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Abstract
This article investigates a two-period lived overlapping-generations (OLG) model that
incorporates financial intermediation. A risk-neutral bank offers loan and deposit con-
tracts that insure risk-averse agents against idiosyncratic income shocks. Agents prefer
financial intermediation to capitalmarkets if it provides efficient risk sharing. The anal-
ysis demonstrates that in any two-period lived OLGmodel in which productive capital
is increasing in investment levels, financial intermediation, when implemented for the
purpose of efficient risk sharing, cannot instigate business cycles or complex dynam-
ics. The resulting dynamics is monotonic and qualitatively indistinguishable from the
dynamics of the classical OLG model by Diamond (Am Econ Rev 55(5):1126–1150,
1965). Business cycles may only occur if banks offer inefficient contracts. Efficient
contracts will, in general, not induce dynamically efficient growth paths.

Keywords Financial intermediation · Overlapping generations · Risk sharing ·
Business cycles · Loan contracts

JEL Classification D53 · E32 · E44 · G21 · O41

1 Introduction

Understanding the pace and patterns of economic growth is one of the central topics
in macroeconomics. The empirical evidence that a well-functioning financial system
is vital for economic development is plentiful, e.g. see Levine (1997) or the excellent
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58 P. Ritschel, J. Wenzelburger

reviews of the empirical literature by Levine (2005) and Aziakpono (2011). Over the
past four decades, relatively few theoretical contributions have incorporated financial
intermediation into growthmodels. These try to link the promotion of economic growth
to the fundamental functions that financial intermediaries carry out in an economy,
cf. Pagano (1993). The seminal contribution by Greenwood and Jovanovic (1990),
for example, highlights how risk sharing and the informational advantage of financial
intermediaries encourage high-yield investments and economic growth. Bencivenga
and Smith (1991), to mention another important contribution, extends the Diamond
and Dybvig (1983) view by demonstrating that liquidity provision induces savings
behaviour of agents that enhances capital accumulation.

The literature on business cycles in OLG models with financial intermediation is
relatively scarce. Williamson (1987) demonstrates that indivisibilities in investment
projectsmay be a cause for business cycles. Smith (1998) finds thatmonopolistic finan-
cial intermediaries can increase the severity of existing business cycles. Azariadis and
Smith (1998) show that bank-loan financed capital investments may generate business
cycles if there is an adverse selection problem regarding the ability of the borrowers
to honour their debt. Banerji et al. (2004) consider an OLG model in which loan and
deposit contracts enable risk-averse agents to completely insure against idiosyncratic
income shocks. They argue that risk sharing may expose the economy to endogenous
fluctuations in the form of real-sector business cycles and conclude that the promotion
of economic growth by financial intermediaries comes at the cost of the full variety
of complex dynamics. Finally, the stochastic OLG model with financial intermedia-
tion developed in Gersbach and Wenzelburger (2003, 2008, 2012) exhibits persistent
business cycles. Macroeconomic productivity shocks trigger the failure of individual
production projects. This risk cannot be diversified away so that the model, unlike that
in Banerji et al. (2004), has aggregate uncertainty.

This article addresses the extent to which efficient risk sharing can induce endoge-
nous business cycles in two-period lived OLG models, which, in the absence of
financial intermediation, are known to admit only monotonic growth. Following on
from Banerji et al. (2004) by allowing for the standard class of intertemporal prefer-
ences used in that literature, we find that a collective bank can implement the efficient
allocation by offering suitable loan and deposit contracts. These contracts provide
complete risk sharing and must enlarge the disposable income in order to be accepted
by agents. This income effect, which in Banerji et al. (2004) is deemed responsible
for causing endogenous fluctuations, is a consequence of a mere incentive problem
and it turns out that it does not alter the qualitative dynamics of the economy. The key
feature of our model is that productive capital and thus capital income is increasing
in investment levels. We demonstrate that financial intermediation which implements
the efficient allocation and diversifies away idiosyncratic risk does not generate busi-
ness cycles or even complex dynamics as the dynamics of the economy is always
monotonic.

In our framework, agents’ incentive compatibility and participation constraints are
explicit. Our analysis reveals that even though the bank maximises agents’ welfare,
incentive problems remain so that the acceptance of an efficient contract is not as
straightforward as one would expect. Contrary to Banerji et al. (2004), who argue that
financial intermediation may generate a complex backwards dynamics, we will focus
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Financial intermediation and efficient risk sharing... 59

on the forward dynamics of the economy. The reason is that the usefulness of the
backwards dynamics for a forward-time interpretation is limited and that the analysis
is often restricted to a limited range of model parameters in the neighbourhood of a
steady-state solution, e.g. see Grandmont (1989) and Medio and Raines (2006).

The remainder of this article is organised as follows. The next section lays out the
basic model and all essential assumptions. In Sect. 3, we formulate the decision prob-
lems of both agents and the bank. We then introduce our notion of an efficient contract
and establish its existence and uniqueness. Section4 is dedicated to the dynamics
induced by efficient contracts and contains our main results. Section5 concludes.

2 Model prerequisites

We consider a two-period lived OLGmodel with discrete time t = 0, 1, . . . ,∞. There
is a single perishable good that can be consumed and invested. At the beginning of
each period t , a new generation comprising a unit-mass continuum of homogeneous
agents is born. Agents are risk-averse and live for two periods. Their intertemporal
preferences over consumption are represented by a life-cycle utility function

U (c1, c2) := u(c1) + v(c2),

where c1, c2 ≥ 0 denote youthful and old-age consumption, respectively.

Assumption 1 (Preferences) The utility functions u, v : R+ → R are twice con-
tinuously differentiable, strictly increasing, strictly concave, and satisfy the Inada
conditions.

A young agent may become an entrepreneur by undertaking a risky production
project, which may either be successful or fail. The likelihood of success depends on
the amount of capital invested and is determined by a success function p : R+ → (0, 1]
that stipulates the success probability p(I ) of the capital investment I ≥ 0. The
uncertainty about the outcome of a project resolves one period after capital has been
invested. A project generates a verifiable gross rate of return � > 0 if successful and
zero if it fails.1 Invoking the law of large numbers, the productive capital stock of the
economy is

�(I ) := p(I )I .

The properties of the success function p are of central importance to our analysis
and are stated in terms of properties of �.

Assumption 2 (Productive capital) The function � : R+ → R+, defined by �(I ) =
p(I )I , is twice continuously differentiable, strictly increasing, and concave.

1 As an alternative interpretation, one may think of the entrepreneur as an investor who invests capital into
a firm. A failed project is then equivalent to the default of a firm.
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60 P. Ritschel, J. Wenzelburger

The important assumption for our results is that productive capital �(I ) is strictly
increasing in the investment level I . The concavity of � implies that the success
probability p(I ) is non-increasing in I .2 Such a choice features the economic intuition
that large-scale projects are more likely to fail.

Example 1 The function �(I ) = κ I
1+I , where 0 < κ ≤ 1 is some constant, satisfies

Assumption 2. The corresponding success probability p(I ) = κ
1+I is decreasing in I .

The production sector of the economy is perfectly competitive. A neoclassical
technologywith constant returns to scale transforms labour N ≥ 0 and real capital K ≥
0 into output. Capital depreciates fully during production. We denote by k := K/N
the capital-labour ratio and by f : R+ → R+ the production function of the
representative firm in intensive form.

Assumption 3 (Technology) The production function f : R+ → R+ is thrice con-
tinuously differentiable, strictly increasing, strictly concave, and satisfies the Inada
conditions. Moreover, it holds that

f ′′(k)k
f ′(k)

> −1 and
f ′′′(k)k
f ′′(k)

> −2 for all k ∈ R+.

The last two properties imposed on f in Assumption 3 imply that capital income
f ′(k)k is strictly increasing and strictly concave in the capital-labour ratio k. These
properties facilitate the existence and uniqueness of an efficient loan contract and are
satisfied by many standard production functions in the literature.3

The young generation constitutes the workforce of the economy. Each young agent
supplies one unit of labour inelastically to a perfectly competitive labour market.
Labour and capital are paid their marginal products. The old generation is retired and
receives capital income only. Given a capital investment I , the productive capital stock
of the subsequent period is k = �(I ) and is paid its marginal product � = f ′(�(I )).
The capital income of the old generation thus becomes

g(I ) := f ′(�(I ))�(I ). (1)

The following properties of g are essential for our results.

Lemma 1 (Capital income) Let Assumptions 2 and 3 be satisfied. Then capital income
of the old generation g : R+ → R+, defined by (1), is strictly increasing and strictly
concave with g(0) = 0.

In the proof of Lemma 1, it is shown that under the hypotheses of Assumption 3,
concavity of productive capital� is a sufficient condition for strict concavity of capital
income g.

2 Concavity of � implies �′(I )I
�(I ) = p′(I )I

p(I ) + 1 ≤ 1 so that p′(I ) ≤ 0 for all I > 0.
3 Assumption 3 is fulfilled by the Cobb–Douglas production function and by a wide range of parameteri-
sations of the CES production function.
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3 Financial intermediation

To transfer resources to the second period of their lives, young agents may invest part
of their wage income into a production project which exposes them to the idiosyncratic
risk of an old-age income shock. Agentsmay form an endogenous coalition in the form
of a risk-neutral collective bank as a device to share this risk.4 The bank offers young
agents a loan contract (Bt , It , Rt ), where Bt ≥ 0 is the size of the loan, It ≥ 0 is
the capital investment into the project, and Rt ≥ 0 is the gross interest rate on loans.
Agents who accept a loan contract are protected by limited liability as they do not
have to repay the loan in case their project fails.5 To finance its loans, the bank raises
deposits from young agents by offering a risk-free gross rate rt ≥ 0 on deposits.

3.1 Decision problems

Each young agent must decide whether to invest into a project by accepting a loan
contract or to undertake the project without funding from the bank instead. Indepen-
dently of her investment decision, however, a young agent is also allowed to deposit
part of her wage income at the bank. The decision problem of a young agent is thus the
following. Suppose the bank offers the loan contract (Bt , It , Rt ) and the deposit rate
rt on savings in period t . Consider first the case in which the agent accepts the loan
contract. Given her wage income wt , the agent must decide on how much to consume
and how much to save for retirement. By accepting the loan contract, her disposable
income becomes wd

t := wt + Bt − It , so that youthful consumption is

c1 = wd
t − D, (2)

where D ≥ 0 is the amount saved and deposited at the bank. Old-age consumption is
c2g ≥ 0 if the project is successful and c2b ≥ 0 if the project fails. Since agents have
limited liability, the constraint for old-age consumption reads

{
c2g = rt D + π(It ) − Rt Bt

c2b = rt D
, (3)

where rt D are the proceeds from the deposits, π(It ) := f ′(�(It ))It is the revenue
from a successful project, and Rt Bt is the loan repayment obligation.

The objective of a young agent is to maximise her expected utility of lifetime
consumption. Inserting the budget constraints (2) and (3), the agent’s objective function

4 For further details on financial-intermediary coalitions, we refer to the paper by Boyd and Prescott (1986)
and, for an overview, to Freixas and Rochet (2008).
5 We tacitly assume that the bank possesses a monitoring technology that enables it to observe agents’
investment behaviour and enforce the contract. A stipulated investment is a particular form of monitoring.
For details we refer to the seminal contribution by Holmström and Tirole (1997) on the role of monitoring
in settings with limited liability.
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62 P. Ritschel, J. Wenzelburger

becomes

max
0≤D≤wd

t

u(wd
t − D) + p(It ) v(rt D + π(It ) − Rt Bt ) + (1 − p(It )) v(rt D). (4)

Given a loan contract (Bt , It , Rt ), a deposit rate rt , and a wage rate wt , a solution to
(4) is given by the agent’s savings function SR5+ → R+, which is defined by

S(wt , Bt , It , Rt , rt ) := argmax
0≤D≤wd

t

u(wd
t − D) + p(It ) v(rt D

+π(It ) − Rt Bt ) + (1 − p(It )) v(rt D).

Inserting S into the objective function in (4) yields the value function for Problem (4),
which is denoted by

V (wt , Bt , It , Rt , rt ). (5)

Consider now the case in which the agent rejects the loan contract and undertakes
the project without funding from the bank. To do so, she will invest the amount IA

into the project and deposit the amount DA at the bank in order to safeguard old-age
consumption against the failure of the project. Formally, the corresponding decision
problem reads

max
IA,DA

u(wt − DA − IA) + p(IA) v(rt D
A + π(IA)) + (1 − p(IA)) v(rt D

A)

s.t. IA, DA ≥ 0 and IA + DA ≤ wt .

(6)

The value function associated with Problem (6) is well defined and stipulates the
agent’s reservation utility, which for any given wt and rt is denoted by

Ures(wt , rt ).

The decision problem of the bank is the following. Since the bank is collectively
owned, it offers a loan contract (Bt , It , Rt ) and a deposit rate rt so as to maximise
the agent’s expected utility V given in (5). Using the law of large numbers, the bank
correctly anticipates that for any given It , the loan default rate is 1− p(It ). Therefore,
the two feasibility constraints of the bank are the profit constraint

p(It )Rt Bt − rt Dt ≥ 0, (PrC)

stating that bank profits must be non-negative, and the resource constraint

Dt ≥ Bt , (RC)

noting that the bank has no equity. Both the loan and the deposit contract have to be
compatible with the young agent’s savings behaviour. Since the amount saved is at the
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discretion of the agent, the bank has to fulfil the incentive compatibility constraint

Dt = S(wt , Bt , It , Rt , rt ) (IC)

in order to obtain the amount of deposits required in (RC). Finally, since an agent may
decide to invest without funding from the bank, the loan contract must be designed in
such a way that the agent prefers the loan contract to undertaking the project without
the bank. Formally, this participation constraint reads

V (wt , Bt , It , Rt , rt ) ≥ Ures(wt , rt ), (PC)

that is, the expected utility of accepting both the loan and the deposit contract is at
least as high as the reservation utility.

Given the wage rate wt , the decision problem of the bank thus takes the form

max
B,I ,R,r≥0

V (wt , B, I , R, r)

s.t. p(I )RB − r S(wt , B, I , R, r) ≥ 0, S(wt , B, I , R, r) ≥ B,

and V (wt , B, I , R, r) ≥ Ures(wt , r).

(7)

3.2 Efficient allocations

We next establish the efficient allocation that a myopic social planner would imple-
ment. Given the wage rate wt , the planner’s objective in period t is to maximise the
welfare of the generation born in t .6 Applying the law of large numbers, the mass of
successful agents in the subsequent period is p(I ), while the mass of failed agents is
1− p(I ). Capital income in the subsequent period is g(I ), independently of the state
of nature. The social planner’s maximisation problem thus becomes

max
I ,c1,c2g,c2b

u(c1) + p(I ) v(c2g) + (1 − p(I )) v(c2b)

s.t. I , c1, c2g, c2b ≥ 0, c1 + I ≤ wt ,

and p(I ) c2g + (1 − p(I )) c2b ≤ g(I ).

(8)

The solution (I �
t , c1�t , c2g�t+1, c

2b�
t+1) to Problem (8) will be referred to as efficient allo-

cation. It is provided by the following proposition.

Proposition 1 (Efficient allocation) Let Assumptions 1–3 be satisfied and wt > 0 be
given. Then Problem (8) admits a uniquely determined solution (I �

t , c1�t , c2g�t+1, c
2b�
t+1),

where the efficient consumption plan is

c1�t = wt − I �
t , c2g�t+1 = c2b�t+1 = g(I �

t )

6 Since our research question is not concerned with intergenerational externalities as, for example, in Ennis
and Keister (2003), a myopic social planner is justified.
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64 P. Ritschel, J. Wenzelburger

and the efficient investment level 0 < I �
t < wt solves

max
0≤I≤wt

u(wt − I ) + v(g(I )). (9)

Proposition 1 states that if resources are allocated efficiently, the young generation
consumes its wage income less the efficient investment level, while the old generation
consumes aggregate capital income, which is perfectly smoothed out across both
possible states of nature. Observe that the uniqueness of efficient allocations hinges
on the concavity of the objective function in (9). This in turn is guaranteed, since u
and v are strictly concave by Assumption 1 and g is concave by Lemma 1.

3.3 Efficient contracts

The natural question now is whether financial intermediation that offers loan and
deposit contracts in line with Problem (7) can implement the efficient allocation deter-
mined in Proposition 1. In situations in which agents’ private actions are difficult to
control, the arising incentive constraints make it questionable whether an efficient
outcome can be achieved, cf. Myerson (1979). To address this problem, we will next
define an efficient contract as a contract that implements the efficient allocation and
is optimal for both agents and the bank.

Definition 1 (Efficient contract) Given a wage rate wt , a loan contract (Bt , It , Rt )

together with a deposit rate rt is called an efficient contract (in period t) if the following
holds:

(i) The quadruple (Bt , It , Rt , rt ) solves the bank’s problem (7).
(ii) The allocation induced by (Bt , It , Rt , rt ) is efficient in the sense of Proposition 1.

Observe that by definition, any efficient contractmust be incentive compatible.With
an efficient contract, agents are fully insured and old-age consumption is independent
of the success of the project because the bank completely diversifies away idiosyncratic
risk. Incentive compatibility of the efficient deposit rate rt implies in particular that
agents decide at their own discretion to save the amount of funds required for complete
risk sharing.

Our next proposition establishes the existence of a unique efficient contract.7

Proposition 2 (Existence of an efficient contract) Let Assumptions 1–3 be satisfied
and wt > 0 be given. Then there exists a uniquely determined efficient contract
(Bt , It , Rt , rt ), which is given by the following equations:

(i) The investment level satisfies 0 < It < wt and solves

max
0≤I≤wt

u(wt − I ) + v(g(I )). (10)

7 Note again that the uniqueness of the efficient investment level hinges on the concavity of the objective
function in (10) for which the (strict) concavity of u, v, and g is a sufficient condition.
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(ii) The deposit rate is
rt = g′(It ). (11)

(iii) The loan interest rate is

Rt = g′(It )
p(It )

. (12)

(iv) The loan size is

Bt = g(It )

g′(It )
. (13)

(v) The profit constraint (PrC) and the resource constraint (RC) are binding with

Dt = Bt = S(wt , Bt , It , Rt , rt ). (14)

An immediate implication of Proposition 2 is that with an efficient contract, the
bank extracts no rent as it seizes all the proceeds of the successful projects, Rt Bt =
π(It ), and awards the whole surplus to the old consumers.8 A second implication of
Proposition 2 is an income effect, already identified in Banerji et al. (2004). Since
capital income g is strictly concave by Lemma 1, its elasticity is less than one so that
(13) implies

Bt − It =
(

g(It )
g′(It )It − 1

)
It > 0. (15)

Hence, the efficient contract enlarges the disposable income of the young agent,wd
t =

wt + Bt − It > wt .9 By a slight abuse of notation, the savings function corresponding
to an efficient loan contract in (14) thus takes the standard form

S(wd
t , rt ) := argmax

0≤D≤wd
t

u(wd
t − D) + v(rt D). (16)

Since by Assumption 1 both youthful and old-age consumption are normal goods,
the young agent will prefer the efficient contract to a pure deposit contract without
investing. If g were not concave, then the income effect (15) may be negative in which
case the participation constraint (PC) is violated. In the proof of Proposition 2, we
show that under Assumptions 1–3, (PC) is satisfied by establishing that the expected
utility of an efficient contract is strictly larger than the expected utility of an investment
without funding from the bank combined with precautionary savings.

Example 2 For the logarithmic utility functions u(c1) = ln(c1) and v(c2) = β ln(c2)
with β > 0, the savings function is independent of the deposit rate because S(wd

t ) =
β

1+β
wd
t .

Remark 1 (Tying contracts) If g is non-concave, wd
t may fall below wt . In this case,

the agent rejects the loan contract because she would be better off saving out of wage
income wt , even without investing into the project. The bank could still implement

8 Our model may therefore be interpreted as a model of perfect competition among banks.
9 The efficient contract may be interpreted as the agent selling her project to the bank for the amount
Bt − It > 0 and then saving the amount S(wd

t , rt ).
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66 P. Ritschel, J. Wenzelburger

the efficient allocation by tying the loan contract (Bt , It , Rt ) to the deposit contract rt
and offering agents who only want to save a deposit rate 0 < r̃t < rt that makes them
worse off. The existence of r̃t is seen as follows. Strict concavity of v implies

Ures(wt , r̃t ) < max
{
u(wt−DA−IA)+v(r̃t D

A+g(IA))
∣∣ DA ≥ 0, IA ≥ 0, DA+IA ≤ wt

}
.

For r̃t = 0, the objective function on the r.h.s. attains its maximum in (DA
t = 0, IAt =

It ), yielding the utility level u(wt − It ) + v(g(It )). This shows that for r̃t = 0, the
agent is strictly better off accepting the tying contract. Since Ures is continuous and
increasing in r , there exists a largest positive deposit rate 0 < r̃t < rt , defined by

Ures(wt , r̃t ) = u(wt − It ) + v(g(It )),

at which the agent is indifferent between the tying contract and investing without
funding.

4 Capital accumulation and qualitative dynamics

This section is concerned with the qualitative dynamics induced by efficient contracts.
The aggregate capital stock of the economy is determined by the total capital endow-
ment of the successful projects. The law of large numbers implies that on aggregate,
the share of successful production projects in period t +1 is p(It ), where It is the effi-
cient investment level defined in (10). It follows from Proposition 2 that It is stipulated
by the investment function I : R+ → R+, defined by

It = I(wt ) := argmax
0≤I≤wt

u(wt − I ) + v(g(I )). (17)

Given the wage rate wt , the productive capital stock of the subsequent period t + 1
thus is

kt+1 = �(It ) = �(I(wt )).

In a perfectly competitive environment, labour is paid its marginal product. Denoting
by wt = w(kt ) := f (kt ) − f ′(kt )kt the marginal product of labour, it follows that
capital accumulation is driven by the time-one map G : R+ → R+, defined by

kt+1 = G(kt ) := �
(I(w(kt ))

)
. (18)

The dynamical system (18) governs the forward dynamics of the economy, in the sense
that any growth path {kt }∞t=0 of the economy with initial capital k0 > 0 is recursively
defined by kt+1 = G(kt ), t = 0, 1, . . . ,∞.

We are now in the position to state our main result.

Theorem 3 (Monotonic dynamics) Let Assumptions 1–3 be satisfied and assume that
the bank offers efficient contracts. Then G ′ > 0 so that the dynamics of the economy
is monotonic.

123



Financial intermediation and efficient risk sharing... 67

Theorem 3 demonstrates that if financial intermediation implements efficient con-
tracts, then the resulting dynamics is always monotonic. All growth paths {kt }∞t=0
generated by (18) are either monotonically increasing or monotonically decreasing,
as in the example portrayed in Fig. 1.

Endogenous fluctuations, including complex dynamics, require the time-one map
G to be decreasing at least in some neighbourhood of a steady state k� of G. This
behaviour is ruled out by Theorem 3. Since �′ > 0 by Assumption 2 and w′ > 0
by Assumption 3, the chain rule applied to (18) implies that G ′ > 0 if and only if
I ′ > 0. In the proof of Theorem 3, we establish that the latter condition is ensured by
the efficiency of the investment level I(w) that determines the welfare maximum of
agents.

The qualitative dynamics induced by efficient contracts may be classified by the
stability properties of the steady states k� = G(k�).

Proposition 4 (Properties of steady states) Let Assumptions 1–3 be satisfied and
assume that the bank offers efficient contracts. Then the following holds.

(i) The origin k� = 0 is a steady state of G if and only if w(0) = 0.
(ii) If either w(0) > 0 or limk→0 G ′(k) > 1, then G has at least one positive steady

state k� > 0. The largest one of these steady states is asymptotically stable.

Proposition 4 implies that the dynamics of our model is qualitatively equivalent
to the dynamics of the standard two-period lived OLG model, e.g. see De La Croix
and Michel (2002). The following example with a standard parameterisation from the
literature on OLG models is insightful.

Example 3 Consider the success function p(I ) = 1
1+I combined with loglinear utility

u(c1) = ln(c1) and v(c2) = β ln(c2), whereβ > 0, and theCobb–Douglas production
function f (k) = Akα , where A > 0 and 0 < α < 1. The investment function (17)
then takes the form

I(wt ) =
√(

1+αβ
2

)2 + αβwt − 1+αβ
2

and the evolution of capital-labour ratios is driven by the map

kt+1 = G(kt ) = 1 −
⎛
⎝1 − αβ

2
+

√(
1 + αβ

2

)2

+ αβ(1 − α)Akα
t

⎞
⎠

−1

.

Since G ′ > 0, the dynamics is monotonic and all growth paths with k0 > 0 converge
to a unique positive steady state k� that is asymptotically stable, cf. Fig. 1.

The result that efficient contracts rule out business cycles and complex dynamics
contradicts the findings in Banerji et al. (2004). They argue that efficient risk shar-
ing enabled by financial intermediation may generate endogenous fluctuations in an
economy that otherwise would always converge monotonically to a steady state. Our
analysis shows that under the premise of efficient risk sharing, the qualitative dynamics
of the model is monotonic and that the enlarged disposable income of agents is a mere
byproduct of an incentive problem without any impact on the qualitative dynamics.
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Fig. 1 Monotonic convergence
to a unique asymptotically stable
steady state k� > 0 induced by
efficient contracts (A = 30,
α = 0.6, β = 1)

In the discussion-paper version of this article, we analyse an example in which
productive capital � and thus the objective function in (10) is not concave and show
that business cycles can only be triggered by contracts that do not maximise agents’
welfare and thus do not provide efficient risk sharing.10

We conclude our analysis by demonstrating that the steady states of the economy
will generically be dynamically inefficient in the usual sense of macroeconomics.
Given a wage rate wt , youthful consumption in period t is

c1t = wt − It , (19)

while old-age consumption in period t is

c2bt = c2gt = g(It−1) = c2t . (20)

Adding (19) and (20), total consumption per capita in period t becomes

ct := c1t + c2t = wt − It + g(It−1) = f (kt ) − It . (21)

Since kt+1 = �(It ), stationary allocations (k̄, c̄), where c̄ = c̄1+c̄2 denotes stationary
total consumption, are given by

c̄ = φ( Ī ) := f (�( Ī )) − Ī .

Clearly, stationary total consumption c̄ is maximal in a maximum of the function φ.

Lemma 2 (Maximal consumption) Let Assumptions 1–3 be satisfied. Then the map
φ attains its global maximum at the golden-rule investment level IG > 0, which is
uniquely determined by

f ′(�(IG))�′(IG) = 1. (22)

Lemma 2 resembles the golden rule of capital accumulation of the standard Solow
(1956) growth model. Denote the capital-labour ratio corresponding to IG by kG =
10 See Ritschel and Wenzelburger (2023) for a discussion of Banerji et al. (2004).
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�(IG). If capital depreciates fully and the population profile is stationary, as is the
case in our model, then Solow’s golden-rule capital-labour ratio kSG is determined by
f ′(kSG) = 1. Since f is strictly concave and Assumption 2 implies 0 < �′ ≤ 1, it
follows from (22) that kG ≤ kSG , where equality holds if p′(IG) = 0 and p(IG) = 1.
Thus, a positive failure rate of the production projects entails a lower golden-rule value
in our model.

Observe also that kG is solely determined by the production function f and the
success probability function p. Since any steady state will, by construction, depend
on agents’ preferences, kG will generally not be a steady state of the dynamical system
(18). Indeed, kG is a steady state ofG if and only if IG = I(w(kG)). Stated differently,
the golden-rule consumption plan

c1G = w(kG) − IG , c2G = g(IG)

is a steady-state consumption plan of the dynamical system (18) if and only if IG
solves

−u′(w(�(I )) − I ) + v′(g(I )) g′(I ) != 0.

In this case, the economy attains the steady state with the highest possible welfare
level. Finally, observe from (15) that

c1G + c2G
rG

= w(kG) +
(

g(IG )
g′(IG )IG

− 1
)
IG =: wd

G,

so that in a golden-rule steady state, disposable income is consumed fully. In general,
however, a golden-rule steady state will not obtain so that efficient contracts will
generically not induce dynamically efficient growth paths.

5 Conclusion

This article examined an overlapping-generations model in which financial interme-
diation arises endogenously as a device to share idiosyncratic risk. Agents’ welfare
is maximised by efficient contracts that provide complete insurance and perfect con-
sumption smoothing without a premium for the bank. In order to implement efficient
allocations, the bank must enlarge agents’ disposable income because savings deci-
sions are at their discretion. This implementation is only possible if capital income
is concave in the investment level. Otherwise, the implementation of efficient alloca-
tions requires tying contracts. Our main contribution to the banking literature is the
result that in any two-period lived OLG model with standard preferences and increas-
ing productive capital, financial intermediation that implements efficient risk sharing
can neither induce business cycles nor complex dynamics. The resulting qualitative
dynamics is always monotonic and thus indistinguishable from the dynamics of the
standard two-period lived OLG model. Our analysis reveals that business cycles may
only be triggered by contracts which implement a local welfare minimum and would
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not be accepted by rational agents. To find conditions under which financial interme-
diation triggers business cycles remains to be an open issue for future research.
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Appendix A: Proofs

Proof of Lemma 1 Differentiating g(I ) = f ′(�(I ))�(I ) yields

g′(I ) = �′(I ) f ′(�(I ))

[
1 + f ′′(�(I ))�(I )

f ′(�(I ))

]
.

By Assumption 2, �′ > 0. By Assumption 3, f ′ > 0, f ′′ < 0, and f ′′(k)k/ f ′(k) >

−1 for all k ∈ R+. Hence, g is strictly increasing. Since limk→0 f ′(k)k = 0 and
�(0) = 0, it follows that g(0) = 0.11 Strict concavity of g holds because

g′′(I ) = �′′(I ) f ′(�(I ))

[
1 + f ′′(�(I ))�(I )

f ′(�(I ))

]

+�′(I )2 f ′′(�(I ))

[
2 + f ′′′(�(I ))�(I )

f ′′(�(I ))

]
< 0,

noting that �′′ ≤ 0 by Assumption 2 and f ′′′(k)k/ f ′′(k) > −2 by Assumption 3. �	
Proof of Proposition 1 Let wt be arbitrary but fixed. By Lemma 1, g is strictly increas-
ing and strictly concave with g(0) = 0. Assumption 1 implies that in an optimum,

11 For a formal proof that Assumption 3 implies limk→0 f ′(k)k = 0, we refer to De La Croix and Michel
(2002, p. 308).
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c1 = wt − I . The first-order conditions are therefore

−u′(wt − I ) + p′(I )[v(c2g) − v(c2b)] + λ[g′(I ) − p′(I )(c2g − c2b)] = 0 (A1)

p(I ) v′(c2g) − λp(I ) = 0 (A2)

(1 − p(I )) v′(c2b) − λ(1 − p(I )) = 0 (A3)

and the complementary slackness condition is

λ[g(I ) − p(I ) c2g − (1 − p(I )) c2b] = 0. (A4)

Assumption 1 implies that in an optimum, the constraint on the consumption plan
must hold with equality. Since g(0) = 0, the Inada conditions on v imply that I > 0
because otherwise c2g = c2b = 0 by (A4). Therefore, 0 < p(I ) < 1. Conditions
(A2) and (A3) then imply v′(c2g) = v′(c2b) = λ > 0. Since v′′ < 0, it follows from
(A4) that a social optimum requires

c2g = c2b = g(I ). (A5)

Moreover, (A1) reduces to

−u′(wt − I ) + v′(g(I )) g′(I ) = 0. (A6)

Observe that (A6) is the first-order condition of the maximisation problem

max
0≤I≤wt

u(wt − I ) + v(g(I )). (A7)

The objective function in (A7) is either already a continuous function or can be
transformed into a continuous function on the compact interval [0, wt ] using the
exponential function. Hence, a solution I �

t to (A7) exists. It follows that any solu-

tion (I �
t , c2g�t+1, c

2b�
t+1) to the first-order conditions (A1)–(A3) must satisfy (A5) with I �

t
being a maximiser of Problem (A7). In other words, the social planner’s problem (8)
reduces to Problem (A7), so that any maximiser I �

t of (A7) together with (A5) and
c1�t = wt − I �

t is a maximiser of (8). The concavity of g implies that the objective
function in (A7) is strictly concave so that the social optimum is uniquely determined.

�	
Proof of Proposition 2 The proof comprises four steps.

Step 1 (Relaxed problem).We establish the existence and uniqueness of a solution
to Problem (7) without the participation constraint. The Lagrangian of Problem (7)
without the participation constraint is

L(B, I , R, r , λ1, λ2) := u(wt + B − I − D) + p(I ) v(r D + π(I ) − RB)

+ ((1 − p(I )) v(r D) + λ1(p(I )RB − r D) + λ2(D − B),
(A8)
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where λ1, λ2 ≥ 0 are the Lagrange multipliers and D = S(wt , B, I , R, r) to simplify
notation. The four first-order conditions for a solution (Bt , It , Rt , rt ) are:

0 = p(It )Rt

[
v′(rt Dt + π(It ) − Rt Bt ) − λ1

]
+ λ2 − u′(wt + Bt − It − Dt )

+ (λ1rt − λ2)
∂S

∂B
(wt , Bt , It , Rt , rt ) (A9)

0 = h′(It ) p(It ) v′(rt Dt+π(It )−Rt Bt )+ p′(It )
[
v(rt Dt+π(It )−Rt Bt )−v(rt Dt )

]
+ λ1 p

′(It )Rt Bt − u′(wt + Bt − It − Dt ) − (λ1rt − λ2)
∂S

∂ I
(wt , Bt , It , Rt , rt )

(A10)

0 =
[
λ1 − v′(rt Dt + π(It ) − Rt Bt

)]
p(It )Bt − (λ1rt − λ2)

∂S

∂R
(wt , Bt , It , Rt , rt )

(A11)

0 =
[
p(It ) v′(rt Dt + π(It ) − Rt Bt

) + [1 − p(It )] v′(rt Dt ) − λ1

]
Dt

− (λ1rt − λ2)
∂S

∂r
(wt , Bt , It , Rt , rt ), (A12)

where Dt = S(wt , Bt , It , Rt , rt ). The two complementary slackness conditions are:

λ1[p(It )Rt Bt − rt Dt ] = 0 (A13)

λ2(Dt − Bt ) = 0. (A14)

Assume that λ1rt − λ2 = 0. We will show below with (A34) that in an optimum,
this identity must hold. As a consequence, all terms involving derivatives of S in the
first-order conditions (A9)–(A12) are zero. Since p > 0, (A11) is equivalent to[

λ1 − v′(rt Dt + π(It ) − Rt Bt )
]
Bt = 0. (A15)

By Assumption 1, v′ > 0 so that two cases can occur in (A15). First,

Bt > 0 and λ1 = v′(rt Dt + π(It ) − Rt Bt ) > 0. (A16)

Second, Bt = 0.
Case 1. Since Bt > 0 and λ1 > 0, (A13) requires

p(It )Rt Bt = rt Dt , (A17)

stating that the profit constraint is binding. Inserting (A16), it follows that (A9) holds
with

λ2 = u′(wt + Bt − It − Dt ) > 0. (A18)

Since λ2 > 0, (A14) implies that the resource constraint is binding,

Bt = Dt > 0. (A19)
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Using (A19), it follows from (A17) that

rt = p(It )Rt . (A20)

Inserting (A16) into (A12) yields

[1 − p(It )]Dt

[
v′(rt Dt ) − v′(rt Dt + π(It ) − Rt Bt )

]
= 0. (A21)

(A21) has two possible solutions. First, since 0 < p(I ) < 1 for I > 0, It = 0 is a
solutionwhenever p(0) = 1. In this case, (A20) implies Rt = rt and thus Rt Bt = rt Dt

so that the attained utility level is u(wt ) + v(0). By Assumption 1, this level cannot
be optimal. Since v′′ < 0, the second solution to (A21) is

Rt Bt = π(It ). (A22)

It follows from (A16) and (A18) that

λ1 = v′(rt Dt ) > 0 and λ2 = u′(wt − It ) > 0. (A23)

Combining (A20) with (A22) yields

Bt = g(It )

rt
. (A24)

Since Dt = Bt , (A24) implies
rt Dt = g(It ). (A25)

Therefore,
λ1 = v′(g(It )). (A26)

Inserting (A19), (A22), (A25), and (A26), Condition (A10) reduces to

− u′(wt − It ) + v′(g(It )) g′(It ) = 0. (A27)

Condition (A27) determines the optimal investment level It . Observe that (A27) is the
first-order condition for the maximisation problem

max
0≤I≤wt

u(wt − I ) + v(g(I )). (A28)

Equations (A22) and (A25) imply that any utility-maximising consumption plan of
the relaxed problem (A8) has to satisfy

c1t = wt − It and c2gt+1 = c2bt+1 = rt Dt = g(It ). (A29)

Hence, any solution to (A8) is already determined by a solution It to Problem (A28).
Since Problem (A28) coincides with Problem (10), existence and uniqueness of 0 <

It < wt obtain from the same arguments as presented in the proof of Proposition 1.
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Case 2. If Bt = 0, then the profit constraint (PrC) implies that rt Dt = 0. The strict
concavity of v yields

u(wt − I − D) + p(I ) v(π(I )) + (1 − p(I )) v(0) < u(wt − I ) + v(g(I )) (A30)

for all I , D > 0 with I + D ≤ wt . Note that the r.h.s. of (A30) is the objective
function of Problem (A28), which assumes its maximum in 0 < It < wt with It being
determined by (A27). Hence, Bt = 0 cannot be optimal.

It follows that Bt > 0 is optimal and that the optimal solution to the relaxed problem
(A8) is uniquely determined by (A27) together with (A29).

Step 2 (Incentive compatibility). In Step 1, the optimal deposit rate rt has not
yet been determined. Given the loan contract (Bt , It , Rt ) determined in Step 1, the
incentive constraint (IC) implies that deposits Dt = S(wt , Bt , It , Rt , rt ) must satisfy
the first-order condition

u′(wt + Bt − It − Dt ) =
[
p(It ) v′(rt Dt + π(It ) − Rt Bt ) + (1 − p(It )) v′(rt Dt )

]
rt .

(A31)

Inserting (A19), (A22), and (A25), Condition (A31) simplifies to

− u′(wt − It ) + v′(g(It )) rt = 0. (A32)

A comparison of (A27) with (A32) shows that the optimal deposit rate is

rt = g′(It ). (A33)

Using (A23), (A26), and (A32), it follows that rt satisfies

λ1rt − λ2 = v′(g(It )) rt − u′(wt − It ) = 0, (A34)

thus justifying the assumption made at the outset of the proof. Finally, inserting (A33)
into (A24) and (A20) yields

Bt = g(It )

g′(It )
and Rt = g′(It )

p(It )
.

Step 3 (Efficiency). To see that the contract (Bt , It , Rt , rt ) computed above imple-
ments the efficient allocation, recall that the first-order conditions (A6) and (A27)
coincide, so that It = I �

t is the efficient investment level. It follows from (A22) and
(A25) that

c2gt+1 = c2bt+1 = rt S(wt , It , Bt , Rt , rt ) = g(It ) = g(I �
t ) = c2g�t+1 = c2b�t+1.

Thus, (Bt , It , Rt , rt ) implements the efficient allocation.
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Step 4 (Participation constraint).We prove that the relaxed problem without the
participation constraint (A8) has the same solution as Problem (7) by showing that
agents will accept the efficient contract (Bt , It , Rt , rt ) computed above.

An agent who rejects the efficient loan contract may save and invest with idiosyn-
cratic risk, solving Problem (6). By the strict concavity of v, the objective function in
(6) satisfies

u(wt − IA − DA) + p(IA) v(rt D
A + π(IA)) + [1 − p(IA)] v(rt D

A)

≤ u(wt − IA − DA) + v(rt D
A + g(IA))

(A35)

for all IA, DA ≥ 0 with IA + DA ≤ wt . Replacing the objective function in Problem
(6) with the r.h.s. of Inequality (A35), an auxiliary problem obtains.

We will next establish that the uniquely determined maximiser of this auxiliary
problem is (IAt = It , DA

t = 0), where It is the efficient investment level, and show
that agents will be worse off rejecting the efficient contract.

Observe first that the auxiliary objective function is strictly concave if g is strictly
concave. The Inada conditions on u and v imply that any solution (IAt , DA

t ) to Problem
(6) must satisfy 0 < IAt + DA

t < wt . Thus, there are three possible solutions to the
auxiliary problem.

Case 1: IAt = 0, DA
t > 0. The resulting first-order conditions in this case read

−u′(wt − DA) + v′(rt DA) g′(0) + λ1 = 0 (A36)

−u′(wt − DA) + v′(rt DA) rt = 0. (A37)

The Inada conditions imply that a solution 0 < DA
t < wt to (A37) exists. Inserting

(A37) into (A36), we see that (IAt = 0, DA
t ) is a possible maximum if

λ1 = v′(rt DA
t )[rt − g′(0)] ≥ 0.

However, since rt = g′(It ) and g′′ < 0, it follows that λ1 must be negative. Hence,
(IAt = 0, DA

t ) does not satisfy the first-order conditions.
Case 2: IAt > 0, DA

t = 0. The corresponding first-order conditions are

−u′(wt − IA) + v′(g(IA)) g′(IA) = 0 (A38)

−u′(wt − IA) + v′(g(IA)) rt + λ2 = 0. (A39)

As shown in the proof of Proposition 1, the unique solution to (A38) is the efficient
investment level IAt = It . Since rt = g′(It ), it follows that (IAt = It , DA

t = 0)
together with λ2 = 0 solves the first-order conditions.

Case 3: IAt > 0, DA
t > 0. The resulting first-order conditions are

−u′(wt − IA − DA) + v′(rt DA + g(IA)) g′(IA) = 0 (A40)

−u′(wt − IA − DA) + v′(rt DA + g(IA)) rt = 0. (A41)
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A comparison of (A40) with (A41) shows that any solution IAt requires rt = g′(IAt ).
Since rt = g′(It ) and g′′ < 0, it follows that IAt = It . A comparison with Case 2
shows that (IAt = It , DA

t = 0) solves (A40) and (A41). Since both equations are
strictly decreasing in D, no solution with positive savings (IAt = It , DA

t > 0) exists.
These considerations show that the maximum of the auxiliary problem obtains in

(IAt = It , DA
t = 0) and achieves the utility level u(wt − It ) + v(g(It )). Inequality

(A35) implies

Ures(wt , rt ) ≤ u(wt − It ) + v(g(It )) = V (wt , Bt , It , Rt , rt ),

showing that agents are indeed willing to accept the efficient contract (Bt , It , Rt , rt ).
�	
Proof of Theorem 3 Endogenous fluctuations are ruled out if G ′ > 0. Differentiating
(18) yields

G ′(k) = �′(I(w(k))
) I ′(w(k)) w′(k). (A42)

By Assumption 2, �′ > 0. Moreover, w′ > 0 by Assumption 3. We next show that
I ′ > 0 such that G ′ > 0 holds. The investment function I is defined by the first-order
condition

− u′(w − I(w)) + v′(g(I(w))
)
g′(I(w)) = 0. (A43)

Differentiating (A43) yields

I ′(w) = u′′(w − I(w))

u′′(w − I(w)) + v′′(g(I(w))
)
g′(I(w))2 + v′(g(I(w))

)
g′′(I(w))

.

(A44)
By Assumption 1, u′′ < 0 such that the numerator in (A44) is strictly negative. Since
0 < I(w) < w is a maximiser, the second-order condition for the objective function
in (A28) is satisfied, implying that the denominator in (A44) is strictly negative. Thus,
we conclude that (A44) is strictly positive so that G ′ > 0. �	
Proof of Proposition 4 (i) Steady states of G are determined by solutions k� ≥ 0 to

k
!= �

(I(w(k))
)
. (A45)

Note that �(0) = 0. If w(0) = 0, then I(w(0)) = 0 and, consequently, k� = 0 solves
(A45). On the contrary, if w(0) > 0, then the Inada conditions stated in Assumption 1
imply 0 < I(w(0)) < w(0). Since �′ > 0, it follows that �

(I(w(0))
)

> 0, showing
that k� = 0 cannot solve (A45). Hence, k� = 0 solves (A45) if and only if w(0) = 0.
(ii) It follows from the definition of � and Proposition 2 that

0 ≤ G(k) = �
(I(w(k))

) ≤ f (k) for all k ≥ 0. (A46)

If w(0) > 0, then G(0) > 0, so that in the local neighbourhood of zero, we
have G(k) > k. On the other hand, if w(0) = 0, then G(0) = 0. In this case, it
follows from the property limk→0 G ′(k) > 1 that in the local neighbourhood of zero,
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G(k) > k holds. Inequality (A46), the strict concavity of f , and the Inada condition
limk→∞ f ′(k) = 0 then imply that there exists at least one k� > 0 that solves (A45).Of
these solutions, the largest onemust satisfy 0 < G ′(k�) < 1 and thus be asymptotically
stable. �	
Proof of Lemma 2 Assumptions 2 and 3 imply that I 
→ f (�(I )) is strictly increasing
and strictly concave. Hence, a solution IG to

max
I≥0

f (�(I )) − I (A47)

is unique, if it exists. Observe that f (�(I )) − I ≤ f (I ) − I for all I > 0. It
follows from Assumption 3 that the function I 
→ f (I ) − I has a unique maximum.
Hence, Problem (A47) admits a unique solution IG > 0, determined by the first-order
condition (22). �	
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