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Abstract
This paper presents a new representation of preference orderings for the study of 
ambiguity-related decision-making. The central feature is a preference-based 
decomposition of subjective probabilities that provides information about inher-
ent ambiguity. The probability decomposition is combined with a utility function 
reflecting the decision-maker’s attitude toward ambiguity. The proposed theory gen-
eralizes Savage’s SEU and allows for a straightforward measurement of ambiguity 
and ambiguity aversion while keeping concepts for measuring risk and risk attitudes 
unaffected. For the measurement of ambiguity, concepts of probability theory can be 
used since decision acts can be interpreted as two-dimensional probability distribu-
tions. The proposed measure of ambiguity aversion exploits the properties of the 
utility function in the same way as the Arrow/Pratt measure of risk aversion.

Keywords Ambiguity · Knightian uncertainty · Subjective probability · Ambiguity 
aversion

JEL Classification D81

1 Introduction

Savage’s (1972) subjective expected utility (SEU) theory is one of the most impor-
tant achievements in decision theory. It brilliantly combines a subjective interpre-
tation of probability with von Neumann and Morgenstern’s (1944) expected utility 
theory laying a solid foundation for manifold theoretical developments in informa-
tion economics, principal-agent theory, and portfolio and capital market theory. The 
basic idea is that preferences for decision acts are based on probabilities for deci-
sion-relevant events. From which considerations, if any, these probabilities follow 
is beyond the scope of SEU. For the decision-maker, however, the extent to which 
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probability estimates are supported by event-specific knowledge can make a dif-
ference. Following this idea, Knight (1921) argued that confidence in probabilities 
plays a role in decision-making. Ellsberg’s (1961) famous thought experiments sup-
ported this view by suggesting that bets on events with well-specified probabilities 
are preferred over ambiguous bets where event-specific knowledge is not available. 
Numerous empirical studies have confirmed the relevance of ambiguity aversion for 
decision-making.

Ambiguity aversion implies a violation of Savage’s Sure Thing Principle, which 
is the element of SEU that ensures the additivity of the probability measure. Con-
sequently, the Sure Thing Principle was substituted by weaker assumptions lead-
ing to Choquet’s expected utility (CEU) theory which applies nonadditive proba-
bilities (capacities). For its axiomatization, Schmeidler (1989) used the Anscombe 
and Aumann (1963) approach assuming the existence of lotteries with exogenously 
determined probabilities. Gilboa (1987) applied Savage’s setup and thus established 
CEU on a purely subjective basis. Schmeidler (1986) showed that CEU conforms 
to the minimization of expected utility across probability measures in the core of 
the capacity when nonadditive probabilities are convex, which can be interpreted as 
a special kind of ambiguity aversion. However, a separation of ambiguity percep-
tion and ambiguity attitude is hardly possible, since CEU differs from SEU only in 
the nonadditivity of probabilities. More recent approaches attempt to overcome this 
problem.

As a close relative to CEU, Gilboa and Schmeidler (1989) axiomatized maxmin 
expected utility (MEU) theory, which postulates the existence of a set of probabil-
ity measures from which the most unfavorable one is chosen. A refinement is the �
-maxmin expected utility theory ( �-MEU), introduced by Ghirardato et al. (2004), 
which uses a weighted mean of expected utilities based on the most favorable and 
the most unfavorable subjective probability measure. The weight can be interpreted 
as a coefficient measuring the decision-maker’s ambiguity aversion. An even bet-
ter prerequisite for the separation of ambiguity perception and ambiguity attitude 
is provided by approaches that use second-order probabilities and second-order 
utility functions. Klibanoff et al. (2005) developed a representation where second-
order expected utilities based on second-order probabilities (Smooth Ambiguity 
Preferences) are used to account for ambiguity. Nau (2006), Ergin and Gul (2009), 
Seo (2009), and Denti and Pomatto (2022) presented alternative axiomatizations. 
An issue is that second-order probabilities and second-order utilities are difficult to 
determine empirically.1

This paper contributes to the literature by presenting a new representation of 
ambiguity-related preferences without nonadditive or second-order probabili-
ties. The representation is computationally simple, entails SEU as a special case, 
explains all common types of Ellsberg phenomena, and offers a variety of possi-
bilities for separating and measuring ambiguity perception and ambiguity atti-
tude. Moreover, methods for the elicitation of the applied constructs are straight-
forward. The basic idea is that ambiguity results from a lack of knowledge that 
makes event-specific probability estimates impossible and requires the application 

1 On this problem, see for example Epstein (2010).
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of Laplace’s (1812) principle of indifference. At the core of the representation is 
an additive decomposition of probabilities P(A) = Q(A,A) + Q(A,AC) indicat-
ing to what extent the indifference principle is used. If P(A) is based entirely on 
event-specific knowledge, event A is perfectly unambiguous and Q(A,AC) vanishes. 
If, on the other hand, there is no event-specific knowledge and P(A) is only based 
on the indifference principle, event A is perfectly ambiguous and P(A) is distrib-
uted proportionally between Q(A,  A) and Q(A,AC) . Complementary to the prob-
ability decomposition, the utility function of SEU is extended. u(x,  x) is the util-
ity of outcome x when the underlying event is unambiguous. u(x, z) refers to two 
alternatively possible outcomes x and z of one decision act and modifies the utility 
of these outcomes when there is ambiguity concerning the corresponding events. 
Combining the utility function with the probability decomposition results in the 
preference functional 

∑n

i=1

∑n

j=1
u(xi, xj)Q(Ai,Aj) . With two possible outcomes x 

and z associated with perfectly unambiguous events A and AC , the preference value 
is u(x, x)Q(A,A) + u(z, z)Q(AC,AC) = u(x, x)P(A) + u(z, z)P(AC) . In the case of an 
ambiguous event and an ambiguity-averse decision-maker, the preference value is 
u(x, x)Q(A,A) + u(x, z)Q(A,AC) + u(z, z)Q(AC

,AC) + u(z, x)Q(AC
,A) < u(x, x)P(A)+

u(z, z)P(AC).

The approach is based on Savage’s framework, i.e., acts are modeled as mappings 
from states of the world to arbitrary outcomes. Hence, it differs conceptionally from 
approaches that use the Anscombe and Aumann (1963) framework or place restric-
tions on the outcome space. All probabilities are derived from preferences over acts. 
Thus, the approach also differs from those that use Savage’s setup but rely on exog-
enously given probabilities. Klibanoff et al. (2005), for example, use Savage’s setup 
but assume the existence of a subset of acts, called lotteries, that are measurable 
with respect to a partition of the state space over which probabilities are objectively 
given. Regarding the representation of preferences, the proposed approach uses dif-
ferent constructs (the probability decomposition and the extended utility function) 
and a different preference functional compared to CEU, MEU, �-MEU, or Smooth 
Ambiguity Preferences. In general, it is a generalization of SEU but neither a gener-
alization nor a specification of these approaches. Except for SEU-compliant prefer-
ences, it overlaps with CEU, for example, only under narrow conditions.2 The dis-
tinction between perfectly unambiguous and perfectly ambiguous events finds some 
parallel in the approaches of Nau (2006) and Ergin and Gul (2009) who model the 
state space as the Cartesian product of two sets and use the resulting structure to dis-
tinguish different types of events. Here, in contrast, the state space remains unstruc-
tured. Differing from Sarin and Wakker (1992) and Epstein (1999), who use exoge-
nously specified unambiguous events, all definitions needed for the characterization 
of perfectly unambiguous and perfectly ambiguous events refer to the preferences of 
the decision-maker. In this respect, parts of the approach are comparable to Epstein 
and Zhang (2001) and Zhang (2002), who also use preference-based definitions 

2 Suppose CEU is based on the upper Choquet Integral and the capacity is superadditive. Then the pro-
posed approach leads to the same preference order on the set of all acts with no more than three possi-
ble outcomes for u(xi, xj) = min{v(xi), v(xj)} and Q(Ai ∪ Aj,Ai ∪ Aj) = C(Ai ∪ Aj) . Here v(xi) is the utility 
according to CEU and C(Ai) is the capacity.



426 R. Diedrich 

1 3

of unambiguous events. Preference-based definitions are introduced in this paper, 
however, for two classes of events, perfectly unambiguous and perfectly ambiguous 
events. Gul and Pesendorfer (2014) also use a utility function with two arguments, 
called interval utility, in their Expected Uncertain Utility Theory (EUU). In this the-
ory, outcomes are modeled as prize intervals. The arguments of the utility function 
are the endpoints of these intervals. In contrast, the outcome space here is arbitrary 
and the utility function refers to two alternatively possible outcomes.

The proof of the central representation theorem is largely based on Savage’s proof 
of SEU. After setting the model framework, a preference order is established and 
perfectly unambiguous events (S-events) are defined as events for which the Sure 
Thing Principle applies. Next, partitions of the state of the world are considered 
for which the Sure Thing Principle does not apply but to which probabilities can 
nevertheless be assigned using the indifference principle. On this basis, perfectly 
ambiguous events (L-events) are introduced. Additional axioms ensure that S-events 
and L-events do not overlap except for null and universal events. This makes it 
possible to separate perfectly ambiguous acts (L-acts) and perfectly unambiguous 
acts (S-acts), and to replace outcomes with L-acts in Savage’s framework. Further 
parts of Savage’s axiomatic system are adapted, and on this basis, a representation 
theorem for simple S-acts with L-acts as consequences is stated (Theorem 1). Sub-
sequently, a link between perfectly ambiguous and perfectly unambiguous acts is 
established, enabling L-acts with an arbitrary number of possible outcomes to be 
traced back to a risky mixture of L-acts with two possible outcomes. This forms 
the basis for a representation theorem on L-acts that is based on the extended util-
ity function (Theorem 2). By merging Theorem 1 and Theorem 2, the final theorem 
(Theorem  3) is developed. It establishes the intended representation based on the 
extended utility function and the probability decomposition for all simple acts.

Concerning the separation and measurement of ambiguity perception and ambi-
guity attitude, the presented approach opens up various new possibilities. First, 
based on the probability decomposition, a measure of event ambiguity is suggested. 
It is shown that this measure satisfies intuitively plausible requirements for measures 
of event ambiguity proposed in the literature. To derive a measure of act ambiguity, 
it is useful to interpret the probability decomposition as a two-dimensional prob-
ability distribution ( SL-distribution) and to utilize concepts from probability theory. 
Following this idea, an ambiguity measure for decision acts based on the covariance 
of the corresponding SL-distributions is introduced. Finally, a measure of ambigu-
ity aversion is presented that is linked to the characteristics of the utility function 
in a way that is similar to Arrow’s (1971) and Pratt’s (1964) measure of risk aver-
sion. Altogether, the proposed approach offers possibilities for separating and meas-
uring ambiguity perception and ambiguity attitude that go beyond those in CEU, 
MEU, and �-MEU and are comparable to those in approaches based on second-
order concepts (Smooth Ambiguity Preferences). In contrast to these approaches, 
the proposed measures are based on “first-order concepts”, in particular on the prob-
ability decomposition and the extended utility function. Hence, the problems associ-
ated with the use of second-order probabilities and second-order utilities should not 
occur. Finally, it is also noteworthy that the proposed approach is the only purely 
subjective approach without restrictions on the state space and the outcome space 
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that separates ambiguity perception and ambiguity attitude and allows for different 
degrees of ambiguity aversion.

The paper is based on a specific perspective on decision-making under ambiguity. 
While ambiguity in more recent approaches is mostly associated with the existence 
of second-order probabilities, ambiguity is related here to different possibilities of 
assigning probabilities. The idea is that in the case of perfectly ambiguous events, 
the decision-maker has no event-specific knowledge upon which to determine prob-
abilities. In the absence of other possibilities, he or she must apply the indifference 
principle. The resulting probability is less reliable, however. It appears uncertain 
due to the lack of event-specific knowledge. Ambiguity is thus defined as a lack 
of event-specific knowledge leading to uncertainty about probabilities that can only 
be determined by the indifference principle. Note that the indifference principle is 
referred to as a method for calculating probabilities when no event-specific knowl-
edge is available. Central to the notion of ambiguity is the absence of event-specific 
knowledge that forces the application of the indifference principle, rather than the 
application of the indifference principle itself.3

The paper is organized as follows. In the next section, the probability decom-
position, the utility function, and the representation of preferences are introduced. 
Subsequently, axioms are presented and representation theorems are derived. All 
relevant proofs are given in the appendix. The last part of the paper elaborates and 
illustrates ways to measure ambiguity and ambiguity attitudes. The paper concludes 
with remarks on special issues and future research.

2  Representation of Beliefs and Preferences

Let (Ω,A,P) be a probability space with state space Ω , A  the �-algebra of deci-
sion-relevant events, and P a countably additive probability measure. Suppose A  
is generated by two �-algebras S  and L  which contain perfectly unambiguous and 
perfectly ambiguous events, respectively. Then Q ∶ A ×A → [0, 1] is an SL-decom-
position of P if the following conditions hold: 

(1) Adaptation:      Q(A,Ω) = P(A) for all A ∈ A

(2) Additivity: Q(
⋃∞

i=1
Ai,B) =

∑∞

i=1
Q(Ai,B) for all pairwise disjoint Ai ∈ A  with 

i ∈ ℕ and all B ∈ A

(3) Symmetry: Q(A,B) = Q(B,A) for all A,B ∈ A

(4) Separation: Q(A,AC) = 0 for all A ∈ S

(5) Dispersion: Q(A,AC) = Q(A,Ω)Q(AC,Ω) for all A ∈ L

(6) Independence: Q(A ∩ B,C ∩ D) = Q(A,C)Q(B,D) for all A,C ∈ S  and 
B,D ∈ L

3 In the absence of any event-specific knowledge, a uniform assignment of probabilities, as resulting 
from indifference principle, can also be derived from the maximum entropy principle, Jaynes (2003), pp. 
343. I would like to thank an anonymous reviewer who brought this to my attention.
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It can be shown that an SL-decomposition always exists if P(A ∩ B) = P(A)P(B) 
holds for all A ∈ S  and B ∈ L .4 If an SL-decomposition exists, it is uniquely 
determined.

Based on Q, the probability of an event can be decomposed into additively com-
bined parts that show the extent to which it is associated with event classes S  and 
L  , respectively. For example, for an arbitrary event A with P(A) > 0 , adaptation, 
additivity, and symmetry imply P(A) = Q(A,Ω) = Q(A,A) + Q(A,AC) . Using addi-
tivity, Q(A, A) and Q(A,AC) can be further decomposed in any desired way, leading 
to finer and finer decompositions of P(A). To see how Q informs about the ambigu-
ity of event A, suppose A ∈ S  . Separation yields P(A) = Q(A,A) . Events with this 
property are called S-events because the existence of a subjective probability meas-
ure is implied by Savage’s axioms. For the characterization of S-events as perfectly 
unambiguous, the Sure Thing Principle is crucial. It allows the evaluation of one 
part of an act independently of the other, which requires a strict separation of the 
corresponding events based on event-specific knowledge. Without such knowledge, 
changing outcomes in one part of the act can cast a different light on the outcomes 
of the other part.5 As a consequence, the Sure Thing Principle implies that the 
decision-maker considers the corresponding S-events to be perfectly unambiguous. 
Since S  is an algebra, Ω and ∅ are S-events. If all events are S-events, i.e., A = S  , 
there is no ambiguity.

By separation, Q(A,AC) = 0 holds for all A ∈ S  . If, on the other hand, 
Q(A,AC) > 0 , A cannot be an S-event and must be at least partially ambiguous. 
Ambiguity comes into play with event class L  . The elements of L  are called 
L-events since, in the absence of any event-specific knowledge, Laplace’s indiffer-
ence principle can be used to determine probabilities. Due to the lack of event-spe-
cific knowledge, L-events are considered to be perfectly ambiguous. Since L  is an 
algebra, Ω and ∅ are L-events. If all events are L-events, i.e., A = L  , ambiguity is 
perfect. Note that adaptation, separation, and dispersion jointly exclude the possibil-
ity of an event A with 0 < P(A) < 1 that belongs to both, S  and L  . Moreover, adap-
tation and independence imply that L-events are not informative about S-events and 
vice versa, i. e. P(A ∩ B) = P(A)P(B) for all A ∈ S  and B ∈ L .6

Considering the decomposition P(A) = Q(A,A) + Q(A,AC) with P(A) > 0 and 
Q(A,AC) > 0 , event ambiguity is perfect for A ∈ L  . In this case, adaptation and 
dispersion yield Q(A,AC) = P(A)(1 − P(A)) , indicating a  uniform distribution of 
probability mass according to the indifference principle. If A is neither an L-event 
nor an S-event, Q(A,AC) < P(A)(1 − P(A)) . For example, if A = B ∩ C with B ∈ S  
and C ∈ L  , the properties of the SL-decomposition imply Q(A,AC) = Q(A,B⧵A) 

4 Define Q(A ∩ B,C ∩ D) = P(A ∩ C)P(B)P(D) for A,C ∈ S  and B,D ∈ L  and use additivity and 
symmetry to extend this definition to countable unions of pairwise disjoint intersections of S-events and 
L-events.
5 Zhang (2002), p. 168.
6 Apply the independence condition with C = D = Ω.
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with Q(A,B⧵A) < P(A)(1 − P(A)).7 All in all, Q(A, A) reflects the unambiguous and 
Q(A,AC) the ambiguous part of P(A). For an ambiguity-neutral decision-maker, the 
decomposition of P(A) into Q(A, A) and Q(A,AC) is irrelevant. An ambiguity-averse 
decision-maker, however, evaluates outcomes differently depending on the degree to 
which the underlying events are subject to ambiguity.

The SL-decomposition Q is complemented by a utility function u ∶ X × X → ℝ 
where X denotes the set of outcomes, u is symmetric, and u(x, x) ≥ u(x, z) ≥ u(z, z) 
holds for all x, z ∈ X with u(x, x) ≥ u(z, z) . The arguments of u refer to alternatively 
possible outcomes of one decision act. The stand-alone utility of an outcome x is 
measured by u(x,  x). With different outcomes x and z, u(x,  z) captures additional 
preferential aspects measuring the decision-maker’s ambiguity attitude. As the main 
result of this paper shows, preferences concerning simple acts can be represented by 
the preference functional 

∑n

i=1

∑n

j=1
u(xi, xj)Q(Ai,Aj) where xi denotes the outcome 

associated with event Ai . According to the axioms presented in the next section, Q 
is uniquely determined, and u is unique up to positive linear transformations. The 
decision-maker follows SEU with utility function U(xi) = u(xi, xi) for all xi ∈ X if he 
or she perceives no ambiguity, i.e., Q(Ai,Ai) = P(Ai) for all i and Q(Ai,Aj) = 0 for 
all i,  j with i ≠ j and, consequently, 

∑n

i=1

∑n

j=1
u(xi, xj)Q(Ai,Aj) =

∑n

i=1
U(xi)P(Ai) . 

An inspection of the preference functional shows that the same holds for 
u(xi, xj) = 0.5u(xi, xi) + 0.5u(xj, xj)

8 which reflects a neutral attitude toward ambi-
guity. In all other cases, the preference functional indicates deviations from SEU 
according to the ambiguity of the decision-relevant events and the ambiguity atti-
tude of the decision-maker.

As the representation of beliefs and preferences is intended to model ambigu-
ity-related decision-making, it is illustrated by considering the classical Ellsberg 
experiments.

Example 1 (Ellsberg, two urns) The decision-maker must choose between two urns, 
each containing 100 red or black balls. He or she knows from urn S that it contains 50 
red and 50 black balls. The composition of balls in urn L is unknown. When a red ball 
is drawn, the decision-maker wins $1. The draw of a red ball from urn S is regarded 
as an S-event, while the draw of a red ball from urn L is interpreted as an L-event. 
Thus, S = {�,Ω,RS,BS} and L = {�,Ω,RL,BL}.9 The complete event algebra  
is A = {�,Ω,RS

,B
S
,R

L
,B

L
,R

S ∩ R
L
,R

S ∩ B
L
,B

S ∩ R
L
,B

S ∩ B
L
,R

S ∪ R
L
,R

S ∪ B
L
,B

S

∪RL
,B

S ∪ B
L} . Given the known distribution of red and black balls, the decision-

maker’s subjective probability of drawing a red ball from urn S is 0.5. The sub-
jective probability for a draw of a red ball from urn L is also 0.5. It is based, 
however, on the indifference principle. Using these subjective probabilities, the 
properties of the SL-decomposition imply the entries in Table  1. For example, 

7  Q(A,AC) = Q(B ∩ C, (B ∪ C)C) + Q(B ∩ C,B ∩ C
C) + Q(B ∩ C,B

C ∩ C) = Q(B ∩ C,B ∩ C
C) = P(B)

P(C)(1 − P(C)) = P(A)(1 − P(C)) < P(A)(1 − P(A)) is implied by the properties of the SL-decomposi-
tion.
8 Insert u(xi, xj) = 0.5u(xi, xi) + 0.5u(xj, xj) and substitute 

∑n

j=1
Q(Ai,Aj) = P(Ai) and 

∑n

i=1
= Q(Ai,Aj) = P(Aj) , which follows from adaptation, additivity, and symmetry.

9 If Rb denotes a draw of a red ball from urn S and a draw of a black ball from urn L, RS = Rr ∪ Rb.
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Q(RS ∩ RL,RS ∩ BL) = Q(RS,RS)Q(RL,BL) = P(RS)P(RL)P(BL) = 0.125 , where the 
first identity is implied by independence, Q(RS,RS) = P(RS) follows from adapta-
tion, additivity, and separation, and Q(RL,BL) = P(RL)P(BL) follows from adaptation 
and dispersion. For u(1, 1) = 1 , u(0, 0) = 0 , and u(1, 0) = u(0, 1) = 0.4 , the prefer-
ence values are 0.5 for urn S and 0.45 for urn L. The decision-maker prefers urn 
S because he or she is ambiguity-averse and the draw of a red ball from urn S is a 
less ambiguous event. For u(1, 0) = u(0, 1) = 0.5 the decision-maker is ambiguity-
neutral and thus indifferent to urn S and urn L.

Example 2 (Ellsberg, one urn) There is one urn containing 30 red balls and 60 black and 
yellow balls, the latter in unknown proportion. The decision-maker can bet on a draw of a 
red or a black ball. When a ball of the chosen color is drawn, he or she wins $1. Accord-
ing to the known number of red balls, the subjective probability of drawing a red ball is 
0.333 . The probability of drawing a black ball is the same. However, since the number of 
black balls is not known, the indifference principle is needed for the determination of this 
probability. Table 2 displays the assumed SL-decomposition. For u(1, 1) = 1 , u(0, 0) = 0 
and u(1, 0) = u(0, 1) = 0.4 , the preference values for R and B are 0.33 and 0.30, respec-
tively. The ambiguity-averse decision-maker prefers the bet on R since it is less ambigu-
ous than the bet on B. For u(1, 0) = u(0, 1) = 0.5 , the decision-maker is ambiguity-neu-
tral and thus indifferent to a bet on R and a bet on B.

In this example, B cannot be interpreted as an L-event if R is assumed to be an 
S-event.10 Hence, in order to calculate the SL-decomposition as in Example 1, suitable 
S-events and L-events must first be constructed. To this end, the situation is interpreted as 
follows: The considered urn contains 30 red and 60 non-red balls. If a red ball is drawn, 
event R occurs. Otherwise, the ball is replaced by a ball drawn from another urn with an 
unknown composition of 60 black and yellow balls. For this procedure, Table 2 can be 
calculated in the same way as Table 1. It should be noted, however, that the entries in 
Table 2 are basically not subject to calculations. The SL-decomposition is a subjective 
quantity derived from preferences. The above considerations only serve to clarify the con-
cept of S-events and L-events. The decision-maker might interpret the events in question 
differently, or not worry about an interpretation at all.

3  Axioms and Theorems

The decision situation is modeled as in Savage (1972). Ω is the state space with 
states of nature s, t. Events are subsets of Ω and are denoted by A, B, or C. The deci-
sion-relevant events form the �-algebra A .11 X is the outcome space with outcomes 

10 Remind that S  and L  are �-algebras. Hence, if B and Y were L-events and R was an S-event, 
B ∪ Y = RC would have to be both an S-event and an L-event. Except for events A with P(A) = 0 or 
P(A) = 1 this is impossible due to the properties of the SL-decomposition.
11 In Savage’s framework, A  is the power set of Ω . Savage himself pointed out that his results remain 
valid if A  is a �-algebra, Savage (1972), p. 42.
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x, y, z. Acts f, g, h are modeled as A -measurable functions. F is the set of all acts. f 
is a constant act if an outcome x ∈ X exists such that f (s) = x for all s ∈ Ω . Hence, 
every x ∈ X can be identified with a constant act. An act is simple if it has finite 
support. Throughout this paper, only simple acts are considered. f A g B h is the act 
that leads to the outcome of act f (g) when event A (B) occurs and to the outcome 
of act h otherwise. It is presupposed that A and B are disjoint. (f A g)Bh denotes 
f A ∩ BgAC ∩ Bh . When this notation is used, there are no restrictions on A or B. 
Fn
i=1

fi Ai abbreviates f1 A1 f2 A2 … fn−1 An−1 fn . Preferences are modeled by a binary 
preference relation ⪯ on F.

The first axiom states that ⪯ on F establishes a weak order:

Axiom 1 (Ordering) ⪯ on F is complete and transitive.

Preference relations ⪰ , ≺ , ≻ and ∼ are defined in the usual way. A ∈ A  is a 
null event if f A h ⪯ g A h for all f , g, h ∈ F , as defined in Savage (1972). Axiom 
1 implies ∅ is a null event. The complement of a null event is a universal event, 
hence, Ω is a universal event. N  is the set of null events, U  is the set of univer-
sal events. f is a certain act if an outcome x ∈ X and a universal event A exist 
such that f (s) = x for all s ∈ A.

For its particular importance, the following definition is specially labeled:

Definition 1 (S-events) A ∈ A  is an S-event if h A f ⪯ h A g ⇒ h� A f ⪯ h� Ag for all 
f , g, h, h� ∈ F.

A partition of the state space into S-events is an S-partition. S  is the set 
of all S-events. An S -measurable act is an S-act. The set of S-acts is denoted 
by FS ⊆ F . The definition of null events implies universal events are S events. 
Hence, certain acts are S-acts.

The definition of S-events reflects that outcomes associated with S-events do not 
affect the evaluation of outcomes that may otherwise occur. It is an adapted ver-
sion of Epstein and Zhang’s (2001) definition of linearly unambiguous events12 resp. 
Zhang’s (2002) definition of unambiguous events13 but differs from that definition 

Table 1  SL-decomposition in 
Ellsberg’s experiment with two 
urns

R
S ∩ R

L
R
S ∩ B

L
B
S ∩ R

L
B
S ∩ B

L P

R
S ∩ R

L 0.125 0.125 0 0 0.25
R
S ∩ B

L 0.125 0.125 0 0 0.25
B
S ∩ R

L 0 0 0.125 0.125 0.25
B
S ∩ B

L 0 0 0.125 0.125 0.25
P 0.25 0.25 0.25 0.25 1

12 Epstein and Zhang (2001), p. 288.
13 Zhang (2002), p. 167.
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in two ways: First, it refers only to an event A, not to its complement AC . Here, a 
restricted form of Savage’s Sure Thing Principle ensures that AC is an S-event when-
ever A is an S-event. Second, Epstein’s and Zhang’s definition refers to outcomes 
x and x′ rather than acts h and h′ . The restricted Sure Thing Principle, however, is 
formulated in terms of acts, and consequently the definition of S-events is based on 
acts as well. Before discussing further aspects of Definition 1, the addressed axiom 
is introduced:

Axiom 2 (Restricted Sure Thing Principle) f A h ⪯ g A h ⇒ f A h� ⪯ g A h� for all 
f , g, h, h� ∈ F and all A ∈ S .

The only difference between Axiom 2 and Savage’s Sure Thing Principle con-
cerns the event A which must be an S-event. Note, however, that S-events are not 
exogenously determined but introduced by definition and that f, g, h, and h′ need not 
be S-acts as in Sarin and Wakker (1992).

Given an S-event A, Axiom 2 implies AC is also an S-event. Moreover, Axiom 2 
is sufficient to establish S  as an algebra. However, Savage’s proof is based on a �
-algebra of events. To utilize this proof, it must be ensured that S  contains count-
able unions. In addition, the countable additivity of the subjective probability meas-
ure is required for the proofs of Theorem 2 and Theorem 3 below. Both requirements 
are fulfilled by the following axiom:

Axiom 3 (Monotone Continuity) Let {Ai} be an event sequence with Ai ∈ S  
and Ai ⊆ Ai+1 for i ∈ ℕ . Then 

⋃∞

i=1
Ai is an S-event and x Ai z ⪯ x B z for i ∈ ℕ ⇒ 

x
⋃∞

i=1
Ai z ⪯ x B z for all x, z ∈ X and B ∈ S .

Note that S  is the set of S-events according to Definition 1 and not a primitive 
of the axiomatization. Therefore, Axiom 3 does not interfere with the setting speci-
fied in the prefix. Alternatively, the requirement that a countable union of S-events 
is an S-event could have been included in Axiom 2. It is stated here as part of 
Axiom 3 to separate behavioral and technical conditions. The second part of Axiom 
3 establishes the monotone continuity of the probability relation and thus ensures 
the countable additivity of the probability measure on S .14 The use of technical 

Table 2  SL-decomposition in 
Ellsberg’s experiment with one 
urn

R B Y P

R
0.333

0 0
0.333

B 0
0.166 0.166 0.333

Y 0
0.166 0.166 0.333

P
0.333 0.333 0.333

1

14 For the definition of monotone continuity with respect to a probability relation see Villegas (1964), p. 
1789.
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conditions that ensure countable additivity has become common in decision theory 
since Arrow’s axiomatization of SEU.15

The first part of Axiom 3 guarantees that S  is not just an algebra but a �-algebra, 
which is stated in Lemma 1 below.

Lemma 1 S  is a �-algebra.

The idea that S  is a �-algebra is of particular importance for the interpretation 
of S-events. Zhang (1999), Zhang (2002) and Epstein and Zhang (2001) argue that 
unambiguous events cannot form an algebra as it is not plausible to assume that the 
intersection of two unambiguous events is unambiguous in general. They illustrate 
this reasoning by an Ellsberg urn with a total of 100 balls of different colors R, B, 
Y, and W, where R + B = B + Y = 50 is known. The authors term it intuitive that 
R ∪ B and B ∪ Y  are unambiguous, whereas B is ambiguous, and, consequently, 
introduce the set of unambiguous events as Dynkin System. As every �-algebra is a 
Dynkin System, the concept of S-events is more restrictive than Epstein and Zhang’s 
concept of unambiguous events when the respective context is taken into account. 
For a clear distinction, S-events are referred to as perfectly unambiguous events.

The difference is due to different research objectives. One objective of Epstein 
and Zhang (2001) is to find a basis for probability sophisticated preferences.16 To 
this end, the idea of unambiguous events must be as inclusive as possible to pro-
vide the broadest possible basis for decision theories that assume given probabili-
ties. A more restrictive concept would face the problem that effects are attributed to 
ambiguity for which other explanations have been found, e. g., nonlinear preference 
functionals.17 The present paper, in contrast, aims at an explanation for ambiguity-
related preferences by introducing a new representation formalism. Ambiguity is 
ascribed to a particular class of events, which are referred to as perfectly ambigu-
ous. S-events, on the other hand, are completely unaffected by perfectly ambiguous 
events. Thus, they serve as an extreme limiting the range of possible ambiguity from 
below. For this purpose, Epstein and Zhang’s concept of unambiguous events is too 
less restrictive. To see this, consider a second urn containing 100 balls of types R, B, 
Y, and W. The decision-maker knows that there are 25 balls of each type. According 
to the reasoning of Epstein and Zhang, the draw of R ∪ B from this second urn is an 
unambiguous event. However, the decision-maker has more event-specific knowl-
edge in this situation and may therefore perceive a draw from the second urn as less 
ambiguous than a draw from the first urn. A preference for betting on R ∪ B from 
the second urn, however, can not be explained using Epstein and Zhang’s concept of 
unambiguous events, since there is no way to distinguish between the two events in 
question.

Example 3 (Epstein and Zhang) With respect to the situation outlined above 
(first urn), the SL-decomposition is shown in Table  3. Regardless of the utility 

15 See Arrow (1972), p. 22.
16 Epstein and Zhang (2001), p. 268.
17 Epstein and Zhang (2001), p. 289.
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function, the ambiguity-averse decision-maker is indifferent to bets on R, B, Y, 
or W. All these events are equally ambiguous. For u(1, 1) = 1 , u(0, 0) = 0 and 
u(1, 0) = u(0, 1) = 0.4 , the preference value for a bet on R1 ∪ B1 is 0.475, while 
the preference value for a bet on R1 ∪ Y1 is 0.45. R1 ∪ B1 is more unambiguous 
compared to R1 ∪ Y1 but not perfectly unambiguous. Hence, the decision-maker 
prefers to bet on R1 ∪ B1. In contrast, the SL-decomposition for the second urn is 
given in Table 4. The events R2 ∪ B2 and R2 ∪ Y2 are perfectly unambiguous. The 
preference value for a bet on these events is 0.5 in both cases. The decision-maker 
prefers a bet on R2 ∪ B2 to a bet on R1 ∪ B1.

The counterpart of S-events in terms of ambiguity are L-events, whose definition 
is based on L-partitions:

Definition 2 (L-partitions) A partition {Ci} of Ω with i = 1,… , n and n > 1 is an 
L-partition if f Ci g Cj h ∼ gCi f Cj h for all Ci,Cj ∈ {Ci} , all f , g ∈ FS and all h ∈ F.

Note that, by definition, all L-partitions are finite. This rules out the paradoxes 
associated with applying the indifference principle to an infinite number of events, 
e.g., the Bertrand paradox. The �-algebra generated by L-partitions is denoted by 
L  . Elements of L  are L-events, and elements of an L-partition with two events are 
called RL-events. Null events and universal events are L-events as a modification of 
an L-partition with respect to a null event leads to another L-partition. An L-act is 
an L -measurable act, hence, certain acts are L-acts. The set of L-acts is FL ⊆ F . For 
the interpretation of the approach, it is important to note that L-events and L-acts, 
like S-events and S-acts, are not exogenously given but derived from the preferences 
of the decision-maker.

Table 3  Epstein and Zhang 
example (first urn)

R
1

B
1

Y
1

W
1

P

R
1

0.1250 0.0625 0 0.0625 0.25
B
1

0.0625 0.1250 0.0625 0 0.25
Y
1

0 0.0625 0.1250 0.0625 0.25
W

1

0.0625 0 0.0625 0.1250 0.25
P 0.25 0.25 0.25 0.25 1

Table 4  Modified Epstein and 
Zhang example (second urn)

R
2

B
2

Y
2

W
2

P

R
2

0.2500 0 0 0 0.25
B
2

0 0.2500 0 0 0.25
Y
2

0 0 0.2500 0 0.25
W

2

0 0 0 0.2500 0.25
P 0.25 0.25 0.25 0.25 1
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The definition of L-partitions is based on the idea that there is a class of decision-
relevant events that are not included in S  but to which probabilities can neverthe-
less be assigned. There is no event-specific knowledge concerning the elements of 
an L partition, however, the decision-maker is indifferent to permuting the conse-
quences of these events. This is plausible only if he or she has no reason to believe 
that one event is more probable than another (the principle of insufficient reason). 
Consequently, the decision-maker considers the elements of an L-partition to be 
equally probable.

The next two axioms cover further properties of L-acts and L-events.

Axiom 4 (Outcome Monotonicity for L-acts) x ⪯ z ⇔ x C h ⪯ z C h for all x, z ∈ X , 
all h ∈ FL , and all C ∈ L⧵N .

Axiom 5 (Decomposability of L-events) There is an L-partition {Ci} with i = 1, ..., n 
such that x A ∪ Ci z ∼ x Ci z or x A ∪ Ci z ∼ z for all x, z ∈ X and all A ∈ L .

Axiom 4 corresponds to Savage’s P3, related to L-acts, and appears largely 
uncontroversial. An immediate consequence is:

Lemma 2 L-partitions do not include null events.

The main function of Axiom 5 is guaranteeing the existence of L-partitions on 
which the construction of a subjective probability measure on L  can be based. To 
begin with, Axiom 5 is used to show that all L-events except null events and univer-
sal events can be decomposed into the elements of an L-partition.

Lemma 3 For all A ∈ L⧵(N ∪U) there is an L-partition {Ci} with i = 1, ..., n such 
that A ∩ Ci = Ci or A ∩ Ci = � for all i.

Taken together, Lemma 2 and Lemma 3 imply that S-events and L-events do not 
intersect except for null events and universal events:

Lemma 4 S ∩ L = N ∪ U

Consequently, S-acts and L-acts do not overlap except for certain acts. This opens 
the possibility to treat L-acts as consequences of S-acts and to adapt Savage’s P3 to 
P6.

Axiom 6 (L-act Monotonicity for S-acts) f ⪯ g ⇔ f A h ⪯ g A h for all f , g ∈ FL , all 
h ∈ F , and all A ∈ S⧵N .
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Axiom 7 (Weak Comparative Probability) f A g ⪯ f B g ⇔ f � Ag� ⪯ f � Bg� for all 
A,B ∈ S  , and all f , g, f �, g� ∈ FL such that f ≻ g and f ′ ≻ g′.

Axiom 8 (Nontriviality) There exist x, z ∈ X such that x ≻ z.

Axiom 9 (Small Event Continuity) For all f , g ∈ F such that f ≻ g and all h ∈ FL , 
there exists an S-partition {Ei} with i = 1,… , n such that f ≻ h Ei g and h Ei f ≻ g 
for all i = 1,… , n.

Axioms 6 to 9 resemble Savage’s P3 to P6, with outcomes replaced by L-acts. 
Note that the interpretation of consequences as acts is common in decision theory. 
The approach of Anscombe and Aumann (1963), for example, is characterized by 
the interpretation of consequences as lotteries. Even Savage (1972) considered the 
possibility of modeling so-called small world consequences as grand world acts, 
suggesting the idea of identifying consequences with acts.18 Since constant acts are 
L-acts, Axiom 6 implies Savage’s P3 if the considered event is an S-event. Together 
with the other axioms, Axioms 5 and 6 imply monotonicity with respect to all deci-
sion acts. Except for the replacement of outcomes by L-acts, Axioms 7 to 9 are well 
known and require no further comments. Designations come from Machina and 
Schmeidler (1992).

Given Axioms 1 to 9, Savage’s representation theorem can be adapted:

Theorem  1 (Subjective expected utility theory with L-acts as consequences) Sup-
pose that Axioms 1 to 9 hold. Then there is a countably additive probability measure 
PS ∶ S → [0, 1] and a function U ∶ FL → ℝ such that

holds for all fi, gi ∈ FL and all Ai ∈ S  with i = 1,… , n . PS is uniquely determined, 
and U is unique up to positive linear transformations.

To prove Theorem 1, notice that Axioms 1, 2, 6, 7, and 9 imply P1 to P4 and P6 
in Savage (1972), related to L-acts as consequences. The analogon of Savage’s P5 
concerning L-acts follows from Axiom 8 since constant acts are L-acts. Hence, the 
proof of Theorem 1 with respect to a finitely additive probability measure is given in 
Savage (1972). The countable additivity of PS follows from Axiom 3, as proven in 
Villegas (1964).19

Theorem 1 may give the impression that it concerns the evaluation of a two-stage 
decision act: L-acts are determined in the first stage, and outcomes in the second. 
This reminds of the approach in Segal (1987), where ambiguous decision acts are 
modeled as two-stage lotteries and ambiguity is interpreted as uncertainty about 

Fn
i=1

fi Ai ⪯ Fn
i=1

gi Ai ⇔

n∑
i=1

U(fi)PS(Ai) ≤

n∑
i=1

U(gi)PS(Ai)

18 Savage (1972), pp. 82.
19 Villegas (1964), Theorem 2, p. 1794.
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probability distributions. Crucial for Segal’s approach is the assumption that the 
decision-maker does not apply the reduction of compound lotteries axiom.20 Conse-
quently, in his approach, two-stage decision acts are judged differently than single-
stage acts, even when the probability distribution of outcomes is identical. In con-
trast, the approach presented here does not rely on this assumption. For illustrative 
purposes, it may be useful to imagine a stepwise resolution of uncertainty, but it is 
not part of the modeling of the decision situation. The representation of decision 
acts in Theorem 1 does not result from a temporal order of S-events and L-events but 
from their independence according to the definition of L-partitions and Lemma 4. 
Consequently, the temporal resolution of uncertainty does not matter for the validity 
of Theorem 1.

Theorem 1 can serve as a basis for decision theories that determine the utility of 
L-acts in different ways. Given Lemma 4, one possibility is to consider so-called 
horse lotteries with roulette lotteries in terms of S-acts as consequences, thus provid-
ing a subjective foundation for the modeling framework of Anscombe and Aumann 
(1963). The approach taken here involves relating L-acts and S-acts, thus establish-
ing a link between risk and ambiguity. To this end, some additional concepts must 
be introduced: An S-partition {Di} with i = 1, ..., n is uniform if f Di g ∼ f Dj g holds 
for all f , g ∈ FL and all i, j. Hence, all events forming a uniform S-partition have the 
same probability. The elements of a uniform S-partition with two elements are called 
RS-events. Two uniform S-partitions {Di} with i = 1,… , n and {Ej} with j = 1,… ,m 
are independent if the events Di ∩ Ej form a uniform S-partition. Using these con-
cepts, Axiom 10 is stated as follows:

Axiom 10 (SL-Isometry) Let A be an RL-event, B an RS-event, {Di} , {Ei} with 
i = 1,… , n independent uniform S-partitions, and {Ci} with i = 1,… , n an L-parti-
tion. {Ei} and {B,BC} are independent. Then for all xi, xj ∈ X

For the interpretation of Axiom 10, note that the indifference principle assigns 
the same probability to all elements of an L-partition. Hence, Fn

i=1
xi Ci , Fn

i=1
xi Di , 

and Fn
i=1

xi Ei produce identical outcomes with identical probabilities. Acts with this 
property will be called risk-equivalent. With this in mind, Axiom 10 states that the 
decision-maker is indifferent between an ambiguous mixture of two independent 
risk-equivalent S-acts and an unambiguous mixture of one of these S-acts and a risk-
equivalent L-act. Consequently, Axiom 10 makes it possible to trace the effects of 
ambiguity back to a systematic juxtaposition of two outcomes and the correspond-
ing events.

Axiom 10 refers to uniform and independent S-partitions as devices for the mix-
ture of L-acts and S-acts. The existence of these partitions is ensured by the follow-
ing lemma, which essentially goes back to Savage:

(Fn
i=1

xi Di)A (Fn
i=1

xi Ei) ∼ (Fn
i=1

xi Ci)B (Fn
i=1

xi Ei).

20 Segal (1987), p. 177.
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Lemma 5 For all S-events A and all r ∈ [0, 1] there is an S-event B ⊆ A such that 
PS(B) = rPS(A) . It follows that

• there is an RS-event.
• there is a uniform S-partition {Di} with i = 1,… , n for all n ∈ ℕ.
• for all uniform S-partitions {Di} with i = 1,… , n there is an S-partition {Ej} with 

j = 1,… ,m that is independent from {Di}.

For the first statement see Savage (1972).21 The other statements are immediate 
implications. Next, the existence of at least one RL-event must be guaranteed:

Axiom 11 (Existence of RL-events) There is an RL-event.

Axiom 11 is a departure from SEU since, according to Lemma 4, an RL-event is 
not an S-event. From a technical point of view, an RL-event is needed for a construc-
tive proof of the intended representation theorem using Axiom 10. Since the indif-
ference principle implies equal probabilities for an RL-event and its complement, 
Axiom 11 reminds of Ramsey’s (1931) postulate of the existence of an ethically 
neutral event. Here, the required “neutrality” includes the idea that the event carries 
no decision-relevant information about S-events, which follows from the definition 
of L-partitions and Lemma 4.

With the introduction of Axiom 11, the prerequisites for the utilization of Axiom 
10 have been completed. As a first consequence, Axiom 10 implies that preferences 
for L-acts depend only on the possible outcomes and the cardinality of the relevant 
L-partition:

Lemma 6 Let {Ci} and {Di} with i = 1, ..., n be arbitrary L-partitions. Then 
Fn
i=1

xi Ci ∼ Fn
i=1

xi Di holds for all xi ∈ X.

Lemma 6 ensures that preferences for outcomes of L-acts can be separated from 
beliefs concerning L-events.

Lemma 7 For all L-acts h = x A z with A an arbitrary RL-event and outcomes x ≻ z , 
3

4
U(x) +

1

4
U(z) ≥ U(h) ≥

1

4
U(x) +

3

4
U(z).

Lemma 7 is an implication of Axiom 4 and Axiom 10 and shows that the utility 
of an L-act according to Theorem 1 is constrained by the utilities of possible out-
comes, which excludes violations of the monotonicity principle.

In the next step, a utility function u ∶ X × X → ℝ is introduced that will be used 
for the representation of preferences for L-acts. u is symmetric if u(x, z) = u(z, x) for 
all x, z ∈ X , and u-monotonic if u(x, x) ≥ u(x, z) ≥ u(z, z) holds for all x, z ∈ X with 
u(x, x) ≥ u(z, z).

21 Savage (1972), pp. 34.
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Lemma 8 There is a symmetric and u-monotonic function u ∶ X × X → ℝ such that

for all xi, yi ∈ X and all L-partitions Ci with i = 1,… , n.

As the proof of Lemma 8 shows, u can be constructed starting from the utility 
function U in Theorem  1 by setting u(x, x) = U(x) for all x ∈ X . Since u has two 
arguments, however, it allows representing differing preferences for S-acts and 
L-acts. To establish a preference representation for all simple L-acts, a further impli-
cation of Axiom 4 is needed:

Lemma 9 Each partition {Ck} of Ω with Ck ∈ L  for all k has a finite number of non-
null events.

Lemma 9 is used, among other things, for the construction of a countably addi-
tive probability measure on L  . As a consequence of Lemma 8 and Lemma 9, the 
following result concerning preferences for simple L-acts can be derived:

Theorem 2 (Representation of preferences for L-acts) Suppose Axioms 1 to 11 hold. 
Then there is a countably additive probability measure PL ∶ L → [0, 1] and a sym-
metric and u-monotonic function u ∶ X × X → ℝ such that

Fr
k=1

xkCk ⪯ Fr
k=1

ykCk ⇔

for all xk, yk ∈ X and all Ck ∈ L  with k = 1,… , r . PL is uniquely determined, and u 
is unique up to positive linear transformations.

For u(x, z) = 0.5u(x, x) + 0.5u(z, z) , the preference functional for L-acts result-
ing from Theorem  2 is identical to that for S-acts in Theorem  1. Hence, L-acts 
and S-acts are treated the same way, indicating that the decision-maker has a neu-
tral attitude toward ambiguity. For u(x, z) < 0.5u(x, x) + 0.5u(z, z) , the decision-
maker is ambiguity-averse. Substitution of v(xk) =

∑r

k�=1
u(xk, xk� )PL(Ck� ) and 

v(yk) =
∑r

k�=1
u(yk, yk� )PL(Ck� ) shows that he or she still maximizes expected util-

ity. The utility function, however, is modified in such a way that it effectively over-
weights less preferred outcomes. Moreover, the utility function is act-specific due to 
the inapplicability of the Sure Thing principle. The quadratic form of the preference 
functional in Theorem 2 was studied in detail in Chew et al. (1991) in the context of 
relaxations of the independence axiom. For u(x, z) = min{u(x, x), u(z, z)} , it reflects a 

U(Fn
i=1

xiCi) =
1

n2

n∑
i=1

n∑
j=1

u(xi, xj)

r∑
k=1

r∑
k�=1

u(xk, xk� )PL(Ck)PL(Ck� ) ≤

r∑
k=1

r∑
k�=1

u(yk, yk� )PL(Ck)PL(Ck� )
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special case of the rank-dependent utility theory of Quiggin (1982) and others.22 The 
relationship is comparable to that between the approach developed here and CEU 
discussed in the introduction.

The final idea in this section is that all decision-relevant events can be interpreted 
as mixtures of S-events and L-events. To this end, K  is defined as the �-algebra 
generated by S  and L  . The following axiom ensures that K  encompasses all deci-
sion-relevant events:

Axiom 12 (Decision-relevant events) For all A ∈ A  there is an event B ⊆ A with 
B ∈ K  such that f A⧵Bh ∼ g A⧵Bh for all f , g, h ∈ F.

A ⧵ B in Axiom 12 is a null event. As null events are S-events, A  is the �-algebra 
generated by S  and L  , i.e., A = K .

By merging Theorem 1 and Theorem 2, the central result can now be stated as 
follows:

Theorem 3 (SL expected utility theory) Suppose Axioms 1 to 12 hold. Then there are 
two �-algebras S  and L  with S ∩L = N ∪U  that jointly generate the �-algebra 
A  , a countably additive probability measure P ∶ A → [0, 1] , an SL-decomposition 
Q ∶ A ×A → [0, 1] of P, and a symmetric and u-monotonic function u ∶ X × X → ℝ 
such that

Fn
i=1

xiAi ⪯ Fn
i=1

yiAi ⇔

for all xi, yi ∈ X and all Ai ∈ A  with i = 1,… , n . P and Q are uniquely determined, 
and u is unique up to positive linear transformations.

Theorem  3 uses the SL-decomposition Q defined in the last section and 
generalizes Theorem  1 and Theorem  2. If Q(A,A) = P(A) for all A ∈ A  or 
u(x, z) = 0.5u(x, x) + 0.5u(z, z) for all x, z ∈ X , the preference functional corresponds 
to SEU, i.e., Theorem  1. If Q(A,B) = P(A)P(B) for all A,B ∈ A  , the preference 
functional for L-acts according to Theorem 2 applies. Taken together, the diverging 
ambiguity of events and decision acts as well as different attitudes toward ambiguity 
can be represented, as discussed in the next section.

4  Measurement of ambiguity and ambiguity aversion

Ambiguity can be measured with respect to events and to decision acts. The SL-
decomposition and its interpretation suggest the following measure of event 
ambiguity:

n∑
i=1

n∑
j=1

u(xi, xj)Q(Ai,Aj) ≤

n∑
i=1

n∑
j=1

u(yi, yj)Q(Ai,Aj)

22 Chew et al. (1991), p. 145.
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Definition 3 (Event ambiguity) The ambiguity of an event A is measured by 
�(A) = Q(A,AC).

Definition 3 is intuitively plausible since Q(A,AC) measures the part of the 
probability of event A that is not based on event-specific knowledge. In a more 
formal way, � can be introduced by first defining a qualitative ambiguity relation 
and then showing that � represents this relation. To this end, let x, z ∈ X be arbi-
trary outcomes with x ≻ z . Further, for all events A ∈ A  , construct S-events AS 
and AC

S
 with x A z ∼ x AS z and x AC z ∼ x AC

S
z , respectively, applying Theorem 3 

and Lemma 5. An ambiguity-averse decision-maker prefers to bet on unambigu-
ous events, hence AS ∩ AC

S
= � can be assumed without loss of generality.23 A 

qualitative ambiguity relation ⪯ is then defined as follows: Event A is (weakly) 
less ambiguous than event B, A ⪯ B , if x AS ∪ AC

S
z ⪰ x BS ∪ BC

S
z holds for an 

ambiguity-averse decision-maker. Theorem 3 implies x AS ∪ AC
S
z ⪰ x BS ∪ BC

S
z 

iff Q(A,AC) ≥ Q(B,BC) for u(x, z) < 0.5u(x, x) + 0.5u(z, z) . Consequently, � repre-
sents the ambiguity relation ⪯ . In view of Theorem 3, it is evident that ⪯ is inde-
pendent of the defining outcomes and forms a weak order.

Another approach to introduce a measure of event ambiguity is to first establish 
properties that this measure should satisfy and then to develop an appropriate axi-
omatic system. Fishburn (1993) lists the following properties24: 

1. A ⪯ B ⇒ �(A) ≤ �(B) and A ≺ B ⇒ 𝛼(A) < 𝛼(B)

2. �(�) = 0 and �(A) ≥ 0

3. �(A) = �(AC)

4. �(A ∪ B) + �(A ∩ B) ≤ �(A) + �(B)

The proposed measure satisfies all these properties,which further underlines its plau-
sibility. Property 1 requires � to preserve the qualitative ambiguity relation, which 
follows from A ⪯ B ⇔ �(A) ≤ �(B) derived above. Properties 2 to 4 can be readily 
deduced from the properties of the SL-decomposition listed in Section 2.25 Properties 
3 and 4, complementary equality and submodularity, respectively, are considered to 
be central to the distinction between event ambiguity and event probability. Comple-
mentary equality reflects the intuitively plausible idea that the ambiguity of an event is 
equal to that of its complement. Submodularity implies that the ambiguity of the union 
of two disjoint events is less than the sum of the stand-alone ambiguities.

To define a measure of act ambiguity, it is supposed that the SL-decom-
position Q and the utility function u are given and that all outcomes are 

23 This follows from P(AS) < P(A) and P(AC
S
) < P(AC).

24 Fishburn (1993), pp. 120.
25 Submodularity follows from Q(A ∪ B, (A ∪ B)C) + Q(A ∩ B, (A ∩ B)C) = P(A ∪ B) − Q(A ∪ B,A ∪ B)

+P(A ∩ B) − Q(A ∩ B,A ∩ B) = P(A) + P(B) − Q(A,A) − Q(B,B) − Q(A,B) − Q(B,A) − Q(A ∩ B,A ∩ B)

≤ P(A) − Q(A,A) + P(B) − Q(B,B) = Q(A,AC) + Q(B,BC).
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measurable on a cardinal scale. q ∶ ℝ
2
→ [0, 1] with qij = q(xi, xj) = Q(Ai,Aj) 

for Ai = {s ∈ Ω ∶ f (s) = xi} and Aj = {s ∈ Ω ∶ f (s) = xj} is referred to as SL- 
distribution of decision act f. As a consequence of the properties of the SL-
decomposition, q can be interpreted as a symmetric two-dimensional probabil-
ity distribution with marginal distribution p where pi = p(xi) = P(Ai) holds for 
Ai = {s ∈ Ω ∶ f (s) = xi} . Based on p, the expected value � and the variance �2 
of outcomes can be calculated as usual. Two SL-distributions with identical mar-
ginal distributions are called risk-equivalent.

Based on the SL-distribution q, a convenient way to measure act ambiguity is 
as follows:

Definition 4 (Act ambiguity) The ambiguity of an SL-distribution q with marginal 
distribution p is measured by � = �2 − c , where �2 denotes the variance of p and c 
the covariance of q.

0 ≤ c ≤ �2 and, consequently, 0 ≤ � ≤ �2 result from the characteristics of the 
SL-decomposition. � = 0 reflects a perfectly unambiguous outcome distribution 
where all relevant events are S-events. � = �2 results when act ambiguity is per-
fect, i.e., probabilities for relevant events are not based on event-specific knowledge 
but on the indifference principle. In all other cases, the decision act is more or less 
ambiguous since the outcomes depend on the occurrence of S-events and L-events.

Example 4 (Measurement of Act ambiguity) The monetary outcome x of an 
investment depends on a perfectly unambiguous factor zS and a perfectly ambigu-
ous factor zL , x = zS + zL . Possible realizations of zS are 0, 100, 200, or 300 with 
underlying S-events B1 , B2 , B3 , and B4 , and probabilities 0.2, 0.3, 0.4, and 0.1, 
respectively. zL results in −100 , 0, or 100 with underlying L-events C1 , C2 , and 
C3 , and probabilities 0.2, 0.6, and 0.2, respectively. Overall, the expected out-
come is � = �S + �L = 140 + 0 = 140 . From the properties of S-events and 
L-events, zS and zL are necessarily uncorrelated, hence the outcome variance is 
�2 = �2

S
+ �2

L
= 8, 400 + 4, 000 = 12, 400 . To determine the relevant SL-distribution, 

note that zS is perfectly unambiguous, i.e., q(zi
S
, zi

�

S
) = p(zi

S
) for i = i� and q(zi

S
, zi

�

S
) = 0 

otherwise, while zL is perfectly ambiguous, hence q(zj
L
, z

j�

L
) = p(z

j

L
)p(z

j�

L
) for all j, j′ . 

The resulting SL-distribution is shown in Table  5. For example, the properties of 
SL-decompositions imply q(200, 300) = Q((B1 ∩ C3) ∪ (B2 ∩ C2) ∪ (B3 ∩ C1) , 
(B

2

∩ C
3

) ∪ (B
3

∩ C
2

) ∪ (B
4

∩ C
1

)) = Q(B
2

∩ C
2

,B
2

∩ C
3

) + Q(B
3

∩ C
1

,B
3

∩ C
2

) =

P(B
2

)P(C
1

)P(C
3

) + P(B
3

)P(C
1

)P(C
2

) = 0.06 . The covariance of q is c = 8, 400 . 
Consequently, according to Definition 4, � = 4, 000 is calculated for the ambiguity 
of the investment. It results solely from the perfectly ambiguous factor zL and equals 
its ambiguity �L.
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As a starting point for the consideration of ambiguity aversion, note that 
risk aversion can be defined and measured with regard to the utility function 
U(x) = u(x, x) in the usual way. To define a measure of ambiguity aversion remind 
that an ambiguity-neutral decision-maker acts as if all decision acts were S-acts. 
This is the case if and only if 

∑n

i=1

∑n

j=1
u(xi, xj)qij =

∑n

i
u(xi, xi)pi holds for all SL

-distributions q with marginal distributions p. Accordingly, a decision-maker is 
(strictly) ambiguity-averse if 

∑n

i=1

∑n

j=1
u(xi, xj)qij <

∑n

i
u(xi, xi)pi for all f ∈ F⧵FS . 

Thus, an ambiguity-averse decision-maker strictly prefers an S-act against all 
other decision acts that have the same probability distribution of outcomes but are 
not S-acts. Monotony and differentiability presupposed, a necessary and sufficient 
condition for this to hold is u11(x, z) > 0 for all x, z ∈ X . Consequently, a measure 
of ambiguity aversion can be defined as follows:

Definition 5 (Ambiguity aversion) The local ambiguity aversion of a decision-maker 

is measured by A(x, z) =
u11(x, z)

u10(x, z) + u01(x, z)

If A(x,  z) has a negative sign, the decision-maker is ambiguity-loving. The 
measure A(x,  z) remains, like the Arrow/Pratt measure, unaffected by positive 
linear transformations of the utility function. Note that ambiguity aversion is in 
general independent of risk aversion, i.e., a risk-averse decision-maker can be 
ambiguity-neutral and a risk-neutral decision-maker can be ambiguity-averse. 
The measurement of ambiguity aversion is illustrated by example 5.

Example 5 (Measurement of Ambiguity aversion)
Suppose u(x, z) = 0.5(x + z) − 0.5(a + b)(x2 + z2) + bxz . The domain of u is 

restricted to outcomes in the interval [0, 1]. To ensure that u exhibits weak risk aver-
sion and weak ambiguity aversion, a, b ≥ 0 and a + b < 0.5 is presupposed. The 
Arrow/Pratt measure is R(x) = 2a

1−2ax
 . For a > 0 , u indicates increasing absolute risk 

aversion as typical for the quadratic utility function in SEU. For b > 0 , the measure 
of ambiguity aversion A(x, z) = b

1−a(x+z)
 reflects absolute ambiguity aversion increas-

ing in both arguments. In analogy to the �-�2-principle, the following result for all 
simple SL-distributions q with support [0, 1] can be derived:

Table 5  SL-distribution of 
investment outcome

−100 0 100 200 300 400 p

−100 0.008 0.024 0.008 0 0 0 0.04
0 0.024 0.084 0.060 0.012 0 0 0.18
100 0.008 0.060 0.132 0.084 0.016 0 0.30
200 0 0.012 0.084 0.160 0.060 0.004 0.32
300 0 0 0.016 0.060 0.052 0.012 0.14
400 0 0 0 0.004 0.012 0.004 0.02
p 0.04 0.18 0.30 0.32 0.14 0.02 1
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The last term on the right-hand side refers to the measure of act ambiguity accord-
ing to Definition 4. Given � and �2 , preference increases with decreasing ambiguity 
when the decision-maker is ambiguity-averse, i.e., b > 0 . For b = 0 , the decision-
maker is ambiguity-neutral and follows SEU with U(x) = x − ax2 . If risk aversion is 
held constant, the ambiguity-neutral decision-maker achieves the same utility level 
as the ambiguity-averse decision-maker with a risk-equivalent but perfectly unam-
biguous act.

5  Concluding remarks

A central feature of the proposed theory is the possibility to separate ambiguity and 
ambiguity attitudes in a relatively simple way. Together with the additivity of the 
SL-decomposition, this allows analyzing the consequences of ambiguity and ambi-
guity aversion in model-theoretic and empirical studies in quite the same way as 
the consequences of risk and risk aversion. In doing so, all results concerning risk 
remain valid as the theory presented is an extension of SEU. From a technical point 
of view, it is particularly advantageous that the SL-distributions used to model deci-
sion acts can be interpreted as two-dimensional probability distributions. This makes 
it possible to apply concepts from probability theory when modeling and measuring 
ambiguity. In this respect, the proposed theory is similar to approaches that use sec-
ond-order probabilities to model ambiguity.

As for the axiomatic basis of the proposed theory, the number of axioms could be 
an issue. The presented axiomatic system includes twelve axioms, while Savage’s 
and Gilboa’s axiomatizations of SEU and CEU, respectively, each consist of six axi-
oms. Reducing the number of axioms by merging axioms (e.g., Axioms 4 and 6) is 
possible, but only to a limited extent and at the cost of more complicated and less 
plausible axioms. This is also a consequence of the model framework which is sub-
ject to comparatively few restrictions. In general, the number of axioms decreases 
with increasing structural specifications. Axiomatic systems based on Savage’s 
approach, for example, usually include more axioms than those based on Anscombe 
and Aumann’s framework. With this in mind and given the higher complexity 
resulting from the distinction between S-events and L-events, it seems questionable 
whether the axiomatic basis of the proposed theory can be reduced to a significantly 
smaller number of axioms without imposing additional structural specifications.

Considering the axioms in detail, Axiom 10 and Axiom 12 are of particular interest. 
Axiom 10 connects preferences for S-acts and L-acts thus establishing a link between 
risk and ambiguity. The central question here is whether Axiom 10 leads to reasonable 
and empirically tenable hypotheses about ambiguity-related decision-making. Axiom 12 
raises some interesting epistemic questions, for example: Are there possibilities of assign-
ing probabilities to events beyond knowledge-based separation and indifference-based 
dispersion? Or, more closely to the topic of this paper: Are there sources of ambiguity that 

n∑
i=1

n∑
j=1

u(xi, xj)qij = � − a(�2 + �
2) − b�
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cannot be related to the application of the indifference principle? If so, Axiom 12 would 
have to be abandoned. Consequently, either the scope of Theorem 3 would have to be 
restricted to K-acts or additional axioms would have to be introduced that govern prefer-
ences for the corresponding decision acts.

With regard to the latter point, it could also be argued that the presented approach 
basically considers only perfectly unambiguous and perfectly ambiguous events and 
that there are ambiguous events that cannot be traced back to such events. The idea 
is that if necessary, the �-algebra of decision-relevant events can always be extended 
in such a way that suitable L-events and S-events can be identified. If this is the case, 
the argument leads to the debate as to whether axioms in decision theory may only 
refer to actually existing events or whether fictitious events may also be used for axi-
omatization. Savage’s P6, for example, was criticized for its use of infinitely divis-
ible events. Today, most decision theorists seem to agree that referring to fictitious 
events is acceptable.

From the constructive proof of the theorems in the last section, it is easy to derive 
a procedure for eliciting the SL decomposition Q and the utility function u of an 
individual decision-maker. An issue here is that in this context events are needed 
that are S-events and/or L-events from the decision-maker’s perspective. The situa-
tion is comparable to elicitation techniques for SEU that use certain events. As with 
certain events, different decision-makers may interpret different events as S-events 
or L-events. For a purely subjective theory, this is not a conceptual problem. It 
requires, however, special care in the conceptualization of elicitation procedures.

Further research questions are manifold. Of particular interest is an ongoing 
investigation of the relationship between ambiguity and information. In the context 
of the presented theory, it seems plausible to assume that subjective probabilities 
should be updated according to Bayes’ rule. However, it is by no means self-evi-
dent how the SL-decomposition must be adjusted. This may depend on the extent to 
which the information concerns S-events or L-events. An investigation of this issue 
could contribute to a better understanding of the relationship between ambiguity and 
information and also raise new questions concerning ambiguity-related behavior.

Appendix

Proof of Lemma  1 ∅ and S are S-events according to Definition 1 and 
Axiom 1. Axiom 2 implies AC is an S-event if A is an S-event. Suppose 
h A ∪ B f = h A⧵BhB⧵AhA ∩ B f ⪯ h A⧵BhB⧵AhA ∩ Bg = h A ∪ Bg for 
any A,B ∈ S  and f , g, h ∈ F . Since AC and BC are S-events, Axiom 2 implies 
h� A⧵BhB⧵Ah� A ∩ B f ⪯ h� A⧵BhB⧵Ah� A ∩ Bg and h� A ∪ B f ⪯ h� A ∪ Bg for all 
h� ∈ F . Consequently, A ∪ B ∈ S  . S  is an algebra. According to Axiom 3, S  is a �
-algebra.   ◻

Proof of Lemma 2 Let {Ci} for i = 1,… , n be any L-partition. Suppose Cj is a null 
event. For f = x and g = h = z with x ≻ z Definition 2 yields x Cj z Ci z ∼ z Cj x Ci z 
for all i. Axiom 1 and the definition of null events result in z ∼ x Ci z . Axiom 
4 implies Ci must also be a null event. Hence, all elements of the considered 
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L-partition are null events, which contradicts Axiom 8. Consequently, no element of 
an L-partition is a null event.   ◻

Proof of Lemma  3 According to Axiom 5, for all A ∈ L⧵(N ∪U) there is an 
L-partition {Di} with i = 1,… , n such that x A ∩ Di z ∼ xDiz or x A ∩ Di z ∼ z for 
all x, z ∈ X . Assume without loss of generality x A ∩ Di z ∼ xDiz for i = 1,… , j , 
A ∩ Di ∈ N⧵� for i = j + 1,… , k , and A ∩ Di = � for i = k + 1,… , n . Then define 
C1 = (A ∩ D1) ∪

⋃k

i=j+1
(A ∩ Di) , Ci = (A ∩ Di) for i = 2,… , j , Ci = Di⧵(A ∩ Di) for 

i = j + 1,… , k , Ci = Di for i = k + 1,… , n − 1 , and Cn = Dn ∪
⋃j

i=1
Di⧵(A ∩ Di) . 

Di⧵(A ∩ Di) for i = 1,… , j are null events according to Axiom 4. Hence, {Ci} with 
i = 1,… , n is an L-partition according to Definition 2, the definition of null events 
and Axiom 1. Moreover, A ∩ Ci = Ci or A ∩ Ci = � for all i.   ◻

Proof of Lemma  4 According to Lemma 3, for all A ∈ L⧵(N ∪U) there is an 
L-partition {Ci} with i = 1,… , n such that A =

⋃j

i=1
Ci with 1 ≤ j < n . Sup-

pose, 
⋃j

i=1
Ci with 1 ≤ j < n is an S-event. According to Lemma 2, AC is also 

an S-event. For S-acts f = x A z , g = h = z with x ≻ z , Definition 2 yields 
x Cj z = f Cj g Cj+1 h ∼ gCj f Cj+1 h = z . Since Cj is not a null event according 
to Lemma 2, there is a contradiction to Axiom 4. Consequently, A cannot be an 
S-event. L  contains no S-events except null events and universal events.   ◻

Proof of Lemma 6 Considering first the case n = 2 , RS-events D, E, and B are con-
structed using Lemma 5. {D,Dc} and {E,Ec} as well as {B,Bc} and {E,Ec} are pre-
sumed to be independent. Let C and A be arbitrary RL-events. For L-acts g = x1 A x2 , 
g� = x2 A x1 and f = x1 C x2 with arbitrary x1, x2 ∈ X , Axiom 10 implies:

Theorem 1 results in:

U(g) = U(g�) follows from Definition 2 and Theorem  1. Hence, U(g) = U(f ) and 
therefore x1 A x2 ∼ x1 C x2.

Concerning the case n > 2 , Axiom 10 and Axiom 1 imply:

for arbitrary xi ∈ X , where {B,Bc} and {Ei} are independent uniform S-partitions. 
With g = Fn

i=1
xi Di and f = Fn

i=1
xi Ci , U(g) = U(f ) and thus Fn

i=1
xi Di ∼ Fn

i=1
xi Ci 

follows from Theorem 1.   ◻

Proof of Lemma 7 Lemma 5 is used to construct an RS-event B, and independent uni-
form S-partitions {Dn

i
} and {En

i
} with i = 1,… , n for n = 2, 3,… . {Bn

i
} and {En

i
} are 

presumed to be independent. Then, let A be an arbitrary RL-event, and {Cn
i
} with 

i = 1,… , n L-partitions for n = 2, 3,… . Consider h = x A z , and h� = z A x with 

(x1 Dx2)A (x1 E x2) = x1D ∩ E x2 gD ∩ Ec g� Dc ∩ E x2 ∼ f B (x1 E x2)

1

4
(U(x1) + U(g) + U(g�) + U(x2)) =

1

2
U(f ) +

1

4
(U(x1) + U(x2))

(Fn
i=1

xi Di)B (Fn
i=1

xi Ei) ∼ (Fn
i=1

xi Ci)B (Fn
i=1

xi Ei)
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x ≻ z . Lemma 6 and Theorem  1 imply U(h) = U(h�) . According to Axiom 10, 
(xDn

1
z)A (x En

1
z) ∼ (x Cn

1
z)B (x En

1
, z) holds for all n. With f n = x Cn

1
z , Theorem 1 

implies:

Axiom 4 and Lemma 2 yield x Cn
1
z ≻ z and, hence, U(f n) > U(z) according to Theo-

rem 1. Without loss of generality, U(z) > 0 can be assumed. Thus,

and consequently

Calculation of the limit shows 1

4
U(x) +

3

4
U(z) ≤ U(h) . Analogously, 

3

4
U(x) +

1

4
U(z) ≥ U(h) follows from considering gn = z Cn

1
x .   ◻

Proof of Lemma 8 Applying Lemma 5, an RS-event B and uniform S-partitions {Di} 
and {Ei} with i = 1,… , n are constructed in such a way that {B,BC} and {Ei} as well 
as {Di} and {Ei} are independent. According to Axiom 11, there is an RL-event A 
that is used for the construction of L-acts hii� = xi A xi� . Axiom 10 implies:

Theorem 1 results in:

xi = xi� implies U(hii� ) = U(xi) = U(xi� ) . xi ∼ xi� results in U(hii� ) = U(xi) = U(xi� ) 
according to Axiom 4 and Axiom 1. Without loss of generality, xi ≻ xi′ is pre-
sumed. Define u ∶ X × X → ℝ by u(xi, xi) = U(xi) , u(xi� , xi� ) = U(xi� ) and 
u(xi, xi� ) = 2U(hii� ) −

1

2
U(xi) −

1

2
U(xi� ) . u is symmetric since U(hii� ) = U(hi�i) . 

According to Lemma 7,

Thus, u(xi, xi) ≥ u(xi, xi� ) ≥ u(xi� , xi� ) , i.e., u is u-monotonic. Solving u(xi, x�i) for 
U(hii� ) and substituting yields

Hence, U(f ) =
1

n2

∑n

i=1

∑n

i�=1
u(xi, xi� ) .   ◻

1

n2
U(x) +

2(n − 1)

n2
U(h) +

(n − 1)2

n2
U(z) =

1

2
U(f n) +

1

2n
U(x) +

n − 1

2n
U(z).

1

2
U(z) +

1

2n
U(x) +

n − 1

2n
U(z) <

1

n2
U(x) +

2(n − 1)

n2
U(h) +

(n − 1)2

n2
U(z)

1

4

n − 2

n − 1
U(x) +

1

4

3n − 2

n − 1
U(z) < U(h).

Fn
i=1

(Fn
i�=1

(xi A xi� )Di )Ei� = (Fn
i=1

xi Di)A (Fn
i=1

xi Ei) ∼ f B (Fn
i=1

xi Ei)

1

n2

n∑
i=1

n∑
i�=1

U(hii� ) =
1

2
U(f ) +

1

2n

n∑
i=1

U(xi)

3

4
U(xi) +

1

4
U(xi� ) ≥ U(hii� ) ≥

1

4
U(xi) +

3

4
U(xi� ).

1

n2

n∑
i=1

n∑
i�=1

(
1

4
u(xi, xi) +

1

4
u(xi� , xi� ) +

1

2
u(xi, xi� )

)
=

1

2
U(f ) +

1

2n

n∑
i=1

u(xi, xi).
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Proof of Lemma 9 Let {Dk} with Dk ∈ L  be an arbitrary partition of Ω . According 
to Axiom 5, there is an L-partition {Ci} with i = 1,… , n such that xDk ∩ Ci z ∼ x Ciz 
or xDk ∩ Ci z ∼ z with x ≻ z for all Dk . Axiom 4 implies Dk must be a null event 
if xDk ∩ Ci z ∼ z holds for all i. Thus, for each Dk ∈ L⧵N  , there must be at least 
one Ci such that xDk ∩ Ci z ∼ x Ciz . Axiom 4 implies Ci ⧵ Dk ∈ N  in these cases. 
Hence, for this Ci , Dk∗ ∩ Ci = Dk∗ ∩ (Ci⧵Dk∗ ) ∈ N  and therefore xDk∗ ∩ Ci z ∼ z 
for all k∗ ≠ k . Consequently, xDk ∩ Ci z ∼ x Ciz with given Ci holds for at most one 
Dk . As {Ci} is finite, there is only a finite number of Dk ∈ L⧵N  .   ◻

Proof of Theorem  2 According to Axiom 5, there is an L-partition {Di} with 
i = 1,… , n such that x C ∩ Di z ∼ xDiz or x C ∩ Di z ∼ z with x ≻ z for all 
C ∈ L  . Assume without loss of generality x C ∩ Di z ∼ xDiz for i = 1,… , r and 
x C ∩ Di z ∼ z otherwise. On this basis, define PL ∶ L → [0, 1] by PL(C) =

r

n
 

for C ∈ L⧵N  and PL(C) = PS(C) = 0 for C ∈ N  . Obviously, P is finitely 
additive. For the proof of countable additivity, let {Ck} with k ∈ ℕ be an arbi-
trary collection of disjoint L-events. 

⋃∞

k=1
Ck is an L-event since L  is a �- 

algebra. According to Lemma 9, {Ck} contains only a finite number of non-
null events. Assume without loss of generality Ck is nonnull for k = 1,… , r . 
Note that null events are S-events and PS is countably additive. Hence, 
PL(

⋃∞

k=1
Ck) = PL(

⋃r

k=1
Ck) + PS(

⋃∞

k=r+1
Ck) =

∑r

k=1
PL(Ck) +

∑∞

k=r+1
PS(Ck) =

∑∞

k=1
PL(Ck)  . 

To show that PL is independent from {Di} assume that there is another L-parti-
tion {Ej} fulfilling the requirements of Axiom 5. Then, according to Axiom 5, 
xDi ∩ Ej z ∼ x Ejz ∼ xDiz or xDi ∩ Ej z ∼ z for all Ej and Di . Hence, {Ej} and 
{Di} differ only by null events. Thus, PL is independent from {Di} and uniquely 
determined.

Now consider Fr
k=1

xk Ck and Fr
k=1

yk Ck . According to Axiom 4 and the definition 
of null events, Ck ∈ L⧵N  can be supposed without loss of generality. Axiom 5 
implies that there is an L-partition {Ei} with i = 1,… , n such that x Ck ∩ Ei z ∼ x Eiz 
or x Ck ∩ Ei z ∼ z with x ≻ z for all Ck . Assume without loss of generality 
x Ck ∩ Ei z ∼ x Eiz for i = jk−1 + 1,… , jk with j0 = 0 and jr = n , and x Ck ∩ Ei z ∼ z 
in all other cases. Hence, PL(Ck) =

jk−jk−1

n
 . Consider Dk =

⋃jk
i=jk−1+1

Ei for 

k = 1,… , r . {Dk} is a partition of Ω with PL(Dk) = PL(Ck) . Furthermore, Dk and Ck 
differ only by null events. Hence, Axiom 1 and the definition of null events imply 
Fr
k=1

xk Ck ∼ Fr
k=1

xk Dk resp. Fr
k=1

yk Ck ∼ Fr
k=1

yk Dk . Furthermore, Fr
k=1

xk Dk ∼
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Fn
i=1

xi Ei and Fr
k=1

yk Dk ∼ Fn
i=1

yi Ei with xi = xk resp. yi = yk for i = jk−1 + 1,… , jk . 
Lemma 8 and Axiom 1 imply

Fr
k=1

xk Ck ⪯ Fr
k=1

yk Ck ⇔∑r

k=1

∑r

k�=1
u(xk, xk� )PL(Ck)PL(Ck� ) ≥

∑r

k=1

∑r

k�=1
u(yk, yk� )PL(Ck)PL(Ck� ).

Obviously, this also holds for positive linear transforma-
tions of u. Suppose u′ is another symmetric and u-monotonic util-
ity function that can be used to represent the preferences of the deci-
sion-maker. Considering S-acts, Theorem  1 implies u�(x, x) is a positive 
linear transformation of u(x, x). Moreover, considering an arbitrary L-act f = x C z , 
U�(f ) = u�(x, x)PL(C)

2 + 2u�(x, z)PL(C)(1 − PL(C)) + u�(z, z)(1 − PL(C))
2 must be 

a positive linear transformation of U(f ) = u(x, x)PL(C)
2 + 2u(x, z)PL(C)(1 − PL(C))

+u(z, z)(1 − PL(C))
2 . Thus, u�(x, z) is a positive linear transformation of u(x, z).   ◻

Proof of Theorem 3 According to Axiom 12, for all A ∈ A  there is an event B ⊆ A 
with B ∈ K  , such that A ⧵ B is a null event. As null events are S-events, A is the �- 
algebra generated by S  and L  , i. e. A = K  . S ∩L = N ∪U  follows from 
Lemma 4. Consequently, for any A ∈ A  there are at most countable partitions {Bj} 
and {Ck} of S-events and L-events, respectively, such that A =

⋃
{j,k∶Djk⊆A}

Djk with 
Djk = Bj ∩ Ck . Each partition of L-events has only a finite number of nonnull events 
according to Lemma 9. Hence, there is only a finite number of nonnull intersections 
Djk . As null events are S-events, all these Djk are S-events. Thus, it can be assumed 
without loss of generality that {Bj} and {Ck} are finite.

Define P ∶ A → [0, 1] by P(A) =
∑

{j,k∶Djk⊆A}
PS(Bj)PL(Ck) with respect to appro-

priate partitions {Bj} and {Ck} . Obviously, P is a finitely additive probability meas-
ure with P(A) = PS(A) for A ∈ S  and P(A) = PL(A) for A ∈ L  . Countable additiv-
ity is implied by the countable additivity of PS and the fact that all null events are 
both L-events and S-events. P is uniquely determined, which follows from the 
uniqueness and the additivity of PL and PS . Furthermore, define Q ∶ A ×A → [0, 1] 
by

Q is an SL-decomposition of P. This is verified as follows: A  is the algebra gener-
ated by S  and L  . Furthermore, Q fulfills all requirements listed in Sect. 2:

Q(A1,A2) =
�

{j,k∶Djk⊆A1}

⎛⎜⎜⎝
PS(Bj)PL(Ck)

�
{j,k�∶Djk�⊆A2}

PL(Ck� )

⎞⎟⎟⎠
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For verification, note that for all j, 
∑

{k∶Djk⊆A}
PL(Ck) = P(A) for all A ∈ L  . Counta-

ble additivity is relevant only for S-events and follows from the countable additivity 
of PS . Q is uniquely determined, which follows from the uniqueness of PS and PL.

For the next part of the proof, the following substitutions are used:

Adaptation ∶ Q(A1,Ω) =
�

{j,k∶Djk⊆A1}

⎛⎜⎜⎝
PS(Bj)PL(Ck)

�
{j,k�∶D

jk�
⊆Ω}

PL(Ck� )

⎞⎟⎟⎠
=

�
{j,k∶Djk⊆A1}

PS(Bj)PL(Ck) = P(A1) for A1 ∈ A

Additivity ∶ Q(A1 ∪ A2,A3) =
�

{j,k∶Djk⊆A1∪A2}

⎛
⎜⎜⎝
PS(Bj)PL(Ck)

�
{j,k�∶D

jk�
⊆A3}

PL(Ck� )

⎞
⎟⎟⎠

=
�

{j,k∶Djk⊆A1}

⎛⎜⎜⎝
PS(Bj)PL(Ck)

�
{j,k�∶D

jk�
⊆A3}

PL(Ck� )

⎞⎟⎟⎠
+

�
{j,k∶Djk⊆A2}

⎛⎜⎜⎝
PS(Bj)PL(Ck)

�
{j,k�∶D

jk�
⊆A3}

PL(Ck� )

⎞⎟⎟⎠
= Q(A1,A3) + Q(A2,A3) for A1,A2,A3 ∈ A with A1 ∩ A2 = �

Symmetry ∶ Q(A1,A2) =
�

{j,k∶Djk⊆A1}

⎛⎜⎜⎝
PS(Bj)PL(Ck)

�
{j,k�∶D

jk�
⊆A2}

PL(Ck� )

⎞⎟⎟⎠

=
�

{j,k∶Djk⊆A2}

⎛⎜⎜⎝
PS(Bj)PL(Ck)

�
{j,k�∶D

jk�
⊆A1}

PL(Ck� )

⎞⎟⎟⎠
= Q(A2,A1) for A1,A2 ∈ A

Separation ∶ Q(A1,A
C
1
) =

�
{j,k∶Djk⊆A1}

⎛⎜⎜⎜⎝
PS(Bj)PL(Ck)

�
{j,k�∶D

jk�
⊆AC

1
}

PL(Ck� )

⎞⎟⎟⎟⎠
= 0 for A1 ∈ S

Dispersion ∶ Q(A1,A
C
1
) =

�
{j,k∶Djk⊆A1}

⎛⎜⎜⎜⎝
PS(Bj)PL(Ck)

�
{j,k�∶D

jk�
⊆AC

1
}

PL(Ck� )

⎞⎟⎟⎟⎠
= P(AC

1
)

�
{j,k∶Djk⊆A1}

PS(Bj)PL(Ck) = P(AC
1
)P(A1) = Q(A1,Ω)Q(A

C
1
,Ω) for A1 ∈ L

Independence ∶ Q(A1 ∩ A2,A3 ∩ A4) =
�

{j,k∶Djk⊆A1∩A2}

⎛⎜⎜⎝
PS(Bj)PL(Ck)

�
{j,k�∶D

jk�
⊆A3∩A4}

PL(Ck� )

⎞⎟⎟⎠

=
�

{j,k∶Djk⊆A1∩A2∩A3}

⎛⎜⎜⎝
PS(Bj)PL(Ck)

�
{j,k�∶D

jk�
⊆A4}

PL(Ck� )

⎞
⎟⎟⎠
= P(A4)

�
{j,k∶Djk⊆A1∩A2∩A3}

PS(Bj)PL(Ck)

=

⎛⎜⎜⎝
�

{j,k∶Djk⊆A1∩A3}

PS(Bj)PL(Ck)

⎞
⎟⎟⎠

⎛⎜⎜⎝
�

{j,k∶Djk⊆A2}

PS(Bj)PL(Ck)

⎞⎟⎟⎠
P(A4)

=
�

{j,k∶Djk⊆A1}

⎛
⎜⎜⎝
PS(Bj)PL(Ck)

�
{j,k�∶D

jk�
⊆A3}

PL(Ck� )

⎞
⎟⎟⎠

�
{j,k∶Djk⊆A2}

⎛
⎜⎜⎝
PS(Bj)PL(Ck)

�
{j,k�∶D

jk�
⊆A4}

PL(Ck� )

⎞⎟⎟⎠
= Q(A1,A3)Q(A2,A4)) for A1,A3 ∈ S and A2,A4 ∈ L

Fn
i=1

xi Ai = Fm
j=1

Fr
k=1

xjk Djk = Fm
j=1

(Fr
k=1

xjk Ck)Bj
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with xjk = xi for Djk ⊆ Ai . Fn
i=1

yi Ai = Fm
j=1

(Fr
k=1

yjk Ck)Bj results analogously. 
According to Theorem 1, there is a function U ∶ X → ℝ such that

with fj = Fr
k=1

xjk Ck and gj = Fr
k=1

yjk Ck . U is uniquely determined except for 
positive linear transformations. According to Theorem 2, there is a symmetric and 
u-monotonic function u ∶ X × X → ℝ such that

Additivity of Q implies P(Ck)P(Ck� )P(Bj) = Q(Djk,Djk� ) for all k, k′ . Hence,

The separation property of Q implies Q(Djk,Dj�k� ) = 0 for j ≠ j′ . Consequently,

Finally, xjk is replaced by xi . Moreover, all Djk belonging to Ai are combined, and 
Q(Ai,Ai� ) =

∑
{j,k∶Djk⊆Ai}

∑
{j�,k�∶Dj�k�⊆Ai� }

Q(Djk,Dj�k� ) is substituted. Thus,

In the same way, 
∑m

j=1
U(gj)P(Bj) =

∑n

i=1

∑n

i�=1
u(yi, yi� )Q(Ai,Ai� ) is derived. Hence,

u is unique up to positive linear transformations according to Theorem 1 and Theo-
rem 2.   ◻
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Fn
i=1

xi Ai ⪯ Fn
i=1

yi Ai ⇔

m∑
j=1

U(fj)P(Bj) ≤

m∑
j=1

U(gj)P(Bj).

m∑
j=1

U(fj)P(Bj) =

m∑
j=1

(
r∑

k=1

r∑
k�=1

u(xjk, xjk� )P(Ck)P(Ck� )

)
P(Bj).

m∑
j=1

U(fj)P(Bj) =

m∑
j=1

r∑
k=1

r∑
k�=1

u(xjk, xjk� )Q(Djk,Djk� ).

m∑
j=1

U(fj)P(Bj) =

m∑
j=1

m∑
j�=1

r∑
k=1

r∑
k�=1

u(xjk, xj�k� )Q(Djk,Dj�k� ).

m∑
j=1

U(fj)P(Bj) =

n∑
i=1

n∑
i�=1

u(xi, xi� )Q(Ai,Ai� ).

Fn
i=1

xi Ai ⪯F
n
i=1

yi Ai

⇔

n∑
i=1

n∑
i�=1

u(xi, xi� )Q(Ai,Ai� ) ≤

n∑
i=1

n∑
i�=1

u(yi, yi� )Q(Ai,Ai� ).
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