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Abstract

Betthäuser et al. (2023) examine the effects of the COVID-19 pandemic on
the learning progress of school-aged children. They collect 291 estimates from
42 studies. Their meta-analysis-corrected estimate implies a substantial de-
cline in students’ learning (Cohen’s d = −0.14, 95% confidence interval −0.17
to −0.10). First, we successfully reproduce the main results and the majority
of supporting figures. Second, we provide additional analysis addressing pub-
lication bias by implementing correction techniques: PET-PEESE (funnel-
based), 3PSM (selection model), and RoBMA (model averaging). Addition-
ally, we implement novel approaches that account for the strength of biased
selection favoring affirmative results in the sample of analyzed studies. Third,
we use techniques that assume the presence of p-hacking (MAIVE, RTMA).
Using these methods, the corrected effect ranges from −0.25 to −0.11 with
high statistical significance. While our analysis does reveal some evidence
of selection bias in underlying data (primary studies), these phenomena do
not appear to systematically distort the overall findings of the original study.
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1 Introduction

Betthäuser et al. (2023) conduct a systematic review and meta-analysis of the evi-

dence on learning during the COVID-19 pandemic. The authors estimate the learn-

ing deficit using 291 estimates from 42 studies. As suggested by the authors, the

pandemic led to a substantial decline in students’ learning (Cohen’s d = −0.14,

95% confidence interval −0.17 to −0.10), quantified using standardized test scores.

Specifically, the study indicates that, during COVID-19, learning deficits were more

pronounced in mathematics compared to reading within the same grade level. There

were no significant differences in learning deficits across grade levels (mean differ-

ence δ = −0.01, t(41) = −0.59, two-tailed p-value = 0.556, 95% CI −0.06 to 0.03).

Moreover, the estimates of learning deficits are significantly higher in magnitude for

middle-income countries than for high-income countries. The authors suggest on

page 379 that “learning deficits opened up early in the pandemic and have neither

closed nor substantially widened since then.”

In the present report, we focus on three areas. (1) Narrow replication (repro-

duction). We check the reproducibility of all the results using the data and codes

provided. (2) Publication bias. We use bias-correction techniques, such as PET-

PEESE (funnel-based), 3PSM (selection model), and RoBMA (model average), and

check if the results hold. (3) p-hacking. We use the techniques (RTMA, MAN) re-

cently developed by Mathur (2024b) and MAIVE technique by Irsova et al. (2023).

MAIVE is useful here since recomputing the estimates to Cohen’s d introduces a

mechanical correlation between estimates and standard errors, which breaks the

assumptions of the study’s meta-analysis model.

In section two, we successfully reproduce the findings of the original study and

most of the figures using the code and data provided in the replication package. We

do not reproduce the figures compiled manually by the original authors. In section

three, we address publication bias. The original authors use only graphical tests

(funnel plot, distribution of z-statistics, and p-curve) to test for publication bias.

The authors conclude that there is no evidence of publication bias. We re-examine

this conclusion using a variety of bias detection and correction methods such as

PET-PEESE, 3PSM (a selection model as in Iyengar and Greenhouse (1988), Hedges

(1992), Vevea and Hedges (1995)), and RoBMA (a model averaging approach de-
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scribed in Bartoš et al. (2023), Maier et al. (2023)). We additionally corrected for

bias by allowing for p-hacking using the MAIVE (meta-analysis instrumental vari-

able estimation) by Irsova et al. (2023)), MAN (meta analysis of non-affirmative

studies) and RTMA (right truncated meta-analysis) by Mathur (2024b). MAIVE

also allows to address potential bias due to the mechanical correlation between

estimates and standard errors introduced by standardization across studies using

Cohen’s d. Using PET, PEESE, 3PSM & RoBMA, the corrected effect size ranges

from −0.245 to −0.118, indicating a statistically significant difference from zero.

With 3PSM and RoBMA, we get results that are close to the original estimate.

MAIVE yields an estimate of −0.119, which is highly statistically significant and is

within the 95% confidence interval of the original result. Finally, we conduct sen-

sitivity analysis following methods by Mathur (2024b) and get estimates between

−0.206 and −0.039, which are highly statistically significant. While these results

suggest the correct direction of the effect, the wide range of estimates indicates the

need for further investigation into the model fit.

We consider the resulting estimates from RoBMA and MAIVE to be particularly

reliable, since these methods are robust against p-hacking and the transformation

to Cohens d. Therefore, we conclude that even though our analysis uncovers certain

signs of publication bias and p-hacking, these phenomena do not seem to systemat-

ically affect the conclusions of the original study.

2 Computational Reproducibility

We used the replication package provided here: hyperlink1. The replication package

contains both code and data. The code incorporates the cleaning of the provided

data. The final analysis data can be downloaded directly using the code in the

replication package. See Table 1 for the description of replication package contents

and reproducibility. We successfully computationally reproduced all the main re-

sults (i.e., Figures 2b (pg. 377), 3 (pg. 378), 4 (pg.379), and 6 (pg.380)) from the

raw data. The remaining figures were compiled manually by the original authors.

Originally, Figure 4, pg. 379, is generated using an R extension in STATA. We re-

1https://doi.org/10.17605/osf.io/u8gaz
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produced the figure using the same code directly in R. In section 5, we present the

reproduced figures; tables are presented in section 6. Table 2 shows the original and

replicated slope coefficient estimate, p-value, and 95% confidence interval for the

learning deficits in time (mentioned in Figure 4, pg.379). Table 3 shows the original

and the reproduced variation in estimates of learning deficit by school subject, level

of education, and country income level (original results described in Figure 6, mean

differences in text, pg. 380).

2.1 Discrepancies Between Pre-analysis Plan and Article

The authors registered a pre-analysis plan available here: hyperlink2. The paper

follows the strategy specified in the pre-analysis plan, and relies on the pre-specified

academic and pre-print databases. Regarding the data extraction, we find a minor

deviation from the described plan. Despite the pre-analysis plan aiming to collect

the key characteristics of the studied countries, the final data set only codes the

country names. Moreover, the authors aimed to include the countries’ income lev-

els based on the World Bank’s classification (low, lower-middle, upper-middle, and

high-income). However, the majority of the dataset falls into the high-income cat-

egory. The upper-middle-income is represented by less than 3% of the data. Low

and lower-middle-income categories are not represented at all. Similarly, the final

dataset does not include data on the funding source, sample restrictions, survey

attrition, and follow-up period(s).

The pre-analysis plan describes the data synthesis strategy but does not specify

the standardization measure (the article uses Cohen’s d). The pre-analysis plan

additionally aims to evaluate the learning differences between genders and varying

exposure to school closures. These subgroup analyses were not performed due to

the unavailability of the data. Lastly, there is no description of the specific tests

the authors aimed to conduct. The article includes the following tests. To test

for publication bias, the authors use a graphical test based on the distribution of

z-statistics (assuming that the presence of publication bias can be seen in a notable

jump in the distribution of z-statistics at the significance threshold, z = 1.96 or

2https://www.crd.york.ac.uk/prospero/display record.php?ID=CRD42021249944
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p-value = 0.05). Additionally, the supplementary material features two more visual

tests: a funnel plot and a test based on the p-curve. The article estimates the

overall pooled effect size, focuses on the effect size in time, and performs sub-group

analysis concerned with socio-economic inequality, school subjects (mathematics

and reading), level of education, and country income level.

3 Robustness Reproduction and Replication Using Different Models

Betthäuser et al. (2023) utilized graphical tests to identify potential publication

bias. Firstly, they use a graphical test based on the distribution of z-statistics.

This approach is based on the assumption that in the presence of publication bias,

there should be a notable jump in the distribution of z-statistics at the signifi-

cance threshold where z = −1.96. However, recent work by Elliott et al. (2022b)

argues that the presence of said jump does not always indicate publication bias.

In reproduced Figure 1, the log-transformed z-statistics do not exhibit any clus-

tering around the 1.96 significance level. Yet, it is important to note that in the

distribution of the raw z-statistics, this clustering is clearly present. We have put

these two plots together in Figure 8 for ease of comparison. In the (c) plot of

Figure 8, the z-scores are transformed and displayed on a log scale, which changes

their visual representation. In the plots (a) and (b), we present the distribution of

raw absolute values of z-scores without any transformation reflecting their natural

spread. Taking the logarithm of the z-scores significantly alters the distribution.

Logarithmic transformation compresses higher values and spreads out smaller ones,

making the distribution look different compared to the untransformed (or absolute)

z-scores. Figure 8 (a) presents strong bunching at the 5% significance level and a

long heavy left-skewed tail, suggesting a preference for negative significant results.

However, upon closer examination, Figure 8(b) shows that the distribution of z-

scores is somewhat symmetric around its peak at -1.96, and can also be caused, for

example, by a relatively large share of studies being similarly powered or having

a similar sample size. Therefore, the patterns observed in Figure 8(b) align with

those in the original log-transformed z-score distribution (Figure 1), reinforcing the

interpretation that the observed clustering around the -1.96 distribution may not
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be attributed to publication bias.

Secondly, the reader can find two more visual tests in the Betthäuser et al.

(2023) supplementary material. First, a test based on the p-curve, assuming that

if there is publication bias or p-hacking, the distribution of p-values should be left-

skewed with a large number of p-values right below the 0.05 significance threshold.

Second, the authors include a funnel plot, showing the relationship between effects

and their standard errors. Based on these three methods, the authors conclude

that there is no evidence of publication bias. While these methods offer valuable

initial insights, we sought to enhance the robustness of the analysis by employing

more rigorous techniques. In our robustness analysis, we test for publication bias

and assess whether the findings are consistent with the original study using both

established workhorse meta-analysis methods and more novel techniques detailed

below.

We start by estimating funnel-based precision effect test - precision effect esti-

mate with standard errors (PET-PEESE). The precision effect test (PET) is based

on the regression of the effect on its standard error, weighted by 1/SE2, the squared

precision3. The coefficient of the standard error in our PET analysis is highly sta-

tistically significant (see Table 4, Column 1). In Column 2, we estimate the PEESE

since it offers a more accurate effect-size approximation (Bartoš et al. 2022, Stanley

2017). To obtain the PEESE estimate, we regress the effect on its squared standard

error weighted by the squared precision 1/SE2. Based on heteroskedasticity robust

standard errors, the publication bias coefficient is statistically significant only at

10%. The corrected effect of −0.245 suggests that the learning deficit is 0.245/0.4

or 0.61 of a school year’s learning. This estimate is much larger compared to the

0.35 reported in the article.

Column 3 in Table 4 shows the results from 3PSM, a bias correction method

based on the publication selection model described in Iyengar and Greenhouse

(1988), and Hedges (1992). Publication selection arises with a preference for p-

values below the significance threshold. We estimate the effect beyond bias using

the selection model that employs the maximum likelihood method described in

Vevea and Hedges (1995). The corrected effect size −0.123 and a corresponding

3Under no publication bias, there should be no relationship between the two (Egger et al.
1997, Stanley and Doucouliagos 2014)
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learning deficit expressed as a school year’s worth of learning 0.123/0.4 = 0.31 are

close to the estimate reported in the article. The 3PSM features a likelihood ra-

tio test for publication bias. According to the p-value, we cannot reject the null

hypothesis of no publication bias.

Next, we apply Robust Bayesian Meta-Analysis (RoBMA), which estimates dif-

ferent publication bias models and constructs a weighted average over them, with

the weights being proportional to data fit and model parsimony (Bartoš et al. 2023,

Maier et al. 2023). The RoBMA estimate, shown in Table 4, Column 4, is −0.118,

corresponding to 0.118/0.4 = 0.30 school year’s worth of learning deficit, slightly

smaller than the original article’s estimate of 0.14/0.4 = 0.35. This methodology

is robust to misspecifications and performs well under heterogeneity. Given that

RoBMA integrates and balances multiple commonly used publication bias models,

the resulting estimate is particularly reliable.

In addition to conventional meta-analysis techniques, we conduct sensitivity

analyses offered by Mathur and VanderWeele for publication bias in metaanalyses,

described in Mathur and VanderWeele (2020), Mathur (2024a,b). We utilize the

PublicationBias & phacking packages available at metabias.io. These methods

are designed to perform sensitivity analyses for publication bias, where affirmative

studies – those showing statistically significant results in the expected direction –

are more likely to be published than non-affirmative studies, which include those

with non-significant results or results in an unexpected direction. This bias is quan-

tified by the selection ratio (Mathur and VanderWeele 2020). To clarify, consider a

scenario where affirmative studies are known to be published twice as often as non-

affirmative ones. In this case, Mathur and VanderWeele adjust the meta-analytic

estimate by giving each non-affirmative study twice the weight of an affirmative

study in the analysis. This adjustment would neutralize the publication process’s

bias that favors affirmative studies by a factor of two. In practice, however, the

exact degree of publication bias is usually unknown. To address this uncertainty,

Mathur and VanderWeele propose conducting sensitivity analyses that assess how

much publication bias (i.e., the selection ratio) would be necessary to negate the

results of the meta-analysis, such as shifting the point estimate to a null effect.

In the most extreme case, where affirmative studies are infinitely more likely to
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be published than non-affirmative studies, the corrected estimate would be achieved

by assigning infinitely more weight to non-affirmative studies. For example, in es-

timating COVID-19’s impact on learning and the resulting learning deficiency, an

affirmative result would be one that is negative and statistically significant (as op-

posed to the conventional definition of the affirmative result being positive and

significant).4 This, in fact, corresponds to retaining only the non-affirmative stud-

ies in analysis. Thus, to account for worst-case publication bias, we can conduct a

meta-analysis of non-affirmative results (MAN) on a subset of only positive coeffi-

cients. Mathur (2024a) notes that the MAN method does not measure the actual

strength of publication bias; instead, it is used in sensitivity analysis to assess how

results are influenced by an extreme, hypothetical level of publication bias. Al-

though such severe bias is highly unlikely, if the worst-case estimate still aligns with

the uncorrected estimate and remains of meaningful size, it strongly suggests that

the results are robust against potential publication bias. This would imply that

both affirmative and non-affirmative estimates predict the same mean outcome –

whether we consider only affirmative (negative coefficients) or only non-affirmative

(positive coefficients) results, the estimated intercepts (mean outcomes) from the

meta-regressions of coefficients on their standard errors would be similar. However,

if the worst-case estimate is near null or shifts in the opposite direction of the un-

corrected estimate, the meta-analysis may not be resilient to worst-case publication

bias (Mathur 2024a).

As a benchmark point, we present the standard uncorrected point estimates

using a fixed-effects model (−0.126, SE = 0.059) and a robust random-effects model

that accounts for heterogeneity and clustering (−0.140, SE = 0.020) in Table 5,

Column 1 and Column 2 of Panel A. The estimates align with that of the original

study primarily because they represent the uncorrected mean estimate, assuming

no selection bias. We then examine the sensitivity of this uncorrected mean result

– specifically, the original study’s coefficient of −0.14 – to a hypothetical worst-case

scenario of selection bias. In Panel B Column 1 of Table 5, the MAN suggests

a positive point estimate corrected for bias of 0.021 significant at the 10% level.

4In Figures 1 through 5, it is clear that most coefficient estimates are negative, which is
expected since learning deficiency is measured as a negative value. We account for the negative
sign and adjust the model specifications accordingly, assuming a one-tailed model of publication
bias and a significance threshold of α = 0.05.
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Hence, we have obtained an estimate that has the opposite sign (and is not different

from 0 at 5% significance level) to the uncorrected original estimate, suggesting that

results are not robust to the hypothetical, extreme case of selection bias. In this

case, Mathur (2024a) suggests conducting additional sensitivity analyses focused

on less severe publication bias to assess robustness, techniques presented in Mathur

and VanderWeele (2020). Following Mathur and VanderWeele, next, we look at less

severe publication bias cases, as well as estimating the extent of bias required for

mean beyond bias to be zero or positive – the strength of publication bias required

to explain away the original results.

Selection ratio Rather than assuming a worst-case selection, we continue by

introducing a selection ratio, allowing us to choose the severity of publication bias.

This measure reflects the relative likelihood of studies with significant estimates

being published compared to those with non-significant estimates. By definition, if

there is no preference for significant results, the selection ratio equals one. Since the

severity of publication bias is not known in advance, we can assume the magnitude

of the selection ratio to perform the sensitivity analysis. We follow Mathur (2024b)

& Mathur and VanderWeele (2020) and use fixed- & random-effects meta-analysis

while assuming a four-fold preference (selection ratio = 4) for significant results

(affirmative studies). Columns 2 & 3 of Panel B report the results from fixed- &

random-effects specifications with a pre-defined four-fold selection ratio. The fixed-

effect estimate indicates that if affirmative (in this case, significant and negative)

studies were four times more likely to be published than non-affirmative ones, the

meta-analytic point estimate corrected for publication bias would be −0.206 (95%

CI: −0.206 to −0.206). The robust random-effect estimate is rather smaller, due

to accounting for heterogeneity and clustering of point estimates within papers; it

is also based on the four-fold preference for affirmative studies. It suggests that

the meta-analytic point estimate corrected for publication bias is −0.068 (95% CI:

−0.101 to −0.036). Both these estimates support the sign direction of the uncor-

rected mean; while the fixed-effect estimate is larger and the random-effect estimate

is smaller than the original one, the mean of these two falls close to the original

result, suggesting relative robustness towards four-fold selection bias.

s-Value that explains away results The next exercise explores how strong a
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preference for selecting negative and significant results is required for the true effect,

beyond bias, to be zero or even positive. In Panel C of Table 5, we calculate the

selection ratio, or s-value, required to shift the estimate or its confidence interval

bound to a specific value. Column 1 of Table 5 shows that affirmative studies

would need to have a 29.60 times higher publication probability than non-affirmative

studies for the point estimate to change to 0. Similarly, for the confidence interval

bound to shift to 0, affirmative studies would require an s-value = 8.31 fold higher

publication probability. When examining the severity of publication bias necessary

to shift the point estimate or its confidence interval bound to 0.05, we find that

no amount of publication bias can achieve that shift for either the estimate or the

confidence interval (Table 5, Panel C, Column 3). These results suggest that, under

this model’s specifications, no degree of bias would shift the point estimate or the

confidence interval bound to 0.05 or beyond.

Generally, a sufficiently small selection ratio, s-value, representing a plausible

degree of publication bias, indicates that the meta-analysis is relatively sensitive

to publication bias. Conversely, if the s-value corresponds to an implausibly large

degree of publication bias, the meta-analysis can be considered relatively robust.

Column 1 in Panel C of Table 5 shows that a very strong publication bias would be

required to “explain away” the results of the original meta-analysis. Furthermore,

Column 3 shows that no amount of publication bias, under the assumed model, can

shift the results of the original meta-analysis “to a positive effect of 0.05”, thereby

providing strong evidence for the robustness of the findings.

Significance funnel plot As a supplement to the sensitivity analysis, we

present “significance funnel plot” in Figure 5, which illustrates the difference be-

tween affirmative and non-affirmative point estimates. This figure generally aids in

assessing the extent to which the point estimates from non-affirmative studies are

systematically smaller (in absolute terms) than the entire set of point estimates.

Since the sample consists of the point estimates from the studies that investigate

at “what extent has the learning progress of school-aged children slowed down dur-

ing the COVID-19 pandemic”, the positive coefficients in Figure 5, shown in gray,

correspond to non-affirmative results, as they indicate non-significant negative or

a positive effect of COVID-19 on learning progress. In this case, negative point
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estimates, shown in yellow, reflect the negative impact of COVID-19 on learning

progress, with lower coefficients suggesting a stronger estimated negative impact

of COVID-19 on learning progress. Therefore, this significance funnel plot aids us

in understanding how much lower, thus more negative, point estimates from affir-

mative studies are compared to non-affirmative studies. The mean estimate based

solely on non-affirmative studies (gray diamond) represents an estimate corrected

for publication bias under the worst-case scenario. If this gray diamond shows a

negligible effect size or is significantly smaller, in absolute value, than the pooled

estimate across all studies (black diamond), it indicates that the meta-analysis may

be vulnerable to severe publication bias. The corrected point estimate under the

worst-case biased selections scenario is 0.021 (95% CI: −0.003 to 0.045) as shown

in Table 5, Panel B, Column 1. Meanwhile, the pooled estimate (black diamond)

is approximately −0.25. Since the black and gray diamonds are significantly differ-

ent, and the mean of non-affirmative results is near zero, the observed pooled effect

may be somewhat exaggerated due to potential selection bias Mathur and Vander-

Weele (2020). Note, however, that the mean of non-affirmative results is almost

always a downward-biased estimate of the underlying mean effect. The significance

funnel plot also reveals that the reported pooled mean is substantially larger than

the mean of the most precisely estimated coefficients, which is also consistent with

publication bias in most meta-analysis models.

Allowing for p-hacking Next, we look at the models that account for p-

hacking and relax the assumption of the unbiasedness of point estimates, a key

premise in conventional meta-analytic approaches. By doing so, these models con-

trol for the potential biases introduced by selective reporting and manipulation of

statistical significance. p-Hacking is an umbrella term referring to practices of ad-

justing the p-values to achieve statistical significance.5 p-Hacking practices include

but are not limited to continuing data collection until a significance threshold is met,

adjusting samples, re-selecting covariates, or fitting multiple models in an attempt

to obtain affirmative results. Mathur (2024b) defines p-hacking as “selection within

study” and publication bias as “selection across studies”.6 Conventional methods

5For a detailed discussion on p-hacking, see, for example, Brodeur et al. (2020), Mathur
(2024b), Elliott et al. (2022a), Brodeur et al. (2023), Mathur and VanderWeele (2020).

6There are various incrementally different definitions of“publication bias” in the literature, but
in this work, we adopt this definition by Mathur (2024b): Publication bias can encompass decisions
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for detecting publication bias may produce biased results in either direction when

p-hacking is present (Mathur 2024b). However, when p-hacking favors affirmative

outcomes, Mathur asserts that a meta-analysis of non-affirmative results (MAN,

Table 5, Panel B) still provides a conservative estimate, biased toward the null.

MAIVE In addition to MAN, we apply the Meta-Analysis Instrumental Vari-

able Estimator (MAIVE) by Irsova et al. (2023) to measure for the extent of publi-

cation bias and estimate corrected mean effect of COVID-19 on learning corrected

for bias while allowing for the existence of p-hacking. Contrary to most conven-

tional methods that assume unbiasedness of point estimates, MAIVE relaxes this

assumption. Meta-analysis methods, such as PET and PEESE techniques, often

give more weight to studies with lower standard errors, implying greater precision.

However, in empirical research, particularly in observational studies, precision is

not directly observed but must be estimated by the researcher. As widely noted in

the literature, this estimation process is susceptible to p-hacking, where precision

is artificially manipulated to achieve statistically significant results (Brodeur et al.

2023, Irsova et al. 2023, Mathur 2024b). Irsova et al. (2023) describe how p-hacking

practices can introduce biases in both the precision and the coefficient estimates

of the original studies that serve as the sample for meta-analyses, introducing the

problem of endogeneity. They further demonstrate through simulations that even

a small degree of spurious precision can significantly undermine the effectiveness of

inverse-variance weighting and bias-correction methods that rely on funnel plots.

Selection models designed to address publication bias often fail to resolve this issue;

in some cases, a simple average may outperform more complex estimators. As they

put it, ”Cures to publication bias may become worse than the disease” (Irsova et al.

2023, pg. 1).

The statistical solution to this endogeneity issue is to identify an instrument

for the standard error. A valid instrument must be correlated with the standard

error but uncorrelated with the error term, making it independent of the sources of

endogeneity. Irsova et al. suggest to instrument standard errors by the respective

sample size. By definition, the squared standard error (SE2) is a linear function

made by a study’s investigators to withhold the study from submission to journals entirely, as well
as decisions by journal editors and reviewers to reject the study, both based on whether affirmative
results are present or absent. For a more in-depth discussion, please see Mathur and VanderWeele
(2020), Mathur (2024b).
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of the inverse of the sample size used in the primary study. Respective sample

size is likely to be resistant to selection bias, as it is generally more difficult to

increase sample size than to manipulate the standard error to achieve significance.

Additionally, the sample size is free from measurement error since it is a direct

measure, not an estimate. Unlike the standard error, the sample size is typically

unaffected by changes in methodology. A potential weakness, as described by the

authors, is that some endogeneity might persist if researchers anticipating smaller

effects design larger studies. However, in observational research, the sample size,

unlike the standard error, is often predetermined.

In addition to addressing the potential existence of p-hacking, MAIVE is useful

here since the authors of the original paper recompute all results to Cohen’s d. Doing

so introduces a mechanical/spurious correlation between estimates and standard

errors, so the core assumption of the basic meta-analysis model – independence of

coefficient estimates and their standard errors in the absence of publication bias

– is violated. Following MAIVE, we regress the squared reported standard errors

on the inverse sample size and use the predicted values in place of the variance on

the right-hand side of our meta-regression. For the baseline MAIVE, we select the

instrumented version of PEESE (Precision-Effect Estimate with Standard Errors)

without additional inverse-variance weighting and with clustering at the study level

as is recommended in Irsova et al. (2023).

The statistically significant corrected estimate of −0.119, along with an estimate

of the extent of bias at −0.245, suggests the presence of publication bias in the

literature. Nevertheless, the MAIVE estimate of the mean beyond bias, presented

in Column 1 of Panel D, Table 5, reinforces the findings of the original paper,

closely aligning with the original mean estimate of −0.14. The MAIVE coefficient

of −0.119 suggests a learning deficit equivalent to 0.119/0.4 = 0.30 school years

due to COVID-19. This result is consistent with RoBMA, and both should be

emphasized as the main results due to their robustness against p-hacking and the

transformation to Cohen’s d. This near-perfect consistency among the original

paper, RoBMA, and MAIVE indicates a 30 − 35% school year learning deficit due

to COVID-19.

RTMA To estimate the extent of p-hacking, we employ Mathur’s right-truncated
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meta-analysis (RTMA) method, which deals with both publication bias and p-

hacking. We utilize the PublicationBias & phacking packages at metabias.io. As

described in Mathur (2024b), RTMA is correctly specified if the favored estimates

in hacked studies are always affirmative – meaning they yield significant, positive

results as investigators continue generating estimates until the first affirmative re-

sult is obtained – or if hacked studies with non-affirmative favored estimates if any

exist, are never published. Additionally, RTMA accounts for within-study hetero-

geneity, allows for both independent and autocorrelated estimates within studies,

and provides a framework for inference. For our purposes, we need to adjust our

data to fit RTMA assumptions, specifically affirmative data being positive and sig-

nificant. For this, we first use the inverse sign of coefficient estimates in the data and

then apply RTMA. This gives us an estimate for effect beyond bias with a reverse

sign.7 The resulting RTMA estimated mean beyond bias is reported in the second

column of Panel D, Table 5. Accounting for potential p-hacking and publication

bias, the estimated meta-analytic mean is −0.039, and the estimated standard de-

viation of the effects (i.e., heterogeneity) is 0.072.8 The RTMA estimate is notably

closer to zero than the estimate from the MAIVE approach. Before drawing any

further conclusions, we evaluate the model fit of RTMA and examine its underlying

distributional assumptions.

Diagnostic Plots To examine the fit of RTMA and determine if the distribu-

tional assumptions are appropriate, we plot the diagnostic q-q plot. We plot the

fitted CDF of point estimates against the empirical CDF of point estimates in Fig-

7We are compelled to approach the exercise this way because adjusting the RTMA spec-
ification by setting favor_positive = FALSE, while technically feasible, effectively reverses
the sign of the entire dataset and then continues to use this reversed data, leading to es-
timates with inverted signs (same exercise that we describe here). We reached this conclu-
sion after obtaining identical results when using favor_positive = FALSE specification with
original data yi; and favor_positive = TRUE with original data but with reversed sign,
yfi = −yi, with multibias_meta & phacking_meta. We followed with thoroughly examining
phacking_meta, multibias_meta, and pubbias_meta packages. After a detailed examination of
the phacking_meta, multibias_meta, and pubbias_meta functions, we became even more confi-
dent in our conclusion. While we were able to correct this minor coding error in multibias_meta,
our attempts were less successful with phacking_meta. This issue arises with the phacking_meta
function, which estimates RTMA, as well as with multibias_meta, which estimates multiple bi-
ases, as described below. The function pubbias_meta did not suffer from this issue. We have
reported this problem at https://github.com/mathurlabstanford/metabias-apps/issues/1,
where you can see the detailed description of the issue.

8As described in footnote 6, we obtained positive coefficients and reversed the signs of mean
estimates after.
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ure 6. The points, particularly at the upper part of the distribution, do not adhere

closely to the 45-degree line, suggesting that the RTMA model does not adequately

fit the data. As a second diagnostic plot, we show the distribution of z-scores of

all point estimates in the data. p-hacking, in our case, would favor negative over

positive results, and as observed in Figure 7, z-scores disproportionately gather at

a negative critical threshold, −1.95. Since here we are reversing the sign of our

coefficient estimates before applying RTMA, bunching at the negative significance

threshold indicates that RTMA assumptions of favoring positive and significant co-

efficients are satisfied in our sign-reversed data. In Figure 7, we show the z-score

distribution, measured by the ratio of coefficient estimates and their standard er-

rors, with the original dataset without sign reversal. The plot shows a distribution

that is highly skewed, with a long tail to the left and a sharp peak just at z-score

= −1.96, 5% significance level, which is consistent with a preference for negative

significant results. However, upon closer examination, Figure 8 (b) shows that the

distribution of z-scores is somewhat symmetric around its peak at -1.96, and can

also be caused, for example, by a relatively large share of studies being similarly

powered or having a similar sample size. Moreover, Elliott et al. (2022b) argues

that a jump around 1.96 does not necessarily indicate publication bias, further sup-

porting the view that the z-curve on the figure 7 & 8 provides no evidence of such

bias.

Multiple Biases In addition to addressing publication bias & p-hacking, Mathur

points out that meta-analysis can suffer from internal biases coming from individ-

ual studies, for example, confounding in non-randomized studies. The interaction

of these biases, coming from individual studies and selection preferences, is often

non-linear and non-additive. For example, publication bias that favors significant,

positive outcomes may lead to selecting studies with greater internal bias. To ad-

dress this issue, Mathur (2024c) proposes sensitivity analysis addressing two main

questions: (1) “For a given severity of internal bias across studies and of publica-

tion bias, how much could the results change?”; and (2) “For a given severity of

publication bias, how severe would internal bias have to be, hypothetically, to at-

tenuate the results to the null or by a given amount?” These methods, elaborated

in Mathur, account for the average internal bias across studies, eliminating the need
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to specify the bias in each individual study. The model specifications can be con-

figured to either assume that internal bias affects all studies or, alternatively, that

it only impacts a specific subset (e.g., nonrandomized studies). Additionally, the

model can assume that internal biases are of unknown origin or, for certain types

of bias in causal estimates, analytically bounded. The model can further spec-

ify the severity of publication bias or, alternatively, consider a worst-case form of

publication bias. Robust estimation methods can handle non-normal effects, small

sample sizes in meta-analyses, and clustered estimates. These methods developed

by Mathur (2024c) can offer insights that are not revealed by addressing each bias

individually. It is often assumed that randomized studies are free from bias, and

different levels of bias could be assigned to various study types. However, due to

the lack of information on which studies were randomized, we assume that internal

bias uniformly affects all studies, regardless of the methodology used to obtain esti-

mates.9 Therefore, we only account for varying degrees of bias between affirmative

and non-affirmative results.

Columns 3 & 4, Panel D in Table 5 present the estimates from the multi-bias

analyses. We can take RE-SR4 (Column 3, Panel B) as a benchmark estimate

that assumes no internal bias and four-fold selection bias, s-value = 4 – affirmative

studies being four times more likely to be published than non-affirmative studies.

Under these conditions, the corrected meta-analytic point estimate is −0.068 (95%

CI: −0.101 to −0.036). However, if in addition to assumption N1) affirmative

studies are four times more likely to be published than non-affirmative studies, we

assume N2) affirmative studies have a mean internal bias of 0.05, and N3) non-

affirmative studies have a mean internal bias of 0.01, which indicates very little

bias,10 corrected meta-analytic point estimate would be −0.097 (95% CI: −0.112 to

−0.082; see Column 3, Panel D). This estimate is larger than the benchmark and

is close to the RoBMA and MAIVE estimates reported in Table 4 and Table 5, re-

spectively. The results align even more closely with our main findings from RoBMA

and MAIVE when we assume a greater selection bias in affirmative studies, with a

9We plan to collect additional characteristics of primary studies in the data, including details
on the use of randomization. This will allow us to conduct multi-bias analysis more thoroughly.

10Given Figure 7, we can confidently conclude that selection bias is either absent or minimal
in non-affirmative, positive studies. The result of this multi-bias analysis closely aligns with the
scenario where we assume minimal bias in non-affirmative studies, set at 0.01.
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mean internal bias of 0.08. These findings indicate that the extent of mean internal

bias differs between affirmative and non-affirmative studies, with affirmative studies

experiencing significantly larger selection bias.

4 Conclusion

Betthäuser et al. (2023) perform a meta-analysis of the effect of the COVID-19

pandemic on the learning progress of school-aged children (also referred to as learn-

ing deficit). Their results suggest that the pandemic led to a substantial decline in

students’ learning deficits (Cohen’s d = −0.14, 95% confidence interval −0.17 to

−0.10). This report focuses on the narrow reproduction (replication) of the study’s

results and robustness reproduction. In the second part of the report, we employ

various methods and new techniques to adjust the corrected estimate for publica-

tion bias and p-hacking. In the narrow reproduction, we reproduced all the main

findings and the supporting figures as in the original study. We used the replication

package containing both data and code.

To test for publication bias, the authors use a graphical test based on the dis-

tribution of z-statistics. Supplementary material features two more visual tests: a

funnel plot and a test based on the p-curve. Based on these, the study concludes

that there is no evidence of publication bias. Our PET-PPESE publication bias-

corrected estimate −0.245 is highly statistically significant and almost double in

magnitude compared to the study’s own corrected estimate. For 3PSM, a selec-

tion model as in Iyengar and Greenhouse (1988), Hedges (1992), Vevea and Hedges

(1995), the estimate equals −0.123 and is highly statistically significant. Next, we

use RoBMA, which performs well under heterogeneity and yields an estimate of

−0.118, which is highly statistically significant. These corrected effects are close to

the original but slightly closer to zero.

Assuming a four-fold preference for studies with significant estimates, the cor-

rected estimate is −0.206 under the fixed-effects specification and −0.068 under

the random-effects specification, both of which are highly statistically significant.

In contrast, the meta-analysis of non-affirmative studies (those with non-significant

results or results in the undesirable direction), denoted as MAN, yields a positive
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corrected estimate of 0.021, statistically significant at the 10% level. MAN indicates

that this coefficient could represent the true mean beyond bias (corrected for se-

lection bias) in a worst-case scenario, where only studies with affirmative (negative

and significant) results are published. Reversing this selection means that MAN

gives 100% weight to positive & non-significant values, i.e., non-affirmative studies.

Next, we examine the degree of selection bias needed for the true mean beyond bias

to be zero or positive, specifically testing for values of 0, 0.01, and 0.05. We find

that the preference for publishing affirmative results would need to be thirty times

stronger than for non-affirmative results for the mean beyond bias to reach zero.

No amount of selection bias could push this estimate to 0.05.

To account for the spurious correlation between estimates and their standard

errors, which may arise due to p-hacking and the normalization of estimates us-

ing Cohen’s d, we apply the MAIVE technique (Irsova et al. 2023). This method

controls for this endogeneity by using inverse sample size as an instrument for the

standard errors. MAIVE yields an estimate of −0.119, which is highly statistically

significant and suggests the existence of publication bias. To specifically correct for

the p-hacking, we apply RTMA on original data with an inverse sign. We obtain a

statistically significant corrected estimate of −0.039. While the direction of the ef-

fect aligns with that of the original paper, the small estimate is likely due to RTMA

overcorrecting for p-hacking as a result of inadequate model fit.

Finally, if we assume different extents of biases in affirmative (0.05 or 0.08) and

non-affirmative (0.01) studies, the estimate is similar to that of MAIVE & RoBMA.

These findings indicate that the extent of mean internal bias differs between affirma-

tive and non-affirmative studies, with affirmative studies experiencing a significantly

larger selection bias.

The RoBMA integrates and balances multiple commonly used publication bias

models. Both RoBMA and MAIVE are robust against p-hacking and the trans-

formation to Cohen’s d. Therefore, the resulting estimates from these methods

are particularly reliable. The near-perfect consistency among the original paper,

RoBMA, and MAIVE indicates robustness of the original conclusion that COVID-

19 caused a 30 − 35% school year learning deficit. Although the RoBMA and

MAIVE estimates fall at the lower bound, the slight difference in the mean beyond
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bias estimate does not significantly impact the final effect of COVID-19 on learn-

ing. Therefore, while our analysis does reveal some evidence of selection bias in the

underlying data and predicts a somewhat smaller effect size, these phenomena do

not appear to systematically distort the overall findings of the original study.
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Figure 2: Forest plot
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Figure 3: Estimates of COVID-19 learning deficits in time

(a) Original Figure 4
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(b) Reproduction of Figure 4

Notes: The figure displays estimates of COVID-19 learning deficit. The horizontal axis shows the

time of the estimate, and the vertical axis presents the estimates expressed as Cohen’s d. Countries

are in color scale. The slope coefficient of a trend line estimated using OLS with standard errors

clustered at the study level is not statistically different from 0. (a) shows the reproduction, and

(b) is the original. See Table 2 for details.
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Figure 4: Variation in estimates of COVID-19 learning deficits

(a) Original of Figure 6
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(b) Reproduction Figure 6

Notes: The figure displays variation in estimates of COVID-19 learning deficit for school subjects

(mathematics and reading), level of education, and socio-economic inequality. (a) shows the

reproduction, and (b) is the original. No differences between the two. See Table 3 for details.
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Figure 5: Significance funnel plot

Notes: The figure displays a significance funnel plot. A gray diamond is the worst-case estimate.

A black diamond is a pooled estimate for all the studies. See Table 5 for numerical values.

Figure 6: Diagnostic q-q plot: fitted CDF vs. empirical CDF of point estimates

Notes: The figure displays a diagnostic q-q plot. We plot the fitted CDF of point estimates vs.

the empirical CDF of point estimates.
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Figure 7: Diagnostic plots: distribution of z-scores

Note: The figure displays the distribution of the z-scores in original data set.
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Figure 8: Comparison between distribution of absolute value and log z-scores

(a) abs(yi/sei)

Notes: The figure displays the distribution of the z-scores in absolute values (a) and in

logs of absolute values (b).
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Figure 8: Comparison between distribution of absolute value and log z-scores

(b) abs(yi/sei) zoomed to the (0, 20) neighborhood

(c) ln(abs(yi/sei))

Notes: The figure displays the distribution of the z-scores in absolute values (a), (b), and in logs

of absolute values (c).
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6 Tables

Table 1: Replication Package Contents and Reproducibility

Replication Package Item Fully Partial No

Raw data provided ✓
Analysis data provided ✓

Cleaning code provided ✓
Analysis code provided ✓

Reproducible from raw data ✓
Reproducible from analysis data ✓

Notes: This table summarises the replication package contents con-
tained in Betthäuser et al. (2023).

Table 2: Estimates of learning deficits in time

Original Study Reproduction

Slope coefficient: βmonths −0.00 −0.00
p-value 0.097 0.097
95% CI [−0.01, 0.00] [−0.01, 0.00]

Observations 291 291
Clusters 42 42

Notes: The table shows the comparison of the original and
reproduced estimate of the slope coefficient obtained by re-
gressing the estimates on months in which learning was mea-
sured. Standard errors are clustered at the study level. We
report p-values and 95% confidence intervals (CI).
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Table 3: Variation in estimates of learning deficits

Original Study Reproduction

School subject
Reading −0.09 −0.09
IQR [−0.15, −0.02] [−0.15, −0.02]

Mathematics −0.18 −0.18
IQR [−0.23, −0.09] [−0.23, −0.09]

Mean difference −0.07*** −0.07***
p-value 0.000 0.000

[-0.11, -0.04] [−0.11, −0.04]

Level of education
Primary −0.12 −0.12
IQR [−0.19, −0.05] [−0.19, −0.05]

Secondary −0.12 −0.12
IQR [−0.21, −0.06] [−0.21, −0.06]

Mean difference −0.01 −0.01
p-value 0.556 0.556

[−0.06, 0.03] [−0.06, 0.03]

Country income level
High −0.12 −0.12
IQR [−0.20, −0.05] [−0.20, −0.05]

Middle −0.37 −0.37
IQR [−0.65, −0.30] [−0.65, −0.30]

Mean difference −0.29*** −0.29***
p-value 0.008 0.008

[−0.50, −0.08] [−0.50, −0.08]

Notes: The table shows the comparison of the original and
reproduced median learning deficit for school subjects, level
of education, and country income level. IQR = Interquartile
range as in the original paper. Significant at ∗∗∗[1%], ∗∗[5%],
∗[10%] level.
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Table 4: Correcting for publication bias

Method

PET PEESE 3PSM RoBMA

Effect beyond bias −0.271*** −0.245*** −0.123*** −0.118
(0.040) (0.051) (0.009) [−0.135, −0.094]

Publication bias 29.269***
(9.818)

Publication bias 114.145
Standard error2 (58.836)

Likelihood ratio test χ2 = 0.034
H0: no pub. bias p-value = 0.854

Observations 291 291 291 291

Notes: PET = precision effect test based on the estimates of regression estimateij = β0 +
β1 ∗ (SEestimate)ij + uij , where estimateij is the i-th estimate from the j-th study, with
(SEestimate)ij respective standard error. PET = precision effect test. PEESE = precision
effect estimate with standard errors. For PEESE (SEestimate)ij is squared. 3PSM is a
publication selection model as in Iyengar and Greenhouse (1988), Hedges (1992), Vevea and
Hedges (1995). RoBMA = model averaging described in Bartoš et al. (2023), Maier et al.
(2023). For PET & PEESE, we report heteroskedasticity robust standard errors clustered at
the study level. Significant at ∗∗∗[1%], ∗∗[5%], ∗[10%] level.
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Table 5: Correcting for publication bias, additional specifications

Panel A: Correcting for publication bias

FE RE
Mean Effect −0.126** −0.140***

(0.059) (0.020)

Observations 291 291

Panel B: Correcting for publication bias, s-value

MAN FE-SR4 RE-SR4
Effect beyond bias 0.021* −0.206*** −0.068***

(0.012) (0.000) (0.015)

Observations 291 291 291

Panel C: Publication bias required to explain away the results

coef=0 coef=0.01 coef=0.05
Estimate’s s-value 29.60 60.65 no amount
CI s-value 8.31 10.46 no amount

Observations 291 291 291

Panel D: p-hacking & multibias

MAIVE RTMA Multi0.05;0.01 Multi0.08;0.01
Effect beyond bias −0.119*** −0.039*** −0.097*** −0.111***

(0.012) (0.003) (0.008) (0.008)

Publication Bias −0.245***
(0.051)

Heterogeneity 0.072***
(0.001)

Observations 291 291 291 291

Notes: FE = fixed effects mean, RE = mean effect estimated using robust ran-
dom effects accounting for heterogeneity and clustering, MAN = meta-analysis of
non-affirmative studies, FE-SR4 = fixed-effects meta-analysis with a 4-fold preference
(selection ratio = 4) for affirmative studies, RE-SR4 = robust random-effects spec-
ification accounting for heterogeneity and clustering with the 4-fold preference for
affirmative studies, RTMA = right-truncated meta-analysis, MAIVE = meta-analysis
instrumental variable estimator, Multi0.05;0.01 = affirmative studies bias is set to 0.05
and non-affirmative studies bias to 0.01, Multi0.08;0.01 = affirmative studies bias is
set to 0.08 and non-affirmative studies bias to 0.01. Standard errors are reported in
parentheses. Significant at ∗∗∗[1%], ∗∗[5%], ∗[10%] level. Mathur and VanderWeele
(2020), Mathur (2024b,c), Irsova et al. (2023)
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