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Abstract
Usually, the actuarial problems of predicting the number of claims incurred but not
reported (IBNR) and of modelling claim frequencies are treated successively by insur-
ance companies. New micro-level methods designed for large datasets are proposed
that address the two problems simultaneously. Themethods are based on an elaborated
occurrence processmodel that includes both a claim intensitymodel and a claim devel-
opment model. The influence of claim feature variables is modelled by suitable neural
networks. Extensive simulation experiments and a case study on a large real data set
from a motor legal insurance portfolio show accurate predictions at both the aggregate
and individual policy level, as well as appropriate fitted models for claim frequencies.
Moreover, a novel alternative approach combining data from classic triangle-based
methods with a micro-level intensity model is introduced and compared to the full
micro-level approach.
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1 Introduction

Actuarial departments in insurance companies are responsible for many different tasks
related to risk modelling of insurance operations. Two of these tasks are closely inter-
linked: reserving actuaries need to compute accurate predictions of incurred liabilities
for insurance portfolios. Pricing actuaries use these results to develop risk models,
which allow them to estimate expected losses for a range of policy parameters and
thus to determine the prices at which these policies are sold. While developing models
on per-policy data (subsequently referred to as themicro-level) is common practice for
risk modelling, micro-level methods for reserving are still not widely adopted in the
industry. Adoption is slow in part due to the requirements necessary for micro-level
reserving (such as fine-grained claims development information, the necessary data
warehousing and compute infrastructure as well as advanced modelling skills such as
machine learning in combination with actuarial expertise) and the strong governing
bodies that will require tried and tested reservingmethods formany business processes
in the foreseeable future.

In the research literature on reserving in non-life insurance, there are two main
approaches to micro-level reserving. On the one hand, there are methods that operate
in discrete time (such as development years), which have similarities with macro-
level reserving methods like Bornhuetter–Ferguson. Micro-level methods of this kind
typically deal with claim-level informationwhich is only available for reported claims,
and therefore work on the reserve of claims that have been reported but not settled
(RBNS). Examples of this kind are [6, 9, 11, 12, 24], among others. On the other
hand, there are continuous time claim development models which are based on the
assumption that claim development is regarded as a point process (e.g., a position-
dependent marked Poisson process); respective model parameters are then estimated
from observed data. This strain of research goes back to [17, 18]. More recent papers
studying a continuous time claim development model are [4, 5, 19, 21], among others.

The current paper aims to combine the task of predicting IBNR claim counts on a
policy levelwith the development of amatchingmicro-level claim intensitymodel, thus
addressing the two tasks of reserving and risk modelling simultaneously in the hope of
improving accuracy in both disciplines. Twomain approaches are proposed to achieve
this goal. Our first approach is based on an explicit micro-level claim occurrence
process model inspired by [17]. Suitable methods are proposed for estimating all
model parameters, which results in a fully fitted continuous-time process model that
includes a claim intensity model. We thereby extend a related approach in [7], where
a submodel for reporting delays was studied. Secondly, we propose a newmethod that
uses classical triangle-level reserving methods as input to the estimation of a micro-
level claim intensity model. This approach allows for micro-level allocation of IBNR
claim counts that is consistent with the triangle. Due to the nature of the underlying
triangle-based reserving methods, the approach only allows discrete time steps.

For each of the two approaches, we discuss the design and estimation of suitable
(parametric) sub-models involving classical multilayer perceptron (MLP) neural net-
works, see [14]. For the estimation, it is taken into account that the observed data is
subject to random truncation (indeed, a claim is only observed at a given calendar time
if the sum of its associated (random) reporting delay and its (random) accident time
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Micro-level prediction of outstanding claim counts and frequencies 625

does not exceed the given calendar time). Predictors for the number of IBNR claims
on a per-policy level are derived from the estimated models. They are compared with
each other as well as with classical chain ladder methods in an extensive simulation
study as well as on a real dataset. It is found that the new predictors provide accurate
predictions as well as appropriate fitted models for claim intensities even in simulation
scenarios involving non-homogeneous portfolios and in the real-life example. More-
over, in contrast to classical factor-based reserving methods, the predictor based on
the first approach may yield a non-zero number of claims even for policies without
already reported claims. This is natural as it allows for interpreting the prediction as
the expected number of unreported claims for that particular policy.

For learning the neural networks, we utilize the TensorFlow framework [1] with
custom loss functions that take random truncation into account. The implementa-
tion is written using the R language and its interface binding packages keras and
tensorflow [2, 10] to utilize TensorFlow. Core functionality used for estimation
and prediction is freely available as an R package reservr [20].

The remaining parts of the paper are organized as follows. In Sect. 2, we intro-
duce the micro-level claim process used throughout as well as the observation setting.
Modelling and fitting of the individual components of the claim process are discussed
in Sect. 3. Based on a completely estimatedmicro-levelmodel, we derive a correspond-
ing micro-level predictor for the IBNR claim count in Sect. 4. Section5 introduces an
alternative micro-level predictor based on similar ideas, but using a triangle-based
global reserving method and discrete time steps. After defining performance metrics
in Sect. 6, we present results on a large-scale simulation study in Sect. 7. An appli-
cation to a real dataset from a motor legal insurance portfolio is presented in Sect. 8.
Finally, Sect. 9 concludes.

2 Preliminaries on insurance portfolio data

The general model for the claim arrivals in a given insurance portfolio is the same
as in [7], and builds on the notion of (position-dependent) marked Poisson processes
[17].More precisely,we consider an insurance portfolio containingI ∈ N independent
risks. Each risk is described by a coverage periodC = [tstart, tend], and by risk features
x̄ ∈ X̄, where X̄ is a feature space containing both discrete and continuous features; for
example, information on the insured product and chosen options such as deductibles.
We write x = (C, x̄) ∈ X = {intervals on [0,∞)} × X̄, and assume that x is constant
over the course of the contract. In practice, risk features do change over time, but not
very often, whence such a contract could be modelled as two separate risks.

Each risk can potentially incur claims during its coverage period, which will
formally be modelled by a claim arrival process. Note that (marked) claim arrival
processes provide a natural mathematical model for random event analysis, which
have been proposed for actuarial risk modelling in [17]; see also the textbook [16].
Each claim in the claim arrival process occurs at some (calendar) accident time
tacc ∈ [tstart, tend], and will be associated with several claim features y ∈ Y like the
type of the claim or the value of the cars involved in some accident; here, Y denotes
some suitable feature space. Moreover, the claim will not be immediately known to
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Fig. 1 Illustration of a portfolio dataset consisting of two risks with 6 claims in total for the case where the

claim covariate y(i)
j is a binary variable with values in {1, 2}. The second claim of the second policy, t(2)2 ,

is unobserved by time τ and hence an IBNR claim (see Sect. 4 for details). It is the main goal of this paper
to predict the number of IBNR claim counts for each policy, based on all observations available at time τ

the insurer, but it will rather be reported at (calendar) reporting time treport ∈ [tacc,∞).
Formally, both the claim features y and the reporting delay dreport:=treport − tacc will
be assumed to be a mark on the claim arrival process.

Let δz denote the dirac-measure at z. Following the notation in [15], we arrive at
the following definition of a claim arrival process. The process is illustrated in Fig. 1
for the case that the claim feature is binary.

Definition 2.1 (Claim arrivals and portfolio) Consider the i th risk in a portfolio, i ∈
{1, . . . , I}, with risk features x (i) ∈ X among which we find the coverage period
C(x (i)). The claim arrival process associated with that risk is a position-dependent
marked Poisson process with N (i) ∼ Poi

(∫
C(x (i))

λ(x (i), t) dt
)
points

ξ (i) =
N (i)∑

j=1

δ
(T (i)

acc, j ,Y
(i)
j ,D(i)

report, j )

on [0,∞) × Y × [0,∞) with:

(i) Intensity λ(x (i), t)1(t ∈ C(x (i))), i.e., for all intervals [t0, t1] ⊆ [0,∞), we have

N (i)∑

j=1

1(T (i)
acc, j ∈ [t0, t1]) =

∫ t1

t0
ξ (i)(dt,Y, [0,∞))

∼ Poi

(∫ t1

t0
1(t ∈ C(x (i)))λ(x (i), t) dt

)
.

(ii) Conditional claim feature distribution PY |x (i),t = PY |X=x (i),Tacc=t . Here, Y
denotes a generic Y-valued claim feature variable containing all claim features
except for the reporting delay, while X and Tacc are generic risk feature and
accident time variables, respectively.
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Micro-level prediction of outstanding claim counts and frequencies 627

(iii) Conditional reporting delay distribution PD|x (i),t,y = PD|X=x (i),Tacc=t,Y=y . Here,
D = Dreport denotes a generic reporting delay variable in [0,∞).

A portfolio consists of I risks ξ (1), . . . , ξ (I) that are mutually independent.

Note that the claim intensity λ(x (i), t) controls the expected number of claims per
exposure (the claim frequency), i.e., the expected amount of claims of the i th risk in
the period A ⊂ C(x (i)) is given by

∫
A λ(x (i), t) dt .

In practice, the three building blocks of Definition 2.1, i.e., λ(x, t), PY |x,t and
PD|x,t,y , are unknown and must be estimated based on observational data that is
available to the insurer at some given calendar time τ > 0 of observing the portfolio.
More precisely, the insurer observes data fromObservation Scheme 2.2, which is again
illustrated in Fig. 1.

Observation Scheme 2.2 At given calendar time τ , the available dataset D = Dτ

consists of all risk features x (i), i ∈ {1, . . . , I}, and all reported claim data up to
calendar time τ , i.e.

{
(x (i), t (i)acc, j , y

(i)
j , d(i)

report, j )
∣∣ t (i)acc, j + d(i)

report, j ≤ τ
}
. (1)

Equivalently, we observe, for each i ∈ {1, . . . , I}, the risk feature x (i) and the restric-
tion ξ

(i)
r (·) = ξ (i)( · ∩ Rτ ), where Rτ = {(t, y, d) : t + d ≤ τ } and where the lower

index r stands for ‘reported’.

Clearly, estimating the building blocks of Definition 2.1 can only be feasible if
additional model assumptions are made. Those assumptions, as well as respective
fitting procedures, will be described in the next section.

3 Modelling and fitting claim arrival processes

Modelling and estimating the claim intensity λ(x, t), the claim feature distribution
PY |x,t and the reporting delay distribution PD|x,t,y from Definition 2.1 will be done
iteratively, starting with the latter. We discuss each aspect in a separate subsection.

3.1 Modelling and fitting the reporting delay distribution

Modelling and fitting the reporting delay distribution has recently been considered in
the accompanying paper [7]. Throughout this section, we take a slightly more general
approach as in that paper, as we do not restrict ourselves to a specific distribution
family.

Model 3.1 (Micro-level model for reporting delays) LetPD = {PD
θ : θ ∈ �D} denote

a parametric distribution family that is dominated by a sigma-finite measure μD and
that has a finite-dimensional parameter space �D; the μD-densities of PD

θ will be
written as f Dθ . Further, let GD denote a set of MLPs gD : X×[0,∞)×Y → �D . We
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628 A. Bücher, A. Rosenstock

assume that the conditional reporting delay distribution satisfies, for some gD ∈ GD ,

PD|x,t,y = PD
gD(x,t,y) ∀ x, t, y.

Details on fitting Model 3.1 to right-truncated observations as in Observation
Scheme 2.2 can be found in Section 3 in [7]. A publicly available implementation
is provided in [20]; it can be used for a variety of parametric families. Based on
a discussion of stylized facts of reporting delays, [7] propose to work with a spe-
cific parametric mixture family forPD , the Blended Dirac-Erlang-Generalized Pareto
Distribution family.

3.2 Modelling and fitting the claim feature distribution

Throughout this section, we assume that PD|x,t,y is available, for instance since it has
been estimated as described in the previous section. For modelling and estimating
the claim feature distribution PY |x,t , we assume that Y can be written as a Q-fold
cartesian product Y = Y1 × · · · × YQ with Yq ⊂ R for each q ∈ {1, . . . , Q}. Note
that this assumption is of no practical concern, since claims data typically consists of
a combination of real-valued and categorical features (if the qth feature is categorical,
its categories may be identified with 1, . . . , nq ). As a consequence, we may write
a generic claim feature variable Y as Y = (Y1, . . . ,YQ), and by the chain rule for
conditional distributions we can decompose the conditional claim feature distribution
as

PY |X ,T = PYQ |X ,T ,Y1,...,YQ−1 · · · PY2|X ,T ,Y1 PY1|X ,T , (2)

where T = Tacc. This decomposition will be crucial for defining a flexible model for
which iterative estimation (from left to right) is feasible.

Model 3.2 (Micro-level model for claim features) Assume that PY |X ,T allows for a

decomposition as in (2) with Q ∈ N. For each q ∈ {1, . . . , Q}, let P(q) = {P(q)
θ :

θ ∈ �(q)} denote a parametric distribution family that is dominated by a sigma-finite
measureμ(q) and that has a finite-dimensional parameter space�(q); theμ(q)-densities
of P(q)

θ will bewritten as f (q)
θ . Further, letG(q) denote a set ofMLPs g(q) : X×[0,∞)×

Y1 · · · × Yq−1 → �(q). We assume that there exists g(q) ∈ G(q) such that

PYq |x,t,y1,...,yq−1 = P(q)

g(q)(x,t,y1,...,yq−1)
∀ x, t, y1, . . . , yq−1.

A natural choice forP(q) in case of a categorical component is the multinomial dis-
tribution, which gives full flexibility. Distributions for continuous components must be
decided case-by-case, bearing in mind that integration with respect to the chosen dis-
tribution will need to be performed. Therefore, choosing an overly flexible distribution
could lead to numerical problems in application.
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Micro-level prediction of outstanding claim counts and frequencies 629

We will now describe how to iteratively estimate the unknown components of
Model 3.2, taking into account the fact that observations are subject to random trunca-
tion. Suppose we have already fitted PD|x,t,y, PYQ |x,t,y1,...,yQ−1 , . . . , PYq+1|x,t,y1,...,yq ,
and we are to estimate PYq |x,t,y1,...,yq−1 next.

For that purpose, we propose to maximize the following weighted conditional
likelihood function over all functions g ∈ G(q):

L̃(g|Dτ ) =
∑

(x,t,y,d)∈Dτ

�̃(x,t,y1,...,yq−1)(g|yq), (3)

where

�̃(x,t,y1,...,yq−1)(g|yq)

=
log f (q)

g(x,t,y1,...,yq−1)
(yq)

P(T + D ≤ τ |X = x, T = t,Y1 = y1, . . . ,Yq = yq)
. (4)

Thereby, the log-likelihood contribution of each observation is essentially weighted
with the reciprocal of the probability of observing that particular observation, i.e.,
observations that are more likely to be truncated (i.e., less likely to be observed) get a
higher weight in the log-likelihood. Further, note that the denominator in the definition
of �̃ does not depend on g, but only on objects that have already been fitted. Indeed,
writing y(q) = (y1, . . . , yq), we have

P(T + D ≤ τ |X = x, T = t,Y (q) = y(q))

=
∫

Yq+1

. . .

∫

YQ

PD|x,t,y([0, τ − t])dPYQ |x,t,y(Q−1) (yQ) . . . dPYq+1|x,t,y(q) (yq+1),

(5)

which can readily be computed for each observation (x, t, y, d) ∈ Dτ , subject to
computational constraints.

The estimator for g may be motivated as follows: first of all, standard heuris-
tics underlying the M-estimation principle suggest that a maximizer of L̃ may be
considered as an estimator for the maximizer of the (conditional) expected value
g �→ L(g):=EYq |T+D≤τ,x,t,y(q−1) [L̃(g|Dτ )], whereEYq |T+D≤τ,x,t,y(q−1) refers to inte-
gration with respect to the true conditional distribution of Yq given T + D ≤ τ, X =
x, T = t,Y (q−1) = y(q−1), for each observation. More precisely, we have

L(g) =
∑

(x,t,y,d)∈Dτ

E[�̃(x,t,y1,...,yq−1)(g|Yq) | T

+ D ≤ τ, X = x, T = t,Y (q−1) = y(q−1)]. (6)

The following lemma characterizes the maximizers of g �→ L(g); its proof is given
in Appendix A.
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630 A. Bücher, A. Rosenstock

Lemma 3.3 Assume that there is a true function g0 = g(q)
0 ∈ G(q) such that

PYq |x,t,y1,...,yq−1 = P(q)

g0(x,t,y1,...,yq−1)
∀ x, t, y1, . . . , yq−1.

Then, for each fixed value of x, t, y(q−1), the summands of the objective function
from (6)

g �→ E[�̃(x,t,y1,...,yq−1)(g|Yq) | T + D ≤ τ, X = x, T = t,Y (q−1) = y(q−1)]
attain their maximal value at g = g0.

During preliminary simulation experiments we found that more reliable estimates
with a smaller variance may be obtained by smoothing the denominator in (4).
This requires additional assumptions on top of Definition 2.1, the local homogeneity
assumptions.

Assumption 3.4 (Local homogeneity of claims developement) Let p > 0 be a given
period lengthmeasured in days; e.g., p = 365 days. For all intervals Ip(k) = [kp, kp+
p) with midpoints tk = kp + p

2 , k ∈ N0, we have:

(i) t �→ λ(x, t) = λ(x, tk) > 0 is constant on Ip(k) for any x .
(ii) t �→ PY |x,t = PY |x,tk is constant on Ip(k) for any x .
(iii) t �→ PD|x,t,y = PD|x,y,tk is constant on Ip(k) for any x, y.

Heuristically, the smaller p is, the closer the “unknown truth” is to a model that
fulfills the homogeneity assumptions. For our final predictors, p may be regarded as a
hyperparameter to be chosen by the statistician to balance model bias and variance: a
smaller choice for p increases estimation variance while allowing for a more flexible
model and hence less bias. We will often work with p = 365 for simplicity, which
was found to provide reasonable predictions in applications.

Implicitly assuming Assumption 3.4 for some given period length p > 0, we
propose to replace the denominator P(T + D ≤ τ |X = x, T = t,Y1 = y1, . . . ,Yq =
yq) in (4), see also the alternative expression in (5), by

denomq−1(x, tkt , y1, . . . , yq−1)

:= 1

Leb(Ip(kt ) ∩ C)

∫

Ip(kt )∩C

∫

Yq+1

. . .

∫

YQ

PD|x,tkt ,y([0, τ − s])
×dPYQ |x,tkt ,y(Q−1) (yQ) . . . dPYq+1|x,tkt ,y(q) (yq+1) ds, (7)

where kt = � t
p  denotes the number of the period of length p containing t , which

in turn, using the notation from Assumption 3.4, is Ip(kt ) = [kt p, kt p + p) with
midpoint tkt = kt p + p

2 . Moreover, C = C(x) is the coverage period associated
with x and Leb refers to the Lebesgue measure. Note that both the denominator and
the integral are non-zero for observed values (x, t, y, d) ∈ Dτ . Overall, we aim at
maximizing

L(p)(g|Dτ ) =
∑

(x,t,y,d)∈Dτ

�
(p)
(x,t,y1,...,yq−1)

(g|yq)
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Micro-level prediction of outstanding claim counts and frequencies 631

instead of (3), where, recalling denomq−1(x, tkt , y1, . . . , yq−1) from (7),

�
(p)
(x,t,y1,...,yq−1)

(g|yq) =
log f (q)

g(x,t,y1,...,yq−1)
(yq)

denomq−1(x, tkt , y1, . . . , yq−1)
.

3.3 Modelling and fitting the claim intensity

Once a distribution for PY |X ,T has been fitted, the only unknown object in the model
from Definition 2.1 is the claim intensity λ = λ(x, t).

By the restriction theorem (Theorem 5.2 in [15]), the reported claims process ξ
(i)
r =

ξ (i)(· ∩ Rτ ) with Rτ = {(t, y, d) : t + d ≤ τ } has intensity measure

μ(i)
r (S) = μ(i)(S ∩ Rτ ) = E[ξ (i)(S ∩ Rτ )]

=
∫

C(x (i))

∫

Y

∫

[0,τ−t]
1S(t, y, d)λ(x (i), t) dPD|x (i),t,y(d) dPY |x (i),t (y) dt,

where S ⊂ [0,∞) × Y × [0,∞).
For some period length p > 0, let Ip(k) = [kp, (k + 1)p) denote the kth period of

length p with midpoint tk = kp + p
2 and let

Ip(x, k):=C(x) ∩ Ip(k) = C(x) ∩ [kp, (k + 1)p) (8)

denote the coverage time of policy x within the kth period. Assuming local homogene-
ity as inAssumption3.4 for period length p > 0, and letting S(k) = Ip(k)×Y×[0,∞)

denote the set of all claims (y, t, d) that occur in the kth period, we obtain that, for
each k ∈ N0,

ξ (i)
r (S(k)) ∼ Poi

(
λ(x (i), tk)

∫

Y

∫

Ip(x (i),k)
PD|x (i),tk ,y([0, τ − s]) ds dPY |x (i),tk (y)

)
.

Given a set of policies, this allows fitting a Poisson model (e.g., a Poisson GLM with
log link) to the number of reported claims per period in the usual way by specifying a
fixed offset o for each observation and estimating the common intensity factor λ(x, t).
Compared to a classical claim intensity model without truncation, where ξ (i)(S(k)) ∼
Poi

(
λ(x (i), tk)Leb(Ip(x (i), k))

)
with Leb(Ip(x (i), k)) usually called the exposure, the

offset term log(Leb(Ip(x (i), k)))must be adjusted by the reportingprobability; see (10)
below. See [13, 23] for amore detailed introduction to the classical intensitymodelling
approach and offsets.

Model 3.5 (Micro-level model for claim intensity) Let G denote a set of MLPs g :
X × [0,∞) → R+. We assume that there exists g ∈ G such that λ(x, t) = g

(
x, tkt

)

for all x ∈ X and all t > 0, i.e., the claim intensity λ is given by a piecewise constant
extension of g(x, tk) to the intervals Ip(k) for k = 0, 1, . . ., which is consistent with
using Assumption 3.4 for period length p.

123



632 A. Bücher, A. Rosenstock

The claim intensity λ(x, t) can hence be estimated by maximizing the Poisson
loglikelihood

L(g|Dτ ) =
I∑

i=1

∞∑

k=0

ξ (i)
r (S(k)) log

(
g(x (i), tk)ex(x

(i), k)
)

− g(xi , tk)ex(x
(i), k),

(9)

where

ex(x (i), k):=
∫

Y

∫

Ip(x (i),k)
PD|x (i),tk ,y([0, τ − s)) ds dPY |x (i),tk (y). (10)

Note thatE[ξ (i)
r (S(k))] = λ(x (i), tk)ex(x (i), k), whence ex(x (i), k)may be interpreted

as the expected number of claims that have occurred in the accident period Ip(k) and
are reported by calendar time τ for a policy with constant claim intensity λ(x (i), tk) =
100%. If ĝ ∈ G maximizes L(g|Dτ ), we write

λ̂NNet(x, t) = ĝ(x, tkt ).

Note that maximization of L(g|Dτ ) is straight-forward once the exposures
ex(x (i), k) have been computed. The latter requires numerical integration overY, after
replacing PD|x,t,y and PY |x,t by estimated versions thereof. Care must be taken in the
choice ofY during modelling, so this integral remains feasible: choosing continuous
covariates necessitates computation of possibly challenging (and maybe indefinite)
integrals with respect to PYq |x,t,y1,...,yq−1 , choosing too many discrete covariates
results in combinatorial explosion of the number of summands to be computed when
performing integration with respect to the counting measure.

4 Individual claims count prediction based on estimated claim arrival
processes

The models and estimators from the previous section can be used in various ways to
define predictors for IBNR claim numbers; see [7] for an example that only involves
the reporting delay model. Throughout this section, we describe a predictor that is
based on the full (estimated) claim arrival model. Alternative intermediate predictors
will be defined in the simulation study.

More precisely, for each given period Ip(k) = [kp, (k + 1)p) of length p > 0
and each claim feature set Y′ ⊂ Y and each reporting interval (τ0, τ1] ⊂ [0,∞], we
derive a predictor for the number of claims policy i has incurred within period Ip(k)
with claim features in Y′ and with a reporting time in (τ0, τ1]. For that purpose, let
S′(k):=Ip(k) × Y′ × [0,∞) = {(t, y, d) : t ∈ Ip(k)} denote the set of claims that
occurred in the kth period with claim features in Y′ and let

Rτ0:τ1 :={(t, y, d) : τ0 < t + d ≤ τ1} (11)
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Fig. 2 Illustration of claim counts for the i th policy occurring in the 3rd year (i.e., claims in S′(3)) and
reported in year 3 or 4 (i.e., claims in Rτ0:τ1 with τ0 = 3 · 365, τ1 = 5 · 365). With today τ = 4 · 365, we
have two reported claims (blue color) and 1 unreported IBNR claim (red color)

denote the set of claims reported between times τ0 and τ1, see Fig. 2 for an illustration.
For completeness, let Rτ0:τ1 = ∅ if τ0 ≥ τ1.

Note that the target number of claims for the i th policy can then be written as

N (i)
τ0:τ1(S

′(k)):=ξ (i)(S′(k) ∩ Rτ0:τ1),

and that we observe, under Observation Scheme 2.2, the respective number of reported
claims ξ

(i)
r (S′(k) ∩ Rτ0:τ1) = ξ (i)

(
S′(k) ∩ Rτ0:min(τ1,τ )

)
, which is zero if τ0 > τ .

Now, if Assumption 3.4 is met for the given period length p > 0, we obtain that,
by the restriction theorem (Theorem 5.2 in [15]),

E[ξ (i)(S′(k) ∩ Rτ0:τ1) | ξ (i)
r (S′(k) ∩ Rτ0:τ1)]

= ξ (i)
r (S′(k) ∩ Rτ0:τ1) + E[ξ (i)

nr (S′(k) ∩ Rτ0:τ1)]
= ξ (i)

r (S′(k) ∩ Rτ0:τ1) + E[ξ (i)(S′(k) ∩ Rmax(τ0,τ ):τ1)]
= ξ (i)

r (S′(k) ∩ Rτ0:τ1) + λ(x (i), tk)

×
∫

Y′

∫

Ip(x (i),k)
PD|x (i),tk ,y(Iτ0:τ1(τ, s)) dsPY |x (i),tk (dy).

Here, ξ (i)
nr = ξ (i) − ξ

(i)
r denotes the unknown number of unreported claims, Ip(x, k)

is the coverage time of the policy associated with x within the kth period, see (8), and
Iτ0:τ1(τ, s):=(max(τ, τ0)−s, τ1−s], with the convention that the interval is the empty
set if max(τ, τ0) > τ1. As is well-known, if λ(x, t), PY |x,t and PD|x,t,y were known,
this would be the best L2-predictor for ξ (i)(S′(k)∩ Rτ0:τ1) (the total number of claims
in S′(k) that are reported between τ0 and τ1) in terms of the observed counterpart of
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reported claims ξ
(i)
r (S′(k)∩ Rτ0:τ1). Replacing the unknown objects on the right-hand

side by suitable estimators as in the previous sections, we arrive at the predictor

N̂ (i)
τ0:τ1(S

′(k))
:= ξ̂ (i)(S′(k) ∩ Rτ0:τ1):=ξ (i)

r (S′(k) ∩ Rτ0:τ1)

+ λ̂(x (i), tk)
∫

Y′

∫

Ip(x (i),k)
P̂D|x (i),tk ,y(Iτ0:τ1(τ, s)) ds d P̂Y |x (i),tk (y). (12)

In contrast to classical factor-based reserving methods, this predictor may yield
a non-zero expected number of claims even for policies without already reported
claims. This allows for the individual-level count predictions to have a meaningful
interpretation as the expected number of unreported claims for that particular policy.

Remark 4.1 The predictor in (12) can be adapted to a general set of claims S =
I × Y′ × [0,∞) by summing over the intervals covering I as follows:

N̂ (i)
τ0:τ1(S) = ξr (S ∩ Rτ0:τ1) +

τ/p−1∑

k=0

λ̂(x (i), tk)

×
∫

Y′

∫

Ip(x (i),k)∩I
P̂D|x (i),tk ,y(Iτ0:τ1(τ, s)) ds d P̂Y |x (i),tk (y).

5 Individual claim count prediction based on chain ladder networks
for the claim intensity

We propose an alternative estimator for the claim intensity λ, which is similar to the
estimator from Sect. 3.3. However, instead of being based on preliminary estimators
of the claim feature and reporting delay distributions, the new estimator is based on
classical chain ladder factors. In a second step, the estimator is used to define a new
predictor for IBNR claims, similarly as in Sect. 4.

Given a partition Y = Y1 ∪ Y2 ∪ · · · ∪ YM into groups of claim features and
a development period length p where τ = τ̄ p for some τ̄ ∈ N≥2, we make the
following classical chain ladder assumption: for any group indexm ∈ {1, . . . , M} and
any development period j ∈ {1, . . . , τ̄ − 1}, there exists a factor f CL,Ym

j called chain
ladder factor such that, for any policy i and any accident period k ∈ {0, . . . , τ̄ − 1},

E[ξ (i)(Sm(k) ∩ R0:(k+ j+1)p)] = f CL,Ym
j E[ξ (i)(Sm(k) ∩ R0:(k+ j)p)],

where Sm(k):=Ip(k) × Ym × [0,∞) denotes the set of claims with claim features
from Ym occurring in the kth period and R0:kp from (11) denotes the set of claims
reported until time kp. Iterating the equation for fixed k and with j = τ̄ −1, . . . , τ̄ −k,
we obtain that

E[ξ (i)(Sm(k) ∩ R0:(k+τ̄ )p)] = FtUCL,Ym
k E[ξ (i)(Sm(k) ∩ R0:τ̄ p)], (13)
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where

FtUCL,Ym
k :=

τ̄−1∏

j=τ̄−k

f CL,Ym
j

is the chain ladder factor-to-ultimate. Equation (13) has the following interpretation:
the expected number of claims fromYm with accident period k that are reportedwithin
the next k periods from today is equal to theYm-specific factor-to-ultimate multiplied
with the expected number of claims from Ym with accident period k that have been
reported until today (which is observable). Under the additional assumption that every
claim is developed within at most τ̄ periods, we have that ξ (i)(Sm(k) ∩ R0:(k+τ̄ )p) =
ξ (i)(Sm(k)). Hence, if Assumption 3.4 is met for p > 0 specified above, the left-hand
side of (13) can be written as

E[ξ (i)(Sm(k) ∩ R0:(k+τ̄ )p)] = E[ξ (i)(Sm(k))]
= PY |x (i),tk (Ym)Leb(Ip(x

(i), k))λ(x (i), tk).

On the other hand, for the expression on the right-hand side of (13), we observe that
ξ (i)(Sm(k) ∩ R0:τ̄ p) = ξ

(i)
r (Sm(k)) is the reported number of claims from Ym with

accident period k. Hence, combining the previous equations with (13), we obtain that

E[ξ (i)
r (Sm(k))] = 1

FtUCL,Ym
k

PY |x (i),tk (Ym)Leb(Ip(x
(i), k))λ(x (i), tk).

In view of the basic Poisson assumption on ξ (i) from Definition 2.1 (and hence on
the reported and unreported counterparts ξ

(i)
r and ξ

(i)
nr = ξ (i) − ξ

(i)
r from Observation

Scheme 2.2), we obtain that

ξ (i)
r (Sm(k)) ∼ Poi

(
PY |x (i),tk (Ym)Leb(Ip(x

(i), k))λ(x (i), tk)
1

FtUCL,Ym
k

)
,

ξ (i)
nr (Sm(k)) ∼ Poi

(
PY |x (i),tk (Ym)Leb(Ip(x

(i), k))λ(x (i), tk)
(
1 − 1

FtUCL,Ym
k

))
.

This can be used to estimate the unknown claim intensities on Ym , i.e.,

λYm (x, t):=PY |x,t (Ym)λ(x, t).

Indeed, let G denote a set of MLPs g : X × [0,∞) → [0,∞) as in Model 3.5. We
assume that the claim intensity on Ym satisfies, for some gYm ∈ G,

λYm (x, t) = gYm (x, tkt ) ∀ x, t,

where kt = � t
p  indicates that the kt -th period of length p contains t and where

tk = kp + p
2 denotes the mid-point of the kth period.
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As in (9), we arrive at the per-triangle loss

LCL,Ym (gYm |Dτ ) =
I∑

i=1

τ̄−1∑

k=0

ξ (i)
r (Sm(k)) log

(
gYm (x (i), tk)ex

CL,Ym (x (i), k)
)

−gYm (x (i), tk)ex
CL,Ym (x (i), k),

where

exCL,Ym (x (i), k):=Leb(Ip(x
(i), k))

1

FtUCL,Ym
k

.

As in (10), exCL,Ym (x (i), k)may now be interpreted as the expected number of claims
that have occurred in the accident period Ip(k) and are reported by calendar time τ for
a policy with constant claim intensity λYm (x (i), tk) = 100%. In practice, the chain
ladder factors within the loss must be estimated, for which we apply the well-known
estimators

f̂ CL,Ym
j

:= #{(x, t, y, d) ∈ Dτ | y ∈ Ym, �t/p ≤ (τ̄ − j − 1), �(t + d)/p − �t/p ≤ j}
#{(x, t, y, d) ∈ Dτ | y ∈ Ym, �t/p ≤ (τ̄ − j − 1), �(t + d)/p − �t/p ≤ j − 1},

F̂tU
CL,Ym

k :=
τ̄−1∏

j=τ̄−k

f̂ CL,Ym
j .

Note that in contrast to the micro-level approach from the previous sections, there is
no explicit model for the distribution of claim features on Y. If gYm = λ̂CL,Ym (x, t)
are maxima of the per-triangle losses LCL,Ym , the triangle-level claim intensity
estimates can be aggregated to a common intensity estimator

λ̂CL(x, t):=
M∑

m=1

λ̂CL,Ym (x, t).

Finally, exploiting E[ξ (i)(S) | ξ
(i)
r (S)] = ξ

(i)
r (S) + E[ξ (i)

nr (S)] similar as in Sect. 4,
wemay define an IBNR-predictor as follows: recalling Sm(k) = Ip(k)×Ym×[0,∞),
the claims from Ym occurring in period k, let

ξ̂ (i),CL(Sm(k)):=ξ (i)
r (Sm(k)) + λ̂CL,Ym (x (i), tk)Leb(Ip(x

(i), k))
(
1 − 1

F̂tU
CL,Ym

k

)
,

ξ̂ (i),CL(S(k)):=
M∑

m=1

ξ̂ (i),CL(Sm(k)).
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Recalling the notation Rτ0:τ1 :={(t, y, d) : τ0 < t + d ≤ τ1}, similar derivations
show that this predictor can also be extended to a predictor for reporting times τ0 = τ̄0 p
to τ1 = τ̄1 p with τ̄0 < τ̄1 ∈ N0 ∪ {+∞}:

N̂ (i),CL
τ0:τ1 (Sm(k)):=ξ (i)

r (Sm(k) ∩ Rτ0:τ1)

+λ̂CL,Ym (x (i), tk)Leb(Ip(x
(i), k))

⎛

⎝ 1

F̂tU
CL,Ym

k+τ̄−τ̄1

− 1

F̂tU
CL,Ym

k+τ̄−τ̄0

⎞

⎠ (14)

Here, we define the empty product as 1, i.e., F̂tU
CL,Ym

j :=1 for all j ≤ 0. Finally, it
is worthwhile to mention that in contrast to the predictor described in Sect. 4, it is not
possible to use the chain ladder networks to obtain predictions for arbitrary τ0, τ1 that
are not whole multiples of p.

6 Evaluating individual claim count predictors

The quality of competing predictors may be assessed by suitable error measures. In
this section, we define two such measures: an individual mean squared prediction
error, and an aggregated global mean squared prediction error.

We start by considering the individual error measure. For S = [0, τ ) × Y′ ×
[0,∞) ⊂ [0,∞)×Y×[0,∞) and 0 ≤ τ0 < τ1 ≤ ∞, let N̂ (i)

τ0:τ1(S) denote individual

claim count predictions for N (i)
τ0:τ1(S) = ξ (i)(S ∩ Rτ0:τ1), the number of claims in S

incurred by policy x (i) that are reported between τ0 and τ1; recall Rτ0:τ1 = {(t, y, d) :
τ0 < t+d ≤ τ1}. Let q > 0 denote an evaluation period length (for instance, q = 365
corresponding to a year; note that there should be no confusion with the running index
q used in Sect. 3.2), which is assumed to be a divisor of the total observation length
τ from Observation Scheme 2.2, and let Y′ ⊂ Y denote an evaluation set of claim
features. We then define

RMSEexpo
τ0:τ1(Y′, q)

:=
(

1
∑τ/q−1

j=0 #P(q, j)

τ/q−1∑

�=0

∑

i∈P(q,�)

{
N̂ (i)

τ0:τ1(S
′
q(�)) − N (i)

τ0:τ1(S
′
q(�))

}2
) 1

2

, (15)

where, for � ∈ N0, recalling the notation Iq(x, �) = C(x) ∩ [�q, (� + 1)q) for the
covering time of policy x within the �th period of length q,

S′
q(�):=[�q, (� + 1)q) × Y′ × [0,∞), P(q, �):={i ∈ {1, . . . , I} : Iq(x (i), �) �= ∅}.

Note that in practice the measure can only be calculated for τ1 ≤ τ (with τ the most
recent date for which data is available) and on selected tests sets (for instance, in a
back-testing approach). In controlled simulation experiments, see Sect. 7, we may and
will use τ1 = ∞, thereby aiming at predicting the total number of unreported claims
for each policy.Moreover, for using the error measures with the predictors from Sect. 4
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and 5, the evaluation period q must be a multiple of the homogeneity period length p
(unless one is willing to use the extension discussed in Remark 4.1).

The quality of individual claim count predictors may alternatively be assessed by
first aggregating the individual predictions and then using standard global error mea-
sures; the predictorsmay then even be comparedwith classical methods for aggregated
data like the standard chain ladder approach. Aggregated predictions are obtained from
individual predictions straightforwardly: for A = X′ × S with policies from X′ ⊂ X
and claims from S as above, let

N̂τ0:τ1(A):=
∑

i∈{1,...,I}:
x (i)∈X′

N̂ (i)
τ0:τ1(S),

which is to be considered a predictor for the aggregated claim number

Nτ0:τ1(A):=
∑

i∈{1,...,I}:
x (i)∈X′

ξ (i)(S ∩ Rτ0:τ1).

For q and Y′ as in (15), we then define

RMSEτ0:τ1(Y′, q):=
(
q

τ

τ/q−1∑

�=0

{
N̂τ0:τ1(Aq,�,Y′) − Nτ0:τ1(Aq,�,Y′)

}2
) 1

2

, (16)

where Aq,�,Y′ :=X×[�q, (�+1)q)×Y′×[0,∞) comprises all claims in the portfolio
fromY′ that have occurred in the �th period of length q. Note that thismeasure has also
been used in [7], Formula (20). Its application is limited to the constraints mentioned
above for τ1 and q.

7 Simulation study

In this section, we will study the performance of the new estimators and predictors
within nine different simulation scenarios taken from [7]. We start by restating a brief,
partially verbatim summary of the simulationmodels taken from the last-named paper:

The underlying portfolios build upon the car insurance data set described in
Appendix A in [23]. The latter data set provides claim counts for 500,000 insurance
policies, where each policy is associated with the risk features

(age,ac,power,gas,brand,area,dens,ct),

which correspond to age of driver, age of car, power of car, fuel type of car, brand of
car, and area code, respectively; see also (A.1) in [23] for further details. Next to that,
the data set also provides the variable truefreq, which corresponds to the claim
intensity λ(x) in our model.

Each portfolio is considered over ten periods of 365 days, that is, the portfolio
coverage period is the interval [0, 3650]. The different scenarios are as follows:

123



Micro-level prediction of outstanding claim counts and frequencies 639

The baseline scenario. The baseline scenario/portfolio is characterized by a homoge-
neous exposure as well as position-independent claim intensity, occurrence process,
and reporting process. It may be considered the vanilla portfolio that practitioners
often aim at by careful selection of considered risks and suitable transformations, e.g.,
adjustment for inflation. More precisely:

• Exposure. New risks arrive according to a homogeneous Poisson process with
intensity 50,000/365 ≈ 137 and contracts run for exactly one year. Moreover, the
portfolio starts with exactly 50,000 policies with tstart = 0 and with remaining
contract duration that is uniform on [0, 365]. As a consequence, the total exposure
is constant in expectation and we have I ∼ 50,000 + Poi(500,000). Finally, for
each risk in the portfolio we randomly draw (with replacement) risk features from
the aforementioned data set from [23].

• Claim Intensity.The claim intensityλ(t, x) = λ(x) is independent of t and tstart and
given by the variable truefreq that belongs to the risk selected in the previous
paragraph.

• Occurrence Process. The occurrence process is position-independent, i.e.,
PY |X=x,T=t = PY |X=x for all t . We choose to work with two claim variables,
y = (cc,severity), with claims code cc ∈ {injury,material}, and an initial
continuous proxy for the severity of the claim severity ∈ R+ (this variable
should not be confused with the final claim amount, which we do not assess in this
paper at all). The claim feature distribution of cc is chosen to be a function of the
policy features ac, power, and dens in such a way that material damages are
more likely to occur in densely populated areas and with low-powered and newer
cars (see Appendix D in [8] for details on the precise relationship). The initial
claim severity distribution of severity is log-normal with σ constant and with
μ depending on cc, brand, ac and power in such a way that injury claims,
especially with older high-powered cars have a higher initial severity estimate.
Moreover, material damages for certain premium brands are also more severe.
Again, details are provided in Appendix D in [8].

• Reporting Process. The reporting process is position-independent, i.e,
PD|X=x,T=t,Y=y = PD|X=x,Y=y . We choose to work with the Blended Dirac-
Erlang-Generalized Pareto distribution from [7], with parameters specified in such
a way that claims with higher initial severity, material claims with new cars, and
claims with younger drivers in populated areas will be reported sooner, while low
initial severity injuries will be reported later; see Appendix D in [8] for details.

Eight non-homogeneous scenarios.
Eight non-homogeneous scenarios are obtained by altering a single element of the

baseline scenario:

1. Exposure: The distribution of ac changes continuously (drift) or abruptly (shock).
2. Intensity: λ(x, t) decreases continuously (drift) or abruptly (shock).
3. Occurrence: The distribution of cc changes continuously (drift) or abruptly

(shock).
4. Reporting delay: The distribution of D is altered by moving probability mass to

shorter reporting delays, continuously (drift) or abruptly (shock).
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Fig. 3 Overview of all scenarios, taken from Figure 4 in [7]. Rows show Scenarios 1-4, the left three
columns showing the drift variation and the right three columns showing the shock variation. Within the
scenarios, the panels show, from left to right, the exposure at risk (aggregated and split by ac ≤ 5 shown
in red and ac > 5 shown in blue), the number of claims (aggregated and split by cc with injury shown in
red and material shown in blue; dashed line: reported, solid line: occurred), the reporting delay distribution
(dashed line: mean, solid line: median, ribbon: first and third quartiles)

Figure3 illustrates the effect of the different scenarios on exposure, claimcounts and
reporting delays. The precise functional relationships are documented in Appendix D
in [8].

The simulation study was conducted with 50 data seeds for each of the 9 scenarios,
i.e., with 450 simulated portfolio datasets in total.

7.1 Training procedure

In this section, we describe details on the training and model selection procedure for
the various neural networks used in the predictors. All networkswere trained for 5, 000
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epochs using the adam optimizer with fixed parameters α = 0.05, β0 = β1 = 0 and
an adaptive learning rate, halving the learning rate on plateaus (patience = 2) down
to a minimum of α = 10−4. In addition to this, the available (truncated) data was
randomly split into 75% training data and 25% validation data. The validation data
was not used for model calibration and instead kept aside to assess the generalization
error.

7.1.1 Estimating the claim arrival process

Fitting of the claim arrival process was done in four steps, each requiring a slightly
different neural network architecture. First, P̂D|x,t,y was estimated as described in [7],
compare Sect. 3.1, where we use the correct Blended Dirac-Erlang-Generalized Pareto
distribution family for PD (with unknown parameters). Reporting delay networks
were trained for 100 starting seeds for parameter initialization. The top 10 performing
reporting delay networks were chosen by computing RMSEτ−365:τ (Y, 365;Dτ−365)

for the predictor based on P̂D|x,t,y1,y2 (denoted NNet in Sect. 7.2), i.e., by the back-
testing error for one year in the past.

Next, as described in Sect. 3.2, for each of the 10 networks from the previous
step, coordinate distributions for P̂Y |x,t were estimated from the decomposition Y =
Y1 × Y2 with Y1 = {injury,material} describing the claims code and Y2 = R+
describing the initial severity estimate. First, P̂Y2|x,y,y1 was estimated using anMLP for
the twoparameters of a log-normal distribution, i.e., P̂Y2|x,t,y1 = logN (g(2)(x, t, y1)).
The network architecture G(2) for g(2)(x, t, y1) consisted of a (10, 5) MLP with a
softplus activation function adapted to an output in R × (0,∞), matching the two
parameters (μ, σ )defining a log-normal distribution. For each of the 10 reporting delay
networks, 10 starting seeds were used for training the initial severity feature network
g(2)(x, t, y1), resulting in a total of 100 estimates for the pair (P̂D|x,t,y1,x2 , P̂Y2|x,t,y1).
Similar as in the previous step, the ten best estimateswere chosen based on back-testing
the error one year in the past, using the predictor based on P̂D|x,t,y1,x2 and P̂Y2|x,t,y1
(denoted NNetseverity in Sect. 7.2). It should be noted that this predictor performed
worse than the underlying NNet predictor based solely on P̂D|x,t,y1,y2 . Nonetheless,
using P̂Y2|x,t,y1 is necessary for the subsequent steps.

For each of the ten estimates for (P̂D|x,t,y1,x2 , P̂Y2|x,t,y1) from the previous
step, we next estimated P̂Y1|x,t . The associated network architecture G(1) con-
sisted of a (10, 5) MLP with a softplus activation function outputting prob-
ability masses for a discrete distribution on {injury,material}. It was trained
for 10 different starting seeds, resulting in a total of 100 estimates for
(P̂D|x,t,y1,y2 , P̂Y2|x,t,y1 , P̂Y1|x,t ) and hence for (P̂D|x,t,y, P̂Y |x,t ) using the definition
P̂Y |x,t (dy1, dy2) = P̂Y1|x,t (dy1)P̂Y2|x,t,y1(dy2). Again, the 10 best estimates were
chosen by evaluating the associated predictor (denotes NNetcc in Sect. 7.2) using the
backtesting error RMSEτ−365:τ (Y, 365;Dτ−365).

Finally, for each of the ten estimates for (P̂D|x,t,y, P̂Y |x,t ), ten intensity estimates
λ̂NNet(x, t) were obtained as described in Sect. 3.3, with ten different starting seeds.
The underlying network architecture consisted of a (10, 5) MLP with a softplus acti-
vation function and a parameter-free skip connection for the offset term as described
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in [22], leading to a single Poisson parameter in R+. After training, the bias regu-
larization method described in [22] was applied. From the resulting 100 estimates
for (P̂D|x,t,y, P̂Y |x,t , λ̂NNet(x, t)), the final estimate was chosen according to the
backtesting error for its associated predictor, denoted NNetFreqNet in Sect. 7.2.

Overall, the number of trained networks for each data set is 400, resulting in a total
of 450 × 400 = 180,000 trained networks for the simulation study.

7.1.2 Fitting chain ladder networks

Training a chain ladder network requires fitting M neural networks, gYm for m =
1, . . . , M . As described in next section, we use both M = 1 (predictor CLFreqNet in
Sect. 7.2) and M = 2 (CLFreqNetcc in Sect. 7.2), resulting in three networks to be
trained for each data set. The MLP architecture was fixed as (10, 5) with a softplus
activation function and a parameter-free skip connection for the offset term. After
training, the bias regularizationmethod described in [22]was applied using the training
dataset. For each data set, ten starting seeds were used, resulting in 30 networks for
each data set, from which a best predictor was chosen based on the backtesting error
RMSEτ−365:τ (Y, 365;Dτ−365). For the entire simulation study, 450× 30 = 13, 500
networks were trained.

7.2 Predictors

We provide a detailed overview of the predictors, tailored to the specific portfolios
described at the beginning of Sect. 7. For the macro-level error measure from (16), we
will compare a total of eight different predictors, three of which provide reasonable
micro-level predictions asmeasured by (15). All predictors target the number of claims
in A = X′ × Ip(k) × Y′ × [0,∞) with some X′ ⊂ X, Y′ ⊂ Y and Ip(k) the kth
period of length p.

For index m encoding one of the methods specified below, let

N̂ cw
m (A;Dτ ):=

∑

(x,t,y,d)∈A∩Dτ

ĉm(x, t, y, d), N̂ pw
m (A;Dτ ):=

∑

i∈{1,...,I}:
x (i)∈X′

ĉm(i, A),

where the upper index cw and pw stand for claim-wise and policy-wise, respectively,
and where ĉm(x, t, y, d) and ĉm(i, A) are suitable numbers, additionally depending
onDτ , τ0 and τ1, as specified below. For k ∈ N0, t ≥ 0 and x ∈ X, recall the notations
tk = kp+ p

2 , kt = � t
p  and Ip(x, k) = C(x)∩[kp, (k+1)p) with C(x) the coverage

period of policy x , see (8).

• Predictor NNet. We consider the original method from [7] that only relies on
modeling and estimating reporting delays, see formula (19) in that paper. More
precisely, we define N̂NNet:=N̂ cw

NNet with constants

ĉNNet(x, t, y, d):=
∫
Ip(x,kt )

P̂D|X=x,T=tkt ,Y=y((τ0 − s, τ1 − s]) ds
∫
Ip(x,kt )

P̂D|X=x,T=tkt ,Y=y([0, τ − s]) ds .
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• Predictor NNetseverity. We additionally incorporate the estimated first stage
claim feature model from Sect. 3.2, based upon the decomposition Y =
{injury,material} × R+=:Y1 × Y2 into claims code and initial claim severity.
More precisely, we define N̂NNetseverity :=N̂ cw

NNetseverity
with

ĉNNetseverity(x, t, y, d):= p̂rep;severity(τ0, τ1, x, kt , y1)
p̂rep;severity(0, τ, x, kt , y1)

.

with p̂rep;severity(τ0, τ1, x, kt , y1) defined as

∫

Y′
y1

∫

Ip(x,kt )
P̂D|X=x,T=tkt ,Y1=y1,Y2=w((τ0 − s, τ1 − s]) ds

d P̂Y2|X=x,T=tkt ,Y1=y1(w),

where Y′
y1 = {w : (y1, w) ∈ Y′}.

• PredictorNNetcc. This predictor is built on the full estimated claim featuremodel,
see Sect. 3.2. More precisely, we define N̂NNetcc :=N̂ cw

NNetcc

ĉNNetcc(x, t, y, d):= p̂rep;cc(τ0, τ1, x, kt )
p̂rep;cc(0, τ, x, kt )

with p̂rep;cc(τ0, τ1, x, kt ) defined as

∫

Y′

∫

Ip(x,kt )
P̂D|X=x,T=tkt ,Y=y((τ0 − s, τ1 − s]) ds d P̂Y |X=x,T=tkt (y).

For Y′ = Y, this can be written as

∑

u∈{injury,material}

∫ ∞

0

∫

Ip(x,kt )
P̂D|X=x,T=tkt ,Y1=u,Y2=w((τ0 − s, τ1 − s]) ds

d P̂Y2|X=x,T=tkt ,Y1=u(w)P̂Y1|X=x,T=tkt ({u}).

• Predictor FreqNet. This predictor is the one from Sect. 4 that builds upon the full
estimated model for the claim arrival process. More precisely, N̂FreqNet = N̂ pw

FreqNet
with

ĉFreqNet(i, A):=ξ (i)
r (Ip(k) × Y′ × [0,∞)) + λ̂NNet(x (i), tk)∫

Y′

∫

Ip(x (i),k)
P̂D|X=x (i),T=tk ,Y=y((max(τ, τ0) − s, τ1 − s]) ds d P̂Y |X=x(i),T=tk (y),

which corresponds to (12).
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• Predictor CL. This predictor is the basic chain ladder predictor. More precisely,
N̂CL = N̂ cw

CL with

ĉCL(x, t, y, d) = 1(τ̄0 ≤ �(T + D)/p ≤ τ̄1) + FtUY
kt+τ̄−τ̄0

− FtUY
kt+τ̄−τ̄1

,

where τ = τ̄ p, τ0 = τ̄0 p and τ1 = τ̄1 p must be whole multiples of the
development period and FtUY

k :=1 for k < 0.
• Predictor CLFreqNet. This is the basic chain ladder network based predictor,
and is only defined forY′ = Y. More precisely, N̂CLFreqNet = N̂ pw

CLFreqNet with

ĉCLFreqNet(i, A):=ξ (i)
r (Ip(k) × Y × [0,∞) ∩ Rτ0:τ1)

+Leb(Ip(x
(i), k))λ̂CL,Y(x (i), tk)

(
1

FtUY
k+τ̄−τ̄1

− 1

FtUCL,Y
k+τ̄−τ̄0

)

.

This formula comes from (14) with the trivial partition using M = 1 component.
• Predictor CLcc. This predictor is the chain ladder predictor based on splitting by
claims codeY = Ycc

1 ∪Ycc
2 :={injury}×R+ ∪{material}×R+. More precisely,

N̂CLcc = N̂ cw
CLcc

with

ĉCLcc(x, t, y, d) = 1(τ̄0 ≤ �(T + D)/p ≤ τ̄1)

+(FtU
Ycc

1
kt+τ̄−τ̄0

− FtU
Ycc

1
kt+τ̄−τ̄1

)1(y1 = injury)

+(FtU
Ycc

2
kt+τ̄−τ̄0

− FtU
Ycc

2
kt+τ̄−τ̄1

)1(y1 = material).

• Predictor CLFreqNetcc. This is the chain ladder network based predictor for the
partition Y = Ycc

1 ∪ Ycc
2 defined in the description of CLcc. It is only defined

for Y′ ∈ {Ycc
1 ,Ycc

2 ,Y}. More precisely, N̂CLFreqNetcc = N̂ pw
CLFreqNetcc

with

ĉCLFreqNetcc(i, A):=ξ (i)
r (Ip(k) × Y′ × [0,∞) ∩ Rτ0:τ1)

+Leb(Ip(x
(i), k))

∑

Y∈{Ycc
1 ,Ycc

2 }
Y⊂Y′

λ̂CL,Y(x (i), tk)

(
1

FtUY
k+τ̄−τ̄1

− 1

FtUCL,Y
k+τ̄−τ̄0

)

.

The formula again stems fromapplying (14), this timewithM = 2 and the partition
by claim code.

• Predictor cheating. This is the predictor using the true parameters of the simulated
model for prediction; it is not available in practice and only serves as a benchmark
for evaluating the other predictors. More precisely, N̂cheating = N̂ pw

cheating with
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Fig. 4 Boxplots of the overall error measure RMSE0:∞(Y, 365), each based on n = 50 simulated paths.
Legend is shown in column major order

ĉcheating(i, A) = ξ (i)
r (Ip(k) × Y′ × [0,∞) ∩ Rτ0:τ1)

+λ(x (i), tk)
∫

Y′

∫

Ip(x (i),k)
PD|X=x (i),T=tk ,Y=y(Iτ0:τ1(τ, s)) ds dPY |X=x (i),T=tk (y),

corresponding to (12) with estimated distributions replaced by true distributions.

7.3 Results

Throughout the simulation study, we use an evaluation period of q = 365 days.
Figure4 shows partly the same results as Figure 5 in [7], extended by the methods
described in this paper andusing the samecolor keys andpredictor names, if applicable.
The underlying error measure is the one from (16). Regarding the baseline scenario,
we can see that modelling more and more parts of the claim arrival process, i.e.,
going from NNet to NNetcc and then finally to FreqNet, reduces the overall error
with NNetcc seemingly exhibiting slightly larger variance. Only applying a partial
model for the distribution of Y as in NNetseverity increases the prediction error and
its variance. We can also see that the chain ladder predictor provides close-to-optimal
predictions on par with those obtained from the true model in this setting where the
underlying chain ladder assumptions are exactly met.

For the chain ladder basedmethods, the error of the neural network predictors in the
baseline scenario increases when compared to the pure factor based prediction—at the
advantage of providing individual reserve predictions for each policy in the portfolio.
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This behavior can be explained by the training method used: all neural network fitting
procedures with a Poisson loss use the GLM skip connection described by [22], but
only on the 75% of the available data chosen for training. The 25% of the data used for
hold-out validation therefore did not take part in the bias regularization, whereas the
factor based methods had no hold-out data. If bias regularization was done on 100%
of the data, the difference in errors would be smaller but not zero, because the bias
regularization only ensures the total number of claims to remain constant, but not their
allocation to accident years.

The results for the exposure scenario show that predictions can be improved when
using portfolio information (in particular, exposure data); in fact, we see this improve-
ment across all three approaches, i.e., NNet � FreqNet, CL � CLFreqNet and
CLcc � CLFreqNetcc. Heuristically, this can be explained by the fact that the drift
in exposure is directly reflected by a drift in expected claim counts from the claim
intensity models (see Fig. 3), thereby influencing IBNR claim counts. The observed
improvement is most prominent for the unpartitioned chain ladder approach, because
the other basic methods can at least partially detect the changes via changes in the
distribution of cc, which is also influenced by the exposure shift.

Changes in the claim intensity make it harder to train the underlying intensity,
λ(x, t). Due to this disadvantage, one might expect to see a deterioration in prediction
error for the intensity based approaches. Surprisingly, this is only found to be the case
for the intensity shock scenario, and only so for the chain ladder based CLFreqNet
and CLFreqNNetcc. The intensity drift exhibits no noticeable deterioration in error
and FreqNet shows a smaller improvement in error when confronted with an intensity
shock compared to NNet, but an improvement nonetheless.

Regarding drifts and shocks in the occurrence process (i.e. in the distribution of
cc), we do not observe a substantial effect on the prediction errors of the NNet based
approach (i.e., they are similar as in the baseline scenario). Unpartitioned chain ladder
does not deal well with these changes to the claims process and the intensity based
extension doesn’t manage to reduce the problem. Substantial improvements are found
when moving from NNet to FreqNet and from CLcc to CLFreqNetcc.

When the reporting delay distribution changes, chain ladder based methods start to
perform very badly, even with partitioning. Since the introduced change effectively
reduced the time-to-report, plain chain ladder approaches are confronted with higher
claim counts upfront, which amplifies the error due to themultiplicative structure. This
effect is dampened by intensity based extensions, because here the expected number
of IBNR claims is based on the expected (long-term) intensity and not on short-term
observations. Again, FreqNet shows a similar improvement compared to NNet as seen
in other scenarios.

In summary, we can see that FreqNet performs well across all scenarios, improving
on the method developed in [7]. The robustness to changes in exposure and reporting
delays of chain ladder based estimates can be improved at little cost to overall accuracy
by employing the CLFreqNet method.

We will now move our attention to the individual level results as measured by
RMSEexpo

0:∞ defined in (15), which are summarized in Fig. 5. Within that figure, we
do not display results for straightforward individual factor based predictions (i.e.,
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Fig. 5 Boxplots of the individual-level error measure RMSEexpo0:∞ (365), each based on n = 50 simulated

paths. The trivial "predictor" N̂no IBNR(A):=Nr (A), predicting no IBNR claims, is also shown. Note
that the predictors N̂CL and N̂CLcc are not suitable for individual level claim count predictions as their
RMSEexpo0:∞ is worse than N̂no IBNR. In the baseline scenario, RMSEexpo0:∞ (365) has a median of 8.45 · 10−2

for N̂CL and 10.8 · 10−2 for N̂CLcc , compared to 6.65 · 10−2 for N̂no IBNR

multiplying the number of reported claims on an individual level by a factor-to-
ultimate) because of their generally poor performance: for instance, in the baseline
scenario, the mean RMSEexpo

0:∞ (365) for CL,CLcc and noIBNR is 0.0843, 0.108 and
0.0665, respectively, where noIBNR refers to simply predicting no IBNR claims
at all. However, the results in Fig. 5 show that the chain ladder based neural net-
work predictors CLFreqNet and CLFreqNetcc provide viable solutions for allocating
the IBNR claims from a chain ladder triangle to individual policies, albeit with-
out yielding a full distributional model. In general, CLFreqNet and CLFreqNetcc
exhibit very similar errors whereas FreqNet shows slightly smaller errors than
the other two methods. Comparing the mean RMSEexpo

0:∞ (365) for the methods
noIBNR(0.0665),CLFreqNet(0.0656),CLFreqNetcc(0.0656),FreqNet(0.0655)
and cheating(0.0653), we see that the chain ladder based methods score 72% of
the performance of cheating when compared to noIBNR and FreqNet even achieves
78% of the improvement from noIBNR to cheating. It is interesting to note that
the results are quite similar for all five scenarios, with the reporting delay scenario
exhibiting the smallest difference between the noIBNR error and the error of the other
three methods.
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Fig. 6 Boxplots of the intensity error measure RMSEλ(365), each based on n = 50 simulated paths. For
no IBNR, the estimate λ̂(x, t) ≡ const = N̂0:∞(X × [0, τ ) × Y × [0, ∞))/

∑I
i=1 Leb(C(x(i)) ∩ [0, τ ])

was used

Of primal importance in insurance pricing is an accurately estimated risk model
(which includes the intensity λ), for instance for reducing or avoiding cross-
subsidisationwithin a portfolio. In Fig. 6we study the quality of the estimated intensity
models obtained for the methods FreqNet, CLFreqNet and CLFreqNetcc. As a mea-
sure for the quality of the estimates, we use, for some evaluation period length q which
is divisor of τ (as before, we fix q = 365 throughout),

RMSEλ(q)

:=
(

1
∑τ/q−1

j=0 #P(q, j)

τ/q−1∑

�=0

∑

i∈P(q,�)

(
λ̂(x (i), (� + 1

2 )q) − λ(x (i), (� + 1
2 )q)

)2
) 1

2

,

(17)

wherewe have used the notation fromSect. 6. Note that, when using λ̂(x, t) ≡ const =
N̂0:∞(X×[0, τ )×Y×[0,∞))/

∑I
i=1 Leb(C(x (i))∩[0, τ ]) as an estimate for λ using

the predictors CL and CLcc for N̂0:∞ yields very similar RMSEλ(365) as noIBNR,
so they were left out of the plots in Fig. 6 for readability. As an example, the baseline
scenario has a mean RMSEλ(365) of 0.0737 for noIBNR and of 0.0734 for both CL
and CLcc whereas the intensity networks yield values from 0.0578 to 0.0632.

A priori, one would expect that RMSEλ correlates with RMSEexpo
0:∞ , since both are

error measures at the individual policy level. Surprisingly, the results in Fig. 6 show
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that this correlation breaks down for the chain ladder-based intensity models: while
RMSEexpo

0:∞ is very similar for CLFreqNet and CLFreqNetcc, RMSEλ is smaller for
CLFreqNet than it is for CLFreqNetcc in all scenarios. Heuristically, a larger variance
of CLFreqNetcc may be explained by the fact that CLFreqNetcc is the only method of
the three that uses two independent networks for the intensity of each claim code, and
hence is based on twice the number of parameters. It is not fully clear however why
this would deteriorate model quality. Another interesting observation is that despite
FreqNet having a worse accident year level error (Fig. 4), its underlying intensity
model is comparable in quality to that of CLFreqNet in the baseline scenario.

8 Application to real data

In this section, we will apply the different methods to a large real dataset containing
motor legal insurance claims provided by a German insurance company. The dataset is
described in Sect. 8.1.More detail on the predictionmethods and estimation procedure
can be found in Sect. 8.2. Due to the nature of real world data, observations are only
available for a limited time frame. Therefore, model performance metrics cannot use
∞ as the time of evaluation, but must instead use a finite cutoff date. We examined
two artificial truncation points, τ = 31stDecember2017andτ = 31stDecember2018
and evaluate predictions for one year into the future, i.e. RMSEτ :τ+365(Y, 365)
and RMSEexpo

τ :τ+365(Y, 365). Results of this examination are presented and discussed
in Sect. 8.3.

8.1 The dataset

The dataset is the same as [7]. It contains a portfolio of about 250,000 motor legal
insurance contracts and 65,000 corresponding claims with exposure and claims infor-
mation available monthly from 31st December 2014 to 31st December 2020. Due
to the extreme shock the COVID-19 pandemic had on the dataset, we chose to only
consider data available up to 31st December 2019 for model evaluation. For a more
detailed description of the data, refer to [7].

8.2 Predictors

In this section, we provide a detailed overview of the predictors that we
apply to the dataset described in Sect. 8.1. For the macro-level error measure,
RMSEτ :τ+365(Y, 365), we will compare a total of six predictors, three of which
can provide viable micro-level predictors. The micro-level predictors are compared
using RMSEexpo

τ :τ+365(Y, 365). Most of the predictors are defined analogously to those
in Sect. 7.2 and we will reuse the notation defined there.

• Predictor NNet. The original method from [7], formula (19).
• Predictor NNetY. This predictor is based on the estimated claim feature model.
Since all claim features are discrete, this modelling step was done using a sin-
gle discrete distribution with 360 different possible outcomes. More precisely,
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recalling the notation N̂ cw from Sect. 7.2, we define N̂NNetY :=N̂ cw
NNetY

with

ĉNNetcc(x, t, y, d):= p̂rep;Y(τ0, τ1, x, kt )

p̂rep;Y(0, τ, x, kt )

and p̂rep;Y(τ0, τ1, x, kt ) defined as

∑

y∈Y′

∫

Ip(x,kt )
P̂D|X=x,T=tkt ,Y=y((τ0 − s, τ1 − s]) ds P̂Y |X=x,T=tkt (y).

• Predictor FreqNNet. The predictor from (12).
• Predictor CL. This predictor is the basic chain ladder predictor.
• Predictor CLcc. This predictor is the chain ladder predictor based on splitting by
claims codeY = Ycc

0 ∪Ycc
1 ∪Ycc

2 ∪Ycc
3 ∪Ycc

4 . More precisely, recalling the
notation N̂ cw from Sect. 7.2, N̂CLcc = N̂ cw

CLcc
with

ĉCLcc(x, t, y, d) = 1(τ̄0 ≤ �(T + D)/p ≤ τ̄1)

+
4∑

m=0

(FtU
Ycc

m
kt+τ̄−τ̄0

− FtU
Ycc

m
kt+τ̄−τ̄1

)1(y1 = m),

where y1 = cc.
• Predictor CLFreqNNetcc. This is the chain ladder network based predictor for
the partition Y = Ycc

0 ∪ Ycc
1 ∪ Ycc

2 ∪ Ycc
3 ∪ Ycc

4 defined in the description of
CLcc. The formula stems from applying (14) with M = 5 and the partition by
claim code.

8.3 Results

The seven available predictors are evaluated for one year ahead and on an evaluation
period of q = 365. In comparison to the simulation study, the cheating predictor is
missing and the two plain chain ladder predictors have no uncertainty due to their
deterministic algorithm. Also, because stepwise estimation of the claim feature distri-
bution was not necessary, there is only one predictor NNetY based on the full claim
feature distribution instead of the two predictors NNetseverity and NNetcc.

Summarily, despite the fact that themodel selection strategy has not been fine-tuned
to the problem at hand and shows a rather unreliable performance overall, FreqNet
shows promising results on a micro-level at an acceptable cost on the macro-level.

Figure 7 shows the accident year level prediction error RMSEτ :τ+365(Y, 365) for
one year ahead across the seven methods for the two artificial truncation points. In
contrast to most simulation results on the ultimate accident year level prediction error,
we see an increase in error of NNetY compared to NNet. This loss could possibly be
overcome by optimizing the claim feature model architecture, which was fixed as a
(10, 5) feed-forward network for simplicity. For τ = 31stDecember2017 the distribu-
tion of errors forFreqNet also seems to deteriorate, whereas τ = 31st December 2018
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Fig. 7 Boxplot comparison of RMSEτ :τ+365(Y, 365) for the different methods. Final selected models
shown as wide horizontal line

exhibits behavior more consistent with the simulation study, decreasing the error while
maintaining a similar variance. While for τ = 31st December 2017, the selected
model has a very low error compared to all candidates, the model selected for
τ = 31st December 2018 exhibits a worse accident year level error than the chain
ladder methods, even though the median error among all candidate models was lower
than that of chain ladder. Regarding CLFreqNet and CLFreqNetcc, one can see the
impact of the training procedure (holding out 25%of the data for validation) increasing
the overall variance in error compared to their Chain Ladder counterparts.

In summary, the newmethods seem to provide similar accuracy on an accident year
level when compared to the underlying methods NNet, CL or CLcc.

The newmethodsFreqNet,CLFreqNet andCLFreqNetcc provide exposure-level
IBNR predictions, which can be compared in Fig. 8. As with the simulation study,
plain triangle based methods can not be used to obtain viable predictors for micro-
level claim counts, so the trivial no IBNR is used as a basic reference. Unfortunately
it is not possible to also provide a theoretical best prediction on real data, so there is no
cheating benchmark with which the results could be compared. We refer to Fig. 5 for
the corresponding simulation study results which do have this benchmark. The micro-
level results are more comparable across the different truncation times, showing a
similar pattern to that of the simulation study with one exception: There is a larger
separation between the errors ofFreqNet and those ofCLFreqNet andCLFreqNetcc.
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Fig. 8 Comparison of RMSEexpo
τ :τ+365(Y, 365) for the different methods

9 Conclusion

Two new methods for joint prediction of micro-level IBNR claim counts and claim
frequencies have been developed and applied to real and simulated data. Results show
promising accuracy on an exposure level compared to the theoretical optimum under
laboratory conditions. The new methods also permit assigning IBNR claim count
predictions on a policy level such that policies without claims can receive a non-zero
IBNR prediction, which is an advantage for analysis of small sub-portfolios where
applying chain ladder estimation factors—even with parameters estimated on a larger
dataset - produce highly volatile estimates. The presented case studies uncover several
opportunities for further research:

1. The distributional assumption of a Blended Dirac-Erlang-Generalized Pareto fam-
ily for reporting delays in Model 3.1 might not be suitable for all applications.
Future work could examine results with other reporting delay distribution families.

2. The functional relationships in Model 3.1, Model 3.2 and Model 3.5 have all been
chosen asMLPs.All of these relationships could be chosen fromadifferent function
family, e.g., other families used in machine learning such as regression trees.

3. The architecture of all MLPs was simply chosen and no hyperparameter-
optimization was performed. Strategies for architecture selection or different
architectures could be examined.

4. Different strategies for model selection of a final model among candidate models
could be explored.

5. Definition 2.1 can be extended by a claim settlement process for each claim, such
as the one presented in [3] but on a policy level, to allow joint modelling of IBNR
and RBNS payments.
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Appendix A: Proof of Lemma 3.3

For x ∈ X, t ≥ 0 and y = (y1, . . . , yQ) ∈ Y, write z(q) = (x, t, y1, . . . , yq) and
Z (q) = (X , T ,Y1, . . . ,Yq). Then, in view of the fact that the conditional density of
Yq given t + d ≤ τ and Z (q−1) = z(q−1) may be written as

fYq |t+d≤τ,Z (q−1)=z(q−1) (yq) = P(t + d ≤ τ |Z (q) = z(q))

P(T + D ≤ τ |Z (q−1) = z(q−1))
fYq |Z (q−1)=z(q−1) (yq),

we may rewrite each summand in (6) as

E[�̃(X ,T ,Y1,...,Yq−1)(g|Yq) | T + D ≤ τ, Z (q−1) = z(q−1)]
=

∫ log fg(z(q−1))(yq)

P(T + D ≤ τ |Z (q) = z(q))
fYq |t+d≤τ,Z (q−1)=z(q−1) (yq) dμ

(q)(yq)

= 1

P(D + T ≤ τ |Z (q−1) = z(q−1))

×
∫

log fg(z(q−1))(yq) fYq |Z (q−1)=z(q−1) (yq) dμ
(q)(yq)

= 1

P(D + T ≤ τ |Z (q−1) = z(q−1))
E[log fg(Z (q−1))(Yq) | Z (q−1) = z(q−1)].

Note that the factor in front of the expectation does not depend on g.
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Write

M(g) = E
[
log fg(Z (q−1))(Yq) − log fg0(Z (q−1))(Yq) | Z (q−1) = z(q−1)],

and note that M(g0) = 0. Moreover, since log(x) ≤ 2(
√
x − 1) for x ≥ 0, we have,

for all g ∈ G(q),

M(g) ≤ 2 E

[√
fg(Z (q−1))(Yq)/ fg0(Z (q−1))(Yq) − 1 | Z (q−1) = z(q−1)

]

= 2
∫

Yq

(√
fg(z(q−1))(yq)/ fg0(z(q−1))(yq) − 1

)
fg0(z(q−1))(yq) dμ

(q)(yq)

= 2
∫

Yq

√
fg(z(q−1))(yq) fg0(z(q−1))(yq) dμ

(q)(yq) − 2

= −
∫

Yq

(√
fg(z(q−1))(yq) −

√
fg0(z(q−1))(yq)

)2
dμ(q) ≤ 0.

Hence, M(g) ≤ 0 = M(g0) for all g ∈ G(q), which implies the assertion. ��
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