 � Occupancy prediction

Within the scope of this work, we define occupancy prediction as the task of predict-
ing the occupancy of a certain geographic area. Such an area may be (i) open-spaced 
and public (i.e., freely accessible from a wide range of entries, such as beaches) or 
(ii) closed (i.e., only accessible from a limited number of controlled entries, such 
as a building). This distinction is crucial since, in closed areas, a complete meas-
urement of occupancy is possible by employing appropriate sensors at the access 
points. In contrast, occupancy in open-spaced and public areas can generally not be 
measured this way. Notably, this distinction is not strict, as some areas can fall into 
both categories (e.g., the beach of Scharbeutz, which has both controlled and non-
controlled entries). Within the scope of this work, we consider such border cases as 
open-spaced since it does not allow for fully controlled monitoring.

Research on occupancy prediction has grown rapidly since 2006 (Liu et al. 2019) 
and can be classified among different dimensions, including (i) data sources, (ii) pre-
diction models, and (iii) spatio-temporal granularity. Previous work found that the 
number of available data sources is manifold and ranges from one-dimensional his-
torical data that captures a certain timespan (e.g., tourist arrivals (Abu et al. 2021; 
Kim et al. 2021)), parking (Chawathe 2019), booking data and tickets (Phumchusri 
and Suwatanapongched 2021; Attanasio et  al. 2022)) to the use of supplementary 
data, including (hotel) pricing (Tsang and Benoit 2020), weather and public holiday 
information (Bi et al. 2021), as well as several (behavioral) online data (e.g., Dinis 
et al. 2019; Önder et al. 2019; Volchek et al. 2019; Wu et al. 2017). Regarding pre-
diction models, previous research (e.g., Jiao and Chen 2019; Song et al. 2019; Wu 
et al. 2017) mostly classifies occupancy prediction models into (i) time-series mod-
els, (ii) econometric models and (iii) ML models. However, as argued by Bollenbach 
et al. (2022), some ML models have been surprisingly rarely used in occupancy pre-
diction tasks such as gradient boosting with XGBoost, which has shown promising 
results in similar applications (Bollenbach et al. 2022).

However, in the context of active visitor management, spatiotemporal granular-
ity is arguably the most important property of occupancy prediction. Therefore, 
to classify existing occupancy prediction approaches among the combination of 
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these dimensions, we conducted a systematic literature review (Webster and Wat-
son 2002), primarily based on the Scopus database. We included peer-reviewed 
literature that describes complete approaches for occupancy prediction and 
related dimensions of time and space (i.e., the temporal and spatial granularity 
of the performed predictions). On the contrary, we excluded literature that does 
not contain a full description and comprehensive evaluation of the underlying 
approach, was not written in English, or was otherwise not accessible during the 
review. To reflect these requirements and keep our investigation at a reasonable 
scope, we directly included keywords referring to time and space in our search 
string. Thus, to ensure that the literature does not explicitly mention ’point of 
interest’ or ’POI,’ we added popular POI categories, exemplarily derived from 
Outdooractive, one of Europe’s largest outdoor platforms (Outdooractive 2022). 
Table  1 summarizes the targets and associated search strings of our literature 
review.

From a total of 258 results, we selected 116 articles based on our inclusion and 
exclusion criteria mentioned above. We further classified these papers into the 
granularity of their space and time dimensions and whether we considered the 
respective area closed or open-spaced. In our findings, we generally observed that 
the number of approaches is quite limited for fine temporal or spatial granulari-
ties (see Fig. 1). Regarding the time dimension, monthly and seasonal granularity 
are the most frequently used prediction times, whereas week is less frequently 
used than day. This may be because the day of the week plays an important role 
in tourism, as weekends are usually significantly more crowded than weekdays. 
Similarly, we observed that the year is a less frequently investigated prediction 
period, possibly due to its limited expressiveness. Regarding the spatial dimen-
sion, an interesting exception occurs for closed areas (i.e., hotels and parking 
lots), which have been more frequently regarded than open-spaced POIs, cities, or 
regions. Most likely, however, this is because closed areas are much easier to ana-
lyze due to the availability of clear measurement points and (often) booking data. 
Therefore, in Fig. 1, we distinguish between such closed and open-spaced POIs.

In addition to these separate perspectives, the combination of both dimensions is 
particularly interesting within the scope of active visitor management. For this pur-
pose, we consider only open-space areas and illustrate our results in Table 2. This 
confirms what we have already obtained from the separate considerations Especially 
for the occupancy prediction of open-spaced POIs in temporally fine granularity, 
only a scarce number of literature exists.

In this work, we focus on occupancy prediction within the scope of an exemplary 
open-spaced POI. Here, we investigate its predictive ability and compare different 
models, including promising models that have only rarely been used in this context 
(e.g., gradient boosting). We contribute to the existing body of literature by bridging 
the gap between active visitor management and open-spaced POI occupancy pre-
diction. Furthermore, we focus not only on the actual predictions but also on their 
explainability using SHAP values. The next section describes the underlying use 
case in more detail.
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3 � Methods and case study

To develop, evaluate, and interpret multiple prediction models in the context of 
active visitor management, we use the Data Science Trajectories (DST) map by 
Martinez-Plumed et al. (2019). The DST-map is an evolution of the classic indus-
trial standard CRISP-DM. It allows for a more flexible, customizable methodol-
ogy with more detailed steps, while incorporating most of the classic elements 
of CRISP-DM (Chapman et al. 2000). Figure 2 illustrates the steps considered in 

Table 1   Search string composition, results and selected papers

Target Search String Composition (Title, Abstract, Keywords)

Domain Tourism
AND Occupancy OR demand
AND Prediction OR forecasting

Time AND Second* OR minute* OR hour* OR day* OR week* OR month* OR season* 
OR year*

Space (General) AND "Point of interest" OR poi* OR region* OR countr* OR destination* OR 
town OR city OR cities OR village*

Space (POI 
categories)

OR accommodation OR apartment OR bar OR bay OR beach OR bistro OR 
brewery OR cafe OR castle OR chapel OR church OR disco OR distillery 
OR garden OR hostel OR hotel OR hut OR lake OR motel OR opera OR 
park OR parking OR pizzeria OR pub OR restaurant OR sauna OR spa OR 
theater OR trail OR viewpoint OR vinotheque OR winery

Total Results 258 
Selected Papers 116

0

50

Hour Day Week Month Season Year

Frequency of Papers by Time

0

50

POI City Region Country

Frequency of Papers by Spacea b

Fig. 1   Frequency of papers by time and space. Granularities smaller than 1 h are subsumed within the 
hour column

Table 2   Frequency of 
publications based on 
which spatial and temporal 
granularities they cover

Hour Day Month Season Year

Country 0.00% 0.88% 26.55% 18.58% 2.65%
Region 0.88% 1.77% 11.50% 5.31% 2.65%
City 0.00% 2.65% 12.39% 3.54% 2.65%
POI 0.00% 0.88% 5.31% 0.88% 0.88%
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the DST-map for this study. Business Understanding (1) overlaps with the under-
lying steps, as each decision should be addressed in the specific context of the 
research question. In Data Understanding (2), we start with the gathering of the 
data, which is divided into the subparts Data Acquisition (2a) and Data Architect-
ing (2b). Data Acquisition covers the generation of visitor movement data, and 
Data Architecting (2b) covers the collection and compilation of possible influenc-
ing factors. Next, in Data Preparation (3), we prepare the data for Modelling (4). 
Finally, we evaluate the results (5) using R2, several visualizations, and identify 
the most important features using SHAP values to interpret the results in the con-
text of local active visitor management and provide recommendations for action.

3.1 � Business understanding

The case study examines the Bay of Lübeck in Scharbeutz, located on the Baltic 
Sea in northern Germany. The distinct climate of the Baltic Sea and its enclosed 
formation provide an ecological niche fostering high biodiversity worth protect-
ing to preserve sustainability (Blicharska et al. 2019; Ducrotoy and Elliott 2008). 
Given that the North and Baltic Sea rank among the most popular tourist desti-
nations for the German population, with a steadily rising trend (Arbeitsgemein-
schaft Verbrauchs- und Medienanalyse 2022), the intensive use of the beaches 
deteriorates both flora and fauna (Schierding et  al. 2011). Particularly notewor-
thy is the trend in tourist arrivals to Schleswig–Holstein in recent years, encom-
passing the challenges posed by the Covid-19 pandemic. Unlike other destina-
tions, tourist arrivals in 2020 and 2021 nearly reached the levels of 2019 and even 
surpassed them in September and October. In 2022, a full recovery has already 
been achieved followed by further growth in 2023 (Statistisches Amt für Ham-
burg und Schleswig–Holstein 2023). The Baltic Sea is renowned for day trips, 
given its proximity to larger cities such as Hamburg, Kiel, or Lübeck, as depicted 
in Fig. 3. Consequently, day visitors account for 2/3 of total visitors (dwif e.V., 
2016, 2019). Unlike overnight guests, available information about day travel-
ers is relatively scarce, leading to unpredictable peaks in beach occupancy. To 
address the information gap concerning expected beach occupancy, laser sensors 
have been installed at the entrances to the beach in Scharbeutz. These entrances, 
illustrated in Fig. 3, are distributed along the entire beach section, with a nota-
ble concentration near the city. The installed sensors count people entering and 
leaving the beach, enabling the calculation of beach occupancy. Currently, this 
information on present occupancy is digitally disseminated to prospective tourists 

Fig. 2   Methodology of a DST-map to develop, evaluate, and interpret multiple occupancy prediction 
models
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(Tourismus-Agentur Lübecker Bucht 2022). Yet, beyond current occupancy data, 
implementing a predictive model is imperative for active visitor management, 
allowing the DMO to anticipate overcrowding and introduce steering measures in 
advance.

We compare various cases in the prediction model development to pinpoint the 
optimal configuration to enable active visitor management. Figure 4 illustrates the 
individual case elements, which we combine in multiple prediction models to iden-
tify the optimal composition of elements for active visitor management. In predicting 
visitor movements, we differentiate between two variations: the visitor count predic-
tion, which merely accounts for the entering people; and the occupancy prediction, 
which considers the beach occupancy. We further compare the performance of two 
different temporal aggregations, called time granularity, with 4-h and 24-h timesteps 
because a higher aggregation may result in better predictions for a longer prediction 
time horizon (Table 6). The spatial granularity refers to the spatial segmentation of 
the POI, where we consider entrances, beach sections, and the beach. In addition, we 

Fig. 3   Overview of the location of the analyzed overcrowded Scharbeutz beach and the location of 
entrances with installed overhead laser sensors

Fig. 4   Differentiation of visitor movement, spatial granularity, time granularity, and prediction time-hori-
zon
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compare three different prediction time horizons: four hours, one day, and three days 
ahead, i.e., how far in advance the visitor movements are predicted.

3.2 � Data understanding and data preparation

Data Acquisition of historical visitor movement data was carried out from mid-
October 2020 to April 2022 with overhead sensors at 20 beach entrances of Schar-
beutz by counting the entering and leaving people in 15-min timesteps. Visitor 
movements indicate a yearly and daily seasonality with a higher beach occupancy 
during the day and in the summer months. Furthermore, irregular peaks occur 
throughout the year, leading to exceptionally high occupancy. For data preparation, 
we replace outliers and missing values since single values cannot be deleted to pre-
serve an uninterrupted time series. We first identify outliers by a threshold value for 
each entry, and second, replace the outliers with the average visitor movement dur-
ing the last seven days of the considered time slot and spatial granularity. Afterward, 
we replace missing values, which either indicate that the sensor has a defect, or no 
movement has taken place, and therefore, no value was recorded. We assume a sen-
sor defect if no value is recorded for more than 16-h within one day and replace the 
missing value with the average visitor movement over the last four weeks of the con-
sidered time slot and spatial granularity. Below the 16-h threshold we set the miss-
ing value to zero. To obtain the beach occupancy, we subtract the leaving people 
from the entering per time slot and sum it up over the day. However, there is some 
error in the calculated occupancy: since the beach is an open-spaced area and only 
official entrances at the beach in Scharbeutz are equipped with overhead sensors, 
some people use different entrances for entering and leaving, whereby one might 
not have a sensor installed. Additionally, some people tend to use unofficial paths 
that are not equipped with sensors. To compensate for this error, the occupancy is 
reset to zero each night at 3 a.m. UTC, as this is the time with the lowest occupancy, 
including New Year’s Eve. Subsequently, we aggregate the prepared entering visitor 
count data to a time granularity of 4-h and 24-h timesteps and the occupancy data 
to a time granularity of 4-h timesteps. Due to the daily seasonality, aggregation of 
occupancy data into 24-h timesteps would provide no information. To obtain the 
spatial granularities, we aggregate the visitor movement data of each time granular-
ity to 8 beach sections and the entire beach.

When collecting the influencing factors in Data Architecting, it must be empha-
sized that each input feature of interest must be available both in the past and future 
within the prediction horizon. Historical values are required for training, evaluating, 
and testing the developed ML model, whereas future values are required for real-
world deployment.

We include time-related features to identify the effects driven by the daily and 
yearly seasonality. Given the cyclic nature of time-related features, feature engineer-
ing must reflect the real-world interpretation of time within the features. In this case, 
cyclicity means that the distance between each timestep should be equal. However, 
with increasing linear values, for example, from 1 to 365 for days, the step from 364 
to 365 is smaller than from 365 to 1. To solve this problem, we follow Chakraborty 
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and Elzarka (2019) and transform increasing linear values into cyclic sinus and cosi-
nus values representing the coordinates of a circle. Hence, the distance between each 
timestep remains equal, improving the prediction performance with more accurate 
features.

The holiday-related features capture the free time of the population, as most tour-
ist activities occur during the leisure time of the population. Besides features about 
the weekend, public holidays, and bridging days, school holidays are included, since 
a large part of the population depends on the holidays. Due to the high proportion of 
day tourists, Schleswig–Holstein’s local school holidays are included as an explicit 
feature, as short travel distances lead to increased visits. To cover the demand from 
overnight visitors, we include the school holiday density in Germany, which reflect 
the proportion of federal states with holiday.

Weather greatly influences outdoor tourism activities, because roughly 80% of 
beach visitors check the weather forecast before starting their journey (Becken 2013; 
R.-Toubes et al. 2020). Further, it has already been shown that integrating weather 
data as features into a tourism demand prediction model can increase the predictive 
power of ML models (Álvarez-Díaz and Rosselló-Nadal 2010). We collect data on 
temperature, wind speed, precipitation intensity, and precipitation form provided by 
the German Weather Service for historical weather data, as well as weather forecasts 
for up to ten days (German Weather Service 2024). To ensure a good performance 
of the prediction models, we follow Studer et al. (2021) and convert continuous raw 
data values into categorical features. The categorization of temperature, wind speed, 
and precipitation intensity follows the standards of the German Weather Service 

Table 3   Overview of all input features after feature engineering

Features Attribute Value Ranges # features

Historic values Lagged historic values Float [0, …, max(visitor 
count or occu-
pancy)]

18

Time-related Year Integer [2020, 2021, 2022] 1
Day of year sin/ day of year cos Float [0, …, 1] 2
Hour sin/ hour cos Float [0, …, 1] 2
Day of the week Binary [0, 1] 7

Holiday-related Public holiday (bank holiday) Binary [0, 1] 1
Bridging day Binary [0, 1] 1
Regional school holiday (SH) Binary [0, 1] 1
German school holiday density Float [0, …, 1] 1

Weather Wind category Binary [0, 1] 13
Rain category Binary [0, 1] 6
Temperature category Binary [0, 1] 8
Precipitation form Binary [0, 1] 3

Search Query Google Trends (lag 1 day) Integer [0, …, 100] 1
Google Trends (lag 7 days) Integer [0, …, 100] 1
Google Trends (lag 14 days) Integer [0, …, 100] 1

67
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(German Weather Service 2023a, 2023b, 2023c). The precipitation form is created 
via feature engineering because the input values of the historical observation and the 
forecast differ and need to be combined into unified categories. Further, we trans-
form each categorized weather feature via one hot encoding into binary features, 
resulting in 30 weather features (Tables 7, 8).

Lagged historical values of the considered time series are essential for the predic-
tion since they provide up-to-date information about the visitor movement within 
the preceeding days. The prediction model, initially trained on seasonal data from 
a year ago, can be fine-tuned to current trends by incorporating lagged historical 
values as features. Creating the feature of lagged historical values involves determin-
ing both the lag size and the number of lagged historical values (Bi et al. 2022). The 
lag size depends on the prediction time horizon since only existing historical values 
can be used as a feature. For instance, with a prediction time horizon of one day, the 
first lagged historical value must be from at least one day ago. Considering the pre-
diction time horizons in this analysis—four hours, one day, and three days—the lag 
size spans four hours, one day, and three days. To determine the number of lagged 
historical values, Liu et al. (2022) propose a higher-lag order because this is likely to 
improve the forecast accuracy, by which at least one complete seasonal cycle should 
be included (Bi et al. 2022). Given the daily seasonality, we integrate the values of 
the last three days as lagged historical values, starting with the previously defined 
lag size.

Search query data holds the potential to reveal upcoming trends and current pub-
lic interest, as many tourists rely on the internet to gather information about POIs 
and tourist attractions (Choi and Varian 2012). Thus, the integration of search query 
data may enhance the predicting performance but should be evaluated in detail for 
each use case (Lazer et  al. 2014; Li et  al. 2021; Önder et  al. 2019). We integrate 
Google Trends data as an additional feature for the best predicting models and com-
pare if it enhances predicting accuracy (Google Trends 2023). Google Trends data 
contain a search query index for given keywords based on the volume of queries 
within a defined geographical area (Choi and Varian 2012). The chosen keyword is 
’Scharbeutz’ because it showed by far the highest relative impact compared to other 
related keywords such as ’Scharbeutz Strand’, ’Scharbeutz Tourismus’ or ’Schar-
beutz beach’ which demonstrate the same trend but with a lower impact. For our POI 
prediction model we require at least daily data over the entire time horizon of the 
gathered visitor movement data over 1.5 years. However, raw Google Trends data do 
not meet this criterion as they lack daily data over an extended period, failing to cap-
ture long-term trends through aggregation (Eichenauer et al. 2022). Eichenauer et al. 
(2022) addressed this issue by developing a method, implemented as an R package, 
that provides frequency-consistent daily data over an extended period by combin-
ing available daily, weekly, and monthly Google Trends data. The obtained daily 
Google Trends data require further data engineering due to the lag between search 
time and POI visit (Choi and Varian 2012). This lag is identified by calculating the 
Pearson correlation between daily Google Trends data and the daily visitor count 
for the entire beach (Bi et al. 2020). Lags of 7, 14, and 1 day indicate the highest 
correlation and are integrated as a feature accordingly. Note that the Google Trends 
feature with one-day lag is only included in models with a prediction time horizon 
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equal to or below one day. An overview of all input features of the prediction models 
is provided in Table 3.

3.3 � Modelling

We compare four different ML models with a persistence model as a benchmark to 
determine the best model for predicting beach occupancy to enable active visitor 
management. For the most important case combinations, we additionally analyze the 
SARIMA model as it is one of the most often used models for time-series analysis. 
An overview of the models is presented in Table 4.

For implementing the ML models, we rely on the Python packages of the ML 
scikit-learn library. Hence, to train and test the prediction models, we split the data 
on the first of February 2022 into a training and testing data set. To implement the 
LR model, we directly used the Linear Regression package of scikit-learn, which 
does not require further parameter tuning. To implement the SVR model, we first 
determined the optimal kernel by comparing the linear, poly, and rbf one by ran-
domly selecting and comparing multiple case-combinations. We utilize the linear 
kernel for the final SVR model since it demonstrated the best predicting perfor-
mance. The advanced ML models XGBoost and RF require additional tuning to 
improve the prediction quality and avoid overfitting. Thus, we adjust the maximum 
depth and number of decision trees by tuning the corresponding hyperparameters. 
To perform the hyperparameter tuning, we use grid search, including cross-vali-
dation. The possible parameters for the maximum tree depth are [3, 4, 5, 6, 7, 8, 
9, 10] and [20, 30, 40, 50, 75, 90, 100] for the number of estimators. The here in 
the grid search included possible parameters are determined with an analysis over 
several case-combinations. Thus, we ensured never to reach the outer edge of the 
possible hyperparameter values. For cross-validation, we use the specified ver-
sion of time-series cross-validation since time-series data cannot be split randomly. 
Time-series cross-validation ensures retaining the underlying sequential structure 
by continuously adding new blocks at the end of the time-series and evaluating the 
performance gradually. We performed a threefold cross-validation over November, 
December, and January and determine the optimal hyperparameters by the best aver-
age performance over all folds. The stochastic SARIMA model is implemented with 
the Python pmdarima package. Here, the required parameters were determined using 
the auto_arima function to identify the best parameters for each case-combination. 
We predetermined the seasonal parameter m to 6 to represent the daily seasonality 
with 6 periods per day à 4 h. The parameters p, P, q, Q were optimally chosen in the 
range from 0 to 5 and d, D in the range from 1 to 5 by the auto_arima function. We 
mimic the prediction time horizon of the ML models with lagged historical values 
as limiting input variables to ensure comparability between the models. For this pur-
pose, we retrain the model after each prediction by adding the actual visitor move-
ment to the training data set. To obtain the results of the different prediction time 
horizons, we extract the predicted values with a lag of four hours, one day, and three 
days from the predicted time series. In total, we analyze 1406 case and prediction 
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model combinations to determine the optimal model for beach visitor movement 
prediction.

3.4 � Evaluation

While the model is trained with the training dataset, the testing data set is required 
for the evaluation of the prediction models. To ensure a more detailed evaluation, we 
split the testing data set into the months February, March, and April. Afterward, we 
individually assess the prediction performance for each month. Following the meth-
odology outlined by Chicco et al. (2021), we employ the coefficient of determina-
tion, denoted as R2 (1), as the evaluation metric for regression analysis. R2 is the rec-
ommended metric because other metrics such as root mean squared error (RMSE) or 
mean absolute error (MAE) lack comparability across multiple models with differ-
ent underlying data, i.e., the here evaluated cases. R2 values span from -∞ to 1, with 

Table 4   Description of the here considered prediction models

Prediction Model Description

Persistence model To evaluate the perfomance of the prediction models, we create 
a persistence model that serves as benchmark. The persistence 
model takes the last available historical value of the same time 
slot as a prediction. Hence, depending on the prediction time hori-
zon, the historical value is either one day or three days ago

Multilinear Regression (LR) Multilinear Regression is a statistical model that describes the 
linear relationship between one dependent variable and multiple 
independent variables. Thus, it is an extension of Linear Regres-
sion that only describes the relationship between one dependent 
and one independent variable (Allison, 1999)

Support Vector Regression (SVR) The support vector regression model is a statistical model based on 
a kernel, including mathematical functions. During the training 
process, a hyperplane is fitted to the data points. This hyperplane 
is located precisely in the middle of the threshold values, which 
contains the largest proportion of all training data points (Awad & 
Khanna, 2015; Vapnik, 2000)

Random Forest (RF) The Random Forest model is an ensemble model of decision trees. 
Various low-correlated trees are generated by combining bagging 
with random feature selection. The prediction is accomplished by 
averaging over the results of all trees (Breiman, 2001; scikit-learn 
developers, 2022)

XGBoost The XGBoost model is a system-optimized implementation of 
extreme gradient boosting which represents an ensemble of mul-
tiple decision trees (xgboost developers, 2022). To obtain a robust 
model, the ensemble of decision trees is gradually improved by 
adding new weak learners, reducing the loss (Friedman, 2001)

SARIMA The SARIMA model is an extension of the ARIMA model to cover 
seasonal time series data. SARIMA is an extensively used model 
for seasonal time series data that fits the model only based on 
historic time series values with the Box-Jenkins method (Box 
et al., 2015)
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1 corresponding to a perfect match between the prediction and the actually observed 
value. A negative R2 value may occur when a model, trained on a specific portion 
of the dataset, is tested on a separate dataset. In the context of the training data, the 
calculation of R2 follows the principle that the Explained Sum of Squares (ESS) plus 
the Residual Sum of Squares (RSS) equals the Total Sum of Squares (TSS), result-
ing in R2 values between 0 and 1. However, when the model encounters new data, 
i.e., the testing dataset, the assumption that the model’s errors of predictions (RSS) 
will remain proportionally smaller than the dataset’s inherent variability (TSS) is 
not guaranteed, leading to unbounded negative R2 values. An R2 value of 0 indicates 
that the predictions are, on average, as accurate as a naive model that would always 
predict the mean value from all observations. Since an unbounded negative range 
hinders the interpretability of how much worse one model is compared to another 
and negative values of R2 represent a worse fit than the simplest baseline model, the 
range from 0 to 1 is typically used for evaluation. According to Moore et al. (2013) 
R2 values greater than 0.3 indicate a weak relationship, those exceeding 0.5 denote 
a moderate relationship, and values surpassing 0.7 signify a strong relationship. Due 
to the missing lower bound, negative values cannot be evaluated.

In addition to the evaluation metric R2, we evaluate the results with a graphical 
analysis since it is crucial that the models identify the peak visitor movement. On 
top of identifying the most suitable prediction model, interpreting the underlying 
effects is highly important. Only if the most important influencing factors are known 
a successful selection of steering measures is possible. Therefore, we follow Lund-
berg and Lee (2017) by applying the explainable AI approach SHAP values which 
we implement with the Python package shap (Lundberg 2018).

4 � Results

To address RQ1 and compare prediction models across various case-combinations, 
we determine the key components of a good prediction model for active visitor man-
agement. The model should be capable of identifying the peaks of visitor move-
ments in advance and thus don’t over- or underestimate those peaks too much. On 
the contrary, slight deviations from the daily variability are not problematic, because 
no steering measures must be initiated during a normal visitor movement. Due to the 
large number of 1406 cases, we present the effect of each case type individually and 
gradually identify the best case-combination and prediction model.

Regarding visitor movement, the visitor count prediction displays a better predic-
tive performance, up to a strong relation with higher R2 values than the occupancy 
prediction. The occupancy prediction is slightly worse with a moderate relation, as 
it is more challenging. The underlying reason is that people tend to use different 

(1)R2 = 1 −
RSS

TSS
= 1 −

∑m

i=1
(̂yi − yi)

2

∑m

i=1
(y − yi)

2
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entrances for entering and leaving, as well as unofficial pathways leading to more 
noisy data. For the beach, with a four-hour time granularity, the R2 measures of all 
case-combinations are displayed in Fig. 5.

Contrary to our expectations, aggregating the visitor count data into a time granu-
larity of 24-h time steps did not lead to better prediction quality at a longer pre-
diction time horizon. Thus, we conclude that the loss of information due to higher 
aggregation outweighs the reduction in timesteps, and data should only be aggre-
gated to the most necessary.

Regarding the spatial granularity, the predictions of the aggregated values (beach 
sections, beach) display low up to strong relations, depending on the specific case-
combination. However, single-entry predictions demonstrate high volatility in the 
R2 measures, with occupancy predictions often indicating a weak or non-existent 
relationship, as evidenced by R2 values below zero at various entrances. Also, the 
R2 measures of the visitor count predictions drop below zero for cases with a longer 
prediction time horizon. Although single entrance predictions are not applicable in 
active visitor management, this analysis identify difficult-to-predict entrances whose 
sensor may need to be reviewed.

The prediction time horizon strongly influences the prediction accuracy of all 
case-combinations. As the prediction time horizon increases, the prediction worsens 
because less information about the visitor movement in the last time steps is known. 
This trend applies to all prediction models. However, the SARIMA models display a 
particularly marked deterioration since the historical time series values are the only 
input feature. The only exception to this downward trend, displayed in Fig. 5, is the 
persistence model, which in some cases, performs better at a longer prediction time 
horizon due to random matching by simply shifting historical values.

By comparing the prediction models, the intelligent prediction models perform 
better than our benchmark persistence model and, thus, provide higher value than 
the mere historical data. However, between the models there is still a remarkable 

Fig. 5   R2 measures for the visitor movement, both occupancy a and visitor count b, on the beach across 
all model types and prediction time horizons with a time granularity of 4 h
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difference. The SARIMA model’s mere reliance on historical data causes it to lag 
behind the actual visitor movement which worsens with an increasing prediction 
time horizon providing no applicable information. For instance, Fig. 6 illustrates this 
with a one-day prediction time horizon, where a peak on 27 March is inaccurately 
predicted to occur on 28 March. The SVR and Linear Regression models perform 
quite similarly in that both anticipate the daily trend but fail to recognize or severely 
underestimate visitor movement peaks. In both models, this effect can be explained 
by the inherent logic. The SVR model’s defined hyperplanes prevent the prediction 
of tourism demand peaks, while the Linear Regression model’s strictly linear rela-
tions fall short in explaining the relations between variables. XGBoost and Random 
Forest models perform comparably well, as presented in Table 5, effectively predict-
ing peaks, such as the one on 27 March, with minor but acceptable over- or under-
estimation. The superiority of XGBoost or Random Forest varies with different case 
combinations, necessitating case-specific analysis for optimal deployment. The irrel-
evant negative visitor movement peaks, such as those at the end of 27 March, are 
not identified at a higher prediction horizon. Therefore, the R2 measure deteriorates 
slightly, even if the prediction is actually good. Despite similar results, the XGBoost 
model impresses with a high computational speed, which is relevant for high data 
volumes or frequent retraining.

To investigate and try to answer RQ2 we integrate Google Trends as an additional 
feature for the two best prediction models, XGBoost and Random Forest, and evalu-
ate whether it improves predictive accuracy. In general, the R2 measurements, pre-
sented in Table 5, display only a slight variation between the cases with and without 
Google Trends. However, Google Trends data tend to improve predictive accuracy 
for a longer time prediction horizon since it provides additional information about 
the future intention of a beach visit.

The SHAP values allow for a thorough analysis of feature impacts on predic-
tions, addressing RQ3 by examining the best-performing models Random Forest 

Fig. 6   Results of the occupancy prediction with a time granularity of 4 h for the beach in March for all 
models with prediction time horizons of 4 h and 1 day in advance. The figures display the predictions of 
each model in comparison to the actual demand over a period of 16 days. The x-axis labels indicate the 
start date of each day. The larger deviation from the actual demand in graph b indicates the worse predic-
tion performance for a longer prediction time horizon
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and XGBoost. Exemplary Fig.  7 presents the SHAP value summary plot of the 
beach occupancy predicted one day ahead by the XGBoost model with and with-
out Google Trends, respectively. The feature order denotes their respective levels of 
importance, with the most important feature at the top. The data points’ distribution, 
frequency, and color offer additional information. The location of data points on the 
x-axis indicates each feature’s effect on the predicted occupancy, with data points 
on the extremes representing strong influence. Color denotes the feature value, with 
red for high and blue for low values. Thus, a data point with blue color (i.e., low 
value) on the left side (i.e., negative impact) indicates a positive correlation between 
the feature and beach occupancy prediction. Regardless of the ML model or the 
integration of Google Trends data, the feature importance and impacts display sim-
ilar results and trends, whereby, depending on the case-combination, slight varia-
tions occur. The most important feature is the last available lagged historical value 
explaining the reduced accuracy for longer prediction time horizon. Expectedly, a 
positive correlation exists and the wide distribution with several extreme positive 
values demonstrates that this feature allows the visitor movement peaks to be identi-
fied. Further, the time-related features hour sin and hour cos display a strong influ-
ence, whereby hour cos is more important due to its better interpretability. Low and 
negative values of hour cos indicate daytime between 6 and 18 o’clock, thus, hav-
ing a positive impact on the visitor movement. Also important are the features that 
characterize the populations’ free time, like the weekday reflecting the weekend or 
the holiday density, indicating a positive effect on occupancy. In contrast, weather 
categories demonstrate a mixed impact on prediction. While more straightforward 
categories, such as temperature or precipitation form, still tend to have a higher 
impact, more specific information, such as wind strength or precipitation amount, 
does not resolve any change in the prediction. Here, however, the limited test set 
with the months of February to April must be named, since only a limited amount 

Fig. 7   SHAP values summary plots of the beach occupancy predicted one day ahead with the XGBoost 
model without Google Trends a and with Google Trends b respectively. The order of features indicates 
importance, and the colored dots display the magnitude and direction of influence on the resulting pre-
dicted value
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of the total weather categories occurs in these months. Interestingly, Google Trends 
features are also considered important, although they have only a marginal impact 
on R2 measurement.

5 � Discussion

Regarding RQ1, our analysis reveals that XGBoost and Random Forest stand out as 
the most suitable prediction models for visitor movement prediction to enable active 
visitor management. Despite the slightly weaker prediction accuracy of beach occu-
pancy compared to visitor count, beach occupancy remains a vital and required pre-
diction for facilitating active visitor management. While visitor count merely reflects 
the number of ingoing individuals, it lacks information about the duration of their 
stay—a critical factor influenced by external variables such as season or weather. 
Consequently, precise identification of crowding or overcrowding times based solely 
on visitor count is challenging for the DMO. For instance, a similar visitor count in 
summer may result in overcrowding due to prolonged stays, while in winter, peo-
ple often take brief walks and cause no overcrowding. In contrast, beach occupancy 
encompasses both the duration of stay and the precise time of crowding and over-
crowding, providing a more nuanced understanding and enabling the implementa-
tion of time-specific steering measures. This underscores the significance of occu-
pancy prediction in active visitor management, streamlining the need for multiple 
threshold definitions to initiate appropriate measures. Further, the beach occupancy 
prediction model should be applied at a larger spatial granularity such as the entire 
beach. This approach ensures accuracy in occupancy calculations, even when indi-
viduals use different entrances for exiting compared to entering the beach. Addition-
ally, our findings suggest a preference for a shorter prediction time horizon for beach 
occupancy, as it significantly enhances prediction quality.

Concerning the integration of Google Trends data to adress RQ2, our findings 
align with those of Önder et al. (2019). Due to the variability between use cases, an 
individual assessment of the improvement potential is required for each case. The 
marginal impact and modest improvement observed in the prediction models upon 
integrating Google Trends data can be attributed to the inherent characteristics of 
the data itself. Factors such as holidays or weather influence search query data, and 
thus, overlap with the features of our visitor movement prediction models. Conse-
quently, the shared reliance on these influencing factors diminishes the potential for 
substantial improvement in the prediction models. However, despite the marginal 
improvement, the Google Trends features are still considered important in the SHAP 
value analysis, because they reflect a similar trend to the visitor movement. Hence, 
due to the overlaps and dependencies with the Google Trends data, they distort the 
importance of the other features. Therefore, the importance of the factors should be 
interpreted without Google Trends data.

To shed light on RQ3, we identify the most important features with the SHAP-
value analysis: the lagged historical values, time-related, and holiday-related fea-
tures. The mixed importance of weather categories implies that tourists primarily 
focus on simple weather forecasts including temperature or precipitation form, but 
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do not consider more detailed information. Our findings show that the inclusion of 
detailed weather features only impacts visitor movement predictions when tour-
ists consider such information during their planning process. Here, it is essential 
to emphasize in our discussion on enhancing prediction models, that the primary 
objective is not the precise prediction of visitor movement but, rather, the accurate 
anticipation of peak periods. Already the correct identification of peaks during for 
example, holidays or breeding season allows to decide about the right steering meas-
ures in an active visitor management system. Beside the potential improvement of 
the prediction models, we should also discuss the transferability to other public, 
open-spaced POIs. Generally, the presented approach serves as a blueprint for meas-
uring and predicting visitor count and occupancy of a public, open-spaced POI to 
identify potential demand peaks. To transfer the approach to a new POI the first step 
is to define the geographic boundaries of an overcrowded and to be monitored POI. 
Secondly, as with the beach entrances in Scharbeutz, sensors should be installed at 
natural bottlenecks, where there are optimally no or unattractive alternative routes 
for people to pass by. Sensor selection depends on factors including the lighting con-
ditions, bottleneck width, data protection, nature conservation regulations, and the 
availability of power and internet. Common choices include light or infrared barri-
ers, video systems, or pressure sensors. Thirdly, data collection begins after instal-
lation, and visitor capacity updates may be accessed through DMO portals. After 
accumulating sufficient data over at least one season, the ML models XGBoost and 
Random Forest can be trained, evaluated, and deployed for ongoing occupancy 
monitoring and prediction. Additional to the universal implementation of occu-
pancy prediction systems for individual use cases, models trained in similar environ-
ments, such as beaches, may be reused for comparable settings. Distinct POIs, such 
as mountainous regions geared towards hiking, necessitate developing new models 
tailored to specific features. However, determining the extent to which model reuse 
is feasible and identifying relevant features per case category remain areas for fur-
ther investigation. In general, the nature of the POI determines whether we can pre-
dict only visitor count or both visitor count and occupancy. For POIs resembling the 
beach, where visitors tend to stay and use the same exit as the entrance, predicting 
occupancy is feasible. However, at POIs like mountains with diverse hiking paths, 
visitors often choose different routes for the outward and return journey, resulting 
in higher error values when calculating occupancy. Despite this specific problem for 
occupancy prediction, visitor count still offers valuable insights with probably high 
prediction quality and active visitor management remains feasible in multiple POIs. 
Hence, the underlying methodology is generally transferable and can be regarded as 
a blueprint to enable the development of an active visitor management, whereas the 
reuse of trained models requires additional research.

Besides interpreting the results, we aim to discuss the broader implications 
and theoretical contribution concerning the active visitor management system and 
the resultant steering measures. Various prediction models are required to facili-
tate local, data-driven active visitor management. Thus, we differentiate between 
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mid- and short-term, as well as local and temporal steering measures. Mid-term 
active visitor management between different POIs can be enabled by models with 
a long prediction time horizon and aggregated spatial granularity, such as the 
entire beach. Specifically, steering measures can be triggered several days before 
the potentially crowded day by the DMO via the active visitor management system 
to proactively prevent overcrowding. This involves guiding potential tourists to an 
alternative, less crowded POI. Thus, the steering measure should start during the 
planning phase of a leisure trip allowing tourists to voluntarily choose an alterna-
tive POI without coercion. Short-term active visitor management within a POI or 
in its immediate vicinity requires more precise prediction models regarding spatial 
granularity. This precision is achieved through a shorter prediction time horizon. For 
example, if tourists have already chosen a potentially overcrowded POI, a uniform 
distribution of people on the beach may slightly relax the situation. For this pur-
pose, more intrusive short-term steering measures may guide tourists to a free park-
ing spot to avoid parking search traffic and ensure a uniform distribution across the 
beach entrances as people typically take the shortest path to the beach. This, even at 
high occupancy, reduces the number of visitors per square meter, minimizing tram-
pling effects on flora and fauna (Schierding et al. 2011). In addition to local tour-
ist shifts, the fine-grained temporal prediction enables temporal steering measures. 
The high importance of holiday-related features suggests the need for differentiated 
steering measures for day tourists and overnight guests. While overnight guests may 
shift their POI visit to an alternative day, a day tourist can only adjust visiting hours 
within one day. Furthermore, the strong influence of simple weather categories 
implies that steering measures in the form of recommendations should be triggered 
and presented depending on the environmental conditions. With our occupancy pre-
diction models as data basis, we specifically enable short- to mid-term active visitor 
management to avoid overcrowding. However, a long-term change with the emer-
gence of new hot spots should be regularly reviewed, and the local responsible entity 
should consider installing new sensor technology.

Regarding practical application and contribution, the successful implementation of 
the proposed multiple prediction models in a to-be-further investigated active visitor 
management system, can probably mitigate crowding and overcrowding and its associ-
ated environmental impacts. For activating various steering measures both in mid- and 
short-term as well as across location and times, a rule-based benchmark is necessary 
to automatically trigger actions (Neubig et al. 2024). To identify this benachmark Wall 
(2020) argues that “[t]he key questions have always been ‘How many is too many?’ 
[or] ‘How can this be determined?’. […] These questions will not disappear but will 
remain fundamental challenges, regardless of the trajectory that tourism takes.”. Due 
to the multidimensional nature of overtourism (Benner 2020) and its various effects 
(see 2.1), a universal answer does not do justice to the problem. Instead, a detailed, 
case-specific analysis is crucial, assessing all potential physical and perceived impacts 
of overcrowding and the current state of the POI along these dimensions. When eval-
uating a site’s capacity to handle visitors, distinct characteristics such as infrastruc-
ture must be considered. For example, it is recognized that urban areas may be able to 
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cope with higher visitor numbers than sensitive natural areas such as a beach (Butler 
2018b). The evaluation should in addition also account for seasonal variations in the 
natural environment and available services. In this paper we assume that the DMO is 
responsible for evaluating and operating the active visitor management system, thus, 
this is the recipient and user of the occupancy prediction system. However, regardless 
of the implementing organization it is essential to stress the importance of involving all 
relevant stakeholders and experts for a comprehensive assessment and to prevent the 
negative consequences of overly optimistic benchmarks. In an optimal setting, when 
all stakeholders are involved and a compromise is collectively reached, the ultimate 
responsibility of the organization is not decisive. However, due to the high complexity 
and lengthy decision-making processes, a practical approach is often required. Thus, 
the deciding neutral organization should consider all dimensions in their evaluation 
and consult multiple experts, yet come to a decision in an acceptable time and remain 
operational. Ultimately, setting and periodically revising the benchmark is an itera-
tive process, influenced by infrastructural developments or the success of implemented 
measures. By continuously adjusting this benchmark, the number of visitors can be 
aligned to the existing infrastructure, thereby reducing illegal parking and minimiz-
ing search traffic. Furthermore, designated trails remain adequate, as visitors refrain 
from creating additional paths to avoid crowded areas. The implementation of such 
measures not only results in fewer people per square meter and reduced beach utili-
zation but also mitigates trampling effects, leading to a decline in the deterioration 
of flora and fauna. Consequently, lower emissions contribute to the overall protection 
of the natural environment and climate. Additionally, the prevention of overcrowding 
plays a crucial role in wildlife preservation, as specific sections of the POI can be tem-
porarily closed to respect breeding seasons. Beyond environmental protection, active 
visitor management offers notable social benefits. Restricting the maximum number 
of visitors can alleviate traffic congestion, crowded public transport, and long queues. 
This, in turn, enhances tourism acceptance among local residents, fostering increased 
friendliness and openness while preserving the integrity of the local culture. In addi-
tion, other applications beyond active visitor management are conceivable. Examples 
include better scheduling of required labor for services related to the POI, such as: life-
guards, beach basket suppliers, restaurants, or cleaning staff. In the long term, active 
visitor management sets the stage for sustainable tourism by safeguarding nature, pre-
serving social structures, and supporting steady economic growth.

6 � Conclusion

In this paper, we elaborated on how the visitor movement, including occupancy 
and visitor count, of a freely accessible and open-spaced POI can be predicted. Our 
approach aims to provide a data basis that enables the development of an active visi-
tor management system for DMOs to avoid local overcrowding. Within a case study 
including real-world sensor data of the Scharbeutz beach, we evaluated the best pre-
diction model to enable active visitor management with 1406 case combinations 
regarding time granularity, spatial granularity, prediction time horizon, model types, 
and the integration of Google Trends data. Additionally, we identified the most 
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important features and how they influence the prediction model with a SHAP-value 
analysis to identify appropriate steering measures.

We demonstrate that the prediction of a freely accessible and open-spaced POI is 
feasible with moderate to even strong R2 relations, depending on the case-combina-
tion. Within the tourism demand prediction research area, we aim to close the gap for 
a POI-specific and short-term prediction. POI occupancy prediction enables the devel-
opment of data-driven active visitor management to prevent overcrowding, ensure sus-
tainable tourism, protect natural habitats, and avoid social conflicts. Furthermore, the 
utility of our approach extends to residents and organizations, providing them with 
crucial information about potentially high occupancy rates. This knowledge allows for 
proactive adaptation to the situation, ultimately contributing to the enhancement or 
preservation of tourism acceptance and the overall tourist experience.

However, this study is also subject to some limitations. A more extensive dataset 
spanning over several years could enhance our ability to analyze long-term trends, par-
ticularly considering the strong influence of the Covid-19 pandemic on the data under 
consideration, even if the tourism numbers nearly reflect pre-pandemic years. More-
over, integrating additional influencing factors may increase the prediction quality. 
Beside the limitations, further research should investigate the transferability of the pre-
diction models’ quality to other locations. While the presented approach could be con-
sidered a blueprint for POI-specific occupancy prediction, exploring alternative POIs 
may reveal use case categories with matching feature influences. For these categories, 
such as the beach in this case study, it may be possible to develop a universal model to 
reduce the deployment time of occupancy prediction systems at further POIs. There-
fore, exploring other types of touristic POIs, such as lakes, hiking trails, or bicycle 
paths with slightly different environmental conditions, could provide valuable insights 
for enabling localized active visitor management. Additionally, the active visitor man-
agement system, as outlined and described based on occupancy prediction models, 
requires more in-depth investigation. This includes the development of a recommender 
system explicitly tailored to the goal of identifying and avoiding overcrowding. In 
summary, our approach for visitor movement prediction enables versatile applications 
in active visitor management, promising positive social and environmental impacts.

Appendix

See Tables 6, 7 and 8.

Table 6   4-h time slots Part of the day Lower Limit Upper Limit

0: night ≥ 12 ∶ 00AM < 4 ∶ 00AM

4: early morning ≥ 4 ∶ 00AM < 8 ∶ 00AM

8: morning ≥ 8 ∶ 00AM < 12 ∶ 00PM

12: midday ≥ 12 ∶ 00PM < 16 ∶ 00PM

16: afternoon ≥ 16 ∶ 00PM < 20 ∶ 00PM

20: evening ≥ 20 ∶ 00PM < 12 ∶ 00AM
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Mosmix forecast
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height < 0.5

1: rain 1, 6 Precipitation height > 0.5
2: snow 7, 8 Snow water equivalent > 0
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