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Abstract
This paper studies the valuation of insurance contracts linked to financial markets, for
example through interest rates or in equity-linked insurance products. We build upon
the concept of insurance-finance arbitrage as introduced byArtzner et al. (MathFinanc,
2024), extending their work by incorporating model uncertainty. This is achieved by
introducing statistical uncertainty in the underlying dynamics to be represented by a
set of priors P . Within this framework we propose the notion of robust asymptotic
insurance-finance arbitrage (RIFA) and characterize the absence of such strategies
in terms of the new concept of QP-evaluations. This nonlinear two-step evaluation
ensures absence of RIFA. Moreover, it dominates all two-step evaluations, as long as
we agree on the set of priors P . Our analysis highlights the role of QP-evaluations
in terms of showing that all two-step evaluations are free of RIFA. Furthermore, we
introduce a doubly stochastic model to address uncertainty for surrender and survival,
utilizing copulas to define conditional dependence. This setting illustrates how the
QP-evaluation can be applied for the pricing of hybrid insurance products, high-
lighting the flexibility and potential of the proposed approach.

Keywords Insurance-finance arbitrage under uncertainty · Robust QP-rule ·
Enlargement of filtration · Absence of robust insurance-finance arbitrage
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1 Introduction

This paper develops and characterizes the absence of insurance-finance arbitrage under
model uncertainty. Our starting point is the observation that most insurance contracts
are linked to financial markets, for example through interest rates or via direct links
of the contractual benefits to stocks or indices. However, the modeling and the val-
uation of insurance contracts and products on financial markets are fundamentally
different due to their distinct characteristics: insurance contracts are static and person-
alized products, whereas products on financial markets are standardized and traded
frequently. Various approaches have been proposed in the literature as to how insur-
ance and financial markets can be treated in a coherent manner, see e.g., [10, 11, 21,
23] and references therein. More recently, 2-step and 3-step approaches have been
proposed as for example in [2, 7] and in [19].

In this paperwe aim for a fundamental analysis of arbitrage in thesemarkets and rely
on the notion of insurance-finance arbitrage (IFA) introduced by [1]. In this approach
the insurance company may issue contracts to a large number of clients on the one
hand. On the other hand, it can simultaneously hedge its positions by trading on the
financial market. In order to model the two information flows to which the insurance
company has access, we work with two filtrations. The smaller filtration represents
the publicly available information on the financial market, denoted by F = (Ft )t≤T ,
while the larger filtrationG = (Gt )t≤T additionally contains the insurer’s information.
Given a pricing measure Q on the financial market (�,F ) and a statistical measure P
on (�,G ) a characterization of the absence of IFA in terms of the QP-rule is derived
in [1].

Even if a large set of homogeneous data is available, statistical uncertainties in
predicting the future evolution of insurance losses in the considered portfolio remain
a problem that needs to be addressed. In this paper we therefore take this uncertainty
into account.

To do so, we fix the nullsetsN on the financial market (�,F )which together with
the traded assests S determine the set of equivalent martingale measures Q. Second,
we consider a class of probabilistic modelsP on (�,G ), such that the measures inP
restricted to F have exactly the nullsets N and study the associated QP-rule. Most
notably, this framework allows us to model uncertainty on the insurance market under
the assumption that we do not face any model risk on the financial market. Working
with a class of potential modelsP is in line with the growing literature on model risk
and uncertainty, see e.g., [5, 6, 8, 9, 24, 28].

To the best of our knowledge, this is the first study of insurance-finance arbitrage
under model uncertainty. More specifically, we prove a characterization of robust
insurance-finance arbitrage (RIFA) by using the QP-evaluation in Theorem 2.12.

Furthermore, we show that this result provides a theoretical foundation for a class
of two-step evaluations introduced in [23], which is applied for the pricing of hybrid
products depending on the financial market, as well as on other random sources. In
particular, we prove that every two-step evaluation, which is the combination of a
risk-free measure Q and a coherent F -conditional risk measure, being continuous
from below, equals a QP-evaluation for a suitable subsetP on (�,G ). Thus, every
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Robust insurance-finance arbitrage. . . 931

two-step evaluation of this kind leads to a robust arbitrage-free price in the asymptotic
insurance-finance setting.

We conclude the paper by suggesting possible applications in Sect. 4. First, we
consider the case of two conditional independent random times such that the condi-
tional distribution functions face a certain degree of uncertainty. Here, the random
times represent the surrender time and the time of death of an insurance seeker. In this
setting, we introduce a financial market via a Cox-Ross-Rubinstein model and con-
sider finance-linked insurance benefits with surrender options. We compute the robust
arbitrage-free price of these products numerically and find that the uncertainty in this
example justifies that the robust arbitrage-free price is higher than the supremum of
all arbitrage-free prices under each possible model. This underlines the importance
of treating uncertainty in a systematic manner. Furthermore, we show that the well-
known Coxmodel under uncertainty is contained in the outlined setting.Moreover, we
generalize the setting by allowing dependence between the random times described
by a copula.

The paper is structured as follows. In Sect. 2 we introduce the definition of a robust
insurance-finance arbitrage and provide a characterization in our main result. After
that, Sect. 3 studies the relation of the QP-rule to two-step evaluations. Then, in
Sect. 4 we study an insurance-finance market with two conditionally independent ran-
dom times and numerically provide the robust arbitrage-free prices for certain hybrid
products. In addition, we consider a copula framework for the two random times under
uncertainty.

2 Robust asymptotic insurance-finance arbitrage

Let (�,G ) be a measurable space and denote by P(�,G ) the set of all probability
measures on this space.We consider a discrete timemodelwith times t = 0, . . . , T and
introduce two different kinds of information flows described by the filtrations F andG
on (�,G ). The filtration F = (Ft )t≤T represents publicly available information and
contains all information available on the financial market. The filtrationG = (Gt )t≤T

contains additional private information of the considered insurance company, which
includes, for example, several datasets on its clients. In particular, F ⊆ G. Moreover,
letF0 = G0 = {∅,�} and F be a σ -field such that FT ⊆ F ⊆ G .

Given P ⊆ P(�,G ), a set A ⊆ � is called P-polar if A ⊆ N for some N ∈ G
satisfies P(N ) = 0 for all P ∈ P . Moreover, a property holds P-quasi surely
(P-q.s.) if it holds outside aP-polar set.

For a fixed σ -ideal ofF -nullsetsN , i.e., there exists a measure P0 on (�,F ) such
that N are the nullsets of P0, we define the following sets of priors

PN (�,F ):={P ∈ P(�,F ) |N are the nullsets of P
}

(2.1)

and

PN (�,G ):={P ∈ P(�,G ) |N are the nullsets of P|F
}
. (2.2)
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932 K. Oberpriller et al.

Hereafter, we fix a probability measure P0 ∈ P(�,F ), which determines the nullset
N on (�,F ), and a subset of priorsP ⊆ PN (�,G ), which specifies the uncertainty
about the model.

In the following, we introduce the concept of insurance-finance arbitrage. For sim-
plicity, we consider only a single insurer. We also assume that the insurer can contract
with an arbitrarily high number of clients to reduce its risks, as specified in Assump-
tion 2.1. To establish this, we consider a finite number of insurance seekers and study
the limits of portfolio allocations - a technique inspired by large financial markets, see
e.g., [15, 17, 18]. Such strategies may lead to insurance arbitrages and it is partly our
aim to characterize when and how such arbitrages can be achieved and under which
conditions they can be avoided.

At the same time, the insurance company also trades on the financial market, poten-
tially leading to a financial arbitrage. Thus, the combination of these concepts results
in an insurance-finance arbitrage.

2.1 The insurance contracts

Insurance contracts offer a variety of benefits at future times in exchange for a single
premium or a premium stream. We work with discounted quantities and, without loss
of generality, we consider a single premium paid at time 0 and an aggregated benefit
received at future time T . More precisely, we denote by p ∈ R the premium to be
paid at time 0 and a GT -measurable (discounted) benefit Xi to be received by the i th
client at time T . This allows to cover a wide range of contracts, particularly contracts
depending on financial markets, such as variable annuities.

We assume that all insurance seekers under consideration can be treated as homoge-
neous (under eachmodel P ∈ P) and each insurance seeker pays the same premium p
in order to receive his or her personal benefit Xi . This idea is formalized in the follow-
ing assumption, which is a generalization of the framework of actuarial mathematics
to stochastic assets, as discussed in [1].

Assumption 2.1 For all P ∈ P , the following holds:

(i) X1, X2, . . . ∈ L2+(�,G , P) areF -conditionally independent.
(ii) EP [Xi |F ] = EP [X1|F ] for all i ∈ N.
(iii) VarP [Xi |F ] = VarP [X1|F ] for all i ∈ N.

Remark 2.2 (The implications of Assumption 2.1) Assumption 2.1 is a fairly weak
assumption and includes a wide range of existing models:

(i) Approaches where insurance benefits are i.i.d. and independent of the publicly
available information.

(ii) Any kind of variable annuities including F -independent and i.i.d. survival
(or surrender) times τ i . This covers for example survival benefits of the
form Xi = 1{τ i>T }e−rT F(S̃T ) or payments at surrender times like Xi =
1{τ i=T }e−rτ i F(S̃τ i ),where S̃ is theF-adapted (undiscounted) stockprice process
and e−r t is the deterministic discounting factor at time t . Similarly, stochastic
interest rates or path-dependent payoffs can be included.

123



Robust insurance-finance arbitrage. . . 933

(iii) Doubly-stochastic random times are also part of the framework, i.e., random
times which are driven by a hazard rate λ which is F-progressively measurable
such that the process 1{τ i≤t} − ∫

1[0,t∧τ i ]λsds is an F-martingale. This allows
to model important aspects like systemic risk or longevity risk, for example by
incorporating factors which affect λ and hence all insurance seekers. It seems
important to point out, that F contains all publicly available information, and
hence might be significantly larger then the filtration created by stock prices
only. In particular, publicly available mortality tables would be included in F.
Intuitively, λ allows to cover risks which are are observable by the public, such
as a general crisis giving rise to systemic risk or increasing longevity reflected
in publicly available life tables. The individual risk, referring to the risk beyond
systematic risk that aligns with the individual characteristics of the policyholder,
is subsequently captured by the model’s additional stochastic component. We
refer to Remark 4.3 which shows how to include increasing life expectations in
the Gompertz model under Assumption 2.1.

However, our current framework does not include different cohorts. To incorporate for
example different ages of the insurance seekers, a separate model for each age must
be considered.

The insurance portfolio is obtained as a limit of allocations of contracts with a finite
number of clients. An allocation at time 0, ψ = (ψ i )i∈N, is c00-valued, deterministic
and non-negative, where c00 denotes the space of sequences with a finite number of
non-zero elements. For i ∈ N, ψ i ∈ R+ denotes the size of the contract with the i th
policyholder. The accumulated benefits and premiums associated with the allocation
ψ are given by

∑
i∈N ψ i X i and

∑
i∈N ψ i p, while the associated profits and losses are

denoted by

VT (ψ) :=
∑

i∈N
ψ i (p − Xi ).

An insurance portfolio strategy � := (ψn)n∈N ∈ cN00 is modeled as a sequence of
allocations ψn = (ψn,i )i∈N. Moreover, the profit and loss of an insurance portfolio
strategy � is given (if it exists) by

VT (�) := lim
n→∞ VT (ψn) = lim

n→∞
∑

i∈N
ψn,i (p − Xi ).

We introduce the following admissibility conditions for an insurance portfolio strategy
� = (ψn)n∈N.

Assumption 2.3 (i) Uniform boundedness: There exists C > 0, such that

‖ψn‖ :=
∑

i∈N
ψn,i ≤ C for all n ≥ 1.
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934 K. Oberpriller et al.

(ii) Convergence of the total mass: There exists γ ≥ 0 such that

γ = lim
n→∞ ‖ψn‖.

(iii) Convergence of the total wealth: There exists a R-valued random variable
VT (�), such that

VT (�) = lim
n→∞ VT (ψn) P-q.s.

An insurance portfolio strategy� = (ψn)n∈N which satisfies Assumption 2.3 is called
P-admissible.

2.2 The financial market

We introduce a financial market model in discrete time consisting of d risky assets
S = (S1t , . . . , S

d
t )t=0,...,T on (�,F ). For i = 1, . . . , d, the discounted price of the

i th risky asset at time t is given by the Ft -measurable random variable Sit and the
bank account is given by S0 ≡ 1. We assume that the insurance company trades
with F-trading strategies on the financial market, where a F-trading strategy is a d-
dimensional F-predictable process ξ = (ξt )t=1,...,T with ξt = (ξ1t , . . . , ξdt ). Note
that each strategy ξ can be extended by ξ0 = (ξ0t )t=1,...,T to a self-financing trading
strategy ξ̄ = (ξ0t , . . . , ξdt )t=1,...,T , cf. [14, Remark 5.8]. The associated gain process
at time t = 1, . . . , T is then given by the discrete stochastic integral

(ξ · S)t :=
t∑

s=1

ξs (Ss − Ss−1) =
t∑

s=1

d∑

i=1

ξ is

(
Sis − Sis−1

)
.

The absence of arbitrage in this market with respect to one and thus any restricted
measure P|F for P ∈ P ⊆ PN (�,G ) can be characterized by the existence of
an equivalent martingale measure, cf. [14, Theorem 5.16]. The set of all equivalent
martingale measures is denoted byMe(F) and defined by

Me(F) := {Q ∈ PN (�,F )| S is a (Q,F)-martingale}. (2.3)

Remark 2.4 By taking into account a set of priors P ⊆ PN (�,G ) and according to
the definition of PN (�,G ) in (2.2), all nullsets on (�,F ) are already determined
by N . Thus, the uncertainty of our model refers only to the additional insurance part
defined on (�,G ).

2.3 Robust insurance-finance arbitrage

Finally, we introduce the insurance-finance market (S,X , p) on (�,G ) consisting
of the benefits X = (Xi )i∈N, the premium p, and the discounted asset prices S =
(St )t=0,...,T .
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Robust insurance-finance arbitrage. . . 935

In order to define a robust arbitrage in our setting, we use the concept of a robust
arbitrage strategy introduced in [6]. Note, however, that we do not need to require
convexity ofP for the characterization of the absence of a robust arbitrage strategy.

Definition 2.5 A P-robust asymptotic insurance-finance arbitrage RIFA(P) on the
insurance-finance market (S,X , p) is a pair (ξ,�) consisting of an F-predictable
trading strategy ξ and aP-admissible insurance portfolio strategy � such that

(ξ · S)T+VT (�) ≥ 0 P-q.s. and EP [(ξ · S)T+VT (�)] > 0 for some P∈P.

(2.4)

If there exists no such pair (ξ,�) satisfying (2.4), then there is noP-robust asymptotic
insurance-finance arbitrage, which we denote by NRIFA(P).

Remark 2.6 If for all P ∈ P it holds NRIFA({P}) then NRIFA(P) is also satisfied.
However, the converse statement does not hold in general.

In the case of no model uncertainty, i.e., when P = {P} for a measure P ∈
PN (�,G ), it is shown in Corollary 5.2 in [1] that if there exists Q ∈ Me(F) such
that

p ≤ EQ�P [X1]:=EQ

[
EP [X1|F ]

]
, (2.5)

then there is no asymptotic insurance-finance arbitrage. Thus, according to Remark
2.6, an insurance-finance market (S,X , p) fulfills NRIFA(P) if (2.5) holds for each
P ∈ P . However, it should be noted that these conditions are not necessary.

2.4 Uniform essential supremum

In order to characterize the absence of aP-robust asymptotic insurance-finance arbi-
trage, we aim to identify assumptions that allow us to take into account a robust version
of the conditional expectations EP [X |F ] for P ∈ P in (2.5). Given a set of priors
P ⊆ P(�,G ), it is in general not possible to consider supP∈P EP [X |F ], as the
conditional expectation is only defined P-a.s. and the priors inP may have different
nullsets. Furthermore, the supremum no longer needs to be measurable.

The natural approach to solve the measurability issue is to work with the essential
supremum instead of the supremum. For a fixed probability measure P ∈ P(�,G )

and a set of random variables 
 on (�,G ) there is a random variable Y=: ess supP 


such that

(i) Y ≥ ϕ P-a.s. for all ϕ ∈ 
, and
(ii) Y ≤ ψ P-a.s. for every random variable ψ satisfying ψ ≥ ϕ P-a.s. for all

ϕ ∈ 
.

We refer to [14, Theorem A.37] for a proof of the existence of the essential supremum
and to [3], in whose work a general construction of such a nonlinear conditional
expectation is studied.
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936 K. Oberpriller et al.

However, for a general set of priors P ⊆ P(�,G ) and a set of random variables

 on (�,G ) there may be no uniform essential supremum, i.e., a random variable Y
such that

Y = ess supP 
 P-a.s. for all P ∈ P. (2.6)

The definition of the set PN (�,G ) in (2.2) allows us to consider for P ⊆
PN (�,G ) the set of random variables 
 = (ϕP )P∈P such that

ϕP = EP [X |F ] P-a.s. for all P ∈ P. (2.7)

Indeed, we observe that byF -measurability together with the fact that P|F ∼ P ′|F
for all P, P ′ ∈ P, the conditional expectation EP [X |F ] is not only P-a.s. uniquely
determined but also P-q.s.. Moreover, there exists an uniform essential supremum
which fulfills (2.6), as the following result demonstrates.

Lemma 2.7 Let N be the nullsets generated by the probability measure P0 ∈
P(�,F ), P ⊆ PN (�,G ) and 
 a set of F -measurable random variables. Then

ess supP0 
 = ess supP 
 P-a.s. for all P ∈ P. (2.8)

Proof We show that ess supP0 
 fulfills condition (i) and (ii) from the definition of
the essential supremum for all P ∈ P . For the first part, using the definition of
ess supP0 
, we obtain that

ess supP0 
 ≥ ϕ P0-a.s. for all ϕ ∈ 
. (2.9)

Since {ess supP0 
 ≥ ϕ} is F -measurable and P|F ∼ P0 for all P ∈ P , (2.9) also
holds P-a.s. for all P ∈ P . Relying on the construction of the essential supremum,
see, for example [14, Theorem A.37], there exists a countable subset 
∗ ⊆ 
 such
that

ess supP0 
(ω) = sup
∗(ω) for all ω ∈ �.

Fix any P ∈ P , then for each random variable ψ on (�,G ) such that

ψ ≥ ϕ P-a.s. for all ϕ ∈ 
,

we get ψ ≥ sup
∗ = ess supP 
 P-a.s.. This shows the second part and the result is
proven. ��

In the following, for the fixed measure P0, which generates the F -nullsets N and
use the notation

ess sup
 := ess supP0 
.
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2.5 Characterization of robust insurance-finance arbitrage

In the next result we use the essential supremum to characterize NRIFA(P). Further-
more, to prove this theorem, we use a measure extension Q � P which was proposed
in [25] and [12] (see also Proposition 4.1 in [1]). For the reader’s convenience we state
the existence result for such a measure.

Proposition 2.8 Let (�,G , P) be a probability space, F ⊆ G a sub-σ -algebra, and
Q ∼ P|F a probability measure on (�,F ). Then, there exists a unique probability
measure, denoted by Q� P, on (�,G ) such that Q� P = Q onF and Q� P = P
conditioned on F .

Remark 2.9 The measure Q � P on (�,G ) from Proposition 2.8 can also be charac-
terized by each of the following more explicit expressions:

(i) For all G ∈ G we have Q � P(G) = EQ[EP [1G |F ]].
(ii) The density of Q � P with respect to P is given by dQ/dP|F .

This also shows that the measures Q � P and P are equivalent.

The arbitrage-free prices of a FT -measurable claim H ≥ 0 in the financial market S
canbe described by the set of expectations under all Q ∈ Me(F) such that H ∈ L1(Q),
cf. [14, Theorem 5.29].

The subsequent lemma shows that, when a specific P ∈ P is chosen, it suffices to
consider only those measures Q ∈ Me(F) for which H ∈ L1(Q) and the density of Q
with respect to P is bounded. The expectations of this subset of measures determines
the set of arbitrage-free prices for H .

Lemma 2.10 Let H ≥ 0 be a discounted FT -measurable claim such that H ∈
L1(FT , Q) for some Q ∈ Me(F) and let P ∈ PN (�,G ). Then, there exists
Q∗ ∈ Me(F) such that H ∈ L1(FT , Q∗), EQ[H ] = EQ∗ [H ] and dQ∗/dP|F ∈
L∞(F , P|F ).

Proof We define the process Sd+1 = (Sd+1
t )t=0,...,T by Sd+1

t = EQ[H |Ft ]. Then
Q is a martingale measure for the extended market (S, Sd+1). According to [14,
Theorem 5.16], it follows that this extended market is free of arbitrage and that there
is an equivalent measure Q∗ ∼ P|F such that (S, Sd+1) is a (Q∗,F)-martingale and
dQ∗/dP|F ∈ L∞(F , P|F ). The martingale property for S implies Q∗ ∈ Me(F)

and for Sd+1 it implies H = Sd+1
T ∈ L1(Q∗) and EQ[H ] = Sd+1

0 = EQ∗ [H ]. ��
Lemma 2.11 Let A1, . . . , AN ∈ F be a partition of� and P1, . . . , PN ∈ PN (�,G ).
Then the measure P on (�,G ) defined by

P(G):=c−1
N∑

i=1

Pi (G ∩ Ai ), (2.10)

for c = ∑N
i=1 Pi (Ai ) is well-defined, a probability measure and P ∈ PN (�,G ).
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Proof Wemust show that c > 0. For the sake of contradictionwe assume that Pi (Ai ) =
0 for all i = 1, . . . , N . By the equivalence Pi ∈ PN (�,G ) and Ai ∈ F , it follows
that P1(Ai ) = 0 for all i = 1, . . . , N and thus P1(�) = 0. This is a contradiction and
we obtain c > 0. Thus, P is well-defined and a probability measure on (�,G ). In
order to prove P ∈ PN (�,G ) we show that for all F ∈ F it holds that P1(F) = 0 if
and only if P(F) = 0. First, we assume that P1(F) = 0. Then, once more using the
equivalence Pi ∈ PN (�,G )we obtain Pi (F∩Ai ) ≤ Pi (F) = 0 for all i = 1, . . . , N
and it follows that P(F) = 0. On the other hand, if P(F) = 0, then it follows that
Pi (Ai ∩ F) = 0 and thus by the equivalence P1(Ai ∩ F) = 0 for all i = 1, . . . , n.
This implies P1(F) = 0. ��

The following result is the main result of this paper. It characterizes the existence
of insurance-finance arbitrage, and thus establishes a fundamental no-arbitrage result
in insurance-finance models.

Theorem 2.12 There is no P-robust asymptotic insurance-finance arbitrage on
(S,X , p) if and only if one of the following statements is fulfilled.

(i) For all P ∈ P there is a measure Q ∈ Me(F) such that

p ≤ EQ

[
EP [X1|F ]

]
.

(ii) There is a measure Q ∈ Me(F) such that

p < EQ

[
ess sup
P∈P

EP [X1|F ]
]
.

Proof We start with the only if direction and prove this using contraposition. Assume
that neither (i) nor (i i) are fulfilled, i.e.,

(i) There is P ′ ∈ P such that for all Q ∈ Me(F) it holds that

p > EQ

[
EP ′ [X1|F ]

]
.

and

(i i) For all Q ∈ Me(F) we have

p ≥ EQ

[
ess sup
P∈P

EP [X1|F ]
]
.

We have to show that there is a P-robust asymptotic insurance-finance arbitrage on
(S,X , p). Fix some P ′ which satisfies (i) and define the set A by

A:=
{
EP ′ [X1|F ] < ess sup

P∈P
EP [X1|F ]

}
∈ F .
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First, we consider the case P ′(A) > 0. Note that Y := ess supP∈P EP [X1|F ]
can be interpreted as a contingent claim on (�,F ). By (i i) we know that p ≥
supQ∈Me(F) EQ[Y ]. This means p is greater or equal than every arbitrage-free price
forY . Thus, as shownby [14, Theorem5.29,Corollary 7.9], there exists aF-predictable
(super-hedging) strategy ξ such that

p + (ξ · S)T ≥ ess sup
P∈P

EP [X1|F ] P0-a.s. (2.11)

As both sides in (2.11) areF -measurable and by the definition ofP , Equation (2.11)
holds P-a.s. for all P ∈ P . We define the admissible strategy � = (ψn)n∈N by

ψn :=1

n
(1, . . . , 1, 0, . . . ) = 1

n
(1{k≤n})k∈N. (2.12)

According to Assumption 2.1 and [20, Theorem 3.5], we have that

VT (�) = p − EP [X1|F ] P-a.s. for all P ∈ P.

The strategy (ξ,�) is a robust asymptotic insurance-finance arbitrage since by (2.11)
and the argumentation below it holds for all P ∈ P that

(ξ · S)T + VT (�) = p + (ξ · S)T + VT (�) − p

≥ ess sup
P∈P

EP [X1|F ] − EP [X1|F ] P-a.s.

≥ 0 P-a.s.

Moreover, since P ′(A) > 0, we obtain that

ess sup
P∈P

EP [X1|F ] − EP ′ [X1|F ] ∈ L0+(F , P ′)\{0}. (2.13)

Second, we consider the case P ′(A) = 0. As P ′|F ∼ Q for all Q ∈ Me(F) and
A ∈ F , it also holds Q(A) = 0 and consequently Q(Ac) = 1, i.e.,

EP ′ [X1|F ] = ess sup
P∈P

EP [X1|F ] Q-a.s..

Then (i) yields that for all Q ∈ Me(F)

p > EQ

[
EP ′ [X1|F ]

]
= EQ

[
ess sup
P∈P

EP [X1|F ]
]
. (2.14)

Here, p is strictly greater than any arbitrage-free price for ess supP∈P EP

[X1|F ] and thus also by [14, Theorem 5.29, Corollary 7.9] we can find aF-predictable
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strategy ξ such that

p + (ξ · S)T − ess sup
P∈P

EP [X1|F ] ∈ L0+(F , P)\{0} for all P ∈ P. (2.15)

By once again choosing the insurance strategy � given in (2.12), the pair (ξ,�) is a
P-robust asymptotic insurance-finance arbitrage as it holds for all P ∈ P that

(ξ · S)T + VT (�) = p + (ξ · S)T + VT (�) − p

= p + (ξ · S)T − EP [X1|F ] P-a.s.

≥ p + (ξ · S)T − ess sup
P∈P

EP [X1|F ] ∈ L0+(F , P)\{0}.

This concludes the proof of the only if direction and we proceed with the if direction.
If (i) holds, then for any P ∈ P we could assume that the martingale measure Q has
bounded density with respect to P|F , cf. Lemma 2.10. According to Corollary 5.2 in
[1], there exists no {P}-robust asymptotic insurance-finance arbitrage for each fixed
measure P ∈ P and thus NRIFA(P) holds. For the reader’s convenience we provide
a detailed proof of this statement. Fix P ∈ P . For the sake of contradiction assume
that there is an admissible strategy (ξ,�) such that

(ξ · S)T + VT (�) ∈ L0+(G , P)\{0}.

We define the process Z = (Zt )t=0,...T by

Z0 = 0 and Zt = EQ�P [VT (�)|Ft ], for all t = 1, . . . T . (2.16)

Using [1, Proposition B.1] and assumption (i) we obtain the following:

EQ�P [Zt ] = EQ�P [VT (�)]
= EQ�P [γ (p − X1)]
= γ (p − EQ�P [X1]) ≤ 0.

This shows that Z is a local (F, Q � P)-supermartingale. By [14, Remark 9.5] the
value process (ξ · S) is a local (F, Q � P)-martingale and thus (ξ · S) + Z is a local
(F, Q � P)-supermartingale and fulfills

(ξ · S)T + ZT = (ξ · S)T + VT (�) ≥ 0.

By [14, Proposition 9.6] the process (ξ · S) + Z is a (F, Q � P)-supermartingale and
thus

EQ�P [(ξ · S)T + VT (�)] ≤ EQ�P [(ξ · S)0 + Z0] = 0.

According to Remark 2.9 it holds Q� P ∼ P and we find a contradiction. This shows
that (i) implies NRIFA(P).
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Let us now assume that (i i) holds. In a first step, we show that there exists a finite
partition of � given by A1, . . . , AN ∈ F and measures (Pi )i≤N with Pi ∈ P such
that

p <

N∑

i=1

EQ

[
1Ai EPi [X1|F ]

]
.

Based on the definition of the essential supremum, cf. [14, TheoremA.37], there exists
a countable subsetP∗ = (Pi )i∈N ⊆ P such that

ess sup
P∈P

EP [X1|F ] = sup
P∈P∗

EP [X1|F ] = lim
N→∞ sup

P∈(Pi )i≤N

EP [X1|F ] P0-a.s.

(2.17)

Moreover, as the essential supremum isF -measurable, (2.17) also holdsP-q.s. and
Q-a.s. for all Q ∈ Me(F). Thus, using (i i) and monotone convergence, we get the
following:

p < EQ

[
ess sup
P∈P

EP [X1|F ]
]

= EQ

[
lim

N→∞ sup
P∈(Pi )i≤N

EP [X1|F ]
]

= lim
N→∞ EQ

[
sup

P∈(Pi )i≤N

EP [X1|F ]
]
.

Thus, there exists N ∈ N such that

p < EQ

[
sup

P∈(Pi )i≤N

EP [X1|F ]
]
. (2.18)

For every  ∈ 1, . . . , N we define the set B as

B:=
{
EP

[X1|F ] = sup
P∈(Pi )i≤N

EP [X1|F ]
}

∈ F

and A1:=B1 and A := B\⋃k< Bk for  = 2, . . . , N . Then A1, . . . , AN are disjoint
and build a partition of � since for each ω ∈ � there is  ∈ {1, . . . , N } such that

EP
[X1|F ](ω) = sup

P∈(Pi )i≤N

EP [X1|F ](ω)

and thus we obtain

N⊎

=1

A =
N⋃

=1

B = �.
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Moreover, we have by (2.18) that

p < EQ

[
N∑

i=1

1Ai sup
P∈(Pi )i≤N

EP [X1|F ]
]

=
N∑

i=1

EQ

[
1Ai EPi [X1|F ]

]
. (2.19)

Now, we define the measure P ′ ∈ PN (�,G ) using Equation (2.10) and the partition
A1, . . . , AN . Moreover, let Q′ ∈ Me(F) be an equivalent martingale measure such
that

p < EQ

[
N∑

i=1

1Ai EPi [X1|F ]
]

= EQ′

[
N∑

i=1

1Ai EPi [X1|F ]
]

(2.20)

and such that the density of Q′ with respect to P ′ is bounded, cf. Lemma 2.10. Finally,
we define the measure R on (�,G ) as

R(G) = EQ′

[
N∑

i=1

1Ai EPi [1G |F ]
]

.

Since Q′ � Pi |F = Q′, cf. Remark 2.9, and by theF -measurability of A1, . . . , AN ,
the measure R is a probability measure on (�,G ) and satisfies R|F = Q′. Thus,
we find that S is also a (F, R)-martingale. Moreover, we obtain for all admissible
insurance strategies � with positive total mass γ > 0 that

ER[VT (�)] = ER

[
lim
n→∞

∑

i∈N
ψ i,n(p − Xi )

]

= EQ′
[ N∑

i=1

1Ai EPi

[
lim
n→∞

∑

i∈N
ψ i,n(p − Xi )

∣∣F
]]

= EP ′
[(

dQ′

dP ′|F
) N∑

i=1

1Ai EPi

[
lim
n→∞

∑

i∈N
ψ i,n(p − Xi )

∣∣F
]]

=
N∑

i=1

EPi

[(
dQ′

dP ′|F
)
1Ai EPi

[
lim
n→∞

∑

i∈N
ψ i,n(p − Xi )

∣∣∣∣F
]]

= EQ′
[ N∑

i=1

1Ai

(
γ (p − EPi [X1|F ])

)]

= γ

(
p − EQ′

[ N∑

i=1

1Ai EPi [X1|F ]
])

< 0, (2.21)
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where we use [1, Proposition B.1] for the fifth equality and (2.20) for the inequality.
We now define the process Z = (Zt )t=0,...,T by

Zt = ER[VT (�)|Ft ], for all t = 0, . . . T .

Z is a (F, R)-martingale with Z0 < 0 by (2.21). Let ξ be some F-predictable strategy.
Then, as in [14, Remark 9.5] the value process (ξ · S) is a local (F, R)-martingale
and thus (ξ · S) + Z is a local (F, R)-martingale. For the sake of contradiction we
assume that (ξ,�) is aP-robust asymptotic insurance-finance arbitrage such that �
has positive total mass γ > 0. Thus, it holds that

(ξ · S)T + ZT ≥ 0 P-a.s. for all P ∈ P. (2.22)

Given that R|F ∼ P ′|F � 1
N

n∑

i=1
Pi |F , equation (2.22) is also true R-a.s., i.e.,

(ξ · S)T + ZT ≥ 0 R-a.s.. (2.23)

Thus, according to [14, Proposition 9.6] the process (ξ · S) + Z is a (F, R)-
supermartingale and we obtain

ER[(ξ · S)T + ZT ] ≤ (ξ · S)0 + Z0 < 0.

This contradicts (2.23) and there cannot exist aP-robust asymptotic insurance-finance
arbitrage (ξ,�) such that � has positive total mass γ > 0. However, given that the
pure financial market is arbitrage-free with respect to F-predictable trading strategies
ξ , there could also not be an arbitrage (ξ,�) such that � has total mass γ = 0.
Overall, this leads to a contradiction and thus the result is proven. ��
Remark 2.13 Let us compare Theorem 2.12 in the case of P = {P} with Theo-
rem 1 in [26]. According to Assumptions 2.1 and 2.3, each condition (i) and (i i) in
Theorem2.12 implies the absence of arbitrage in the sense ofDefinition 2.5 and there is
no need for an additional boundedness assumption on the density of the corresponding
martingale measures. By contrast, in [26] the boundedness assumption on the density
of the equivalent martingale measure is essential and cannot be substituted by means
of Lemma 2.10, cf. Example 2 in [26].

Motivated by Theorem 2.12 and the previous discussion (see e.g., Equation (2.5)),
we define the following robust version of the QP-rule.

Definition 2.14 Let P ⊆ PN (�,G ) and Q ∈ Me(F). Then, for X ≥ 0 P-q.s., we
define the QP-evaluation of X by

EQ�P [X ] := EQ

[
ess sup
P∈P

EP [X |F ]
]
. (2.24)

Note that Q � P does not define a probability measure as it is the case for Q � P .
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Remark 2.15 (On the choice of Q) If the financial market is complete,Me(F) = {Q}
and there is only one possibly choice for Q. If the market is incomplete, the choice of
Q becomes more difficult. When sufficiently many traded derivatives are available, a
market-consistent Q can be obtained by calibrating the model to those derivatives.

In the insurance context, the most challenging calibration problems occur when
long maturities (like 10 to 30 years) are considered. Here, there are few or even no
tradeable instruments and a good calibration requires much more effort, in particular
to exclude model risk.

Remark 2.16 If the set {EP [X |F ]|P ∈ P} is directed upward, i.e., for all P, P ′ ∈ P
there exists P̃ ∈ P such that

max{EP [X |F ], EP ′ [X |F ]} ≤ EP̃ [X |F ] P0-a.s., (2.25)

then, as demonstrated by [14, Theorem A.37], there exists a sequence of measures
(Pn)n∈N ⊂ P such that

EPn [X |F ] ↗ ess sup
P∈P

EP [X |F ] P0-a.s. for n → ∞.

Using monotone convergence we find that

EQ

[
ess sup
P∈P

EP [X |F ]
]

= lim
n→∞ EQ

[
EPn [X |F ]

]

≤ sup
P∈P

EQ [EP [X |F ]]

≤ EQ

[
ess sup
P∈P

EP [X |F ]
]

and that

EQ�P [X ] = sup
P∈P

EQ [EP [X |F ]] .

Consequently, for a set of priors P that is directed upwards in the sense of
Equation (2.25), there is no P-robust asymptotic insurance-finance arbitrage if and
only if there is no asymptotic insurance-finance arbitrage with respect to P for all
P ∈ P .

Remark 2.17 We now briefly consider the case ofG-trading strategies on the financial
market introduced in Sect. 2.2, i.e., ξ is a d-dimensional G-predictable process. This
reflects the fact that the insurer has access to information on the financial market as
well as on the insurance market. In order to define a no-arbitrage condition for the
financial market, we introduce some more notation. Let P ⊆ PN (�,G ). We say
that a measure Q ∈ P(�,G ) is dominated by P if there exists P ∈ P such that
Q � P , and in this case we write Q ≪ P . Next, we define the set

M(G) := {Q ∈ P(�,G )| Q ≪ P and S is a (Q,G)-martingale}. (2.26)
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In this case we assume that for all P ∈ P there exists Q ∈ M(G) such that P � Q.
Then, according to [6, Theorem 4.5], there is no P-robust arbitrage, denoted by
NA(P,G), on the financial market, which means that for all G-trading strategies

(ξ · S)T ≥ 0 P-q.s. implies (ξ · S)T = 0 P-q.s. (2.27)

Given that every F-trading strategy is also a G-trading strategy, it is clear that
NA(P,G) implies NA(P,F), where G and F refers here to the G-trading strate-
gies and F-trading strategies, respectively. It thus follows that NRIFA(P,G) implies
NRIFA(P,F) and thus (i) or (ii) in Theorem 2.12 is satisfied. Here, NRIFA(P,G)

is defined as in Definition 2.5, but with a G-trading strategy ξ . However, the corre-
sponding if direction of Theorem 2.12 is more delicate and could therefore serve as a
topic for future research.

3 Robust two-step evaluation

In this section we show that Theorem 2.12 provides a theoretical foundation for the so-
called two-step evaluation, cf. [11, 23]. This kind of evaluation is used for the pricing
of hybrid products depending on the financial market, as well as on other random
sources, e.g., individual risks depending on the policy holder of an insurance contract.
The idea of a two-step evaluation is to combine actuarial techniqueswith concepts from
financial mathematics. In the following, we recap the idea and the concept. However,
note that in contrast to the existing literature we do not fix any probability measure on
(�,G ), but only a prior P0 on the measurable space (�,F ).

Let X be aG -measurable random variable, representing the discounted payoff of an
insurance product. In a first step we consider theF -conditional risk of X , i.e. ρF (X),
where ρF is a suitable F -conditional risk measure defined on the space of bounded
random variables on (�,G ), which is denoted by Lb(�,G ). This corresponds to an
actuarial evaluation resulting in a F -measurable random variable ρF (X) defined on
the financial market (�,F , P0). In the second step we price ρF (X) on the financial
market under an equivalent risk-neutral measure Q ∈ Me(F). Combining these, we
arrive at the following two-step evaluation:

π : Lb(�,G ) → R, π(X) = EQ[ρF (−X)]. (3.1)

As already mentioned in [1], the QP-evaluation in (2.5) is a two-step evaluation with
the F -conditional risk measure ρF (X) = EP [X |F ] as well as the new concept
of the robust QP-evaluation from Definition 2.14. In the following we recap some
well-known facts for conditional risk measures in order to highlight that for specific
coherent F -conditional risk measures ρF the two-step evaluation in (3.1) can be
rewritten by a QP-evaluation for a suitable choice of P .
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3.1 Robust representation of conditional risk measures

For the reader’s convenience we recall the definition of conditional risk measures (see
e.g., [14]).

Definition 3.1 A map ρF : Lb(�,G ) → L∞(�,F , P0) is called a convex F -
conditional risk measure, if for all X ,Y ∈ Lb(�,G ) the following holds P0-a.s.:

(i) Conditional cash invariance:ρF (X+ X̄) = ρF (X)− X̄ for any X̄ ∈ Lb(�,F ).
(ii) Monotonicity: X ≤ Y implies ρF (X) ≥ ρF (Y ).
(iii) Normalization: ρF (0) = 0.
(iv) Conditional convexity: ρF (λX + (1 − λ)Y ) ≤ λρF (X) + (1 − λ)ρF (Y ) for

λ ∈ Lb(�,F ) with 0 ≤ λ ≤ 1.

A convex F -conditional risk measure ρF is called coherent if it also satisfies the
following condition:

(v) Conditional positive homogeneity: ρF (λX) = λρF (X) for λ ∈ Lb(�,F ) with
λ ≥ 0.

We say that ρF is continuous from below if

(vi) Continuity from below: Xn ↗ X pointwise on � implies ρF (Xn) ↘ ρF (X).

Moreover, we say that ρ : Lb(�,G ) → R is a (coherent) convex risk measure if
F = {�,∅}.
Definition 3.2 Let S be a financial market on (�,F ,F, P0) and denote byMe(F) the
set of all martingale measures which are equivalent to P0. A map π : Lb(�,G ) → R

is called two-step evaluation if there is a F -conditional risk measure ρF and an
equivalent martingale measure Q ∈ Me(F) such that π(X) = EQ[ρF (−X)] for all
X ∈ Lb(�,G ).

We now show that Theorem 2.12 provides an economic foundation for the pricing of
finance-linked insurance products via two-step evaluations. Indeed, by using results
from [14], we formulate sufficient condition for a conditional risk measure ρF in
a two-step evaluation π(X) = EQ[ρF (−X)] such that π is a QP-evaluation. In
this way, the two-step evaluation π characterizes theP-robust asymptotic insurance-
finance arbitrage-free price as presented in Theorem 2.12.

Lemma 3.3 Let ρF : Lb(�,G ) → L∞(�,F , P0) be a convex F -conditional risk
measure which is continuous from below. Then ρF is represented by

ρF (X) = ess sup
P∈PP0 (�,G )

(
EP [−X |F ] − αmin

F (P)
)

, (3.2)

where the acceptance set AF , the penalty function αmin
F and the set of priors

PP0(�,G ) are defined by

AF := {X ∈ Lb(�,G ) | ρF (X) ≤ 0} ,
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αmin
F (P) := ess sup

X∈AF

EP [−X |F ],

and

PP0(�,G ) := {P ∈ P(�,G ) | P|F = P0} ⊆ PN (�,G ). (3.3)

If, in addition, ρF is a coherent F -conditional risk measure, then there is a subset
P ⊆ PP0(�,G ) such that

ρF (X) = ess sup
P∈P

EP [−X |F ]. (3.4)

Proof In the unconditional case the first statement follows from Theorem 4.16 and
Theorem 4.22 as proven in [14]. Using the same idea as in the proof of Theorem 11.2
in [14] yields the conditional statement. For the second statement we refer to Corollary
4.19 in [14] for the unconditional case. Using similar arguments to those in Corollary
11.6 in [14], the conditional statement follows. ��

Thus, Lemma 3.3 shows that every two-step evaluation π(X) = EQ[ρF (−X)]
given by an equivalent martingale measure Q ∈ Me(F) and a coherentF -conditional
risk measure ρF which is continuous from below can be written as QP-evaluation
π(X) = EQ[ess sup

P∈P
EP [X |F ]] for a suitable subset P ⊆ PP0(�,G ).

Remark 3.4 If we a priori fix the nullsets on (�,G ) by a probability measure P on
(�,G ) such that P|F = P0, then we can define the conditional risk measure ρF on
L∞(�,G , P), instead of working with Lb(�,G ). In this case ρF only needs to be
continuous from above, as opposed to satisfying the stronger assumption of continuity
from below, in order to have a representation as in Lemma 3.3, cf. Theorem 4.33 and
Theorem 11.2 in [14]. The drawback of this approach is that we consider uncertainty in
a narrow sense because we fix all relevant nullsets on (�,G ) using a single probability
measure P . Nevertheless, this also leads to a robust pricing problem in the spirit of
Sect. 2, which will be discussed in more detail in Remark 3.8.

Next, we provide some examples for the set P ⊆ PP0(�,G ) in Lemma 3.3 and the
associated F -conditional risk measure in Equation (3.4).

Example 3.5 Let P be a probability measure on (�,G ) such that P|F = P0. We
consider the set of priors Pλ ⊆ PP0(�,G ) given by

Pλ:=
{
P̃ ∈ PP0(�,G ) | P̃ � P with d P̃/dP ≤ λ−1 P-a.s.

}
for λ ∈ (0, 1).

(3.5)

In this case, the associated risk measure ρF (X) is the conditional average value at
risk, denoted by AVRλ(X |F ), see also Definition 11.8 in [14]. Note that the set Pλ

is dominated by the probability measure P .
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Example 3.6 Let P be a probability measure on (�,G ) such that P|F = P0. We
consider the set of priors Pc ⊆ PP0(�,G ) for c > 0 given by

Pc:=
{
P̃ ∈ PP0(�,G ) | H(P̃|P) ≤ c

}
, (3.6)

where H(P̃|P) denotes the relative entropy of P̃ with respect to P and is defined by

H(P̃|P) :=
{
EP̃

[
log d P̃

d P

]
, if P̃ � P

+∞, otherwise.

Here, the associated risk measure ρF (X) is the coherent entropic risk measure, intro-
duced in [13].As inExample 3.5, the setPc is dominated by the probabilitymeasureP .

In the following proposition we show that pricing with two-step evaluations leads to
arbitrage-free premiums in the sense of Sect. 2. This remarkable result is a consequence
of Lemma 3.3 and Theorem 2.12.

Proposition 3.7 Let S be a financial market on (�,F ) and let π be a two-step
evaluation with F -conditional convex risk measure of the form (3.4) for the set
P = {P ∈ PN (�,G )|αmin

F (P) < ∞}. Assume that X = (Xi )i∈N is a sequence of
insurance benefits fulfilling Assumption 2.1 and assume that p < π(X1). Then there
is NRIFA(P) with respect to the insurance-finance market (S,X , p).

Proof The result is a direct consequence of Theorem 2.12, since the QP-evaluation
is an upper bound for the two-step evaluation π and the chosen premium p is even
smaller by assumption. ��

3.2 Construction of conditional iid copies

Our next goal is to apply Theorem 2.12 in the context of a robust two-step evaluation.
More specifically, given a random variable X̃ describing an insurance benefit, we
determine a robust arbitrage-free premium p for X̃ by using Theorem 2.12 and by
taking into account some actuarial constraints, which are reflected by the set of priors
P ⊆ PN (�,G ) (see e.g., the setsPλ andPc in Example 3.5 and 3.6, respectively).

To do so, two factors must to be considered. First, the assumptions of Theorem 2.12
must be satisfied. To this end, we construct a sequence of benefits (X j ) j∈N which are
copies of X̃ and which satisfy Assumption 2.1. Second, the set of priors P must be
shifted to the product space where we model the benefits (X j ) j∈N. We observe that
these steps contain some subtleties which we discuss in more detail in Remark 3.8
after formally introducing the setting.

Let (�F ,F F ) and (�I ,F I ) be two measurable spaces on which we model
purely financial and purely insurance events, respectively. On the product space
(�F × �I ,F F ⊗ F I ) we introduce the stochastic process S̃ = (S̃t )t=0,...,T and
the random variable X̃ describing the financial market and a single insurance benefit,
respectively. Moreover, let P0 be a measure on (�F × �I ,F F ⊗ {∅,�I }) which
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determines the nullsets in F F ⊗ {∅,�} and P be a set of probability measures on
(�F × �I ,F F ⊗ F I ) such that

P|F F⊗{∅,�I } ∼ P0 for all P ∈ P.

Wenow shiftP to a set of priorsμP on (�F ×(�I )N,F F ⊗(F I )⊗N). Furthermore,
on this space we copy the financial market S̃ to S and construct insurance benefits
(X j ) j∈N which are iid conditionally on S such that for all P ∈ P the law of (S, X j )

for j ∈ N under μP coincides with the law of (S̃, X̃) under P .

Remark 3.8 We also emphasize that if the set P is dominated by a measure P ∈ P ,
as is the case in Example 3.5 and 3.6, this will no longer hold for the shifted set
μP . The reason for this is that absolute continuity of measures is not stable under
countable products. Therefore, the seemingly not robust problem in the dominated
case on (�F × �I ,F F ⊗ F I ,P) is indeed a robust pricing problem on (�F ×
(�I )N,F F ⊗ (F I )⊗N, μP ).

To be precise, we define

�̃ := �F × �I , � := �F × (�I )N,

F̃ := F F ⊗ {�I ,∅}, F := F F ⊗ {�I ,∅}⊗N,

G̃ := F F ⊗ F I , G := F F ⊗ (F I )⊗N.

We denote by ω̃ = (ω̃F , ω̃I ) an element in �̃ and by ω = (ωF , (ωI
j ) j∈N) an element

in �. Furthermore, we introduce the following projections on �̃:

π̃�F : �̃ → �F, π̃�F (ω̃) = ω̃F,

π̃�I : �̃ → �I , π̃�I
j
(ω̃) = ω̃I ,

as well as the following the projections on �:

π�F : � → �F, π�F (ω) = ωF,

π�I
j
: � → �I , π�I

j
(ω) = ωI

j .

Given ameasure P on (�̃, G̃ ), the aim is to define a probability measureμP on (�,G )

which fulfills the following properties:

The law of (π�F , π�I
j
) under μP equals P for all j ∈ N, (3.7)

and

(π�I
j
) j∈N areF-conditionally independent under μP . (3.8)
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If P is a product measure given by P = PF ⊗ PI for measures PF on (�F ,F F )

and PI on (�I ,F I ), then the measure μP can be defined by μP = PF ⊗ (PI )⊗N.
Otherwise, we construct μP via disintegration as follows. For some measure P on
(�̃, G̃ ) the measure μp is defined as

μP (A × B):=
∫

1
π̃−1

�F (A)
(P π̃

�I |F̃ )⊗N(B)dP for A ∈ F F and B ∈ (F I )⊗N,

(3.9)

where P π̃
�I |F̃ denotes the regular version of the conditional probability of π̃�I given

F̃ (see e.g., [16, Chapter 8]). Note that we implicitly assume its existence. This is no
restriction, however, because �F , representing a financial market with d + 1 assets
and T time steps, can always be assumed to have the form �F = R

(d+1)×(T+1) and,
thus, is a Borel space. Moreover, using a monotone class argument, it follows that

(P π̃
�I |F̃ )⊗N : (F I )⊗N × �̃ → [0, 1]

(B, ω̃) �→ (P π̃
�I |F̃ (·, ω̃))⊗N(B)

is a probability kernel from (�̃, G̃ ) to (�,G ) and, thus, themeasureμP is well defined.
If P is a measure on (�̃, F̃ ), then (3.9) defines a measure on (�,F ). In this case we
have B = �N. Note that by using (3.9) we get the following:

μP (A × (�I )N) = P(A × �I ) for all A ∈ F F

and thus P|F̃ ∼ P0 implies μP |F ∼ μP0 for all P ∈ P .

Let F̃ = (F̃t )t≤T with F̃t :=F F
t ∨{�I ,∅}, be a filtration on (�̃, F̃ ). Hereafter, we

assume that S̃ = (S̃t )t≤T is a F̃-adapted stochastic process on (�̃, F̃ ) describing the
prices in a financial market. Moreover, letMe(F̃) be the set of all martingale measures
on (�̃, F̃)which are equivalent some fixed measure P0 on (�̃, F̃ ). The insurance and
financial filtration on (�̃, G̃ ) is denoted by G̃ = (G̃t )t≤T and the insurance benefit, a
random variable on (�̃, G̃ ), is denoted by X̃ . In order to shift all quantities to (�,G )

we define

F = (Ft )t≤T with Ft :=F F
t ∨ {�I ,∅}⊗N,

G = (Gt )t≤T with Gt :=σ((π�F , π�I
j
) : � → (�̃, G̃t )| j ∈ N),

and

St :=S̃t ◦ (π�F , π�I
1
) = S̃t ◦ (π�F , π�I

j
) for all j ∈ N, t = 0, . . . , T ,

X j :=X̃ ◦ (π�F , π�I
j
) for all j ∈ N.
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Note that S̃t is assumed to be measurable with respect to F̃t ⊆ F̃ and, thus, it does
not depend on the second coordinate ω̃I .

We show that themeasureμP defined in (3.9) satisfies the desired properties in (3.7)
and (3.8) and is the unique measure with this property. For the reader’s convenience
we provide the proofs of these results in detail in the Appendix.

Proposition 3.9 ThemeasureμP , as defined by (3.9), is the unique measure on (�,G )

which fulfills (3.7) and (3.8).

Next, we characterize the set of all equivalent martingales measures on (�,F ).

Proposition 3.10 The set Me(F) of all measures on (�,F ) such that S is a F-
martingale and which are equivalent to μP0 is given by

Me(F) = {μQ |Q ∈ Me(F̃)}.

Proposition 3.11 For any P ∈ P and Q ∈ Me(F̃) we have the following:

EQ[EP [X̃ |F̃ ]] = EμQ [EμP [X1|F ]],

EQ[ess sup
P∈P

EP [X̃ |F̃ ]] = EμQ

[

ess sup
P∈P

EμP [X1|F ]
]

.

We emphasize that Theorem 2.12 and Proposition 3.11 build a foundation of
two-step evaluations from a new perspective. We shift the insurance benefit to an
insurance-finance market such that the assumptions for Theorem 2.12 are fulfilled and
characterize the robust insurance-finance arbitrage-free prices therein. Then, Proposi-
tion 3.11 shows that the prices in the shifted insurance-finance market coincide with
the two-step evaluation of the initial benefit.

Summarizing, the QP-evaluation provides a valuation methodology which
excludes a robust insurance-finance arbitrage in the above sense. While the argument
involves the conditional strong law of large numbers, and thus infinitely many insur-
ance contracts, the QP-evaluation also provides a highly reasonable valuation rule
when only finitely many contractors are available. However, with only finitely many
contracts, the no-arbitrage concept becomes less powerful: this phenomenon arises,
because the theoretical limit, the conditional expectation, is not fully reached in this
case. Consequently, this would permit higher prices without necessarily creating an
insurance-finance arbitrage since always a small risk remains.

4 Modeling of insurance-financemarkets

In this section we provide models for insurance-finance markets and calculate the
robust insurance-finance arbitrage-free premium by means of the QP-evaluation, cf.
Theorem 2.12 and Definition 2.14.

As in Sect. 2.2, let S0 be the bank account and denote by S1 = (S1t )t=0,...,T the
non-discounted price process of a risky asset on (�,F ). We fix the F -nullsets N
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generated by a probability measure P0 ∈ P(�,F ). We assume that the filtration F is
generated by S0 and S1. Next, we introduce theN0-valued random variables τ 1 and τ 2

representing the time of death and the time of surrender of a policy holder, respectively.
Let the σ -algebra G be given by G = F ∨ σ(τ 1) ∨ σ(τ 2) and the filtration G given
by G = F ∨ H, where H is the filtration generated by the processes (1{τ 1≤t})t=0,...,T

and (1{τ 2≤t})t=0,...,T . Note that τ 1 and τ 2 are G-stopping times but, in general, they
are not F-stopping times.

Given a parameter set �, we introduce the law of the stopping times (τ 1, τ 2) under
the parameterized set of priors P� = (Pθ )θ∈� ⊆ PN (�,G ). In particular, we
assume that for each Pθ ∈ P� the conditional laws of τ 1 and τ 2 are given by

Pθ (τ 1 ≤ t |F ):=FF
1 (θ, t) and Pθ (τ 2 ≤ t |F ):=FF

2 (θ, t) for t ∈ N0, (4.1)

where for fixed θ ∈ � the mappings FF
1 (θ, ·) and FF

2 (θ, ·) are F -conditional dis-
tribution functions.

4.1 Modeling under conditional independence

In this subsection we assume that under every Pθ ∈ P� the random variables τ 1 and
τ 2 areF -conditionally independent, i.e.,

Pθ (τ 1 ≤ s, τ 2 ≤ t |F ):=FF
1 (θ, s)FF

2 (θ, t) for s, t ∈ N0. (4.2)

In order to determine the law of (S, τ 1, τ 2) under Pθ it now remains to introduce the
restricted measures Pθ |F ∼ P0 and use disintegration. However, we could assume
that Pθ |F = P0 for all θ ∈ � since the QP-evaluation is invariant under the specific
choice of the measures {Pθ |F |θ ∈ �} as the set of equivalent martingale measures
Me(F) only depends on the nullsets N generated by P0.

We introduce the discounted survival benefit Xsurvival and the discounted surrender
benefit Xsurrender by

Xsurvival:=1{τ 1>T ,τ 2>T }Y 1(S0T )−1, (4.3)

Xsurrender:=
T−1∑

t=1

1{τ 1>t,τ 2=t}Y 2
t (S0t )

−1, (4.4)

where Y 1 is a F -measurable random variable and Y 2 := (Y 2
t )t=0,...,T is a F-adapted

process. The insurance benefit X is then given by

X :=Xsurvival + Xsurrender. (4.5)

Policy holder with such a policy receive the payment Y 1 at maturity T if they survives
until T and do not surrender before time T . If they surrender at time t < T they receive
the payment Y 2

t .
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Example 4.1 We define the process V = (Vt )t=0,...,T by

Vt := K (t) + (St − K (t))+ with K (t) := (1 + rG)t K (4.6)

for K ∈ R+ and rG > −1. Here, rG denotes the interest rate associated with a
guarantee K . Furthermore, we assume that in case a policy holder surrenders the
contract at time t , he will receive the payment (1− l)Vt for l ∈ [0, 1], where l denotes
the penalty in form of a proportional deduction of the actual value. Thus, we set
Y 1:=VT and Y 2

t :=(1 − l)Vt for t = 0, . . . , T − 1.

Example 4.2 We consider the parameter set � := B × C :=[b, b] × [c, c] ⊆ R
2
>0 and

assume that for every θ = (b, c) ∈ � the conditional distribution function of the time
of death in (4.1) is given by the well-known Gompertz model, i.e.,

FF
1 (θ, t) = Pθ (τ 1 ≤ t |F ) := 1 − exp

(
−

t−1∑

s=0

becs
)
. (4.7)

In this example we assume that a policy holder is not allowed to surrender, which can
be realized by setting τ2 := +∞.

We set S0t := (1 + r)t for some risk-free rate r > 0 and assume that S1 follows a
Cox-Ross-Rubinstein model (CRR model) (see Section 5.5 in [14]). This means that
the stock price at time t = 1, . . . , T is given by the higher value S1t = S1t−1(1+u) for
t = 1, . . . , T with probability 0 < p < 1 and by the lower value S1t = S1t−1(1 + v)

for t = 1, . . . , T with probability 1 − p, such that −1 < v < u and v < r < u.
We denote by Rt := S1t /S

1
t−1 the returns at time t for t = 1, . . . , T . Then the unique

equivalent martingale measure in this market can be characterized by the measure Q
on (�,F ) such that R1, . . . , RT are independent and

Q(Rt = 1 + u) = r − v

u − v
and Q(Rt = 1 + v) = u − r

u − v
for all t = 1, . . . , T .

(4.8)

We apply the QP�-evaluation to X = Xsurvival given by (4.3) and Example 4.1 and
get

EQ�P�
[X ] = EQ

[
ess sup

θ∈�

[
1{τ 1>T }VT (1 + r)−T |F

] ]

= EQ

[
VT (1 + r)−T ess sup

θ∈�

(1 − FF
1 (θ, T ))

]

= EQ

[
VT (1 + r)−T ess sup

θ∈�

exp
(

−
T−1∑

s=0

becs
)]

= (1 + r)−T exp

(
−

T−1∑

s=0

becs
)(

K (T ) + EQ

[
(S1T − K (T ))+

])
,
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where the arbitrage-free price for (S1T − K (T ))+ is given by

EQ[(ST − K (T ))+]

=
T∑

k=0

(
T

k

)(
r − v

u − v

)k (u − r

u − v

)T−k

(S10(1 + u)k(1 + v)T−k − K (T ))+.

In this example themap (b, c) �→ EPθ

[
1{τ 1>T }VT (1 + r)−TF

]
is strictly decreasing

in b and c. Thus, based on Remark 2.16, it holds that

EQ�P�

[
1{τ 1>T }VT (1 + r)−T

]
= sup

θ∈�

EQ�Pθ

[
1{τ 1>T }VT (1 + r)−T

]
. (4.9)

In other words, theP�-robust price equals the worst-case price of all possiblemodels.

Remark 4.3 This example can be generalized by considering random F -measurable
risk factors b and c taking values in [b, b] and [c, c], respectively. Note that this is in
line with Assumption 2.1.

Example 4.4 We extend Example 4.2 and consider an insurance benefit which includes
a surrender option. The parameter set � is now given by � := A × B × C × D :=
[a, a] × [b, b] × [c, c] × [d, d] ⊆ R × R

3
>0 and for every θ = (a, b, c, d) ∈ � the

conditional distribution functions of τ 1 and τ 2 in (4.1) are given by (4.7) and

FF
2 (θ, t) = Pθ (τ 2 ≤ t |F ) := 1 − exp

(

− 1

d

t−1∑

s=0

(a − S1s )
2

)

. (4.10)

The conditional probability to surrender before or at time t in (4.10) tends to one if
(a − Ss)2 increases. The intuition behind this, which is related to the definition of the
insurance benefitV in (4.6), is as follows: if the value of the asset decreases, the value of
the benefit V will also decline. Therefore, the insurance seeker faces the risk of ending
up with K (t) and thus the probability of needing to surrender increases. Conversely, if
the value of the asset increases, the value of V increases as well, giving the insurance
seeker an incentive to surrender. Obviously, in both cases these considerations further
depend on the penalty parameter l. In summary, it is more likely that the insurance
seeker surrenders in case the value of the asset deviates too much from the level a.

In applications, we can choose, for example, the parameter set � as the confidence
intervals around the empirically observed values of (a, b, c, d). The QP�-evaluation
of the benefit X given by (4.5) and Example 4.1 is then given by

EQ�P�
[X ]

= EQ�P�

[
1{τ 1>T ,τ 2>T }VT (1 + r)−T +

T−1∑

t=1

1{τ 2=t}1{τ 1>t}(1 − l)Vt (1 + r)−t
]

= EQ

[
ess sup

θ∈�

EPθ

[
1{τ 1>T ,τ 2>T }VT (1 + r)−T
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+
T−1∑

t=1

1{τ 2=t}1{τ 1>t}(1 − l)Vt (1 + r)−t
∣∣F
]]

= EQ

[
ess sup

θ∈�

(
(1 − FF

1 (θ, T ))(1 − FF
2 (θ, T ))VT (1 + r)−T

+
T−1∑

t=1

(FF
2 (θ, t) − FF

2 (θ, t − 1))(1 − FF
1 (θ, t))(1 − l)Vt (1 + r)−t

)]

= EQ

[
ess sup

θ∈�

(
exp

(
−

T−1∑

s=0

becs
)
exp

(− 1

d

T−1∑

s=0

(a − S1s )
2) VT

(1 + r)T

+ (1 − l)
T−1∑

t=1

(
exp

(
− 1

d

t−2∑

s=0

(a − S1s )
2
)

− exp
(− 1

d

t−1∑

s=0

(a − S1s )
2)
)
exp

(
−

t−1∑

s=0

becs
)

Vt
(1 + r)t

)]

=:EQ

[
ess sup

θ∈�

G(ω, a, b, c, d)

]
, (4.11)

For fixed ω ∈ � it is easy to see that the function Gω := G(ω, ·) : � → R is
decreasing in b and c. Additionally, a short calculation shows that Gω is increasing in
d. Thus (4.11) falls to

EQ�P�
[X ] = EQ

[
ess sup

(a,d)∈A×D
G(ω, a, b, c, d)

]
. (4.12)

Moreover, we want to compare the robust price in (4.12) with the supremum over
all classical QPθ -evaluations for θ ∈ �, which is given by

sup
θ∈�

EQ�Pθ [X ] = sup
θ∈�

EQ
[
EPθ [X |F ]] = sup

a∈A
EQ

[
G(ω, a, b, c, d)

]
. (4.13)

For the numerical evaluation we consider the time horizon T = 8 and use the
following parameters. In the CRR model we set S10 = 100, r = 0.05, u = 0.1,
and v = −0.1. Furthermore, we fix the strike K = 100, the penalty parameter
l = 0.1, and the guaranteed interest rate rG = 0.01. The parameter set � is given
by � := [50, 340]× [0.02, 0.03]× [0.01, 0.05]× [104, 105] . To calculate the value
of the robust QP�-evaluation in (4.12), we maximize for each path ω ∈ � the
function Gω over � by using the Nelder–Mead method. As already noted above, due
to the monotonicity properties of Gω with respect to b, c and d, we only optimize
over a ∈ A. In particular, we get the following numerical results for EQ�P�[X ] and
supθ∈� EQ�Pθ [X ]:

EQ�P�
[X ] = 88.38 and sup

θ∈�

EQ�Pθ [X ] = 87.61, (4.14)
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Fig. 1 Asymptotic
insurance-finance arbitrage-free
premium for a ∈ [50, 350] and
fixed parameters b, c and d

with the difference � := EQ�P�
[X ] − supθ∈� EQ�Pθ [X ] given by � = 0.67.

These results indicate that the robust price, which reflects the model risk and which
guarantees that the finance-insurance market is arbitrage-free, is strictly greater than
the worst case price of all possible models. We illustrate the different premiums in
Figure 1.

4.2 Modeling conditional dependence with copulas

In Sect. 4.1 we assumed that the random times τ 1 and τ 2 areF -conditionally indepen-
dent, see Eq. (4.2).We now drop this assumption and allow some dependence between
τ 1 and τ 2 which is modelled by a family of copulas (Cθ )θ∈�. We assume that under
each Pθ ∈ P� the law of (τ 1, τ 2) is described by its marginal distribution functions
FF
1 (θ, ·) and FF

2 (θ, ·) and the copula Cθ : [0, 1]2 → [0, 1] such that

Pθ (τ 1 ≤ s, τ 2 ≤ t |F ) = Cθ (FF
1 (θ, s), FF

2 (θ, t)) for s, t ∈ N0. (4.15)

We introduce the following notation for the marginal conditional survival probabili-
ties:

F̄F
1 (θ, t) := 1 − FF

1 (θ, t) and F̄F
2 (θ, t) := 1 − FF

2 (θ, t) for t ∈ N0.

The conditional survival function of (τ 1, τ 2) is then given by

Pθ (τ 1 > s, τ 2 > t |F )

= F̄F
1 (θ, s) + F̄F

2 (θ, t) − 1 + Cθ (1 − F̄F
1 (θ, s), 1 − F̄F

2 (θ, t)), (4.16)

which can be described by Ĉθ : � × [0, 1]2 → [0, 1] defined by

Ĉθ (u, v) := u + v − 1 + Cθ (1 − u, 1 − v),

such that (4.16) can be rewritten in

Pθ (τ 1 > s, τ 2 > t |F ) = Ĉθ (F̄F
1 (θ, s), F̄F

2 (θ, t)).

Note that Ĉθ is also a copula, cf. [22, Section 2.6].
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Example 4.5 A suitable class of copulas Cθ that depends on only one parameter is
the class of Archimedean copulas (see [22, Section 4.2] or [27] for further details
and related literature). Most of these copulas can be represented by an explicit for-
mula, which leads to a high tractability for applications. The copula Cθ (u1, u2) =
C(u1, u2) := u1u2 reflects the setting of Sect. 4.1, cf. Equation (4.2).

Let us consider the insurance benefit X given in (4.5) and evaluate this benefit with
the QP�-rule. For Q ∈ Me(F) we get

EQ�P�
[X ]

= EQ�P�

[
1{τ 1>T ,τ 2>T }Y 1(1 + r)−T +

T−1∑

t=1

1{τ 1>t,τ 2=t}Y 2
t (1 + r)−t

]

= EQ

[
ess sup

θ∈�

EPθ

[
1{τ 1>T ,τ 2>T }Y 1(1 + r)−T

+
T−1∑

t=1

1{τ 1>t,τ 2=t}Y 2
t (1 + r)−t

∣∣F
]]

= EQ

[
ess sup

θ∈�

(
Y 1(1 + r)−T Pθ [τ 1 > T , τ 2 > T |F ]

+
T−1∑

t=1

Y 2
t (1 + r)−t Pθ [τ 1 > t, τ 2 = t |F ]

)]

= EQ

[
ess sup

θ∈�

(
Y 1(1 + r)−T Ĉθ (F̄F

1 (θ, T ), F̄F
2 (θ, T ))

+
T−1∑

t=1

Y 2
t (1+r)−t

(
Ĉθ
(
F̄F
1 (θ, t), F̄F

2 (θ, t − 1)
)

−Ĉθ
(
F̄F
1 (θ, t), F̄F

2 (θ, t)
)))]

, (4.17)

where we use in (4.17) that

Pθ (τ 1 > t, τ 2 = t |F ) = Pθ (τ 1 > t, τ 2 > t − 1|F ) − Pθ (τ 1 > t, τ 2 > t |F )

=Ĉθ
(
F̄F
1 (θ, t), F̄F

2 (θ, t−1)
)

−Ĉθ
(
F̄F
1 (θ, t), F̄F

2 (θ, t)
)

.

Example 4.6 We briefly show that the Cox model fits in the framework introduced
above. To do this, let �i = (�i

t )t=0,...,T with �i
0 = 0 for i = 1, 2 be two increasing

processes on (�,F , P0) and E1 and E2 two random variables on (�,G ). For the
parameter set

� := �1 × �2 × � := [
γ 1, γ 1

]× [
γ 2, γ 2

]× [
ξ, ξ

] ⊆ R
2
>0 × R,
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we chooseP� ⊆ PN (�,G ) such that for any Pθ ∈ P� with θ = (γ 1, γ 2, ξ) ∈ �

it holds that

E1 ∼Pθ

exp(γ 1) and E2 ∼Pθ

exp(γ 2).

Moreover, E1 and E2 are assumed to be conditionally independent of F under each
Pθ ∈ P�. We define the default times τ 1 and τ 2 using

τ i := inf{t ∈ N0 | �i
t ≥ Ei }, i = 1, 2,

where we use the convention inf ∅ := ∞. In this case FF
1 (θ, t) and FF

2 (θ, t) are
given by

FF
1 (θ, t) = 1 − e−γ 1�1

t and FF
2 (θ, t) = 1 − e−γ 2�2

t for t ∈ N0.

Remark 4.7 ACoxmodel with a single default time under uncertainty is studied in [4].
In contrast to Example 4.6, the authors consider uncertainty on the financial market
while the law of the random variable E is fixed.

Conclusion

In this paper we introduce the notion of robust asymptotic insurance-finance arbitrage
and characterize the absence of such an arbitrage. Our main theorem provides an
economic foundation for the pricing of finance-linked insurance products via QP-
evaluations. Moreover, we show that valuation principles from a specific class of two-
step evaluations can be written as QP-evaluation. We also apply our results to model
an insurance-finance market, before concluding with some numerical observations.

Appendix A. Proofs of Sect. 3

Proposition A.1 The law of (π�F , π�I
j
) under μP equals P for all j ∈ N. Moreover,

given any j ∈ N, the law of (S, X j ) under μP equals the law of (S̃, X̃) under P.

Proof Let A ∈ F F and C ∈ F I . Then it holds that

μ

(π
�F ,π

�I
j
)

P (A × C)=
∫

1{π̃
�F ∈A}(P π̃

�I |F̃ )⊗N(�I × · · ·×�I × C × �I × · · · )dP

=
∫

1{π̃
�F ∈A}P π̃

�I |F̃ (C)dP

= P(A × C) for all j ∈ N,
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where we use the definition of the conditional probability and the tower property in
the third equality. The second statement follows by

μ
(S,X j )
P =

(

μ

(π
�F ,π

�I
j
)

P

)(S̃,X̃)

= P(S̃,X̃) for all j ∈ N.

��

Proposition A.2 Let j ∈ N and νP be a measure on (�,G ) which fulfills (3.7), i.e.,

ν

(π
�F ,π

�I
j
)

P = P for all j ∈ N.

Then it holds for all A ∈ F I that

EνP [1{π
�I
j
∈A}|F ]

= EP [1{π̃
�I ∈A}|F̃ ] ◦ (π�F , π�I


) νP-a.s. forall A ∈ F I and  ∈ N. (A.1)

Proof Let B ∈ F and A ∈ F I . Then we have

∫
1B1{π

�I
j∈A

}dνP =
∫

(1π
�F (B) ◦ π�F )(1A ◦ π�I

j
)dνP

=
∫

(1π
�F (B) ◦ π̃�F )(1A ◦ π̃�I )dP

=
∫

(1π
�F (B) ◦ π̃�F )EP [(1A ◦ π̃�I )|F̃ ]dP

=
∫

1B EP [(1A ◦ π̃�I )|F̃ ] ◦ ((π�F , π�I

))dνP ,

where we use (3.7) in the second equality and π̃−1
�F

(π�F (F)) ∈ F̃ in the third equality.
��

Proposition A.3 The projections (π�I
j
) j∈N are F -conditionally iid under μP and

consequently also the insurance benefits (X j ) j∈N areF -conditionally iid under μP .

Proof We must show that for every finite subset J ⊂ N and A j ∈ F I for all j ∈ J
that

EμP

⎡

⎣
∏

j∈J

1{π
�I
j
∈A j }

∣∣∣∣F

⎤

⎦ =
∏

j∈J

EμP

[
1{π

�I
j
∈A j }

∣∣∣∣F
]

.
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This follows because for every B ∈ F , it holds that

EμP

⎡

⎣1B

∏

j∈J

1{π
�I
j
∈A j }

⎤

⎦ = EP

⎡

⎣1
π̃−1

�F (π�F (B))

∏

j∈J

P π̃
�I |F̃ (A j )

⎤

⎦

= EP

⎡

⎣1
π̃−1

�F (π�F (B))

∏

j∈J

EP

[
1{π̃

�I ∈A j }|F̃
]
⎤

⎦

= EμP

⎡

⎣1B

∏

j∈J

EP

[
1{π̃

�I ∈A j }|F̃
]
] ◦ (π�F , π�I

1
)

⎤

⎦

=
∫

1B

∏

j∈J

Eμp [1{π
�I
j
∈A j }|F ]dμP ,

wherewe use the definition ofμP given in (3.9) in the first equality and PropositionA.2
in the fourth equality. ��
Proposition A.4 The measure μP defined by (3.9) is the unique measure on (�,G )

which fulfills (3.7) and (3.8).

Proof Using Proposition A.1 and Proposition A.3 the measure μP fulfills (3.7) and
(3.8). Moreover, let νP be a measure on (�,G ) which also satisfies (3.7) and (3.8)
(whereμP is replaced by νP ). Let J ⊂ N be a finite subset and A ∈ F F andC j ∈ F I

for all j ∈ J . Then for D given by

D = π−1
�F (A) ∩

⋂

j∈J

π−1
�I

j
(C j ) (A.2)

we get the following

νP (D) = EνP

[
1

π−1
�F (A)

EνP

[∏

j∈J

1π
�I
j
∈C j |F

]]

= EνP

[
1

π−1
�F (A)

∏

j∈J

EνP

[
1π

�I
j
∈C j |F

]]

= EνP

[
1

π−1
�F (A)

∏

j∈J

EP

[
1π̃

�I ∈C j |F̃
]

◦ (π�F , π�I
1
)

]

= EP

[
1

π̃−1
�F (A)

∏

j∈J

EP

[
1π̃

�I ∈C j |F̃
]]

,

where we use (3.8) in the third equality and Proposition A.2 in the fourth equality. The
same calculations can be done for μP . The sets in (A.2) form a ∩-stable generator of
G and thus we obtain μP = νP . This demonstrates the uniqueness. ��
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Proposition A.5 The set Me(F) of all measures on (�,F ) such that S is a F-
martingale and which are equivalent to μP0 is given by

Me(F) = {μQ |Q ∈ Me(F̃)}.

Proof We show that for all t, s ∈ {0, . . . , T } it holds that

EμQ [St |Fs] = EQ[S̃t |F̃s] ◦ (π�F , π�I
1
). (A.3)

Let Bs ∈ Fs, then we have

EμQ [1Bs St ] = EμQ

[
1Bs S̃t ◦ (π�F , π�I

1
)
]

= EQ

[
1

π̃−1
�F (π

�F (Bs ))
S̃t

]

= EQ

[
1

π̃−1
�F (π

�F (Bs ))
EQ[S̃t |F̃s]

]

= EμQ

[
1Bs EQ[S̃t |F̃s] ◦ (π�F , π�I

1
)
]

(A.4)

Thus, it follows (A.3) and so we can conclude that Q ∈ Me(F̃) impliesμQ ∈ Me(F).

The equivalence of μP0 and μQ follows from the equivalence of P0 and Q. For the
other inclusion, let R ∈ Me(F). We now show that there exists Q ∈ Me(F̃) such that
R = μQ . Define Q by

Q := Rπ
�F (π̃�F (·)).

Then, by changing the roles of π�F and π̃�F the result follows using (A.4). ��
Proposition A.6 For any P ∈ P and Q ∈ Me(F̃) we have the following:

EQ

[
EP [X̃ |F̃ ]

]
= EμQ [EμP [X1|F ]],

EQ

[
ess sup
P∈P

EP [X̃ |F̃ ]
]

= EμQ

[

ess sup
P∈P

EμP [X1|F ]
]

.

Proof By using the same arguments as in the proof of Proposition 3.10, we find that

EμP [X1|F ] = EP [X̃ |F̃ ] ◦ (π�F , π�I
1
).

This implies that

EμQ

[
EμP [X1|F ]

]
= EμQ

[
EP [X̃ |F̃ ] ◦ (π�F , π�I

1
)
]

= EQ

[
EP [X̃ |F̃ ]

]
.

The second statement follows analogously. ��
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