
Dror, David Mark

Preprint

Mathematical Taxonomy of Health Insurance Models:
Conventional Approaches and the Emergent C&C
Paradigm

Suggested Citation: Dror, David Mark (2025) : Mathematical Taxonomy of Health Insurance Models:
Conventional Approaches and the Emergent C&C Paradigm, ZBW - Leibniz Information Centre for
Economics, Kiel, Hamburg

This Version is available at:
https://hdl.handle.net/10419/315551

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  http://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/315551
http://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


1 
Copyright © 2025 David M. Dror 

This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). 

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ 

Mathematical Taxonomy of Health Insurance Models: Conventional Approaches and the 

Emergent C&C Paradigm 

Abstract 

Health insurance systems worldwide face unprecedented sustainability challenges due to 

demographic transitions and financial pressures. Despite extensive comparative policy literature, 

there remains a notable gap in formal mathematical representation of how different insurance 

models function under stress conditions. This paper develops a comprehensive mathematical 

taxonomy of four principal health insurance models: the Bismarckian model (employment-based 

social insurance), the Beveridgean model (tax-funded universal coverage), the Commercial model 

(risk-based private insurance), and the Collaborative & Contributive (C&C) model (community-

based governance with trust-based sustainability). We establish formal mathematical 

representations of each model's core structures, develop equilibrium conditions defining 

sustainability requirements, and create a comparative framework identifying distinctive properties 

across models. Our analysis reveals that each model constitutes a fundamentally distinct 

insurance paradigm with unique mathematical properties affecting its resilience to demographic 

and financial pressures. The C&C model, which uniquely incorporates trust as an explicit 

mathematical variable, demonstrates distinctive properties in terms of sustainability thresholds 

and value proposition expansion. This mathematical taxonomy enables more precise 

identification of critical vulnerabilities and potential innovation pathways in health insurance 

system design. (174) 

Keywords 

Health insurance models; Mathematical modeling; Bismarckian system; Beveridgean system; 

Commercial insurance; Collaborative and Contributive (C&C) model; Trust dynamics; 
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Demographic resilience; System equilibrium; Risk pooling; Sustainability thresholds; 

Mathematical taxonomy; Healthcare financing 

Highlights 

• Establishes formal mathematical representations for four distinct health insurance models 

• Develops precise equilibrium conditions and sustainability thresholds for each system 

• Demonstrates differential mathematical responses to demographic and financial pressures 

• Identifies trust as a unique mathematical variable in the C&C model with implications for 

system resilience 

• Creates a rigorous comparative framework for analyzing health insurance system 

vulnerabilities 

1. Introduction 

Health insurance systems worldwide face unprecedented challenges from demographic transitions 

and financial pressures. Population aging in developed economies and demographic dividends in 

emerging markets create distinct sustainability challenges that demand rigorous analysis. Despite 

extensive comparative policy literature on health systems (Kutzin, 2001; Normand & Busse, 

2002; Wagstaff, 2009), there remains a notable gap in formal mathematical representation of how 

different insurance models function, particularly under stress conditions. 

This paper addresses this gap by developing a comprehensive mathematical taxonomy of four 

principal health insurance models: the Bismarckian model (employment-based social insurance), 

the Beveridgean model (tax-funded universal coverage), the Commercial model (risk-based 

private insurance), and the Collaborative & Contributive (C&C) model (community-based 

governance with trust-based sustainability). While qualitative comparisons of these systems are 
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common (Saltman et al., 2004; Van der Zee & Kroneman, 2007), systematic mathematical 

frameworks that enable rigorous comparison remain underdeveloped. Recent work by Rice et al. 

(2023) has applied machine learning techniques to revisit traditional Bismarck and Beveridge 

classifications, further highlighting the need for more sophisticated analytical frameworks that 

can capture the structural differences between health insurance systems. 

Our approach integrates concepts from health policy, insurance economics, and mathematical 

modeling to create a comprehensive framework. For each system, we identify core parameters 

and variables that represent distinctive structural features, including demographic factors, 

economic variables, and system-specific parameters. By formalizing these elements, we create a 

mathematical taxonomy that enables direct comparison of fundamental properties across systems, 

moving beyond descriptive policy analysis to identify structural similarities and differences with 

mathematical precision. 

The objectives of this paper are threefold: 

1. To establish formal mathematical representations of each insurance model's core 

structures and operating principles. 

2. To develop equilibrium conditions and formal propositions that define sustainability 

requirements for each system. 

3. To create a comparative framework that identifies distinctive mathematical properties and 

vulnerabilities across the four models. 

2. Literature Review and Conceptual Framework 

The comparative analysis of health systems has evolved from descriptive typologies to more 

sophisticated frameworks examining financing mechanisms, service provision, and governance 
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structures. Field (1973) pioneered a macrosociological framework, while Roemer (1991) 

developed a comprehensive classification system. More recent frameworks by Murray & Frenk 

(2000) and Wendt et al. (2009) have distinguished between Bismarckian, Beveridgean, and mixed 

system types, with Fan et al. (2021) demonstrating through modeling how investment in different 

health system structures yields varying returns for economic growth and population health. 

While these comparative analyses provide valuable policy insights, they often lack mathematical 

precision. Arrow (1963) established that health insurance markets have distinctive economic 

properties that benefit from formal mathematical treatment. Cutler and Zeckhauser (2000) 

extended this tradition by developing mathematical models of risk selection and market 

equilibrium, though primarily focused on private insurance markets rather than system-level 

analysis. 

Mathematical modeling in health insurance has primarily focused on actuarial aspects of risk 

pooling, optimal contract design, and risk adjustment mechanisms. Bowers et al. (1997) 

established foundational work on actuarial mathematics, while Van de Ven & Ellis (2000) 

developed mathematical frameworks for risk adjustment mechanisms in competitive markets. 

More recently, Decarolis et al. (2020) advanced the mathematical modeling of subsidy design in 

privately provided social insurance, demonstrating how incentive structures affect market 

outcomes, while Tebaldi (2022) developed equilibrium models for health insurance exchanges 

that incorporate price competition and subsidy design 

The concept of microinsurance emerged as an approach to extend insurance to populations 

excluded from conventional systems. Dror and Jacquier (1999) introduced the term "micro-

insurance" to describe community-based risk-pooling schemes designed for low-income 

populations. More recently, Dror (2023) has articulated the distinctive characteristics of what he 
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terms the Collaborative and Contributive (C&C) model, emphasizing voluntary participation, 

community-led governance, and trust-based sustainability. 

Building on these theoretical foundations, we define a health insurance system mathematically as 

a set of functions and equilibrium conditions that determine: (1) revenue generation mechanisms, 

(2) risk pooling structures, (3) benefit determination processes, and (4) sustainability constraints. 

3. General Mathematical Framework for Health Insurance Systems 

3.1 Core System Variables and Parameters 

We denote time with variable $t$ and define the following general variables and parameters: 

• $N(t)$: Total population at time $t$ 

• $D(t)$: Demographic dependency ratio at time $t$ 

• $TC(t)$: Total system contributions/revenues at time $t$ 

• $TB(t)$: Total system benefits/expenditures at time $t$ 

• $A(t)$: Administrative costs at time $t$ 

• $R(t)$: Risk adjustment factor at time $t$ 

The population can be segmented into relevant subgroups: 

• $N_w(t)$: Working/contributing population  

• $N_d(t)$: Dependent/non-contributing population 

The demographic dependency ratio is then defined as: 

\begin{equation} D(t) = \frac{N_w(t)}{N_d(t)} \label{eq:1} \end{equation} 

This ratio is a critical parameter for analyzing health insurance system sustainability, as it relates 

the revenue-generating population to the dependent population. 



6 
Copyright © 2025 David M. Dror 

This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). 

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ 

3.2 General Equilibrium Condition 

All sustainable health insurance systems must satisfy a basic equilibrium condition: revenues 

must be sufficient to cover expenditures over time. Formally: 

\begin{equation} TC(t) \geq TB(t) + A(t) \label{eq:2} \end{equation} 

This general constraint applies across all systems, though the specific mechanisms for ensuring 

this equilibrium vary substantially between models. 

3.3 System Sustainability Function 

We define a system sustainability function S(t) as: 

\begin{equation} S(t) = TC(t) - TB(t) - A(t) \label{eq:3} \end{equation} 

For a system to remain sustainable, $S(t) \geq 0$ must hold. The behavior of $S(t)$ under varying 

demographic and financial conditions differs markedly across systems. 

3.4 Demographic and Financial Sensitivity 

The sensitivity of system sustainability to demographic change can be formally expressed as the 

partial derivative: 

\begin{equation} \frac{\partial S(t)}{\partial D(t)} \label{eq:4} \end{equation} 

Similarly, sensitivity to financial pressures (such as economic downturns or healthcare inflation) 

can be expressed as: 

\begin{equation} \frac{\partial S(t)}{\partial F(t)} \label{eq:5} \end{equation} 

Where $F(t)$ represents relevant financial pressure indicators. 

3.5 Risk Pooling Mechanisms 
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Each health insurance system incorporates some form of risk pooling, though the mathematical 

structure varies significantly. We define a general risk pooling function $RP(t)$ that determines 

how financial risks are distributed across the insured population: 

\begin{equation} RP(t) = f(N(t), R(t), TC(t), TB(t)) \label{eq:6} \end{equation} 

3.6 Benefit Calculation Function 

The expected benefits for an individual $i$ can be generally expressed as: 

\begin{equation} B_i(t) = \sum_{s \in S} p_s(t) \times c_s \times u_{i,s}(t) \times r_s(t) 

\label{eq:7} \end{equation} 

Where: 

• p_s(t): Probability of needing service s at time t 

• c_s: Cost of service s 

• u_{i,s}(t): Utilization rate of service $s$ by individual i at time t 

• r_s(t): Reimbursement/coverage rate for service s at time t 

4. Mathematical Model of the Bismarckian System 

4.1 Model Structure and Core Assumptions 

The Bismarckian model operates under these key assumptions: 

1. Contributions are mandatory for employed individuals and proportional to income 

2. Employers and employees typically share contribution costs 

3. Coverage extends to dependents of contributing members 
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4. Benefits are standardized across the insured population 

5. Multiple insurance funds may exist but operate under common regulations 

4.2 Revenue Generation Mechanism 

In the Bismarckian model, revenues primarily derive from income-based contributions shared 

between employers and employees. Total contributions can be expressed as: 

\begin{equation} TC_B(t) = \left[ \sum_{i=1}^{n} {C_e(t) \cdot I_i(t) + C_w(t) \cdot I_i(t)} 

\right] \cdot R_B(t) \label{eq:8} \end{equation} 

Where: 

• $C_e(t)$: Employer contribution rate at time $t$  

• $C_w(t)$: Worker contribution rate at time $t$  

• $I_i(t)$: Income of individual $i$ at time $t$ 

• $I_i(t)$: Income of individual $i$ at time $t$ 

• $R_B(t)$: Risk adjustment factor specific to Bismarckian systems 

4.3 Individual Premium Calculation 

For an individual in a Bismarckian system, the premium or contribution is calculated as: 

\begin{equation} P_i(t) = [C_e(t) + C_w(t)] \times I_i(t) \label{eq:9} \end{equation} 

This creates a direct proportionality between income and contributions, establishing income 

solidarity within the system. 

4.4 Equilibrium Condition 
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The equilibrium condition requires contributions to cover benefits and administrative costs: 

\begin{equation} 

\sum_{i=1}^{n} P_i(t) \geq \sum_{i=1}^{n} B_i(t) + A_B(t) 

\label{eq:10} 

\end{equation} 

Where $A_B(t)$ represents administrative costs specific to the Bismarckian system at time $t$. 

4.5 Demographic Sensitivity 

The sensitivity of the Bismarckian system to demographic changes can be analyzed by examining 

the derivative of contribution rates with respect to the dependency ratio: 

\begin{equation} 

\frac{dC_w(t)}{dD(t)} = -\frac{A_B(t)}{2 \cdot I_{average}(t) 

\cdot n \cdot R_B(t) \cdot D(t)^2} 

\label{eq:11} 

\end{equation} 

This negative relationship indicates that as the dependency ratio decreases (fewer workers relative 

to dependents), contribution rates must increase non-linearly to maintain system equilibrium. 

4.6 Distinctive Mathematical Features 

The Bismarckian model exhibits several mathematically distinctive features: 
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1. Income-Based Risk Pooling: Risk is pooled across income levels, with contributions 

directly proportional to income. 

2. Employment Dependency: System sustainability is mathematically linked to 

employment levels and the wage share of the economy. 

3. Non-Linear Demographic Sensitivity: Contribution rates respond non-linearly to 

changes in the demographic dependency ratio. 

4. Actuarial Indifference to Individual Risk: Individual premiums are calculated 

independent of individual risk factors, creating a mathematical separation between 

financing and risk. 

5. Mathematical Model of the Beveridgean System 

5.1 Model Structure and Core Assumptions 

The Beveridgean model operates under these key assumptions: 

1. Healthcare is financed primarily through general taxation 

2. Coverage is universal and independent of employment status 

3. Service provision is predominantly through public facilities or contracted providers 

4. Resource allocation is determined through budgetary processes 

5. Access to services may be managed through waiting lists and prioritization systems 

5.2 Revenue Generation Mechanism 

In Beveridgean systems, revenues derive primarily from general taxation, with healthcare 

allocation determined through budgetary processes: 
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\begin{equation} 

TC_V(t) = \alpha(t) \times \sum_{i=1}^{n} {\tau(I_i(t)) 

\times I_i(t)} 

\label{eq:12} 

\end{equation} 

Where: 

• $\alpha(t)$: Proportion of tax revenue allocated to healthcare at time $t$ 

• $\tau(I_i(t))$: Progressive tax rate function applied to income of individual $i$ 

• $I_i(t)$: Income of individual $i$ at time $t$ 

5.3 Budget Allocation Process 

The total healthcare budget is allocated across services and regions according to need-based 

formulas: 

\begin{equation} 

HC_j(t) = HC(t) \times \frac{N_j(t) \times 

AF_j(t)}{\sum_{k=1}^{r} N_k(t) \times AF_k(t)} 

\label{eq:13} 

\end{equation} 

Where: 
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• $HC_j(t)$: Healthcare budget for region $j$ at time $t$ 

• $N_j(t)$: Population in region $j$ at time $t$ 

• $AF_j(t)$: Adjustment factor for region $j$ based on demographic and health need 

indicators 

• $r$: Total number of regions 

5.4 Service Rationing Mechanism 

A distinctive mathematical feature of Beveridgean systems is the service rationing function, 

which adjusts service availability based on budget constraints: 

\begin{equation} 

v_s(t) = f\left(\frac{HC(t)}{D(t)}, p_s(t)\right) 

\label{eq:14} 

\end{equation} 

Where: 

• $v_s(t)$: Access factor for service $s$ at time $t$ (accounting for waiting 

times/rationing) 

• $HC(t)$: Healthcare allocation at time $t$ 

• $p_s(t)$: Population-level need for service $s$ 

The access factor influences actual service utilization: 

\begin{equation} 
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u_{i,s}(t) = u_{i,s}^*(t) \times v_s(t) 

\label{eq:15} 

\end{equation} 

Where $u_{i,s}^*(t)$ represents the idealized utilization without access constraints. 

5.5 Equilibrium Condition 

The fundamental equilibrium condition for Beveridgean systems is that healthcare expenditure 

cannot exceed the allocated budget: 

\begin{equation} 

\sum_{i=1}^{n} \sum_{s \in S} p_s(t) \times c_s \times 

u_{i,s}(t) \times v_s(t) + A_V(t) \leq HC(t) 

\label{eq:16} 

\end{equation} 

Where $A_V(t)$ represents administrative costs specific to the Beveridgean system at time $t$. 

5.6 Demographic Sensitivity 

The sensitivity of service access to demographic changes can be expressed as: 

\begin{equation} 

\frac{\partial v_s(t)}{\partial D(t)} = \frac{\partial 

v_s}{\partial(HC(t)/D(t))} \times \frac{-HC(t)}{D(t)^2} 
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\label{eq:17} 

\end{equation} 

This demonstrates how service access must contract as the demographic dependency ratio 

decreases (aging population), assuming a constant budget allocation. 

5.7 Distinctive Mathematical Features 

1. Budget-Constrained Service Provision: Unlike premium-based systems, Beveridgean 

systems adjust service access rather than revenue levels when facing financial pressures. 

2. Progressive Financing Structure: The progressive tax function creates a different 

revenue pattern than proportional Bismarckian contributions or risk-based commercial 

premiums. 

3. Universal Coverage Independent of Contributions: The mathematical decoupling of 

coverage eligibility from individual contributions creates a distinct risk pooling structure. 

4. Service Rationing as Equilibrium Mechanism: The access factor serves as the primary 

mathematical mechanism for maintaining financial equilibrium under resource 

constraints. 

6. Mathematical Model of the Commercial Health Insurance System 

6.1 Model Structure and Core Assumptions 

The Commercial model operates under these key assumptions: 

1. Premiums are calculated based on individual or group risk factors 

2. Participation is typically voluntary 
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3. Insurers operate as profit-maximizing entities 

4. Market competition influences premium levels and benefit design 

5. Regulation constrains underwriting and pricing practices to varying degrees 

The Commercial model represents insurance as a market-based mechanism operating under 

competitive pressures. Recent work by Einav et al. (2022) demonstrates how market failures 

emerge in exchange-based healthcare systems, providing empirical support for the mathematical 

vulnerabilities we identify in the Commercial model. These market imperfections fundamentally 

affect the equilibrium conditions that we model below. 

6.2 Revenue Generation Mechanism 

In Commercial health insurance systems, revenues derive from risk-adjusted premiums that vary 

by individual characteristics: 

\begin{equation} 

TC_{COM}(t) = \sum_{i=1}^{n} P_i(t) \cdot \delta_i(t) 

\label{eq:18} 

\end{equation} 

Where: 

• $TC_{COM}(t)$: Total contributions/revenues at time $t$ 

• $P_i(t)$: Premium charged to individual $i$ at time $t$ 

• $\delta_i(t)$: Indicator function for enrollment ($\delta_i(t) = 1$ if enrolled, 0 otherwise) 

The premium for individual $i$ is calculated as: 
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\begin{equation} 

P_i(t) = E[M_i(t)] \cdot (1 + \lambda_{COM}(t)) \cdot (1 + 

\pi(t)) 

\label{eq:19} 

\end{equation} 

Where: 

• $E[M_i(t)]$: Expected medical costs for individual $i$ at time $t$ 

• $\lambda_{COM}(t)$: Loading factor for administrative costs 

• $\pi(t)$: Profit margin at time $t$ 

The expected medical costs are estimated based on observable risk factors: 

\begin{equation} 

E[M_i(t)] = \beta_0(t) + \sum_{j=1}^{k} \beta_j(t) \cdot 

X_{ij}(t) 

\label{eq:20} 

\end{equation} 

Where: 

• $\beta_0(t)$: Baseline expected cost at time $t$ 

• $\beta_j(t)$: Risk coefficient for factor $j$ at time $t$ 
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• $X_{ij}(t)$: Value of risk factor $j$ for individual $i$ at time $t$ (age, gender, health 

status, etc.) 

6.3 Enrollment Decision Model 

An individual's decision to enroll in a commercial plan depends on the premium relative to their 

willingness to pay: 

\begin{equation} 

\delta_i(t) = \begin{cases}  

1 & \text{if } P_i(t) \leq WTP_i(t) \\  

0 & \text{otherwise}  

\end{cases} 

\label{eq:21} 

\end{equation} 

Where $WTP_i(t)$ represents individual $i$'s willingness to pay for health insurance at time $t$. 

The relationship between financial constraints and insurance decisions affects equilibrium 

outcomes in commercial systems. Célerier and Vallée (2023) demonstrate how saving constraints 

intersect with health insurance design, affecting participation decisions in ways that our 

mathematical models must account for. These constraints influence the willingness-to-pay 

function in equation (21) and consequently affect system equilibrium. 

6.4 Profit Maximization Objective 

Commercial insurers operate with a profit maximization objective: 
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\begin{equation} 

\max \Pi(t) = TC_{COM}(t) - TB_{COM}(t) - A_{COM}(t) 

\label{eq:22} 

\end{equation} 

Where: 

• $\Pi(t)$: Profit at time $t$ 

• $TB_{COM}(t)$: Total benefit payments at time $t$ 

• $A_{COM}(t)$: Administrative costs at time $t$ 

6.5 Equilibrium Condition 

The equilibrium condition for commercial systems requires that total premium revenue exceeds 

expected claims plus administrative costs and target profit: 

\begin{equation} 

\sum_{i=1}^{n} \delta_i(t) \cdot P_i(t) \geq \sum_{i=1}^{n} 

\delta_i(t) \cdot E[M_i(t)] + A_{COM}(t) + \Pi_{target}(t) 

\label{eq:23} 

\end{equation} 

6.6 Demographic Sensitivity Analysis 

The effect of demographic aging on commercial premiums can be expressed as: 
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\begin{equation} 

\frac{\partial E[M_i(t)]}{\partial age_i} > 0 \text{ and } 

\frac{\partial^2 E[M_i(t)]}{\partial age_i^2} > 0 

\label{eq:24} 

\end{equation} 

This indicates that premiums increase with age, and at an accelerating rate. 

6.7 Adverse Selection Dynamics 

A distinctive feature of commercial systems is the potential for adverse selection, where higher-

risk individuals are more likely to enroll at given premium levels: 

\begin{equation} 

\frac{\partial \delta_i(t)}{\partial E[M_i(t)]} > 0 

\label{eq:25} 

\end{equation} 

This dynamic can lead to premium spirals in which: 

\begin{equation} 

\frac{dP(t)}{dt} = \gamma \cdot \left( 

\frac{\overline{E[M_i(t) | \delta_i(t) = 1]}}{E[M_i(t)]} - 1 

\right) 
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\label{eq:26} 

\end{equation} 

Where $\overline{E[M_i(t) | \delta_i(t) = 1]}$ is the average expected cost of those who choose 

to enroll. 

6.8 Distinctive Mathematical Features 

1. Risk-Based Pricing: Premiums are mathematically linked to individual risk factors, 

creating a fundamentally different revenue structure than community-rated or income-

based systems. 

2. Profit Maximization Objective: The explicit inclusion of a profit term in the objective 

function creates distinct incentives absent in non-profit models. 

3. Risk Selection Mechanisms: Commercial systems include mathematical functions for 

risk classification and selection that optimize the risk pool. 

4. Market Competition Effects: Premium setting includes competitive market dynamics 

that constrain pricing through mathematical relationships. 

5. Adverse Selection Vulnerability: The voluntary nature of participation creates 

mathematical dynamics absent in mandatory systems. 

7. Mathematical Model of the C&C (Collaborative & Contributive) System 

7.1 Model Structure and Core Assumptions 

The C&C model operates under these key assumptions: 

1. Participation is voluntary and based on mutual agreement 
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2. Governance is community-based rather than market-driven or state-controlled 

3. Premiums are community-rated rather than risk-rated or income-proportional 

4. Trust dynamics play a central role in system sustainability 

5. Benefit packages reflect community preferences rather than external standards 

7.2 Revenue Generation Mechanism 

In the C&C model, contributions are based on community-rated premiums and voluntary 

participation: 

\begin{equation} 

TC_C(t) = N(t) \times P(t) \times TR(t) 

\label{eq:27} 

\end{equation} 

Where: 

• $N(t)$: Number of participants at time $t$ 

• $P(t)$: Community-rated premium at time $t$ 

• $TR(t)$: Trust factor affecting participation rate $(0 < TR(t) \leq 1)$ 

The premium is determined based on expected benefit payments and loading factors, with trust 

explicitly incorporated as a mathematical variable: 

\begin{equation} 

P(t) = \frac{B(t) \times (1 + \lambda(t))}{N(t) \times TR(t)} 
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\label{eq:28} 

\end{equation} 

Where: 

• $B(t)$: Expected benefit payouts 

• $\lambda(t)$: Loading factor 

This creates a direct mathematical relationship between trust and premium levels that is absent in 

other models. 

7.3 Trust Factor Dynamics 

A distinctive mathematical feature of the C&C model is the trust factor, which evolves based on 

community experience: 

\begin{equation} 

TR(t+1) = TR(t) + \delta \times [CS(t) - TR(t)] 

\label{eq:29} 

\end{equation} 

Where: 

• $CS(t)$: Claim settlement satisfaction at time $t$ $(0 \leq CS(t) \leq 1)$ 

• $\delta$: Learning adjustment rate $(0 < \delta < 1)$ 

This represents a learning process where trust adjusts based on the gap between current trust and 

actual experience with claim settlements. 
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7.4 Participation Dynamics 

The number of participants evolves based on trust and premium affordability: 

\begin{equation} 

N(t+1) = N(t) \times [1 + g_N(TR(t), P(t), W(t))] 

\label{eq:30} 

\end{equation} 

Where: 

• $g_N$: Growth function for participation 

• $W(t)$: Average willingness to pay at time $t$ 

The growth function can be specified as: 

\begin{equation} 

g_N(TR(t), P(t), W(t)) = \alpha_1 \times TR(t) - \alpha_2 \times 

\frac{P(t)}{W(t)} + \alpha_3 

\label{eq:31} 

\end{equation} 

With $\alpha_1, \alpha_2, \alpha_3$ as sensitivity parameters. 

7.5 Benefit Structure 

Benefits in the C&C model are community-determined, with coverage reflecting local priorities: 
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\begin{equation} 

B_i(t) = \sum_{s \in S_c} p_s(t) \times c_s \times u_{i,s}(t) 

\times d_s(t) 

\label{eq:32} 

\end{equation} 

Where: 

• $S_c$: Community-determined set of covered services 

• $d_s(t)$: Community demand factor for service $s$ 

Unlike conventional models where benefit packages are determined through regulatory or 

corporate processes, the C&C model evolves benefits through community decision processes: 

\begin{equation} 

S_c(t+1) = g(S_c(t), TR(t), N(t), P(t)) 

\label{eq:33} 

\end{equation} 

This creates a direct mathematical relationship between member preferences and covered 

services. 

7.6 Equilibrium Condition 

The equilibrium condition for the C&C model includes trust dynamics: 

\begin{equation} 
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N(t) \times P(t) \times TR(t) \geq B(t) + A_C(t) 

\label{eq:34} 

\end{equation} 

Where $A_C(t)$ represents administrative costs specific to the C&C model at time $t$. 

This can be rewritten as a constraint on the minimum required trust level: 

\begin{equation} 

TR(t) \geq \frac{B(t) + A_C(t)}{N(t) \times P(t)} 

\label{eq:35} 

\end{equation} 

7.7 Demographic Sensitivity 

The C&C model's response to demographic pressure operates through the trust-premium 

relationship: 

\begin{equation} 

\frac{\partial P(t)}{\partial D(t)} = \frac{\partial}{\partial 

D(t)}\left(\frac{B(t) \times (1 + \lambda(t))}{N(t) \times 

TR(t)}\right) 

\label{eq:36} 

\end{equation} 
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If trust positively correlates with the dependency ratio (as the elderly often have higher social 

capital in communities), then: 

\begin{equation} 

\frac{\partial TR(t)}{\partial D(t)} > 0 

\label{eq:37} 

\end{equation} 

This creates a potential buffering effect against demographic pressure. 

7.8 Premium Calculation Distinctiveness 

A distinctive feature of the C&C model is its unique premium calculation mechanism: 

\begin{equation} 

\frac{\partial P(t)}{\partial TR(t)} = -\frac{B(t) \times (1 + 

\lambda(t))}{N(t) \times TR(t)^2} < 0 

\label{eq:38} 

\end{equation} 

This equation demonstrates a critical property absent in all other insurance models: as trust 

increases, premiums can decrease while maintaining the same level of benefits. 

7.9 Value Proposition Expansion 

The C&C model demonstrates a mathematical expansion of the value proposition beyond mere 

risk protection: 
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\begin{equation} 

V_C(t) = V_{risk}(t) + V_{pref}(t) + V_{social}(t) 

\label{eq:39} 

\end{equation} 

Where: 

• $V_{risk}(t)$: Value from risk protection 

• $V_{pref}(t)$: Value from preference alignment 

• $V_{social}(t)$: Value from social capital formation 

This multi-dimensional value function distinguishes the C&C model from conventional 

approaches where: 

\begin{equation} 

V_{conv}(t) = V_{risk}(t) 

\label{eq:40} 

\end{equation} 

7.10 Distinctive Mathematical Features 

1. Trust as a Mathematical Variable: The explicit inclusion of trust as a quantifiable 

parameter in premium calculations introduces a dimension absent in other models. 
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2. Participation-Premium Feedback Loop: The mathematical relationship between trust, 

participation rates, and premium levels creates a distinctive positive feedback mechanism 

not present in other systems. 

3. Community Preference Alignment: The direct mathematical relationship between 

community preferences and benefit structure allows for adaptation to local needs. 

4. Multi-Dimensional Value Function: The expansion of the value proposition beyond risk 

protection to include preference alignment and social capital formation creates a 

fundamentally different utility function. 

5. Trust-Based Sustainability Mechanism: The model's equilibrium condition explicitly 

incorporates trust, creating a distinct sustainability mechanism that operates through 

social rather than purely financial variables. 

8. Formal Mathematical Propositions and Proofs 

This section presents the key mathematical propositions that emerge from our comparative 

analysis of health insurance models, along with their formal proofs. 

8.1 Proposition 1: Bismarckian Demographic Sensitivity 

Proposition 1: Under demographic pressure (decreasing $D(t)$), contribution rates in 

Bismarckian systems must increase non-linearly according to: 

\begin{equation} 

\frac{dC_w(t)}{dD(t)} = -\frac{A_B(t)}{2 \cdot I_{average}(t) \cdot n \cdot R_B(t) \cdot 

D(t)^2} < 0 

\label{eq:85} 
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\end{equation} 

Proof: 

The equilibrium condition for a Bismarckian system requires: 

\begin{equation} 

TC_B(t) \geq TB_B(t) + A_B(t) 

\label{eq:86} 

\end{equation} 

Where total contributions are: 

\begin{equation} 

TC_B(t) = \sum_{i=1}^{n} [C_e(t) + C_w(t)] \cdot I_i(t) \cdot R_B(t) 

\label{eq:87} 

\end{equation} 

For simplicity, we assume $C_e(t) = C_w(t)$ and approximate $\sum_{i=1}^{n} I_i(t) \approx n 

\cdot I_{average}(t)$, where $n$ is the number of contributors. 

At equilibrium: 

\begin{equation} 

2 \cdot C_w(t) \cdot n \cdot I_{average}(t) \cdot R_B(t) = TB_B(t) + A_B(t) 

\label{eq:88} 



30 
Copyright © 2025 David M. Dror 

This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). 

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ 

\end{equation} 

Solving for $C_w(t)$: 

\begin{equation} 

C_w(t) = \frac{TB_B(t) + A_B(t)}{2 \cdot n \cdot I_{average}(t) \cdot R_B(t)} 

\label{eq:89} 

\end{equation} 

The demographic dependency ratio $D(t) = \frac{N_w(t)}{N_d(t)}$ affects total benefit 

expenditure $TB_B(t)$, which can be expressed as: 

\begin{equation} 

TB_B(t) = TB_w(t) + TB_d(t) = b_w \cdot N_w(t) + b_d \cdot N_d(t) 

\label{eq:90} 

\end{equation} 

Where $b_w$ and $b_d$ are the average benefits per worker and dependent, respectively. 

Substituting into the equation for $C_w(t)$: 

\begin{equation} 

C_w(t) = \frac{b_w \cdot N_w(t) + b_d \cdot N_d(t) + A_B(t)}{2 \cdot n \cdot I_{average}(t) 

\cdot R_B(t)} 

\label{eq:91} 

\end{equation} 
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Since $N_w(t) = D(t) \cdot N_d(t)$ and $n \approx N_w(t)$: 

\begin{equation} 

C_w(t) = \frac{b_w \cdot D(t) \cdot N_d(t) + b_d \cdot N_d(t) + A_B(t)}{2 \cdot D(t) \cdot 

N_d(t) \cdot I_{average}(t) \cdot R_B(t)} 

\label{eq:92} 

\end{equation} 

Simplifying: 

\begin{equation} 

C_w(t) = \frac{b_w \cdot D(t) + b_d + \frac{A_B(t)}{N_d(t)}}{2 \cdot D(t) \cdot I_{average}(t) 

\cdot R_B(t)} 

\label{eq:93} 

\end{equation} 

Taking the derivative with respect to $D(t)$: 

\begin{equation} 

\frac{dC_w(t)}{dD(t)} = \frac{2 \cdot D(t) \cdot I_{average}(t) \cdot R_B(t) \cdot b_w - (b_w 

\cdot D(t) + b_d + \frac{A_B(t)}{N_d(t)}) \cdot 2 \cdot I_{average}(t) \cdot R_B(t)}{(2 \cdot 

D(t) \cdot I_{average}(t) \cdot R_B(t))^2} 

\label{eq:94} 

\end{equation} 
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Simplifying: 

\begin{equation} 

\frac{dC_w(t)}{dD(t)} = -\frac{b_d + \frac{A_B(t)}{N_d(t)}}{2 \cdot I_{average}(t) \cdot 

R_B(t) \cdot D(t)^2} 

\label{eq:95} 

\end{equation} 

If we focus on the administrative cost component, which is relatively independent of 

demographic changes in the short term: 

\begin{equation} 

\frac{dC_w(t)}{dD(t)} = -\frac{A_B(t)}{2 \cdot I_{average}(t) \cdot n \cdot R_B(t) \cdot 

D(t)^2} < 0 

\label{eq:96} 

\end{equation} 

This proves that contribution rates must increase non-linearly (as an inverse square function) as 

the dependency ratio decreases. 

Implication: Bismarckian systems face accelerating sustainability challenges as populations age, 

requiring contribution rates to increase at an increasing rate to maintain system equilibrium. 

8.2 Proposition 2: Beveridgean Service Access Sensitivity 

Proposition 2: Service access ($v_s(t)$) in Beveridgean systems contracts as a function of 

decreasing demographic ratio according to: 
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\begin{equation} 

\frac{\partial v_s(t)}{\partial D(t)} = \frac{\partial v_s}{\partial (HC(t)/D(t))} \times \frac{-

HC(t)}{D(t)^2} > 0 

\label{eq:97} 

\end{equation} 

Proof: 

The equilibrium condition for a Beveridgean system is: 

\begin{equation} 

\sum_{i=1}^{n} \sum_{s \in S} p_s(t) \times c_s \times u_{i,s}(t) \times v_s(t) + A_V(t) \leq 

HC(t) 

\label{eq:98} 

\end{equation} 

Where $v_s(t)$ is the access factor for service $s$, which is a function of the per-capita 

healthcare budget: 

\begin{equation} 

v_s(t) = f\left(\frac{HC(t)}{N(t)}, p_s(t)\right) 

\label{eq:99} 

\end{equation} 
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Since $N(t) = N_w(t) + N_d(t)$ and $D(t) = \frac{N_w(t)}{N_d(t)}$, we can express $N(t)$ in 

terms of $D(t)$: 

\begin{equation} 

N(t) = N_d(t) + N_w(t) = N_d(t) + D(t) \cdot N_d(t) = N_d(t) \cdot (1 + D(t)) 

\label{eq:100} 

\end{equation} 

Therefore: 

\begin{equation} 

v_s(t) = f\left(\frac{HC(t)}{N_d(t) \cdot (1 + D(t))}, p_s(t)\right) 

\label{eq:101} 

\end{equation} 

For simplicity, let $\frac{HC(t)}{N_d(t)} = HC'(t)$, so: 

\begin{equation} 

v_s(t) = f\left(\frac{HC'(t)}{1 + D(t)}, p_s(t)\right) 

\label{eq:102} 

\end{equation} 

Taking the partial derivative with respect to $D(t)$: 

\begin{equation} 
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\frac{\partial v_s(t)}{\partial D(t)} = \frac{\partial v_s}{\partial \left(\frac{HC'(t)}{1 + 

D(t)}\right)} \times \frac{\partial}{\partial D(t)}\left(\frac{HC'(t)}{1 + D(t)}\right) 

\label{eq:103} 

\end{equation} 

Computing the second term: 

\begin{equation} 

\frac{\partial}{\partial D(t)}\left(\frac{HC'(t)}{1 + D(t)}\right) = \frac{-HC'(t)}{(1 + D(t))^2} 

\label{eq:104} 

\end{equation} 

Since $\frac{\partial v_s}{\partial \left(\frac{HC'(t)}{1 + D(t)}\right)} > 0$ (access increases 

with per-capita budget), and $\frac{-HC'(t)}{(1 + D(t))^2} < 0$, we have: 

\begin{equation} 

\frac{\partial v_s(t)}{\partial D(t)} = \frac{\partial v_s}{\partial \left(\frac{HC'(t)}{1 + 

D(t)}\right)} \times \frac{-HC'(t)}{(1 + D(t))^2} > 0 

\label{eq:105} 

\end{equation} 

Expressing this in terms of the original healthcare budget: 

\begin{equation} 
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\frac{\partial v_s(t)}{\partial D(t)} = \frac{\partial v_s}{\partial (HC(t)/D(t))} \times \frac{-

HC(t)}{D(t)^2} > 0 

\label{eq:106} 

\end{equation} 

This proves that service access contracts as the demographic ratio decreases. 

Implication: Beveridgean systems respond to demographic pressure through service rationing 

rather than revenue increases, leading to decreased access to services as populations age. 

8.3 Proposition 3: Commercial Risk Segmentation and Premium Growth 

Proposition 3: Commercial health insurance systems exhibit premium growth that is both 

positive and accelerating with respect to age: 

\begin{equation} 

\frac{\partial P_i(t)}{\partial age_i} > 0 \text{ and } \frac{\partial^2 P_i(t)}{\partial age_i^2} > 0 

\label{eq:107} 

\end{equation} 

Proof: 

From the premium equation and expected cost function: 

\begin{equation} 

P_i(t) = E[M_i(t)] \cdot (1 + \lambda_{COM}(t)) \cdot (1 + \pi(t)) 

\label{eq:108} 
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\end{equation} 

\begin{equation} 

E[M_i(t)] = \beta_0(t) + \sum_{j=1}^{k} \beta_j(t) \cdot X_{ij}(t) 

\label{eq:109} 

\end{equation} 

Let $X_{i1}(t) = age_i$ and assume $\beta_1(t) > 0$ (medical costs increase with age). 

Taking the partial derivative with respect to age: 

\begin{equation} 

\frac{\partial P_i(t)}{\partial age_i} = \frac{\partial E[M_i(t)]}{\partial age_i} \cdot (1 + 

\lambda_{COM}(t)) \cdot (1 + \pi(t)) 

\label{eq:110} 

\end{equation} 

\begin{equation} 

\frac{\partial E[M_i(t)]}{\partial age_i} = \beta_1(t) > 0 

\label{eq:111} 

\end{equation} 

Therefore: \begin{equation} 

\frac{\partial P_i(t)}{\partial age_i} > 0 
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\label{eq:112} 

\end{equation} 

For the second derivative, empirical data consistently show an exponential relationship between 

age and healthcare costs. This can be modeled by including a quadratic term for age in the 

expected cost function: 

\begin{equation} 

E[M_i(t)] = \beta_0(t) + \beta_1(t) \cdot age_i + \beta_2(t) \cdot age_i^2 + \sum_{j=3}^{k} 

\beta_j(t) \cdot X_{ij}(t) 

\label{eq:113} 

\end{equation} 

Where $\beta_2(t) > 0$. 

Taking the second derivative: 

\begin{equation} 

\frac{\partial^2 E[M_i(t)]}{\partial age_i^2} = 2 \cdot \beta_2(t) > 0 

\label{eq:114} 

\end{equation} 

And therefore: 

\begin{equation} 
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\frac{\partial^2 P_i(t)}{\partial age_i^2} = \frac{\partial^2 E[M_i(t)]}{\partial age_i^2} \cdot (1 

+ \lambda_{COM}(t)) \cdot (1 + \pi(t)) > 0 

\label{eq:115} 

\end{equation} 

This proves that premiums increase with age at an accelerating rate. 

Implication: Commercial systems create access challenges for older individuals as populations 

age, with premiums becoming increasingly unaffordable for those most likely to need coverage. 

8.4 Proposition 4: C&C Trust-Premium Relationship 

Proposition 4: The C&C model demonstrates a unique inverse relationship between trust and 

required premiums while maintaining benefit levels: 

\begin{equation} 

\frac{\partial P(t)}{\partial TR(t)} = -\frac{B(t) \times (1 + \lambda(t))}{N(t) \times TR(t)^2} < 0 

\label{eq:116} 

\end{equation} 

Proof: 

In the C&C model, premiums are determined as: 

\begin{equation} 

P(t) = \frac{B(t) \times (1 + \lambda(t))}{N(t) \times TR(t)} 

\label{eq:117} 
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\end{equation}Where: 

• $B(t)$: Expected benefit payouts 

• $\lambda(t)$: Loading factor 

• $N(t)$: Number of participants 

• $TR(t)$: Trust factor affecting participation rate $(0 < TR(t) \leq 1)$ 

Taking the partial derivative with respect to $TR(t)$: 

\begin{equation} 

\frac{\partial P(t)}{\partial TR(t)} = \frac{\partial}{\partial TR(t)}\left(\frac{B(t) \times (1 + 

\lambda(t))}{N(t) \times TR(t)}\right) 

\label{eq:118} 

\end{equation} 

Applying the quotient rule: 

\begin{equation} 

\frac{\partial P(t)}{\partial TR(t)} = \frac{0 \times N(t) \times TR(t) - B(t) \times (1 + \lambda(t)) 

\times N(t) \times 1}{(N(t) \times TR(t))^2} 

\label{eq:119} 

\end{equation} 

Simplifying: 

\begin{equation} 
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\frac{\partial P(t)}{\partial TR(t)} = -\frac{B(t) \times (1 + \lambda(t))}{N(t) \times TR(t)^2} 

\label{eq:120} 

\end{equation} 

Since $B(t)$, $(1 + \lambda(t))$, $N(t)$, and $TR(t)$ are all positive: 

\begin{equation} 

\frac{\partial P(t)}{\partial TR(t)} < 0 

\label{eq:121} 

\end{equation} 

This proves the inverse relationship between trust and premiums. 

Implication: Trust operates as a form of social capital in the C&C model that can reduce 

financial requirements while maintaining the same level of benefits, a property absent in other 

insurance models. 

8.5 Proposition 5: Comparative Demographic Sustainability Thresholds 

Proposition 5: Each insurance model exhibits a distinct critical threshold for demographic 

sustainability ($D_{crit}(t)$), ordered as follows: 

\begin{equation} 

D_{crit}^{COM}(t) > D_{crit}^{B}(t) > D_{crit}^{V}(t) > D_{crit}^{C\&C}(t) 

\label{eq:122} 

\end{equation} 
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Proof: 

For each model, we define the critical demographic threshold as the dependency ratio at which 

the system can no longer maintain equilibrium without structural changes: 

1. Bismarckian threshold: The point where required contribution rates exceed maximum 

feasible rates: 

\begin{equation} 

D_{crit}^{B}(t) = \sqrt{\frac{TB_B(t) + A_B(t)}{2 \cdot I_{average}(t) \cdot n \cdot R_B(t) 

\cdot C_{max}}} 

\label{eq:123} 

\end{equation} 

Where $C_{max}$ is the maximum politically/economically feasible contribution rate. 

2. Beveridgean threshold: The point where service access falls below minimum acceptable 

levels: 

\begin{equation} 

D_{crit}^{V}(t) = \frac{HC'(t)}{v_{min} \cdot (1 + \lambda_V(t))} - 1 

\label{eq:124} 

\end{equation} 

Where $v_{min}$ is the minimum acceptable access factor. 

3. Commercial threshold: The point where the average premium exceeds average 

willingness to pay: 
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\begin{equation} 

D_{crit}^{COM}(t) = \frac{E[M_{base}(t)] \cdot (1 + \lambda_{COM}(t)) \cdot (1 + 

\pi(t))}{WTP_{avg}(t)} \cdot (1 + \gamma) 

\label{eq:125} 

\end{equation} 

Where $\gamma$ represents the age-premium elasticity factor. 

4. C&C threshold: The point where participation falls below minimum viable pooling or 

trust erodes below a critical level: 

\begin{equation} 

D_{crit}^{C\&C}(t) = \min\left\{\frac{N_{min}}{N_{max} \cdot TR(t)}, \frac{TR_{min} \cdot 

B(t) \cdot (1 + \lambda(t))}{N(t) \cdot P_{max}}\right\} 

\label{eq:126} 

\end{equation} 

To establish the ordering, we compare system behaviors under demographic pressure: 

1. Commercial systems rely on risk-based premiums that increase exponentially with age, 

as shown in Proposition 3. This creates affordability thresholds that are reached at 

relatively high dependency ratios. 

2. Bismarckian systems face non-linear increases in contribution rates with demographic 

aging, as shown in Proposition 1, but the community rating principle creates broader risk 

pooling than Commercial systems. 



44 
Copyright © 2025 David M. Dror 

This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). 

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ 

3. Beveridgean systems adjust service access rather than premiums or contributions, as 

shown in Proposition 2, allowing them to maintain universal coverage at lower 

dependency ratios. 

4. C&C systems incorporate trust as a buffer mechanism against demographic pressure, as 

shown in Proposition 4, potentially allowing them to maintain sustainability at lower 

dependency ratios if trust correlates positively with age. 

Empirical estimates from healthcare systems literature and demographic modeling suggest: 

• Commercial systems become unstable at dependency ratios below 4:1 

• Bismarckian systems can function at ratios of 3:1 

• Beveridgean systems remain functional at ratios of 2.5:1 

• C&C systems, due to their trust dynamics, can function at ratios of 2:1 

Therefore: \begin{equation} 

D_{crit}^{COM}(t) > D_{crit}^{B}(t) > D_{crit}^{V}(t) > D_{crit}^{C\&C}(t) 

\label{eq:127} 

\end{equation} 

Implication: The C&C model demonstrates superior resilience to demographic pressure 

compared to other models, maintaining equilibrium at lower dependency ratios due to its unique 

trust-based sustainability mechanism. 

8.6 Proposition 6: Value Proposition Expansion in the C&C Model 
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Proposition 6: The C&C model generates additional value components absent in conventional 

models: 

\begin{equation} 

V_C(t) = V_{risk}(t) + V_{pref}(t) + V_{social}(t) 

\label{eq:128} 

\end{equation} 

While conventional models are limited to: 

\begin{equation} 

V_{conv}(t) = V_{risk}(t) 

\label{eq:129} 

\end{equation} 

Proof: 

The value of insurance to an individual can be decomposed into three components: 

1. Risk protection value ($V_{risk}(t)$): The utility gained from financial protection 

against uncertain health expenses. 

2. Preference alignment value ($V_{pref}(t)$): The utility gained when covered services 

match individual preferences. 

3. Social capital value ($V_{social}(t)$): The utility gained from community participation 

and governance. 



46 
Copyright © 2025 David M. Dror 

This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). 

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ 

In Bismarckian, Beveridgean, and Commercial models, the value function is primarily: 

\begin{equation} 

V_{conv}(t) = V_{risk}(t) 

\label{eq:130} 

\end{equation} 

This can be mathematically represented as the expected utility difference between insured and 

uninsured states: 

\begin{equation} 

V_{risk}(t) = E[U(W - P_i(t) - L + B_i(t))] - E[U(W - L)] 

\label{eq:131} 

\end{equation} 

Where: 

• $W$: Initial wealth 

• $P_i(t)$: Premium/contribution 

• $L$: Potential loss (healthcare costs) 

• $B_i(t)$: Insurance benefits 

• $U$: Utility function 

In the C&C model, the community involvement in benefit design creates preference alignment 

value: 
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\begin{equation} 

V_{pref}(t) = \sum_{s \in S_c} u_{i,s}(t) \cdot d_s(t) - \sum_{s \in S_{reg}} u_{i,s}(t) \cdot 

r_s(t) 

\label{eq:132} 

\end{equation} 

Where $S_c$ is the community-determined service set and $S_{reg}$ is a regulated standard 

service set. 

Additionally, the governance structure creates social capital value: 

\begin{equation} 

V_{social}(t) = \beta \cdot TR(t) \cdot g_N(t) 

\label{eq:133} 

\end{equation} 

Where $\beta$ is a social capital coefficient, $TR(t)$ is the trust factor, and $g_N(t)$ is the 

participation growth rate. 

Therefore, the total value in the C&C model is: 

\begin{equation} 

V_C(t) = V_{risk}(t) + V_{pref}(t) + V_{social}(t) > V_{conv}(t) 

\label{eq:134} 

\end{equation} 
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This expanded value function can be empirically validated through willingness-to-pay studies, 

which consistently show that individuals in community-based insurance schemes are willing to 

pay premiums that exceed actuarially fair rates, even when controlling for risk aversion 

(Donfouet et al., 2013; Dror et al., 2007). This "excess willingness to pay" represents the 

combined value of preference alignment and social capital formation. 

Implication: The C&C model creates value beyond mere risk protection, offering additional 

utility through preference alignment and social capital formation that is absent in conventional 

insurance models. 

9. Comparative Analysis of Mathematical Properties 

9.1 Revenue Generation Mechanisms 

The four models exhibit fundamentally different mathematical structures for revenue generation: 

1. Bismarckian (Income-Proportional Contributions): \begin{equation} 

TC_B(t) \propto \sum_{i=1}^{n} I_i(t) \times (C_e(t) + C_w(t)) 

\label{eq:49} 

\end{equation} 

2. Beveridgean (Tax-Based Allocation): \begin{equation} 

TC_V(t) \propto \sum_{i=1}^{n} \tau(I_i(t)) \times I_i(t) \times \alpha(t) 

\label{eq:50} 

\end{equation} 

3. Commercial (Risk-Based Premiums): \begin{equation} 
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TC_{COM}(t) \propto \sum_{i=1}^{n} E[M_i(t)] \times (1 + \lambda_{COM}(t)) \times (1 

+ \pi(t)) \times \delta_i(t) 

\label{eq:51} 

\end{equation} 

4. C&C (Trust-Based Voluntary Participation): \begin{equation} 

TC_C(t) \propto N(t) \times P(t) \times TR(t) 

\label{eq:52} 

\end{equation} 

These structures reveal fundamentally different dependencies: Bismarckian systems depend 

critically on workforce size and income levels, Beveridgean on the broader tax base and 

allocation decisions, Commercial on risk assessment and market competition, and C&C on 

participation rates and trust levels. 

Table 1: Comparative Mathematical Properties of Health Insurance Models.  
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Note: Mathematical expressions represent the primary functions defining each model's distinctive 

properties. Source: Author's formulation based on mathematical analysis. 

Source: Author's formulation based on mathematical analysis. 

9.2 Equilibrium Maintenance Mechanisms 

Each model maintains equilibrium through different mathematical mechanisms: 

1. Bismarckian: Contribution rates adjust to meet expenditures \begin{equation} 

C_w(t) = \frac{TB_B(t) + A_B(t)}{2 \cdot n \cdot I_{average}(t) \cdot D(t)} 

\label{eq:53} 

\end{equation} 

2. Beveridgean: Service access adjusts to meet budget constraints \begin{equation} 

v_s(t) = f\left(\frac{HC(t)}{D(t)}, p_s(t)\right) 

\label{eq:54} 

\end{equation} 

3. Commercial: Premiums and risk selection adjust to maintain profitability 

\begin{equation} 

P_i(t) = E[M_i(t)] \cdot (1 + \lambda_{COM}(t)) \cdot (1 + \pi(t)) 

\label{eq:55} 

\end{equation} 

4. C&C: Participation and trust dynamics adapt through community feedback 

\begin{equation} 
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TR(t+1) = TR(t) + \delta \times [CS(t) - TR(t)] 

\label{eq:56} 

\end{equation} 

These different equilibrium mechanisms create distinct responses to demographic and financial 

pressures. 

9.3 Demographic Sensitivity Comparison 

The mathematical sensitivity to demographic changes reveals distinct vulnerability patterns: 

1. Bismarckian: \begin{equation} 

\frac{dC_w(t)}{dD(t)} = -\frac{A_B(t)}{2 \cdot I_{average}(t) \cdot n \cdot R_B(t) \cdot 

D(t)^2} < 0 

\label{eq:57} 

\end{equation}  

Non-linear increase in contribution rates as the dependency ratio decreases. 

2. Beveridgean: \begin{equation} 

\frac{\partial v_s(t)}{\partial D(t)} = \frac{\partial v_s}{\partial (HC(t)/D(t))} \times \frac{-

HC(t)}{D(t)^2} > 0 

\label{eq:58} 

\end{equation}  

Service access contracts as the population ages. 
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3. Commercial: \begin{equation} 

\frac{\partial P_i(t)}{\partial age_i} > 0 \text{ and } \frac{\partial^2 P_i(t)}{\partial age_i^2} 

> 0 

\label{eq:59} 

\end{equation}  

Premiums increase at an accelerating rate with age, potentially leading to coverage gaps. 

4. C&C: \begin{equation} 

\frac{\partial P(t)}{\partial TR(t)} = -\frac{B(t) \times (1 + \lambda(t))}{N(t) \times TR(t)^2} 

< 0 

\label{eq:60} 

\end{equation}  

Trust dynamics can potentially buffer demographic pressures if social capital increases with 

age in communities. 

As established in Proposition 3, these differences create a clear ordering of critical demographic 

thresholds: $D_{crit}^{COM}(t) > D_{crit}^{B}(t) > D_{crit}^{V}(t) > D_{crit}^{C&C}(t)$ 
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Figure 1: System Response to Declining Dependency Ratios.  

The figure shows how each system's key variables adjust as dependency ratios decline from 4:1 to 

2:1, with higher curves indicating greater system stress.  

Source: Author's derivation based on equations (57)-(60). 

9.4 Risk Pooling Approaches 

The four models implement mathematically distinct risk pooling approaches: 

1. Bismarckian: Risk is pooled across income levels, with higher incomes subsidizing 

lower incomes. \begin{equation} 

P_i(t) = [C_e(t) + C_w(t)] \times I_i(t) 

\label{eq:61} 
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\end{equation} 

2. Beveridgean: Risk is pooled across the entire population through general taxation. 

\begin{equation} 

\tau(I_i(t)) \propto \text{Progressive function of income} 

\label{eq:62} 

\end{equation} 

3. Commercial: Risk is segmented through classification, creating separate risk pools. 

\begin{equation} 

\phi(X_i(t)) \to \{r_1, r_2, \ldots, r_m\} 

\label{eq:63} 

\end{equation} 

4. C&C: Risk is pooled within communities with trust as a binding mechanism. 

\begin{equation} 

P(t) = \frac{B(t) \times (1 + \lambda(t))}{N(t) \times TR(t)} 

\label{eq:64} 

\end{equation} 

These differences in risk pooling create fundamentally different system behaviors and 

vulnerabilities. 

9.5 Administrative Cost Structures 



55 
Copyright © 2025 David M. Dror 

This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). 

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ 

Administrative costs follow different mathematical patterns across models: 

1. Bismarckian: \begin{equation} 

A_B(t) = \beta_B \times TC_B(t) + \gamma_B \times N(t) 

\label{eq:65} 

\end{equation} 

2. Beveridgean: \begin{equation} 

A_V(t) = \beta_V \times HC(t) 

\label{eq:66} 

\end{equation} 

3. Commercial: \begin{equation} 

A_{COM}(t) = \beta_{COM} \times TC_{COM}(t) + \gamma_{COM} \times n + 

\theta_{COM} \times m 

\label{eq:67} 

\end{equation}  

Where $n$ is the number of insurees and $m$ is the number of risk classes. 

4. C&C: \begin{equation} 

A_C(t) = \beta_C \times TC_C(t) + \gamma_C \times (1 - TR(t)) \times N(t) 

\label{eq:68} 
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\end{equation} 

The C&C model uniquely incorporates trust as a factor in administrative efficiency, creating 

potential for lower administrative costs as trust increases. 

10. Model Resilience to System Stressors 

To further examine the distinctive properties of the four models, we analyze their mathematical 

resilience to three critical system stressors: demographic aging, economic downturns, and 

information asymmetry. 

 

Figure 2: Comparative Resilience Profiles.  
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The radar chart compares each model's resilience to demographic aging, economic downturns, 

and information asymmetry on a scale from 1 (low) to 5 (high).  

Source: Author's quantification based on elasticity measures in equations (69)-(84). 

10.1 Resilience to Demographic Aging 

Demographic aging affects all health insurance systems through decreasing dependency ratios. 

The mathematical resilience can be assessed through elasticity measures. 

Definition 1: The demographic elasticity of system sustainability ($E_D$) is defined as: 

\begin{equation} 

E_D(t) = \frac{\partial S(t)}{\partial D(t)} \cdot \frac{D(t)}{S(t)} 

\label{eq:69} 

\end{equation} 

This measures the percentage change in sustainability function in response to percentage changes 

in the dependency ratio. 

For Bismarckian systems: \begin{equation} 

E_D^B(t) = \frac{K \cdot D(t)^{-2} \cdot D(t)}{S_B(t)} = \frac{K}{S_B(t) \cdot D(t)} 

\label{eq:70} 

\end{equation} 

For Beveridgean systems: \begin{equation} 

E_D^V(t) = \frac{-HC(t) \cdot D(t)^{-2} \cdot D(t)}{S_V(t)} = \frac{-HC(t)}{S_V(t) \cdot D(t)} 
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\label{eq:71} 

\end{equation} 

For Commercial systems: \begin{equation} 

E_D^{COM}(t) = \frac{\sum_{i=1}^n \frac{\partial P_i(t)}{\partial age_i} \cdot \frac{\partial 

age_i}{\partial D(t)} \cdot \delta_i(t)}{S_{COM}(t)} \cdot D(t) 

\label{eq:72} 

\end{equation} 

For C&C systems: \begin{equation} 

E_D^C(t) = \frac{N(t) \cdot P(t) \cdot \frac{\partial TR(t)}{\partial D(t)} + N(t) \cdot 

\frac{\partial P(t)}{\partial D(t)} \cdot TR(t) + \frac{\partial N(t)}{\partial D(t)} \cdot P(t) \cdot 

TR(t)}{S_C(t)} \cdot D(t) 

\label{eq:73} 

\end{equation} 

Under reasonable parameterizations and positive trust correlation with age: \begin{equation} 

|E_D^C(t)| < |E_D^B(t)| \text{ and } |E_D^C(t)| < |E_D^{COM}(t)| 

\label{eq:74} 

\end{equation} 

This implies that the C&C model demonstrates greater mathematical resilience to demographic 

aging than either Bismarckian or Commercial systems. 
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10.2 Resilience to Economic Downturns 

Economic downturns stress health insurance systems through reduced revenues and increased 

demand for services. The mathematical resilience can be assessed through income elasticity 

measures. 

Definition 2: The income elasticity of system sustainability ($E_I$) is defined as: 

\begin{equation} 

E_I(t) = \frac{\partial S(t)}{\partial \overline{I}(t)} \cdot \frac{\overline{I}(t)}{S(t)} 

\label{eq:75} 

\end{equation} 

Where $\overline{I}(t)$ represents average income. 

For Bismarckian systems: \begin{equation} 

E_I^B(t) = \frac{\partial TC_B(t)}{\partial \overline{I}(t)} \cdot \frac{\overline{I}(t)}{S_B(t)} = 

\frac{[C_e(t) + C_w(t)] \cdot n \cdot R_B(t) \cdot \overline{I}(t)}{S_B(t)} 

\label{eq:76} 

\end{equation} 

For Beveridgean systems: \begin{equation} 

E_I^V(t) = \frac{\partial \alpha(t)}{\partial \overline{I}(t)} \cdot \frac{\overline{I}(t)}{S_V(t)} 

\cdot \sum_{i=1}^n \tau(I_i(t)) \cdot I_i(t) 

\label{eq:77} 
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\end{equation} 

For Commercial systems: \begin{equation} 

E_I^{COM}(t) = \frac{\partial \sum_{i=1}^n \delta_i(t) \cdot P_i(t)}{\partial \overline{I}(t)} 

\cdot \frac{\overline{I}(t)}{S_{COM}(t)} 

\label{eq:78} 

\end{equation} 

For C&C systems: \begin{equation} 

E_I^C(t) = \frac{\partial [N(t) \cdot P(t) \cdot TR(t)]}{\partial \overline{I}(t)} \cdot 

\frac{\overline{I}(t)}{S_C(t)} 

\label{eq:79} 

\end{equation} 

Under conditions where trust is less volatile than income: \begin{equation} 

|E_I^C(t)| < |E_I^B(t)| \text{ and } |E_I^C(t)| < |E_I^V(t)| 

\label{eq:80} 

\end{equation} 

This suggests that the C&C model potentially offers greater mathematical resilience to economic 

downturns than either Bismarckian or Beveridgean systems. 

10.3 Resilience to Information Asymmetry 
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Information asymmetry creates adverse selection pressures in health insurance systems. The 

mathematical resilience can be assessed through information elasticity measures. 

Definition 3: The information elasticity of system sustainability ($E_{IA}$) is defined as: 

\begin{equation} 

E_{IA}(t) = \frac{\partial S(t)}{\partial IA(t)} \cdot \frac{IA(t)}{S(t)} 

\label{eq:81} 

\end{equation} 

Where $IA(t)$ represents an index of information asymmetry. 

For Commercial systems: \begin{equation} 

E_{IA}^{COM}(t) = \frac{\partial \Pi(t)}{\partial IA(t)} \cdot \frac{IA(t)}{S_{COM}(t)} < 0 

\label{eq:82} 

\end{equation} 

For C&C systems: \begin{equation} 

E_{IA}^C(t) = \frac{\partial [N(t) \cdot P(t) \cdot TR(t)]}{\partial IA(t)} \cdot 

\frac{IA(t)}{S_C(t)} 

\label{eq:83} 

\end{equation} 

When trust mechanisms effectively counteract information asymmetry: \begin{equation} 

|E_{IA}^C(t)| < |E_{IA}^{COM}(t)| 
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\label{eq:84} 

\end{equation} 

This indicates that the C&C model may demonstrate greater mathematical resilience to 

information asymmetry than Commercial systems. 

11. Theoretical Implications and Conclusions 

11.1 Key Theoretical Findings 

Our mathematical taxonomy of health insurance models reveals fundamental structural 

differences that extend beyond policy descriptions. Each model incorporates distinct 

mathematical mechanisms for generating revenue, pooling risk, determining benefits, and 

maintaining equilibrium. 

1. Structural Uniqueness: Each model possesses mathematically distinctive structures that 

create different incentives, vulnerabilities, and adaptation mechanisms. 

2. Demographic Sensitivity: All four models exhibit sensitivity to demographic change, 

but through different mathematical pathways and with different non-linear properties. 

3. Equilibrium Mechanisms: The models maintain financial equilibrium through 

fundamentally different mathematical adjustment processes—contribution rates 

(Bismarckian), service access (Beveridgean), risk-based premiums (Commercial), and 

trust-mediated participation (C&C). 

4. Trust as a Mathematical Variable: The C&C model uniquely incorporates trust as an 

explicit mathematical variable in its core equations, creating distinctive properties not 

present in conventional models. 
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5. Value Function Expansion: The C&C model mathematically expands the value 

proposition beyond risk protection to include preference alignment and social capital 

formation. 

11.2 Implications for Health System Design 

The mathematical taxonomy developed in this paper has several implications for health system 

design: 

1. Model Selection: The choice between models should consider their mathematical 

properties and alignment with policy objectives, not just descriptive features. 

2. Hybrid Systems: Many real-world systems incorporate elements of multiple models, 

suggesting the need for mathematical frameworks that can analyze hybrid structures. 

3. Vulnerability Assessment: The mathematical vulnerability of different models to 

demographic, economic, and social pressures can be quantitatively assessed using the 

framework developed. 

4. Innovation Pathways: The distinctive mathematical properties of the C&C model 

suggest innovation pathways for conventional systems seeking resilience in challenging 

environments. 
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Figure 3: Potential System Hybridization Pathways.  

The diagram illustrates how mathematical elements from different models could be combined 

to create enhanced systems with improved resilience properties.  

Source: Author's conceptualization based on comparative mathematical analysis. 

11.3 Policy Implications 

 

The mathematical analysis leads to several policy implications. First, systems facing rapid 

demographic aging should consider mathematical structures that moderate sensitivity to 

dependency ratio changes, potentially incorporating elements of the C&C model. Fan et al. 

(2021) show that strategic investment in appropriate health system structures can yield substantial 
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returns for economic growth and population health, underscoring the importance of selecting 

mathematically resilient insurance models. 

1. Demographic Resilience: Systems facing rapid demographic aging should consider 

mathematical structures that moderate sensitivity to dependency ratio changes, potentially 

incorporating elements of the C&C model. 

2. Economic Stability: During economic downturns, systems' adjustment mechanisms 

operate differently, with Beveridgean systems likely to restrict access while Commercial 

systems may intensify risk selection. Policy measures should anticipate these 

mathematical responses. 

3. Trust Development: The mathematical role of trust in the C&C model suggests that 

policies promoting transparency, community engagement, and social capital formation 

may enhance health system sustainability. 

4. Information Asymmetry Management: Commercial systems require regulatory 

frameworks to constrain adverse selection dynamics, while C&C systems may leverage 

trust mechanisms to partially counteract information asymmetry effects. 

11.4 Research Directions 

This work points to several promising research directions: 

1. Empirical Parameterization: Estimating model parameters using real-world data from 

different health systems. 

2. Simulation Modeling: Developing dynamic simulation models to test the behavior of 

different systems under stress conditions. 
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3. Hybrid Model Analysis: Creating mathematical frameworks for analyzing systems that 

incorporate elements of multiple models. 

4. Trust Dynamics: Further exploration of the mathematical properties of trust in health 

insurance contexts. 

5. Formalization of Governance Effects: Extending the mathematical framework to 

incorporate governance structures and their effects on system behavior. 

11.5 Conclusion 

The mathematical taxonomy developed in this paper provides a rigorous foundation for 

comparative analysis of health insurance models. By formalizing the core structures and 

dynamics of four principal models, it enables precise identification of their distinctive properties, 

vulnerabilities, and potential for adaptation. This approach moves beyond descriptive 

comparisons to reveal fundamental mathematical differences that shape system behavior under 

various conditions. 

The emergence of the C&C model, with its distinctive trust-based mathematical structure, 

suggests new possibilities for health insurance design that may offer resilience in contexts where 

conventional models face challenges. Further development of this mathematical framework will 

support both theoretical advances in health system analysis and practical innovations in health 

insurance design. 

While no single model emerges as universally superior across all dimensions, the mathematical 

taxonomy enables more precise matching of model characteristics to specific contextual 

requirements. In particular, the C&C model's unique incorporation of trust as a mathematical 

variable offers a potential pathway for addressing sustainability challenges in environments 

where demographic, economic, and information asymmetry pressures are significant. 
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