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Abstract
The purpose of this work is to describe the orkg-Leaderboard software designed to extract leaderboards defined as task–
dataset–metric tuples automatically from large collections of empirical research papers in artificial intelligence (AI). The
software can support both the main workflows of scholarly publishing, viz. as LATEX files or as PDF files. Furthermore,
the system is integrated with the open research knowledge graph (ORKG) platform, which fosters the machine-actionable
publishing of scholarly findings. Thus, the systemsss output, when integrated within the ORKG’s supported Semantic Web
infrastructure of representing machine-actionable ‘resources’ on the Web, enables: (1) broadly, the integration of empirical
results of researchers across the world, thus enabling transparency in empirical research with the potential to also being
complete contingent on the underlying data source(s) of publications; and (2) specifically, enables researchers to track the
progress in AI with an overview of the state-of-the-art across the most common AI tasks and their corresponding datasets via
dynamic ORKG frontend views leveraging tables and visualization charts over the machine-actionable data. Our best model
achieves performances above 90% F1 on the leaderboard extraction task, thus proving orkg-Leaderboards a practically
viable tool for real-world usage. Going forward, in a sense, orkg-Leaderboards transforms the leaderboard extraction task
to an automated digitalization task, which has been, for a long time in the community, a crowdsourced endeavor.

Keywords Table mining · Information extraction · Scholarly text mining · Neural machine learning · Semantic networks ·
Knowledge graphs

1 Introduction

Shared tasks—a long-standing practice in the natural lan-
guage processing (NLP) community—are competitions to
which researchers or teams of researchers submit systems
that address a specific Task, evaluated based on a prede-
fined Metric [1]. Seen as “drivers of progress” for empirical
research, they attract diverse participating groups from both
academia and industry, as well as are harnessed as test-
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beds for new emerging shared tasks on under-researched
and under-resourced topics [2]. Examples of long-standing
shared tasks include the Conference and Laboratories of
the Evaluation Forum (CLEF)1 organized at the Conference
on natural language learning (CoNLL),2 the International
Workshop on Semantic Evaluation (SEMEVAL),3 or the
biomedical domain-specific BioNLP Shared Task Series
[3] and the Critical Assessment of Information Extraction
in Biology (BioCreative).4 Being inherently competitive,
shared tasks offer as a main outcome Leaderboards that pub-
lish participating system rankings.

Inspired by shared tasks, the Leaderboards construct of
progress trackers is simultaneously taken up for the record-
ing of results in the field of empirical artificial intelligence
(AI) at large. Here, the information is made available via the

1 http://www.clef-initiative.eu/.
2 https://www.signll.org/conll.
3 https://semeval.github.io/.
4 https://biocreative.bioinformatics.udel.edu/tasks/.
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traditional scholarly publishing flow as PDFs and preprints,
unlike in Shared Tasks where the community is relegated
to a list of researchers wherein tracking the dataset cre-
ators and individual systems applied is less cumbersome as
they can be found within the list of researchers that sign up
to organize or participate in the task. On the other hand,
general publishing avenues bespeak of a deluge of peer-
reviewed scholarly publications [4] and PDF preprints ahead
(or even instead) of peer-reviewed publications [5]. This
high-volume publication trend problem is only compounded
by the diversity in empiricalAI researchwhereLeaderboards
can potentially be searched and tracked on research problems
in various fields such as computer vision, time series analy-
sis, games, software engineering, graphs, medicine, speech,
audio processing, adversarial learning, etc. Thus, the prob-
lem of obtaining completed Leaderboard representations of
empirical research seems a tedious if not completely insur-
mountable task.

Regardless of the setup, i.e., from shared tasks or empiri-
cal AI research, another problem in the current methodology
is the information representation of Leaderboards which
is often via Github repositories, shared task websites, or
researchers’ personal websites. Some well-known websites
that exist to this end are: PapersWithCode (PwC) [6],5 NLP-
Progress [7], AI-metrics [8], SQUaD explorer [9], Reddit
SOTA [10]. The problem with leveraging websites for stor-
ing Leaderboards is the resulting rich data’s lack of machine
actionability and integrability. In other words, unstructured,
non-machine-actionable information from scholarly articles
is converted to semi-structured information on the websites
which still unfortunately remain non-machine-actionable.
In the broader context of scholarly knowledge, the FAIR
guiding principles for scientific data management and stew-
ardship [11] identify general guidelines for making data
and metadata machine-actionable by making them maxi-
mally Findable, accessible, interoperable, and reusable for
machines and humans alike. Semantic Web technologies
such as the W3C recommendations resource description
framework (RDF) and web ontology language (OWL) are
the most widely accepted choice for implementing the
FAIR guiding principles [12]. In this context, the open
research knowledge graph (ORKG) [13] https://orkg.org/ as
a next-generation library for digitalized scholarly knowledge
publishing presents a framework fitted with the neces-
sary Semantic Web technologies to enable the encoding of
Leaderboards as FAIR, machine-actionable data. Adopting
semantic standards to represent Leaderboards not just task–
dataset–metric but also related information such as code
links, pre-trained models, and so on can be made machine-
actionable and consequently queryable. This would directly
address the lack of transparency and integration of various

5 https://paperswithcode.com.

results’ problems identified in current methods of recording
empirical research [1, 2, 14].

This work, taking note of the two main problems around
Leaderboard construction, i.e., information capture and
information representation, proposes solutions to address
them directly. First, regarding information capture, we rec-
ognize due to the overwhelming volume of data, now more
than ever, that it is of paramount importance to empower
scientists with automated methods to generate the Leader-
boards oversight. The community could greatly benefit from
an automatic system that can generate a Leaderboard as a
task–dataset–metric tuple over large collections of schol-
arly publications both covering empirical AI, at large and
encapsulating shared tasks, specifically. Thus, we empiri-
cally tackle the Leaderboard knowledge mining machine
learning (ML) task via a detailed set of evaluations involving
large datasets for the two main publishing workflows, i.e.,
as LATEX source and PDF, with several ML models. For this
purpose, we extend the experimental settings from our prior
work [15] by adding support for information extraction from
LATEX code source and compared empirical evaluations on
longer input sequences (beyond 512 tokens) for both XLNet
and BigBird [16]. Our ultimate goal with this study is to help
the digital library (DL) stakeholders to select the optimal tool
to implement knowledge-based scientific information flows
w.r.t. Leaderboards. To this end, we evaluate four state-of-art
transformer models, viz. BERT, SciBERT, XLNet, and Big-
Bird, each of which has its own unique strengths. Second,
regarding information representation, orkg-Leaderboards
workflow, is integrated in the knowledge graph-based DL
infrastructure of the ORKG [13]. Thus, the resulting data
will be mademachine-actionable and served via the dynamic
ORKG Frontend views6 and further queryable via structured
queries over the larger scholarly KG using SPARQL.7

In summary, the contributions of our work are:

1. we construct a large empirical corpus containing over
4000 scholarly articles and 1548 leaderboards TDM
triples for the development of text mining systems;

2. we empirically evaluate three different transformer mod-
els and leverage the best model, i.e., orkg-Leaderboards

X L Net , for the ORKG benchmarks curation platform;
3. produced a pipeline that works both with the raw PDF and

the LATEX code source of a research publication.
4. we extended our previous work [15] by empirically inves-

tigating our approach with longer input beyond the tradi-
tional 512 sequence length limit by BERT-based models,
and added support for both mainstreams of research pub-
lication PDFs and LATEX code source.

6 https://orkg.org/benchmarks.
7 https://orkg.org/triplestore or https://orkg.org/sparql/.
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5. in a comprehensive empirical evaluation of
orkg-Leaderboards for both LATEX and PDFs based
pipelines, we obtain around 93% micro and 92% macro
F1 scores which outperform existing systems by over 20
points.

To the best of our knowledge, the orkg-Leaderboards
system obtains state-of-the-art results for the Leaderboard
extraction defined as task–dataset–metric triples extraction
from empirical AI research articles handling both LATEX
and PDF formats. Thus, orkg-Leaderboards can be readily
leveraged within KG-based DLs and be used to comprehen-
sively construct Leaderboards with more concepts beyond
the TDM triples. To facilitate further research, our data8 and
code9 are made publicly available.

2 Definitions

This section defines the central concepts in the task–
dataset–metric extraction schema of orkg-Leaderboards.
Furthermore, the semantic concepts used in the information
representation for the data in the ORKG are defined.

Task.
It is a natural language mention phrase of the theme of the

investigation in a scholarly article. Alternatively referred to
as research problem [17] or focus [18]. An article can address
one or more tasks. Task mentions being often found in the
article Title, Abstract, Introduction, or Results tables and dis-
cussion, e.g., question answering, image classification, drug
discovery, etc.

Dataset.
A mention phrase of the dataset encapsulates a particular

Task used in themachine learning experiments reported in the
respective empirical scholarly articles. An article can report
experiments on one or more datasets. Dataset mentions are
found in similar places in the article as Task mentions, e.g.,
HIV dataset,10 MNIST [19], Freebase 15K [20], etc.

Metric.
Phrasal mentions of the standard of measurement11 used

to evaluate and track the performance of machine learning
models optimizing a Dataset objective based on a Task. An
article can report performance evaluations on one or more
metrics. Metrics are generally found in Results tables and

8 https://doi.org/10.5281/zenodo.7419877.
9 https://github.com/Kabongosalomon/task-dataset-metric-nli-
extraction/tree/latex.
10 https://wiki.nci.nih.gov/display/NCIDTPdata/
AIDS+Antiviral+Screen+Data.
11 https://www.merriam-webster.com/dictionary/metric.

discussion sections in scholarly articles, e.g., BLEU (bilin-
gual evaluation understudy) [21] used to evaluate “machine
translation” tasks, F-measure [22] used widely in “classi-
fication” tasks, MRR (mean reciprocal rank) [23] used to
evaluate the correct ordering of a list of possible responses in
“information retrieval” or “question answering” tasks, etc.

Benchmark.
ORKG Benchmarks (https://orkg.org/benchmarks) orga-

nize the state-of-the-art empirical research within ORKG
research fields12 and are powered in part by automated
information extraction supported by the orkg-Leaderboards
software within a human-in-the-loop curation model. A
benchmark per research field is fully described in terms of the
following elements: research problem or Task, Dataset, Met-
ric, Model, and Code, e.g., a specific instance of an ORKG
benchmark13 on the “Language Modelling” Task, evaluated
on the “WikiText-2” Dataset, evaluated by “Validation per-
plexity”Metricwith a listing of various reportedModelswith
respective Model scores.

Leaderboard.
Is a dynamically computed trend-line chart on respec-

tive ORKG benchmark pages leveraging their underlying
machine-actionable data from the knowledge graph. Thus,
Leaderboards depict the performance trend-line of models
developed over time based on specific evaluation Metrics.

3 Related work

There is a wealth of research in the NLP community on
specifying a collection of extraction targets as a unified
information-encapsulating unit from scholarly publications.
The two main related lines of work that are at the fore-
front are: (1) extracting instructional scientific content that
captures the experimental process [24–28]; and (2) extract-
ing terminology as named entity recognition objectives [18,
29–32] to generally obtain a concise representation of the
scholarly article which also includes the Leaderboard infor-
mation unit [33–35].

Starting with the capture of the experimental process, [24]
proposed an AI-based clustering method for the automatic
semantification of bioassays based on the specification of
the BAO ontology.14 In [26], they annotate wet laboratory
protocols, covering a large spectrum of experimental biol-
ogyw.r.t. laboratory procedures and their attributes including
materials, instruments, and devices used to perform specific
actions as a prespecifiedmachine-readable format as opposed
to the ad hoc documentation norm. Within scholarly articles,

12 https://orkg.org/fields.
13 https://orkg.org/benchmark/R121022/problem/R120872.
14 https://github.com/BioAssayOntology/BAO.
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such instructions are typically published in theMaterials and
Method section inBiology andChemistry fields. Similarly, in
[25, 27], to facilitate machine learning models for automatic
extraction of materials syntheses reactions and procedures
from text, they present datasets of synthesis procedures anno-
tated with semantic structure by domain experts in materials
science. The types of information captured include synthe-
sis operations (i.e., predicates), and thematerials, conditions,
apparatus, and other entities participating in each synthesis
step.

In terms of extracting terminology to obtain a concise rep-
resentation of the article, an early dataset called the FTD
corpus [18] defined focus, technique, and domain entity types
which were leveraged to examine the influence between
research communities. Another dataset, the ACL RD-TEC
corpus [29] identified seven conceptual classes for terms
in the full-text of scholarly publications in computational
linguistics, viz. Technology and Method, Tool and Library,
Language Resource, Language Resource Product, Models,
Measures and Measurements, and Other to generate ter-
minology lists. Similarly, terminology mining is the task
of scientific keyphrase extraction. Extracting keyphrases is
an important task in publishing platforms as they help rec-
ommend articles to readers, highlight missing citations to
authors, identify potential reviewers for submissions, and
analyze research trends over time. Scientific keyphrases,
in particular, of type Processes, Tasks, and Materials were
the focus of the SemEval17 corpus annotations [30] which
included full-text articles in Computer Science, Material
Sciences, and Physics. The SciERC corpus [31] provided
a resource of annotated abstracts in artificial intelligence
which annotations for six concepts, viz. Task, Method, Met-
ric,Material,Other-Scientific Term, andGeneric to facilitate
the downstream task of generating a searchable KG of
these entities. On the other hand, the STEM-ECR corpus
[32] notable for its multidisciplinarity included 10 different
STEM domains annotated with four generic concept types,
viz.Process,Method,Material, andData that mapped across
all domains, and furtherwith terms grounded in the realworld
via Wikipedia/Wiktionary links. Finally, several works have
recently emerged targeting the task of Leaderboard extrac-
tion, with the TDM-IE pioneering work [33] also addressing
the much harder Score element as an extraction target. Later
works attempted the document-level information extraction
task by defining explicit relations evaluatedOn between Task
and Dataset elements and evaluatedBy between Task and
Metric [34, 35]. In contrast, in our prior orkg-TDM system
[15] and in this present extended orkg-Leaderboards exper-
imental report, we attempt the task–dataset–metric tuple
extraction objective assuming implicitly encoded relations.
This simplifies the pipelined entity and relation extraction
objectives as a single tuple inference task operating over the
entire document. Nevertheless, [34, 35] also defined corefer-

ence relations between similar term mentions, which can be
leveraged complementarily in our work to enrich the respec-
tive task–dataset–metric mentions.

4 The ORKG-Leaderboards task dataset

4.1 Task definition

The Leaderboard extraction task addressed in
orkg-Leaderboards can be formalized as follows. Let p be
a paper in the collection P . Each p is annotated with at least
one triple (ti , d j ,mk) where ti is the i th Task defined, d j

the j th Dataset that encapsulates Task ti , and mk is the kth
evaluation Metric used to evaluate a system performance on
a Task’s Dataset. While each paper has a varying number
of task–dataset–metric triples, they occur at an average of
roughly 4 triples per paper.

In the supervised inference task, the input data instance
corresponds to the pair: a paper p represented as the
DocTAET context feature pDocT AET and its task–dataset–
metric triple (t, d,m). The inference data instance, then is
(c; [(t, d,m), pDocT AET ]) where c ∈ {true, f alse} is the
inference label. Thus, specifically, our Leaderboard extrac-
tion problem is formulated as a natural language inference
task between the DocTAET context feature pDocT AET and
the (t, d,m) triple annotation. (t, d,m) is true if it is
among the paper’s task–dataset–metric triples, where they
are implicitly assumed to be related, otherwise f alse. The
f alse instances are artificially created by a random selec-
tion of inapplicable (t, d,m) annotations from other papers.
Cumulatively, Leaderboard construction is a multi-label,
multi-class inference problem.

4.1.1 DocTAET context feature

The DocTAET context feature representation [33] selects
only the parts of a paper where the task–dataset–metric men-
tions are most likely to be found. While the Leaderboard
extraction task is applicable on the full scholarly paper con-
tent, feeding a machine learning model with the full article
is disadvantageous since the model will be fed with a large
chunk of text which would be mostly noise as it is redun-
dant to the extraction task. Consequently, an inference model
fed with large amounts of noise as contextual input cannot
generalize well. Instead, the DocTAET feature was designed
to heuristically select only those parts of an article that are
more likely to contain task–dataset–metric mentions as true
contextual information signals. Specifically, as informative
contextual input to the machine learning model, DocTAET
captures sentences from four specific places in the article
that are most likely to contain task–dataset–metric men-
tions, viz. the Document Title, Abstract, first few lines of
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the Experimental setup section and Table content and cap-
tions.

4.2 Task dataset

To facilitate supervised system development for the extrac-
tion of Leaderboards from scholarly articles, we built an
empirical corpus that encapsulates the task. Leaderboard
extraction is essentially an inference task over the document.
To alleviate the otherwise time-consuming and expensive
corpus annotation task involving expert annotators, we lever-
age distant supervision from the available crowdsourced
metadata in the PwC (https://paperswithcode.com/) KB. In
the remainder of this section, we explain our corpus creation
and annotation process.

4.2.1 Scholarly papers andmetadata from the PwC
knowledge base

We created a new corpus as a collection of scholarly papers
with their task–dataset–metric triple annotations for eval-
uating the Leaderboards extraction task inspired by the
original IBM science result extractor [33] corpus. The col-
lection of scholarly articles for defining our Leaderboard
extraction objective is obtained from the publicly available
crowdsourced leaderboards PwC. It predominantly repre-
sents articles in the natural languageprocessing and computer
vision domains, among other AI domains such as Robotics,
Graphs, Reasoning, etc. Thus, the corpus is representative for
empirical AI research. The original downloaded collection
(timestamp 2021-05-10 at 12:30:21)15 was pre-processed to
be ready for analysis. While we use the same method here as
the science result extractor, our corpus is different in terms
of both labels and size, i.e., number of papers, as many more
Leaderboards have been crowdsourced and added to PwC
since the original work. Furthermore, as an extension to our
previous work [15] on this theme, based on the two main
scholarly publishing workflows, i.e., as LATEX or PDF, cor-
respondingly two variants of our corpus are created and their
models, respectively, developed.

Recently, publishers are increasingly encouraging paper
authors to provide the supporting LATEX files accompanying
the corresponding PDF article. The advantage of having the
LATEX source files is that they contain the original article in
plain-text format and thus result in cleaner data in down-
stream analysis tasks. Our prior orkg-TDM [15] model was
fine-tuned only on the parsed plain-text output of PDF arti-

15 Our corpuswas downloaded from thePwCGitHub repository https://
github.com/paperswithcode/paperswithcode-data and was constructed
by combining the information in the files All papers with abstracts and
Evaluation tables which included article urls and TDM crowdsourced
annotation metadata.

cles wherein the plain text was scraped from the PDF which
results in partial information loss. Thus, in this work, we
modify our previous workflow deciding to tune onemodel on
LATEX source files as input data, given the increasing impetus
of authors also submitting the LATEX source code; and a sec-
ondmodel following our previous work on plain text scraped
from PDF articles.

1. LATEXpre-processed corpus.Toobtain theLATEXsources,
we queried arXiv based on the paper titles from the 5361
articles of our original corpus leveraged to developed
orkg-TDM [15]. Resultingly, LATEX sources for roughly
79% of the papers from the training and test datasets in
our original work were obtained. Thus, the training set
size was reduced from 3753 papers in the original work
to 2951 papers in this work with corresponding LATEX
sources. Similarly, the test set size was reduced from
1608 papers in the original work to 1258 papers in this
work for which LATEX sources could be obtained. Thus,
the total size of our corpus reduced from 5361 papers to
4209 papers. Once the LATEX sources were, respectively,
gathered for the training and test sets, the data had to
undergo one additional step of preprocessing. With the
help of pandoc,16 latex format files were converted into
the XML TEI17 markup format files. This is the required
input for the heuristics-based script that produces theDoc-
TAET feature. Thus, the resulting XML files were then
fed as input to the DocTAET feature extraction script. The
pipeline to reproduce this process is released in our code
repository.18

2. PDF pre-processed corpus. For the 4209 papers with
LATEX sources, we created an equivalent corpus but this
time using the PDF files. This is the second experimental
corpus variant of this work. To convert PDF to plain text,
following along the lines of our previous work [15], the
GROBID parser [36] was applied. The resulting files in
XMLTEImarkup formatwere then fed into theDocTAET
feature extraction script similar to the LATEX document
processing workflow.

4.2.2 Task–dataset–metric annotations

Since the two corpus variants used in the empirical investiga-
tions in thiswork are a subset of the corpus in our earlierwork
[15], the 4209 papers in our present corpus, regardless of the
variant, i.e., LATEX or PDF, retained their originally obtained
task–dataset–metric labels via distant labeling supervision
on the PwC knowledge base (KB).

16 https://pandoc.org/.
17 https://tei-c.org/.
18 https://github.com/Kabongosalomon/task-dataset-metric-nli-
extraction/tree/main/data.
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4.3 Task dataset statistics

Ouroverall corpus statistics are shown inTable 1.The column
“Ours-Prior” reports the dataset statistics of our prior work
[15] for comparison purposes. The column “Ours-Present”
reports the dataset statistics of the subset corpus used in the
empirical investigations reported in this paper. The corpus
size is the same for both the LATEX and PDF corpus vari-
ants. In all, our corpus contains 4208 papers split as 2946 as
training data and 1262 papers as test data. There were 1724
unique TDM triples overall. Note that since the test labels
were a subset of the training labels, the unique labels over-
all can be considered as those in the training data. Table 1
also shows the distinct Tasks, Datasets, Metrics in the last
three rows. Our corpus contains 262 Tasks defined on 853
Datasets and evaluated by 528 Metrics. This is significantly
larger than the original corpus which had 18 Tasks defined
on 44 Datasets and evaluated by 31 Metrics.

4.3.1 DocTAET context feature statistics

Figure1 shows in detail the variance of the DocTAET Con-
text Feature over three datasets proposed for Leaderboard
extraction as task–dataset–metric triples: (1) Fig. 1a for the
dataset from the pioneering science result extractor system
[33]; (2) Fig. 1b for the dataset from our prior ORKG-TDM
work [15]; (3) Fig. 1c, d for the dataset in our present paper
from the Grobid and LATEXworkflows, respectively (column
“Ours-Present” in Table 1)).

Both the prior datasets, i.e., the original science result
extractor dataset [33] and the ORKG-TDM dataset [15], fol-
lowed the Grobid processing workflow and reported roughly
the same average length of the DocTAET feature. This
reflects the consistencypreserved in themethodof computing
the DocTAET feature of between 300 to 400 tokens. Note the
ORKG-TDM corpus was significantly larger than the orig-
inal science result extractor corpus; hence, their DocTAET
feature length statistics do not match exactly.

In our present paper, as reported earlier, we use a subset
of papers from the ORKG-TDM dataset for which the corre-
sponding LATEX sources could be obtained to ensure similar
experimental settings between the Grobid and LATEX pro-
cessing workflows. This is why the DocTAET feature length
statistics between the ORKG-TDM dataset (Fig. 1b) and our
present dataset in the Grobid processing workflow (Fig. 1c)
do not match exactly. Still, we see that they are roughly in
similar ranges. Finally, of particular interest is observing the
DocTAET feature length statistics that could be obtained
from the LATEX processing workflow introduced in this work
(Fig. 1d). Since from the LATEX processing workflow cleaner
plain-text output could be obtained, the corresponding Doc-
TAET feature lengths in many of the papers were longer than

all the rest of the datasets considered, which operated in the
Grobid processing workflow over PDFs.

5 The ORKG-Leaderboards system

This sectiondepicts the overall end-to-endorkg-Leaderboards,
including details on the deep learningmodels used in our nat-
ural language inference (NLI) task formulation.

5.1 Workflow

The overall orkg-Leaderboards workflow as depicted in
Fig. 2 includes the following steps:

1. A user provides the article input as either the main “.tex”
file or a PDF file.

2. If the input is provided as a “.tex” file, the pandoc script is
applied to convert the LATEX to the corresponding XML
TEI marked-up format.

3. Alternatively, if the input is provided as a PDF file,
the Grobid parser is applied to obtain the corresponding
scraped plain text in the XML xxxx marked-up format.

4. Once theXMLxxxmarked-up files are obtained, theDoc-
TAET feature extraction script is applied to obtain the
paper context representations.

5. Furthermore, if in the training phase, the collection of
papers in the training set is assigned their respective true
task–dataset–metric labels and a random set of "False"
task–dataset–metric labels.

6. Otherwise, if in the test phase, the query paper is assigned
all the task–dataset–metric inference targets as candidate
labels.

7. Finally, on the one hand, for the training phase, for each of
the input file formats, i.e., “.tex” or PDF, an optimal infer-
ence model is trained by testing four transformer model
variants, viz. BERT, SciBERT, XLNet, and BigBird.

8. On the hand, for the test phase, depending on the input
file format, i.e., “.tex” or PDF, the corresponding trained
optimal model is applied to the query instance.

9. Finally, from the test phase, the predicted task–dataset–
metric tuples output are integrated in the ORKG.

5.2 Leaderboards natural language inference (NLI)

To support Leaderboard inference [33], we employ deep
transfer learning modeling architectures that rely on a
recently popularized neural architecture—the transformer
[37]. Transformers are arguably the most important architec-
ture for natural language processing (NLP) today since they
have shown and continue to show impressive results in sev-
eral NLP tasks [38]. Owing to the self-attention mechanism
in these models, they can be fine-tuned on many down-
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Table 1 Ours-prior [15] versus
ours-present versus the original
science result extractor [33]
corpora statistics

Ours-prior Ours-present Original

Train Test Train Test Train Test

Papers 3753 1608 2946 1262 170 167

“Unknown” annotations 922 380 2359 992 46 45

Total TDM triples 11,724 5060 9614 4096 327 294

Avg. number of TDM triples per paper 4.1 4.1 4.3 4.2 2.64 2.41

Distinct TDM triples 1806 1548 1668 1377 78 78

Distinct Tasks 288 252 262 228 18 18

Distinct Datasets 908 798 853 714 44 44

Distinct Metrics 550 469 528 434 31 31

The “unknown” labels were assigned to papers with no TDM triples after the label filtering stage

Fig. 1 DocTAET feature length
of papers in the original science
result extractor dataset [33]
Fig. 1a, the dataset used in our
prior ORKG-TDM experiments
[15] Fig. 1a, the dataset from the
Grobid workflow in our present
work Fig. 1c, and the dataset
from the LATEX workflow in our
present work Fig. 1d

(a) DocTAET feature length in the orig-
inal science result extractor corpus [33]
had a max, min, and mean length of
546, 81 and 309.45, respectively

(b) DocTAET feature length in the
dataset in our prior work [15] had amax,
min, and mean length of 2161, 5 and
378.88, respectively

(c) DocTAET feature length in the
dataset from the Grobid workflow in our
present paper has a max, min, and
mean length of 2686, 101 and 513.37,
respectively

(d) DocTAET feature length in the
dataset from the LATEX workflow in our
present paper has a max, min, and
mean length of 7374, 100 and 685.25,
respectively

stream tasks. These models have thus crucially popularized
the transfer learning paradigm in NLP. We investigate three
transformer-basedmodel variants for leaderboard extraction
in a natural language inference configuration.

Natural language inference (NLI), generally, is the task of
determiningwhether a “hypothesis” is true (entailment), false
(contradiction), or undetermined (neutral) given a “premise”
[39]. For leaderboard extraction, the slightly adapted NLI
task is to determine that the (task, dataset, metric) “hypothe-
sis” is true (entailed) or false (not entailed) for a paper given

the “premise” as theDocTAETcontext feature representation
of the paper.

Currently, there exist several transformer-based models.
In our experiments, we investigated four core models: three
variants ofBERT, i.e., the vanillaBERT [38], scientificBERT
(SciBERT) [40], and BigBird [16]. We also tried a different
type of transformer model than BERT called XLNet [41],
which employs Transformer XL as the backbone model.
Next, we briefly describe the four variants we use.
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Fig. 2 The orkg-Leaderboards
end-to-end system workflow in
the context of the open research
knowledge graph (ORKG)
digital library https://orkg.org/

BERT models
BERT (i.e., Bidirectional Encoder Representations from
Transformers) is a bidirectional autoencoder (AE) language
model. As a pre-trained language representation built on the
deep neural technology of transformers, it provides NLP
practitioners with high-quality language features from text
data simply out of the box and thus improves performance on
many NLP tasks. These models return contextualized word
embeddings that can be directly employed as features for
downstream tasks [42].

The first BERT model we employ is BERTbase (12 lay-
ers, 12 attention heads, and 110 million parameters), which
was pre-trained on billions of words from the BooksCorpus
(800M words) and the English Wikipedia (2500M words).

The second BERT model we employ is the pre-trained
scientific BERT called SciBERT [40]. SciBERT was pre-
trained on a large corpus of scientific text. In particular, the
pre-training corpus is a random sample of 1.14Mpapers from
Semantic Scholar19 consisting of full texts of 18% of the

19 https://semanticscholar.org.

papers from the computer science domain and 82% from the
broad biomedical field. We used their uncased variants for
both BERTbase and SciBERT.
XLNet
XLNet is an autoregressive (AR) language model [41] that
enables learning bidirectional contexts using permutation
language modeling. This is unlike BERT’s masked language
modeling strategy. Thus in PLM, all tokens are predicted but
in random order, whereas in MLM, only the masked (15%)
tokens are predicted. This is also in contrast to the traditional
language models, where all tokens are predicted in sequen-
tial order instead of randomly.Randomorder prediction helps
the model to learn bidirectional relationships and, therefore,
better handle dependencies and relations between words. In
addition, it uses Transformer XL [43] as the base architec-
ture, which models long contexts, unlike the BERT models
with contexts limited to 512 tokens. Since only cased models
are available for XLNet, we used the cased XLNetbase (12
layers, 12 attention heads, and 110 million parameters).
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BigBird
BigBird is a sparse-attention-based transformer that extends
Transformer based models, such as BERT, to much longer
sequences.Moreover,BigBird comes alongwith a theoretical
understanding of the capabilities of a complete transformer
that the sparse model can handle [16]. BigBird takes inspira-
tion from graph sparsification methods by relaxing the need
for the attention to fully attend to all the input tokens. For-
mally the model first builds a set of g global tokens attending
on all parts of the sequence, then all tokens attend to a set ofw
local neighboring tokens, and finally, all tokens attend to a set
of r random tokens. The empirical configuration explained
in the last paragraph leads to a high-performing attention
mechanism scaling to much longer sequence lengths (8×)
[16].

6 ORKG-Leaderboards system experiments

6.1 Experimental setup

Parameter tuning
Weuse theHugging Transformer libraries20 with their BERT
variants and XLNet implementations. In addition to the stan-
dard fine-tuned setup for NLI, the transformer models were
trained with a learning rate of 1e−5 for 14 epochs; and used
the AdamW optimizer with a weight decay of 0 for bias,
gamma, beta and 0.01 for the others. Our models’ hyperpa-
rameters details can be found in our code repository online
at.21

In addition, we introduced a task-specific parameter that
was crucial in obtaining optimal task performance from the
models. It was the number of f alse triples per paper. This
parameter controls the discriminatory ability of the model.
The original science result extractor system [33] considered
|n| − |t | false instances for each paper, where |n| was the
distinct set of triples overall and |t | was the number of true
leaderboard triples per paper. This approach would not gen-
eralize to our larger corpus with over 1724 distinct triples.
In other words, considering that each paper had on average
4 true triples, it would have a larger set of false triples which
would strongly bias the classifier learning toward only false
inferences. Thus, we tuned this parameter in a range of val-
ues in the set {10, 50, 100} which at each experiment run
was fixed for all papers.

Finally, we imposed an artificial trimming of the Doc-
TAET feature to account forBERTandSciBERT’smaximum
token length of 512. For this, the token lengths of the experi-
mental setup and table infowere initially truncated to roughly

20 https://github.com/huggingface/transformers.
21 https://github.com/Kabongosalomon/task-dataset-metric-nli-
extraction/blob/main/train_tdm.py.

150 tokens, after which the DocTAET feature is trimmed
at the right to 512 tokens. Whereas, XLNet and BigBird
are specifically designed to handle longer contexts of unde-
fined lengths. Nevertheless, to optimize for training speed,
we incorporated a context length of 2000 tokens.
Evaluation
Similar to our prior work [15], all experiments are performed
via twofold cross-validation. Within the twofold experimen-
tal settings, we report macro- and micro-averaged precision,
recall, and F1 scores for our Leaderboard extraction task
on the test dataset. The macro scores capture the averaged
class-level task evaluations, whereas the micro scores repre-
sent fine-grained instance-level task evaluations.

Further, the macro and micro evaluation metrics for the
overall task have two evaluation settings: (1) considers papers
with task–dataset–metric and papers with “unknown” in the
metric computations; and (2) only papers with task–dataset–
metric are considered while the papers with “unknown” are
excluded. In general, we focus on the model performances
in the first evaluation setting as it directly emulates the real-
world application setting that includes papers that do not
report empirical research and therefore for which the Leader-
board model does not apply. In the second setting, however,
the reader still can gain insights into the model performances
when given only papers with Leaderboards.

6.2 Experimental results

In this section, we discuss new experimental findings shown
in Tables 2, 3, 4, and 5with respect to four research questions
elicited as RQ1, RQ2, RQ3, and RQ4, respectively.

RQ1: Which is the best model in the real-world setting when
considering a dataset of both kinds of papers: those with
Leaderboards and those without Leaderboards therefore
labeled as “Unknown”?

For these results, we refer the reader to the first four
results’ rows in both Tables 2 and 3, respectively. Note,
Table 2 reports results from the Grobid processing work-
flow and Table 3 reports results from the LATEX processing
workflow. In both cases, it can be observed that orkg-
LeaderboardsX L Net is the best transformer model for the
Leaderboard inference task in terms of micro-F1. In the case
of the Grobid processing workflow, the best micro-F1 from
thismodel is 94.8%.Whereas in the case of LATEXprocessing
workflow, the best micro-F1 from orkg-LeaderboardsX L Net

is 93.0%.Note in selecting the bestmodelwe prefer themicro
evaluations since they reflect the fine-grained discriminative
ability of the models at the instance level. The macro scores
are seen simply as supplementary measures in this regard to
observing the performance of the models at the class level.
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Table 2 BERT512, SciBERT512,
XLNet2000, and BigBird2000
results, trained on the subset of
the dataset released by [15] from
the Grobid workflow

Ma-P1 Ma-R Ma-F1 Mi-P2 Mi-R Mi-F1

Average evaluation across twofold

orkg-LeaderboardsB E RT 93.2 95.7 93.5 95.4 93.9 94.7

orkg-LeaderboardsSci B E RT 92.6 94.3 92.2 95.4 91.1 93.2

orkg-LeaderboardsX L Net 93.1 96.4 93.7 95.1 94.6 94.8

orkg-LeaderboardsBigBird 93.2 94.9 93.0 95.7 92.4 94.0

Average evaluation across twofold (without "unknown" annotation)

orkg-LeaderboardsB E RT 91.3 94.4 91.8 94.8 93.9 94.3

orkg-LeaderboardsSci B E RT 90.5 92.5 90.3 94.8 90.6 92.7

orkg-LeaderboardsX L Net 91.3 95.0 92.0 94.3 93.5 93.9

orkg-LeaderboardsBigBird 91.5 93.3 91.3 95.2 92.2 93.6

The numbers in bold correspond to the best model’s performance
1Macro precision
2Micro precision

Table 3 BERT512, SciBERT512,
XLNet2000 and BigBird2000
results, based on DocTEAT
from LATEX code source

Ma-P1 Ma-R Ma-F1 Mi-P2 Mi-R Mi-F1

Average evaluation across twofold

orkg-LeaderboardsB E RT 93.5 94.2 92.8 96.0 90.0 92.9

orkg-LeaderboardsSci B E RT 91.7 93.9 91.6 94.6 88.6 91.5

orkg-LeaderboardsX L Net 91.9 94.4 92.0 94.9 91.2 93.0

orkg-LeaderboardsBigBird 90.7 91.6 89.7 94.6 87.2 90.7

Average evaluation across twofold (without "unknown" annotation)

orkg-LeaderboardsB E RT 91.2 92.3 90.6 95.4 88.0 91.5

orkg-LeaderboardsSci B E RT 89.4 91.7 89.2 93.7 86.0 89.7

orkg-LeaderboardsX L Net 89.5 92.4 89.8 94.2 89.4 91.7

orkg-LeaderboardsBigBird 87.5 88.7 86.6 93.6 85.3 89.3

The numbers in bold correspond to the best model’s performance
1Macro precision
2Micro precision

RQ2: How do the models in two processing workflows, i.e.,
Grobid producing plain text with some noise and the clean
plain text from LATEX, compare, both in general and specifi-
cally for the best ORKG-LeaderboardsXLNet model?

Themodel trained on the plain text obtained fromLATEX con-
trary to our intuition shows a lower performance compared
to the one trained on the noisy Grobid produced plain text.
One possible cause maybe related to the context length as the
LATEXproduced dataset has an average length of 685.25 com-
pared to 512.37 for the Grobid produced data, as shown in
Fig. 1c, d. In this case, we hypothesize that for the LATEX pro-
cessing workflow to be implemented with the most effective
model, experimentswith amuch larger dataset arewarranted.
There may be one of two outcomes: (1) the model from the
LATEX workflow still performs worse than the model from
the Grobid workflow in which case we can conclude that
longer contexts regardless of whether they are from a clean
source or noisy source are difficult to generalize from, or (2)
the model from the LATEX workflow indeed begins to out-

perform the model from the Grobid workflow in which case
we can safely conclude that for the transformer models to
generalize on longer contexts a much larger training dataset
is needed. We relegate these further detailed experiments to
future work.

RQ3: Which insights can be gleaned from the BERT and
SciBERT models operating on shorter context lengths of
512 tokens versus the more advanced models, viz. XLNet
and BigBird, operating on longer context lengths of 2000
tokens?

We observed that BERT and SciBERT models show lower
performance compared to the XLNet transformer model
operating on 2000 tokens. This we hypothesized as expected
behavior since the longer contextual information can capture
richer signals for the model to learn from, which is highly
likely to be lost when imposing the 512 tokens limit. Con-
trary to this intuition, however, the BigBird model with the
longer context is not able to outperformBERT and SciBERT.
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Table 4 Performance of our best model, i.e., orkg-Leaderbo-
ardsX L Net , for Task, Dataset, and Metric concept extraction of the
leaderboard for the grobid workflow

Entity Macro Micro

P R F1 P R F1

TDM 93.1 96.4 93.7 95.1 94.6 94.8

Task 94.3 97.2 95.0 96.8 95.9 96.4

Dataset 93.8 96.7 94.4 96.2 95.4 95.8

Metric 93.7 96.9 94.4 96.0 95.3 95.6

Table 5 Performance of our best model, i.e., orkg-Leaderbo-
ardsX L Net , for Task, Dataset, and Metric concept extraction of the
leaderboard for the latex workflow

Entity Macro Micro

P R F1 P R F1

TDM 91.9 94.4 92.0 94.9 91.2 93.0

Task 94.3 97.2 95.0 96.8 95.9 96.4

Dataset 93.8 96.7 94.4 96.2 95.4 95.8

Metric 93.7 96.9 94.4 96.0 95.3 95.6

We suspect the specific attention mechanism in the BigBird
model [16] needs further examination over a much larger
dataset to conclude that it is ineffective for task–dataset–
metric extraction task compared to other transformer-based
models.

RQ4: Which of the three Leaderboard task–dataset–metric
concepts are easy or challenging to extract?

As a fine-grained examination of our best model, i.e.,
orkg-LeaderboardsX L Net , we examined its performance for
extracting each of three concepts (task, dataset,metric)
separately. These results are shown in Tables 3 and 4. From
the results, we observe that Task is the easiest concept to
extract, followed by Metric, and then Dataset. We ascribe
the low performance for extracting the Dataset concept due
to the variability in its naming seen across papers even when
referring to the same real-world entity. For example, the real-
world dataset entity “CIFAR-10” is labeled as “CIFAR-10,
4000 Labels” in some papers and “CIFAR-10, 250 Labels”
in others. This phenomenon is less prevalent for Task and the
Metric concepts. For example, the Task “Question Answer-
ing” is rarely referenced differently across papers addressing
the task. Similarly, forMetric, “accuracy” as an example, has
very few variations.

7 Integrating ORKG-Leaderboards in the
open research knowledge graph

In this era of the publications deluge worldwide [4, 5,
44], researchers are faced with a critical dilemma: How to
stay on track with the past and the current rapid-evolving
research progress? With this work, our main aim is to
propose a solution to this problem. And with the orkg-
Leaderboards software, we have concretely made advances
toward our aim in the domain of empirical AI research.
Furthermore, with the software integrated into the next-
generation digitalized publishing platform, viz. https://orkg.
org/, the machine-actionable task–dataset–metric data rep-
resented as a knowledge graph with the help of the Semantic
Web’s RDF language makes the information skimmable for
the scientific community. This is achieved via the dynamic
Frontend views of the ORKG benchmarks feature https://
orkg.org/benchmarks. This is illustrated via Fig. 3. On the
left side of Fig. 3 is shown the traditional PDF-based paper
format. Highlighted within the view are the Task, Dataset,
andMetric phrases. As evident, the phrases are mentioned in
several places in the paper. Thus in this traditional model of
publishing via non-machine-actionable PDFs, a researcher
interested in this critical information would need to scan
the full paper content. They are then faced with the intense
cognitive burden of repeating such a task over a large col-
lection of articles. On the right side of Fig. 3 is presented
a dynamic ORKG Frontend view of the same information,
however over machine-actionable RDF semantically repre-
sented information of the Task,Dataset, andMetric elements.
To generate such a view, the orkg-Leaderboard software
would simply be applied on a large collection of articles
either in LATEX or PDF format, and the resulting task–
dataset–metric tuples uploaded in theORKG.Note, however,
orkg-Leaderboard does not attempt extraction of the Score
element. We observed from some preliminary experiments
that the Score element poses a particularly hard extraction tar-
get. This is owing to the fact that the underlying contextual
data supporting Score extraction is especially noisy–clean
table data extraction from PDFs are a challenging problem in
the research community that would need to be addressed first
to develop promising Score extractors. Nevertheless, in the
context of this missing data in theORKGBenchmarks pages,
its human-in-the-loop curation model is relied on. In such a
setting, respective article authors with their task–dataset–
metric model information being automatically extracted to
the KG can simply edit their corresponding model scores
in the graph. Thus as concretely shown on the right screen
of Fig. 3, empirical results are made skimmable and easy to
browse for researchers interested in gaining an overview of
empirical research progress via a ranked list of papers propos-
ingmodels and a performance progress trend chart computed
over time.
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Fig. 3 Acontrastive viewof task–dataset–metric information in the tra-
ditional PDF format of publishing as non-machine-actionable data (on
the left) versus as machine-actionable data with task–dataset–metric

annotations obtained from orkg-Leaderboards and integrated in the
next-generation scholarly knowledge platform as the ORKG bench-
marks view (on the right)

Although the experiments of our study targeted empirical
AI research, we are confident, that the approach is transfer-
able to similar scholarly knowledge extraction tasks in other
domains. For example in Chemistry or Material Sciences,
experimentally observed properties of substances or materi-
als under certain conditions could be obtained from various
papers.

8 Conclusion and future work

In this work, we experimented with the empirical con-
struction of Leaderboards, using four recent transformer-
based models (BERT, SciBERT, XLNet, BigBird) that have
achieved state-of-the-art performance in several tasks and
domains in the literature. Leveraging the two main streams
of information acquisition used in scholarly communica-
tion, i.e., (Pdf, LATEX), our work published two models to
accurately extract task dataset and metric entities from an
empirical AI research publication. Therefore as a next step,
we will extend the current triples (task, dataset, metric)
model with additional concepts that are suitable candidates

for a Leaderboard such as score or code URLs, etc. We also
envision the task–dataset–metric extraction approach to be
transferable to other domains (such as materials science,
engineering simulations, etc.). Our ultimate target is to create
a comprehensive structured knowledge graph tracking sci-
entific progress in various scientific domains, which can be
leveraged for novel machine-assistance measures in schol-
arly communication, such as question answering, faceted
exploration, and contribution correlation tracing.
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