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Abstract

The COVID-19 outbreak in 2020 has fostered in many countries the development of
new weekly economic indices for the timely tracking of pandemic-related turmoils
and other forms of rapid economic changes. Such indices often utilise information
from daily and weekly economic time series that normally exhibit complex forms
of seasonal behaviour. The latter dynamics were initially removed with ad hoc or
experimental methods due to the urgent need of instant results and hence the lack
of time for inventing and approving more sophisticated alternatives. This, never-
theless, has in turn inspired recent developments of seasonal adjustment methods
tailored to the specifics of infra-monthly time series. Although sound theoretical
descriptions of these tailored methods are already available, their performance has
not been evaluated empirically in great detail so far. To fill this gap, we consider
real-time data vintages of several infra-monthly economic time series for Germany
and analyse the cross-vintage stability of holiday-related deterministic pretreatment
effects as well as the revisions in various concurrent signal estimates obtained with
experimental STL-based and selected elaborate methods, such as the extended
ARIMA model-based and X-11 approaches. Our main findings are that the tai-
lored methods tend to outperform the experimental ones in terms of computational
speed, that the considered pretreatment routines yield generally stable parameter es-
timates across data vintages, and that the extended ARIMA model-based approach
generates the smallest and least volatile revisions in many cases.
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1 Motivation

Weekly economic indices have become a well-established tool for monitoring short-term
economic developments in many countries in recent years, see Eraslan and Götz (2021),
Fenz and Stix (2021), Lewis, Mertens, Stock, and Trivedi (2021, 2022), Wegmüller,
Glocker, and Guggia (2023) and Woloszko (2024), amongst others. This index type has
shot to fame during the COVID-19 pandemic in 2020 when the timely tracking of rapid
economic changes related to the onset of and the policy response to this unprecedented
situation was crucial. It often blends information from daily and weekly economic time se-
ries that typically display complex forms of seasonal dynamics, such as the coexistence of
multiple seasonal patterns with potentially fractional periodicities, see Ollech (2023) and
Proietti and Pedregal (2023) for thorough discussions of such data peculiarities. Those
seasonal movements usually need to be removed prior to the index calculation, which was
initially done with ad hoc or experimental methods that could not fully take all infra-
monthly data features into account; under the given circumstances, however, the urgent
need for instant results—and therefore the lack of time for devising and approving more
sophisticated methods—justified their application.

With the passage of some time, however, several new and more elaborate seasonal ad-
justment methods tailored to the specifics of infra-monthly time series have been proposed.
Prime examples are the TRAMO-like linear regression framework for data pretreatment
and the generalisations of the famous ARIMA model-based (AMB) (Gómez and Mar-
avall, 2001b; Maravall, 1995) and X-11 seasonal adjustment approaches (Shiskin, Young,
and Musgrave, 1967) for monthly and quarterly data. These generalised modelling and
seasonal adjustment methods have been implemented in the latest version branch of the
JDemetra+ (JD+) time series software that has been recommended by Eurostat and the
European Central Bank for usage in official statistics within the European Statistical
System and the European System of Central Banks since February 2015. This new JD+
version also implements the classic STL method (Cleveland, Cleveland, McRae, and Ter-
penning, 1990) and core routines for structural time series models (Harvey, 1989); detailed
descriptions of the software are given in Webel (2022) and Webel and Smyk (2024).

Such theoretical advances notwithstanding, the new and tailored seasonal adjustment
methods still require thorough assessment, testing and empirical comparisons with exper-
imental benchmark methods, which is not currently available. To fill this gap, we conduct
a real-time revision analysis that focuses on two main sources of revisions in seasonally
adjusted estimates: data revisions and technical (filtering) revisions, see Pierce (1981) for
a general discussion. For the time being, we study their joint effect since this is what users
of seasonally adjusted data typically experience; more specifically, we analyse the cross-
vintage stability of holiday-related deterministic pretreatment effects and the revisions
in various concurrent signal estimates obtained with an experimental STL-based method
called the DSA approach (Ollech, 2021) and the extended AMB and X-11 approaches,
using real-time data vintages of several infra-monthly economic time series for Germany.
Studying (quasi-)real-time revision profiles of both seasonal and seasonally adjusted esti-
mates has a long history in the empirical assessment of seasonal adjustment methods for
monthly and quarterly time series; for example, Dagum (1982a,b, 1983, 1987), Dagum
and Laniel (1987), Dagum and Morry (1984, 1985), Deutsche Bundesbank (2011), Huot,
Chiu, Higginson, and Gait (1986), Kenny and Durbin (1982), McKenzie (1984), Pierce
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(1980), Pierce and McKenzie (1987) and Wallis (1982) analyse revisions in classic X-11
seasonal adjustments while Maravall (1986), McElroy and Gagnon (2008) and Planas and
Depoutot (2002), amongst others, conduct similar research for the classic AMB approach.

The remainder is organised as follows. After a brief data description in Section 2,
we introduce the basic modelling framework and define the requisite revision measures
in Section 3. The results of our real-time revision analysis are reported in Section 4,
including an assessment of computation times. We conclude with a summary and some
final remarks for future research in Section 5.

2 Data

We consider five daily and one weekly time series with pronounced seasonal behaviour
that enter the PCA-based calculation of the weekly activity index (WAI) for the German
economy (Eraslan and Götz, 2021). The unadjusted data is taken from the weekly vintages
processed by the Bundesbank when running experimental DSA seasonal adjustments over
the 2022 W01 through 2024 W01 period. New vintages are released on Mondays except
for the daily truck toll mileage index for which new observations become available every
Thursday. Each new vintage will thus contain one additional observation for the weekly
series and seven new observations on average for the daily series. Deviations from this
average usually result from delayed recordings due to public holidays around the weekend.1

Figure 1 shows the six WAI component series as released in the 2022 W01 vintage,
revealing the presence of repetitive annual movements especially in the five daily series.
These movements will be called day-of-the-year (DOY) and week-of-the-year (WOY) pat-
terns. The COVID-19 lock-downs from 22 March through 4 May 2020 and from mid-
December 2020 through May 2021 are also clearly visible, especially in the weekly Google
trends and daily pedestrian counts and total flights series. Figure 2 shows a plot of the
estimated spectral density (in decibels) against log-frequency for each WAI component
series; the presence of the aforementioned DOY and WOY movements is confirmed as
the respective estimates display local peaks at (some of) the corresponding seasonal fre-
quencies, see, for instance, the spectral peaks at the fundamental DOY frequency and
some of its harmonics for daily electricity consumption. What is more, however, the look
from this spectral perspective also unmasks the presence of even stronger infra-weekly
recurring dynamics in each daily series, which will be referred to as the day-of-the-week
(DOW) pattern; this presence is indicated by the three high and narrow peaks in the esti-
mated spectral densities at the DOW frequencies. Overall, presence of complex seasonal
movements is a common facet of the six WAI component series for which we next provide
some background information, see also Table 1.

Air pollution (AP, daily) Air pollution is defined as the concentration of nitrogen
dioxide (NO2) in units of micrograms per cubic metre (µg/m3) averaged across all available
measurement stations in Germany. Measurements are currently taken at more than 500

1For example, the 2023 W15 vintage contains only three new observations (3–5 April) for daily electricity
consumption due to the Easter holidays falling on 6–10 April. Accordingly, the 2023 W16 vintage has
11 new observations.
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Figure 1: Infra-monthly WAI component series with pronounced seasonality (shown as of 2018
as released in the 2022 W01 vintage).

stations in diverse urban, suburban and rural areas. The AP series is calculated from
data published by the German Environment Agency.

Electricity consumption (EC, daily) Realised electricity consumption is considered
in units of megawatt hours (MWh) and covers electricity supplied to the network for the
general supply, excluding electricity supplied to the railroad network and to internal in-
dustrial and closed distribution networks as well as electricity consumed by the producers.
The EC data are provided by the Federal Network Agency.

Google trends (GT, weekly) Google trends cover weekly search activity for the term
“Arbeitslosigkeit”—the German translation of unemployment—from Sunday through Sat-
urday. Owing to Google’s download restrictions regarding sample size, non-overlapping
5-year sequences of weekly observations are downloaded first, with the maximum obser-
vations being normalised to 100 within each sequence. Those sequences are then padded
and rescaled using a 20-year monthly benchmark series to form long weekly GT series
with values ranging between 100 and 200.

3



(a) Air pollution

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

0.001 0.01 0.1 0.5

(b) Electricity consumption

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

0.001 0.01 0.1 0.5

(c) Google trends

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

0.001 0.01 0.1 0.5

(d) Pedestrian counts

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

0.001 0.01 0.1 0.5

(e) Total flights

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

0.001 0.01 0.1 0.5

(f) Truck toll mileage index

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

0.001 0.01 0.1 0.5

Figure 2: Autoregressive estimates for the spectral density of the differenced logged infra-
monthly WAI component series (2022 W01 vintage). Verticals mark selected day/week-of-the-
year frequencies (solid lines) and the three day-of-the-week frequencies (dashed lines).

Pedestrian counts (PC, daily) Pedestrian counts are a weighted average of the num-
bers of pedestrians observed in eight major German cities2 in preselected spots, such as
major shopping streets. These numbers are recorded by Hystreet, a subsidiary of the
Cologne-based AC+X Strategic Investments Company, and the weights correspond to
the cities’ population shares in the year 2018. The PC series has been recalculated as
an index (2019 = 100) as of the 2022 W47 vintage; in addition, it has been enlarged to
include data from 21 cities as well as re-based (2021 = 100) as of the 2023 W03 vintage.
To avoid breaks in the measurement concept, all prior vintages are also transformed to
index data (2021 = 100). The PC series was not calculated for the 2022 W52 vintage and
is therefore identical to the index released in the 2022 W51 vintage.

Total flights (TF, daily) Total flights are defined as the total number of worldwide
flights as recorded by Flightradar24, a global flight tracking service that provides real-time
information about more than 200,000 flights from more than 1,200 airlines flying to, or
from, more than 4,000 airports around the world. The TF series includes different types

2Berlin, Cologne, Düsseldorf, Frankfurt am Main, Hamburg, Munich, Leipzig, and Stuttgart.
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Table 1: Basic information about the infra-monthly WAI component series

Series AP EC GT PC TF TTMI

Start 1 Jan 2016 1 Jan 2015 2004 W02 1 May 2018 1 May 2016 1 Jan 2008
Obsf 2,194 2,556 939 1,343 2,073 5,115
Obsl 2,922 3,288 1,043 2,071 2,802 5,843

Note: Obsf and Obsl are the numbers of observations in the 2022 W01 and 2024 W01 vintages,
respectively.

of commercial flights, such as passenger, cargo and charter flights, as well as private and
government flights, gliders, most helicopter and ambulance flights, some military flights,
and drones.

Truck toll mileage index (TTMI, daily) The truck toll mileage index measures the
distance in kilometres driven by heavy goods vehicles, i.e. trucks with a gross vehicle
weight rating of 7.5 tonnes and above, that are subject to toll charges on German federal
motorways and trunk roads. The sovereign tasks associated with toll collection are per-
formed by the Federal Office for Goods Transport. Additional insights, including details
about the experimental DSA seasonal adjustment of the TTMI series, can be found in
Cox, Triebel, Linz, Fries, Flores, Lorenz, Ollech, Dietrich, LeCrone, and Webel (2020).

3 Notations and definitions

Basic UC model Let {yt} denote an infra-monthly time series and assume that it can
be decomposed additively into its constituent unobservable components (UC) according
to

f(yt) = tt + st + ht + it, (1)

where f(·) is a potentially non-linear transformation, {tt} is the trend-cyclical component,
{st} is the seasonal component, {ht} is the holiday component and {it} is the irregular
component. Throughout this paper, f(·) will be either the identity or the log trans-
formation. The former case will be referred to as the additive UC model, whereas the
latter case will be referred to as the multiplicative UC model (because in this case the
UCs on the original data scale are given by exp(tt), exp(st), etc., and hence are linked
multiplicatively). The seasonal component in (1) is further assumed to be an additive
superimposition of multiple seasonal patterns, that is

st =
∑
τ∈S

s
(τ)
t , (2)

where S = {τ1, τ2, . . .} is a finite set of seasonal periodicities with τi ∈ [2,∞) for all i and

{s(τ)t } denotes the seasonal pattern associated with periodicity τ .

Data linearisation For the sake of brevity, we here focus on the TRAMO-like pre-
treatment routine according to its implementation in JD+. This routine utilises a linear
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regression model in which the disturbances are driven by what is called the extended
Airline model (EAM). The entire model can be written compactly as

(1−B)
∏
τ∈S

(1−Bτ )
[
f(yt)− x⊤

t β
]
= (1− θ1B)

∏
τ∈S

(1− θτB
τ ) εt, (3)

where B is the backshift operator, i.e. Byt = yt−1, xt is a k-dimensional vector of
exogenous variables related to outliers and other deterministic (holiday) events at time
t, β is a k-dimensional vector of unknown regression effects and {εt} is zero-mean white
noise with finite variance σ2

ε > 0.
If S contains fractional seasonal periodicities in (2), then the corresponding powers

of the backshift operator in both the seasonal differencing and MA operators in (3) are
defined through the first-order Taylor approximation at unity, that is

Bτ ≈ (1− ατ )B
⌊τ⌋ + ατB

⌊τ⌋+1, (4)

where ⌊x⌋ is the largest integer not exceeding x and ατ = τ −⌊τ⌋ ∈ [0, 1) is the fractional
remainder of τ . Since each (1−Bτ ) factor naturally carries a (1 − B) factor, model (3)
is prone to over-differencing. Therefore, we will consider the generalised version

(1−B)d
∏
τ∈S

Sτ (B)
[
f(yt)− x⊤

t β
]
= (1− θ1B)

∏
τ∈S

(1− θτB
τ ) εt, (5)

where d ∈ {1, . . . , 1 + |S|} is the order of non-seasonal differencing and

Sτ (B) = (1−Bτ ) (1−B)−1 = 1 +B + · · ·+B⌊τ⌋−1 + ατB
⌊τ⌋ (6)

is the seasonal summation operator associated with periodicity τ . Some theoretical prop-
erties of model (5) are discussed in Webel (2022) and Webel and Smyk (2024); the latter
also suggest a generalisation in which both the seasonal summation operator (6) and the
seasonal MA operator in (5) are further factorised into Gegenbauer-type polynomials for
the requisite seasonal frequencies. The present study, however, does not consider such an
advanced approximation of (1− θτB

τ ) for fractional τ .3

Data linearisation in the DSA approach also utilises a linear regression model; however,
there are some key conceptual differences to the JD+ approach. Against the background
of our intended revision analysis, the maybe most important one is that the DSA analogue
of models (3) and (5) is run on the DOW-adjusted rather than the unadjusted data, see
Ollech (2021) and Appendix A for more details.

Types of revisions Let vi be the vintage of the unadjusted data {yt} published in
the i-th release period and V = (v1,v2, . . . ,vT ) the corresponding triangular(-type) data
array for some finite horizon T . Also, let Ŝt|vi

be the estimated signal of interest at time
t using unadjusted data up to the last observation available in vi. The concurrent and
final signal estimates are then denoted by Ŝt|vi(t)

and Ŝt|vT
, respectively, where i(t) is a

function of time that picks the period of the inaugural release of yt.

3Instead, the seasonal MA operator in (5) is simply rewritten via (4); when τ = 365.2425, for example,
this yields the approximation 1− θ365.2425

(
0.7575B365 + 0.2425B366

)
.
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In general, we consider two types of revisions. The first type measures changes in later
signal estimates as a percentage of the concurrent estimates (PCE). More precisely, we
define the final and lag-k PCE revisions as the sequences {rt} and {rt(k)} with

rt = 100×
Ŝt|vT

− Ŝt|vi(t)

Ŝt|vi(t)

and rt(k) = 100×
Ŝt|vi(t)+k

− Ŝt|vi(t)

Ŝt|vi(t)

, (7)

respectively. The second revision type measures changes in the period-to-period (P2P)
percentage changes between later and concurrent signal estimates. More specifically, the
final and lag-k P2P revisions are given by the sequences {r%t } and {r%t (k)} with

r%t = ∆%Ŝt|vT
−∆%Ŝt|vi(t)

and r%t (k) = ∆%Ŝt|vi(t)+k
−∆%Ŝt|vi(t)

, (8)

where

∆%Ŝt|vi
= 100×

Ŝt|vi
− Ŝt−1|vi

Ŝt−1|vi

.

Final and lag-k revisions carry complementary information. The former concern the rel-
atively remote past; their mean and volatility are typically associated with the reliability
of concurrent estimates in the sense of measuring systematic bias from and dispersion
around final estimates. In contrast, lag-k revisions concern the more recent past; for that
reason, they are typically more important—and often painful—for data users who tend
to be interested predominantly in the case k = 1.

Revision measures Let n be the number of observations in the span chosen for the
revision analysis. To quantify size and volatility of revisions, we consider three descriptive
statistics: the mean revision (MR), the mean absolute revision (MAR) and the standard
deviation (SD) of revisions. These measures (for the final PCE revisions) are given by:

MR = n−1

n∑
t=1

rt,

MAR = n−1

n∑
t=1

|rt|,

SD =

√√√√n−1

n∑
t=1

(rt −MR)2,

bearing in mind that they can be defined analogously for the other revision types in (7)
and (8). To assess the speed at which preliminary revisions converge to final ones, we
consider the rate of convergence (RC), which is defined as the SD ratio between the lag-k
and final PCE revisions in (7), i.e.

RC(k) =
SD [rt(k)]

SD [rt]
, k ∈ {1, 2, . . .}. (9)
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Fast (slow) convergence of PCE revisions is indicated by (9) if RC(k) → 1 for small (large)
values of k. Usually, there will be a trade-off between size and speed of convergence of
revisions, that is smaller (larger) preliminary PCE revisions typically go along with slower
(faster) convergence.

4 Results

Each WAI component series in the 2022 W01 through 2024 W01 vintages is seasonally
adjusted with the extended AMB and X-11 approaches as well as the classic STL method
implemented in JD+, including data pretreatment with model (5); the five daily series
are also seasonally adjusted with the DSA approach. The corresponding specifications
are detailed in Appendix B. In short, assuming the multiplicative form of UC model
(1), automatic outlier detection and a common set of 17 user-defined holiday variables
for Germany is specified in (5) along with S = {7, 365.2425} and d = 2 (recall the visual
evidence in Figure 1 and Figure 2); two additional variables marking the start and end
of daylight saving time are considered for the EC series whereas only five out of the 17
common variables plus four variables for U.S. federal holidays are considered for the TF
series (see also Note 2 in Table 4 below). Seasonal adjustment is mostly carried out with
default options and without utilising forecasts of the observations, so that asymmetric
signal extraction filters need to be applied for each method near the sample boundaries.

Section 4.1 provides a brief evaluation of computing speed. Section 4.2 then presents
the results for the daily WAI component series. These are centred around an empirical
comparison of the cross-vintage stability of the parameter estimates obtained from model
(5) versus the DSA linearisation step and of the final and lag-1 PCE revisions (7) and
P2P revisions (8) in three signal estimates obtained with the aforementioned approaches.4

Revisions in the unadjusted data are also considered, but those will turn out to play a
minor role (except for the GT series). In general, revisions are calculated over the 2022
W01 to 2022 W52 vintages, with the 2024 W01 vintage serving as the final vintage
vT . Section 4.3 reports the same results for the weekly GT series, considering only the
JD+ methods and basically the same strategy for setting up the seasonal adjustment
specifications (see again Appendix B for details); the most notable difference, however,
is that pretreatment with model (5) now utilises seven holiday variables for Germany as
well as S = {52.18}. Afterwards, Section 4.4 closes with some cautionary remarks with
respect to the interpretation of our results.

4.1 Computation times

Table 2 reports the average computation times required for data pretreatment and esti-
mation of the seasonal patterns for the six WAI component series. As for the daily data,
pretreatment with model (5) typically consumes a large portion of total computation time,
ranging from 13 seconds, or 56–99% depending on the seasonal adjustment method, for
the AP series to almost 4 minutes, or more than 97%, for the TTMI series. In contrast,

4Keep in mind that according to (7) and (8) lag-1 revisions refer to changes in estimated signals obtained
from unadjusted data that have been released in adjacent weekly Bundesbank vintages. Those revisions
would turn into lag-7 revisions for daily data if these were available in daily vintages, see also the first
cautionary remark in Section 4.4.
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Table 2: Average computation times for signal extraction from the WAI component series

Extended AMB Extended X-11 STL STL-R

Series EAM DOW OY Total DOW OY Total DOW OY Total DOW OY Total DSA DSA-R

AP 12.719 0.039 9.955 22.713 0.011 0.140 12.870 0.004 0.151 12.874 0.048 1.525 14.292 33.635 49.726
EC 21.261 0.032 4.683 25.976 0.011 0.129 21.401 0.007 0.139 21.407 0.053 1.531 22.845 74.840 134.060
GT 0.227 0.054 0.281 0.021 0.248 0.010 0.237 0.076 0.303
PC 29.636 0.036 16.546 46.219 0.011 0.114 29.761 0.003 0.168 29.807 0.040 1.575 31.251 40.612 69.771
TF 28.672 0.041 26.104 54.816 0.011 0.107 28.790 0.003 0.189 28.864 0.047 1.835 30.554 40.136 47.408
TTMI 232.188 0.054 7.096 239.339 0.023 0.352 232.563 0.011 0.239 232.438 0.115 2.650 234.953 2,760.104 3,735.298

Notes: 1 Average computation times are reported in seconds and have been calculated from the 2022 W01 to 2024 W01 vintages (PC: 2022 W19 to 2024 W01 vintages), using
25 replications within each vintage (TTMI: 5 replications). Average total computation times for the extended AMB, X-11 and STL(-R) approaches are defined as the sum of
the average computation times for DOW and DOY extraction and EAM pretreatment. 2 All calculations have been carried out on a 64-bit Windows OS with an Intel Xeon
Gold 6338T CPU @ 2.10 GHz and 32.00 GB RAM. 3 The suffix “-R” indicates usage of robustness weights in the STL-based methods. The pattern “ OY” indicates the
DOY pattern for daily data and the WOY pattern for weekly data.

Table 3: Revision measures for the unadjusted WAI component series

PCE revisions (7) P2P revisions (8)

{rt} {rt(1)} {r%t } {r%t (1)}
Series MR MAR SD MR MAR SD MR MAR SD MR MAR SD

AP −0.7419 0.8406 0.9903 −0.0703 0.1877 0.8604 0.0303 0.5272 1.3706 −0.0017 0.2578 1.1952
EC −0.4215 3.9294 4.3062 −0.1131 0.1315 0.8255 −0.0039 1.0573 1.5804 0.0026 0.0828 0.5798
GT 3.5653 3.5723 2.5882 −1.3321 1.8892 1.8984 0.0126 2.2190 3.0619 0.0859 1.9792 3.0325
PC 0.4776 2.5710 3.6536 0.0799 0.0799 0.5240 1.2398 3.5502 6.8696 −0.0121 0.0812 0.6867
TF −0.0001 0.0001 0.0010 −0.0001 0.0001 0.0010 < 0.0001 0.0002 0.0014 < 0.0001 0.0002 0.0014
TTMI 0.0518 0.0518 0.1624 0.0383 0.0383 0.1573 0.0277 0.1068 0.6347 0.0118 0.0874 0.6034

Note: Revision measures are mean revision (MR), mean absolute revision (MAR) and standard deviation (SD) of revisions, which have been calculated
from the 2022 W01 to 2022 W52 vintages, with the 2024 W01 vintage being considered the final vintage.
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estimation of the seasonal patterns from the linearised data with the JD+ methods is
quite fast. For the extended AMB method, DOW and DOY extractions usually take
less than 0.1 second and 10 seconds, respectively, except for the relatively short PC and
TF series for which DOY extraction tends to be 2–3 times slower. Unsurprisingly, the
non-parametric methods operate even faster: both the extended X-11 and the non-robust
STL method achieve combined DOW and DOY extraction within less than 0.4 second,
whereas the robust STL method requires less than three seconds on average to do this job.
In most cases, the DSA approach is noticeably slower than the extended AMB approach,
i.e. the slowest JD+ method. The largest discrepancy is measured for the TTMI series,
for which even the non-robust DSA method is more than 11 times slower; however, DSA
beats the extended AMB method when seasonally adjusting the PC and TF series due to
the aforementioned longer DOY extraction times of the latter approach.

The higher computational speed of the JD+ methods may have three main reasons.
First, the stochastic representation of seasonality in model (5) is much sparser than the de-
terministic trigonometric representation employed in the DSA linearisation step. Second,
maximum likelihood estimation of model (5) utilises efficient algorithms, such as thin QR
matrix factorisations computed through Householder reflections and fast Chandrasekhar-
type Kalman filtering recursions established from the model’s state space representation,
whereas the DSA linearisation step relies on standard maximum likelihood estimation
techniques. Third, automatic outlier detection in model (5) closely follows the robust
procedure suggested by Gómez and Maravall (2001a) while the corresponding DSA search
routine is based on the less robust procedure derived in Chen and Liu (1993).

Similar statements can be made about the average computation times for seasonally
adjusting the weekly GT series. In general, the JD+ methods are very fast, taking barely
longer than 0.3 second on average for performing both data pretreatment and estimation
of the single WOY pattern. Thereby, the extended X-11 and non-robust STL methods
are again slightly faster than the extended AMB and robust STL methods.

4.2 Daily WAI component series

Unadjusted data The revision measures reported in Table 3 reveal that the five daily
series exhibit fairly different revision profiles. The TF series is barely revised at all, which
makes it a good candidate for assessing the pure effects of so-called technical (filtering)
revisions.5 At the other end of the spectrum, the AP, EC and PC series display relatively
large PCE and P2P revisions; in particular, a high volatility is recorded for the lag-1
revisions of the AP series and for the final revisions of the EC and PC series. Finally, the
TTMI series exhibits rather moderate revisions in general.

Pretreatment We now assess the cross-vintage stability of the parameter estimates
and their point-wise standard errors obtained from model (5). To this end, we first plot
these quantities against the 2022 W01 through 2024 W01 data vintages, see Figure 3 for

5Technical revisions are unavoidable revisions in estimated signals—even when the unadjusted data are
not revised at all—that result merely from the fact that the concurrent (fully asymmetric) signal ex-
traction filter once applied to the last observation can be successively replaced with a less asymmetric
variant and eventually with the symmetric filter as more observations are shipping in at the recent end
of the sample span.
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the AP series, Figure 4 for the EC series, Figure 5 for the PC series, Figure 6 for the TF
series and Figure 7 for the TTMI series. In general, the parameter estimates and their
point-wise standard errors are reasonably stable over time; the latter, however, are not
robust against residual autocorrelation and heteroskedasticity and hence may be too small.
Some estimated holiday effects undergo occasional jumps which often coincide with the
inaugural release, or a later revision, of holiday-related observations that affects automatic
outlier detection. Using the EC series, we instance two such cases as an illustration (see
Figure 4):

1. Christmas effects in the 2022 W51 versus W52 vintages: Panels (p)–(r) reveal sud-
den jumps in the estimated effects of Christmas Eve, Christmas Day and Boxing
Day between the releases of the 2022 W51 and W52 vintages. The latter contains
the inaugural release of electricity consumption for the 19–26 December 2022 pe-
riod; there are no revisions in the unadjusted EC series except for a minor downward
correction by 0.3 MWh of the initial record for 18 December 2022. The automatic
outlier detection routine identifies eight outliers from either vintage: seven of them
are exactly the same but an additive outlier identified at 24 December 2016 from
the W51 vintage shifts to 24 December 2018 when re-estimating model (5) from
the W52 vintage. As a result, the estimates of the three Christmas-related holiday
effects rapidly shrink towards zero (i.e. from −0.143 to −0.071 for Christmas Eve,
from −0.226 to −0.190 for Christmas Day and from −0.153 to −0.137 for Boxing
Day).

2. New Year effects in the 2023 W10 versus W11 vintages: Panels (a) and (s) display
another set of unusually large jumps in the estimated holiday effects, this time in
those related to New Year’s Day and New Year’s Eve. These jumps occur between
the releases of the 2023 W10 and W11 vintages, which mark more or less the middle
of a short-lived phase of moderate yet repeated revisions of the unadjusted EC data
from December 2022 onwards. The number of automatically detected outliers drops
sharply from 10 in the W10 vintage to 5 in the W11 vintage; what is more, four out
of the five dropped outliers are additive outliers that have fallen into the seven-day
period between Christmas Eve and New Year’s Eve (more specifically, these have
been identified at 31 December 2016, 24 December 2018, 27 December 2020 and 31
December 2022). As a result, the estimated New Year effects decline from −0.176
to −0.152 for New Year’s Day and from −0.105 to −0.054 for New Year’s Eve.
Interestingly, the estimates of the three Christmas-related holiday effects are less
affected as they change only marginally from −0.070 to −0.086 for Christmas Eve,
from −0.188 to −0.181 for Christmas Day and from −0.122 to −0.130 for Boxing
Day.

The cross-vintage evolution of the estimated holiday effects obtained during the DSA
linearisation step is quite similar for all series despite some time-constant moderate dif-
ferences in the magnitude of some estimates. In particular, the DSA estimates tend to
be even slightly more stable over time, rarely exhibiting the sudden jumps seen in some
of their EAM counterparts. Finally, the visual evidence also suggests that the estimated
MA parameters from (5) show little cross-vintage variation for all series.

Complementing this graphical stability assessment, Table 4 reports the cross-vintage
standard deviations of all parameter estimates. Those are generally low and quite similar
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Table 4: Cross-vintage standard deviations of the parameters estimates in the linearisation models for the daily WAI component series

AP EC PC TF TTMI

Effect EAM DSA DSA-R EAM DSA DSA-R EAM DSA DSA-R EAM DSA DSA-R EAM DSA DSA-R

NYD 0.0231 0.0085 0.0061 0.0157 0.0045 0.0030 0.0686 0.0371 0.0532 0.0028 0.0092 0.0136 0.0408 0.0064 0.0131
EPI 0.0512 0.0239 0.0300 0.0089 0.0038 0.0040 0.0334 0.0229 0.0179 0.0115 0.0047 0.0149
DST-S 0.0016 0.0011 0.0016
GOF 0.0105 0.0040 0.0072 0.0011 0.0019 0.0030 0.0757 0.0545 0.0595 0.0106 0.0085 0.0126
EAS 0.0014 0.0013 0.0019
EAM 0.0190 0.0180 0.0235 0.0010 0.0009 0.0012 0.0370 0.0269 0.0404 0.0057 0.0043 0.0109
LAB 0.0221 0.0218 0.0297 0.0017 0.0052 0.0015 0.0247 0.0121 0.0129 0.0439 0.0250 0.0040
ASC 0.0190 0.0040 0.0091 0.0028 0.0023 0.0025 0.0252 0.0214 0.0311 0.0142 0.0133 0.0158
ASC-F 0.0135 0.0088 0.0110 0.0012 0.0020 0.0018 0.0057 0.0074 0.0063 0.0022 0.0031 0.0031
PEN 0.0064 0.0110 0.0117 0.0021 0.0028 0.0031 0.0177 0.0138 0.0173 0.0032 0.0033 0.0248
CCH 0.0102 0.0131 0.0153 0.0018 0.0016 0.0015 0.0224 0.0173 0.0141 0.0026 0.0028 0.0037
CCH-F 0.0072 0.0139 0.0105 0.0015 0.0024 0.0018 0.0127 0.0132 0.0168 0.0012 0.0022 0.0014
IND 0.0033 0.0031 0.0029
GUD 0.0104 0.0102 0.0148 0.0026 0.0031 0.0039 0.0246 0.0133 0.0175 0.0229 0.0181 0.0250
DST-E 0.0023 0.0024 0.0046
RFD-500 0.0075 0.0067 0.0081 0.0022 0.0016 0.0038 0.0039 0.0018 0.0017
ASD 0.0131 0.0189 0.0257 0.0049 0.0044 0.0074 0.0237 0.0159 0.0212 0.0092 0.0027 0.0020
THX 0.0034 0.0047 0.0046
THX-F 0.0061 0.0023 0.0020
XME 0.0075 0.0182 0.0219 0.0318 0.0052 0.0042 0.0154 0.0388 0.0735 0.0032 0.0052 0.0058 0.0070 0.0210 0.0377
XMD 0.0110 0.0023 0.0026 0.0230 0.0030 0.0073 0.0393 0.0431 0.0341 0.0038 0.0059 0.0082 0.0100 0.0072 0.0099
BXD 0.0307 0.0183 0.0198 0.0124 0.0008 0.0029 0.0446 0.0648 0.0797 0.0017 0.0021 0.0029 0.0157 0.0032 0.0111
NYE 0.0474 0.0259 0.0217 0.0288 0.0164 0.0017 0.0653 0.0540 0.0605 0.0016 0.0020 0.0024 0.0363 0.0230 0.0266

θ1 0.0021 0.0048 0.0049 0.0055 0.0129 0.0095 0.0072 0.0157 0.0146 0.0034 0.0097 0.0079 0.0069 0.0007 0.0044
θ7 0.0015 0.0126 0.0196 0.0144 0.0033
θ365.2425 0.0011 0.0017 0.0010 0.0016 0.0033

Notes: 1 Standard deviations have been calculated from the 2022 W01 to 2024 W01 vintages. 2 The considered effects in the upper panel are for the following calendar events:
New Year’s Day (NYD), Epiphany (EPI), start of daylight saving time (DST-S), Good Friday (GOF), Easter Sunday (EAS), Easter Monday (EAM), Labour Day (LAB),
Ascension (ASC), Ascension Friday (ASC-F), Pentecost Monday (PEN), Corpus Christi (CCH), Corpus Christi Friday (CCH-F), Independence Day (IND), German Unification
Day (GUD), end of daylight saving time (DST-E), 500th Reformation Day (RFD-500), All Saints’ Day (ASD), Thanksgiving (THX), Thanksgiving Friday (THX-F), Christmas
Eve (XME), Christmas Day (XMD), Boxing Day (BXD) and New Year’s Eve (NYE). 3 The suffix “-R” indicates usage of robustness weights in the STL-based method.
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(n) Christmas Eve

−0.6

−0.4

−0.2

0

0.2

0.4

2022W01 2022W11 2022W21 2022W31 2022W41 2022W51 2023W09 2023W19 2023W29 2023W39 2023W49

(o) Christmas Day

−0.6

−0.4

−0.2

0

0.2

0.4

2022W01 2022W11 2022W21 2022W31 2022W41 2022W51 2023W09 2023W19 2023W29 2023W39 2023W49

(p) Boxing Day

−0.6

−0.4

−0.2

0

0.2

0.4

2022W01 2022W11 2022W21 2022W31 2022W41 2022W51 2023W09 2023W19 2023W29 2023W39 2023W49

(q) New Year’s Eve
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Figure 3: Estimated holiday effects and MA parameters from (5) for the AP series (solid lines).
Shaded areas mark point-wise ±1 SE intervals. Dashed lines correspond to estimated holiday
effects from the linearisation step of the non-robust DSA variant.
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Figure 4: Estimated holiday effects and MA parameters from (5) for the EC series (solid lines).
Shaded areas mark point-wise ±1 SE intervals. Dashed lines correspond to estimated holiday
effects from the linearisation step of the non-robust DSA variant.
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Figure 5: Estimated holiday effects and MA parameters from (5) for the PC series (solid lines).
Shaded areas mark point-wise ±1 SE intervals. Dashed lines correspond to estimated holiday
effects from the linearisation step of the non-robust DSA variant.
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Figure 6: Estimated holiday effects and MA parameters from (5) for the TF series (solid lines).
Shaded areas mark point-wise ±1 SE intervals. Dashed lines correspond to estimated holiday
effects from the linearisation step of the non-robust DSA variant.

Table 5: Descriptive statistics for the number of automatically detected outliers in the daily
WAI component series

EAM DSA DSA-R

Series MIN MAX AVG SD MIN MAX AVG SD MIN MAX AVG SD

AP 1 2 1.06 0.23 0 0 0.00 0.00 1 2 1.08 0.27
EC 5 10 7.03 1.55 4 6 4.97 0.51 12 21 16.99 2.41
PC 10 13 11.86 0.41 5 6 5.83 0.38 14 18 15.39 0.77
TF 11 14 12.61 0.87 4 6 4.40 0.78 2 6 3.44 0.68
TTMI 56 68 61.63 4.52 66 77 72.50 2.79 101 140 120.92 11.69

Notes: 1 Descriptive statistics are minimum (MIN), maximum (MAX), average (AVG) and standard deviation (SD),
which have been calculated from the 2022 W01 to 2024 W01 vintages. 2 The suffix “-R” indicates usage of robustness
weights in the STL-based method.
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Figure 7: Estimated holiday effects and MA parameters from (5) for the TTMI series (solid
lines). Shaded areas mark point-wise ±1 SE intervals. Dashed lines correspond to estimated
holiday effects from the linearisation step of the non-robust DSA variant.
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between the EAM and DSA estimates, confirming the above findings. As regards model
(5), they also reflect the minor instabilities in the estimated holiday effects involved in the
aforementioned jump scenarios for the EC series: the standard deviations of the estimated
Christmas- and New Year-related effects are significantly higher than those of the other
EAM estimates; in contrast, they do not cluster in such a way, or in any other way, for
the DSA estimates.

These moderate differences in the outcomes of the JD+ and DSA linearisation steps
might be a result of the different orders in which the unobserved components in model
(1)–(2) are extracted in the two approaches. In JD+, model (5) is fitted directly to the
observations, in line with the classic notion of data pretreatment for monthly and quar-
terly time series, whereas in DSA the DOW pattern in (2) is extracted first from the
observations and then, rather unconventionally, both outlier and holiday effects are esti-
mated from the DOW-adjusted and hence pre-smoothed data (see Appendix A for more
details). From the classic perspective, one might therefore argue that, ceteris paribus,
the non-robust DSA variant has a proclivity towards leakage of outlying (deterministic
non-seasonal) fluctuations into the DOW estimates.6 Building upon the arguments made
in Abeln and Jacobs (2022) and Webel and Smyk (2024, Section 8.3.2), one might thus
suspect that the automatic outlier detection routine in JD+ will tend to find more/not
more outliers than the respective DSA routine when STL is run without/with robust-
ness weights. Table 5 provides empirical evidence in favour of this suspicion as it reports
selected descriptive cross-vintage statistics for the number of automatically detected out-
liers. In particular, there are just two exceptions to the suspected rule when comparing the
average numbers in the three AVG columns: for the TF series, the JD+ routine finds on
average 9 outliers more than the routine in the robust DSA variant; for the TTMI series,
the JD+ routine finds on average 11 outliers less than the routine in the non-robust DSA
variant. In this regard, it should also be mentioned that either search routine is capable
of identifying appropriate sets of (structural break) outliers for an adequate modelling of
the sudden level changes related to the COVID-19 lock-downs in the PC and TF series
(recall Figure 1). The pandemic-related effects on the other daily series are more gradual
and can thus be captured satisfactorily by the final trend-cycle estimates without outlier
modelling.

Signal estimates We now extract the DOW and DOY patterns from each daily series
in each data vintage. When performing seasonal adjustment with the four JD+ methods,
the two patterns are sequentially extracted from the linearised data, starting with the
DOW pattern; recall, however, that in DSA the DOW movements are extracted directly
from the observations while the DOY pattern is still estimated from the linearised DOW-
adjusted data. Revisions measures are then calculated for the concurrent estimates of the
DOW and DOY patterns as well as of the seasonally adjusted (SA) series. These measures
are reported in Table 6 for the AP series, in Table 7 for the EC series, in Table 8 for the
PC series, in Table 9 for the TF series and in Table 10 for the TTMI series. Our main
findings are:

6For daily data, one might even go as far as to saying that the holiday component in (1) is technically
nothing but a superimposition of cyclical additive outliers with common effects and that its existence,
and estimation, merely facilitates interpretation.
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Table 6: Revision measures for signal estimates of the AP series

PCE revisions (7) P2P revisions (8)

{rt} {rt(1)} {r%t } {r%t (1)}

Signal Method MR MAR SD MR MAR SD MR MAR SD MR MAR SD

DOW AMB 0.0077 0.8187 1.0029 0.0019 0.1459 0.1894 −0.1751 1.1862 1.5416 −0.0029 0.1758 0.2283
X-11 0.0947 3.2296 4.0237 0.0642 2.1925 2.9115 −0.1365 4.0301 5.1402 −0.0186 3.0074 3.9611
STL 0.1136 3.3301 4.2544 0.0579 1.9308 2.5343 0.0064 4.0019 5.1876 0.0042 2.4194 3.1644
STL-R 0.2066 4.6625 5.9298 0.0617 2.1882 2.9752 −0.0578 5.7015 7.3397 0.0027 2.8928 3.9714
DSA 0.1206 3.3975 4.1627 0.0536 1.9284 2.4579 0.0214 4.0966 5.1951 0.0081 2.4260 3.1740
DSA-R 0.2160 4.8799 6.2020 0.0367 1.9032 2.6260 −0.1184 6.2918 7.9927 −0.0071 2.6954 3.5270

DOY AMB −0.0132 0.8456 1.1096 −0.0793 0.7061 0.9139 −0.0024 0.2072 0.3205 0.0001 0.2271 0.5777
X-11 −0.0232 5.3735 7.5876 −0.0558 2.1325 3.9708 −0.1084 5.5730 8.5015 −0.0653 2.5848 4.9588
STL −0.3656 5.7863 7.6786 −0.2545 1.4108 2.8576 −0.0153 4.7719 6.3195 −0.0026 1.0453 1.8696
STL-R 0.1163 6.8879 10.7423 −0.7297 1.9900 5.3682 −0.1170 8.1432 14.8023 −0.1650 2.6683 7.8864
DSA 0.6746 5.9582 7.5285 0.0073 0.7901 1.0274 −0.0592 4.6972 6.0406 0.0071 0.8494 1.0994
DSA-R 0.8875 7.4585 11.7053 −0.0299 1.2967 3.5762 −0.3764 8.7518 15.6825 0.0746 2.0070 7.2289

SA AMB −0.6678 1.5122 1.9236 0.0118 0.8220 1.1735 0.0112 1.4986 2.2317 −0.0024 0.4959 1.1611
X-11 −0.0406 5.9149 8.8292 0.1483 2.6104 4.8069 −0.0001 6.2611 9.9308 −0.0827 3.5358 6.8499
STL 0.3084 6.5963 8.8378 0.2601 2.0231 3.7133 0.0507 5.4985 7.4936 −0.0720 1.7862 3.0337
STL-R 0.6161 8.3938 14.5393 1.0596 3.1208 7.6671 0.2087 10.0203 17.7484 −0.1955 4.0311 9.6669
DSA −0.8544 6.5810 8.0764 −0.0890 1.3638 1.7137 0.1339 5.4249 6.9779 −0.0061 1.6214 2.0946
DSA-R −8.9126 14.6443 22.8953 −1.0741 2.7335 8.0703 0.5364 10.5313 19.4393 0.2499 3.3197 8.6444

Notes: 1 Revision measures are mean revision (MR), mean absolute revision (MAR) and standard deviation (SD) of revisions, which have
been calculated from the 2022 W01 to 2022 W52 vintages, with the 2024 W01 vintage being considered the final vintage. 2 The suffix “-R”
indicates usage of robustness weights in the STL-based methods. 3 Bold figures indicate the smallest absolute value of the revision measure
for the considered signal.
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Table 7: Revision measures for signal estimates of the EC series

PCE revisions (7) P2P revisions (8)

{rt} {rt(1)} {r%t } {r%t (1)}

Signal Method MR MAR SD MR MAR SD MR MAR SD MR MAR SD

DOW AMB −0.0045 0.2917 0.3734 −0.0027 0.1877 0.2518 0.0185 0.3783 0.4900 −0.0004 0.2354 0.3242
X-11 −0.0065 0.4607 0.6115 −0.0057 0.2713 0.3917 0.0299 0.6658 0.9281 −0.0003 0.3867 0.5534
STL −0.0047 0.5138 0.6549 0.0007 0.2622 0.3474 0.0260 0.6514 0.8447 0.0014 0.3075 0.4149
STL-R 0.0050 0.7328 1.0112 0.0092 0.2878 0.4918 0.0457 1.0680 1.5680 −0.0010 0.4020 0.7066
DSA 0.0051 0.6669 0.8393 0.0024 0.3019 0.4500 0.0226 0.9173 1.1964 −0.0001 0.3823 0.5869
DSA-R −0.0017 0.7124 0.9937 0.0029 0.2718 0.4526 0.0483 1.0768 1.6450 0.0004 0.3812 0.6944

DOY AMB 0.0994 0.2779 0.3371 −0.0017 0.2352 0.3150 0.0014 0.1095 0.1585 0.0007 0.0756 0.2006
X-11 0.1427 0.8725 1.1046 0.0074 0.3011 0.5392 −0.0166 0.7465 1.0383 −0.0060 0.3715 0.6645
STL 0.3100 0.8980 1.0969 0.0200 0.2451 0.4585 −0.0065 0.5967 0.7783 −0.0033 0.1604 0.3482
STL-R 0.2228 1.1548 1.7485 −0.0166 0.3433 0.7985 −0.0121 1.1978 1.8280 0.0068 0.4401 0.9665
DSA 0.2973 0.9974 1.2309 −0.0434 0.1787 0.2744 −0.0189 0.6968 0.9217 −0.0011 0.1524 0.2438
DSA-R 0.2603 1.2816 1.9971 −0.0346 0.2089 0.3614 −0.0294 1.2518 2.2793 −0.0006 0.2436 0.4035

SA AMB −0.5252 3.9078 4.2480 −0.1137 0.4023 0.8586 −0.0350 0.9703 1.4044 −0.0043 0.2936 0.5648
X-11 −0.5722 3.5372 3.9420 −0.1178 0.4563 0.9299 −0.0225 1.0715 1.5488 0.0018 0.4968 0.8716
STL −0.7415 3.5697 3.8884 −0.1376 0.3992 0.8884 −0.0316 0.8624 1.1885 −0.0025 0.2727 0.6089
STL-R −0.6345 3.7807 4.3506 −0.1035 0.5842 1.2071 −0.0363 1.7449 2.6238 −0.0113 0.6537 1.2384
DSA −0.0689 3.2118 3.5974 −0.0552 0.3648 0.7545 −0.0069 1.0330 1.5522 0.0010 0.2857 0.5181
DSA-R 10.4909 10.8726 6.1892 −0.0994 2.3419 5.3962 −0.0229 2.1609 3.9668 0.0288 0.9762 3.1509

Notes: 1 Revision measures are mean revision (MR), mean absolute revision (MAR) and standard deviation (SD) of revisions, which have
been calculated from the 2022 W01 to 2022 W52 vintages, with the 2024 W01 vintage being considered the final vintage. 2 The suffix “-R”
indicates usage of robustness weights in the STL-based methods. 3 Bold figures indicate the smallest absolute value of the revision measure
for the considered signal.
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Table 8: Revision measures for signal estimates of the PC series

PCE revisions (7) P2P revisions (8)

{rt} {rt(1)} {r%t } {r%t (1)}

Signal Method MR MAR SD MR MAR SD MR MAR SD MR MAR SD

DOW AMB 0.0763 2.2103 3.1339 0.0404 1.2419 1.6415 0.2836 3.1202 5.1228 −0.1347 1.8637 3.0456
X-11 0.0949 2.7595 3.6672 0.0301 1.2649 1.6473 0.7260 3.8371 6.1208 −0.1073 2.0890 3.2502
STL 0.0843 2.6994 3.5036 0.0208 0.9892 1.3494 0.1100 3.7226 5.7874 −0.1320 1.4958 2.4553
STL-R 0.0909 2.8496 4.2793 0.0051 0.9608 1.2497 1.4255 4.7562 10.5106 −0.0423 1.4678 2.4099
DSA 0.0931 3.6783 4.8995 −0.0156 1.2112 1.7643 0.0107 5.7176 9.0835 −0.1377 1.9265 3.4646
DSA-R 0.0888 3.1465 4.4913 0.0025 1.0472 1.4083 1.6010 4.6903 10.3191 −0.0656 1.5985 2.8239

DOY AMB −0.3088 2.8611 4.3125 −0.0223 0.3626 0.4761 0.0615 0.3253 0.4338 −0.0003 0.1294 0.3127
X-11 −1.0944 8.4631 9.9188 0.0970 1.3068 2.1997 −0.0252 4.2881 5.9206 −0.0241 1.5328 2.8865
STL 1.8341 6.5753 8.4838 0.2848 0.6177 0.7779 0.3277 6.1507 8.2859 0.0003 0.7028 0.9071
STL-R −6.7880 13.2674 16.8933 −0.0704 1.0336 2.3371 −0.2422 13.8796 20.2565 −0.0465 1.3779 3.4765
DSA −11.3199 19.0658 18.7350 0.7219 1.2380 1.4820 0.0714 7.1447 10.0170 −0.0072 0.9584 1.4906
DSA-R −25.3005 32.9346 24.7989 0.0255 0.8056 1.3567 −0.2657 12.4715 17.5668 −0.0060 0.8501 1.7555

SA AMB 1.6793 4.3459 5.1740 0.1377 1.3108 1.6515 0.2212 3.3550 4.7041 0.0053 1.4359 1.8891
X-11 3.2601 8.8926 10.0633 0.0613 1.2799 2.1716 0.3177 5.0676 7.4760 −0.0683 1.1461 2.5721
STL −0.1045 5.2239 6.7513 −0.1634 0.4958 0.6284 −0.0731 4.9208 6.2597 −0.0080 0.5035 0.6847
STL-R 12.2970 16.3781 21.7612 0.2716 1.3476 2.9981 −1.8190 13.3433 19.9030 −0.1165 1.6905 3.7127
DSA 19.6083 25.8260 21.7179 −0.7027 1.4036 1.8680 0.1842 5.2320 6.7978 −0.0115 0.7401 1.2258
DSA-R 189.3239 189.3239 133.2557 5.3566 12.5253 24.6638 −1.5283 12.7728 18.2027 0.0475 3.8231 11.2894

Notes: 1 Revision measures are mean revision (MR), mean absolute revision (MAR) and standard deviation (SD) of revisions, which have
been calculated from the 2022 W19 to 2022 W52 vintages, with the 2024 W01 vintage being considered the final vintage. 2 The suffix “-R”
indicates usage of robustness weights in the STL-based methods. 3 Bold figures indicate the smallest absolute value of the revision measure
for the considered signal.
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Table 9: Revision measures for signal estimates of the TF series

PCE revisions (7) P2P revisions (8)

{rt} {rt(1)} {r%t } {r%t (1)}

Signal Method MR MAR SD MR MAR SD MR MAR SD MR MAR SD

DOW AMB 0.0015 0.4384 0.5433 0.0016 0.1990 0.2695 0.0029 0.5154 0.6692 0.0006 0.2548 0.3405
X-11 0.0078 0.6436 0.8634 0.0077 0.4305 0.5689 0.0002 0.8517 1.1008 0.0005 0.6035 0.7801
STL 0.0040 0.6913 0.8784 0.0008 0.3751 0.5176 −0.0009 0.8584 1.1210 −0.0018 0.4752 0.6328
STL-R 0.0129 0.9421 1.2990 0.0063 0.5026 0.7483 0.0025 1.3469 1.8317 −0.0002 0.7368 1.1041
DSA 0.0028 0.8962 1.3703 −0.0005 0.4518 0.6572 −0.0018 1.0649 1.6246 −0.0037 0.5350 0.7697
DSA-R 0.0130 0.7975 1.0733 0.0031 0.3810 0.5176 −0.0126 1.0920 1.4438 −0.0035 0.5705 0.8004

DOY AMB 0.0271 0.6848 0.7778 0.0011 0.1316 0.1718 0.0022 0.0373 0.0672 −0.0005 0.0405 0.1070
X-11 −0.0499 1.8493 2.3954 0.0505 0.6255 1.1504 −0.0253 1.4169 1.9633 −0.0045 0.7333 1.4028
STL 0.0542 2.2346 2.9474 −0.0328 0.5115 1.1232 0.0352 1.5708 2.0482 0.0156 0.3305 0.6064
STL-R −1.6411 5.1987 6.5651 −0.0404 0.2573 0.4455 −0.0077 4.1142 5.6373 −0.0067 0.1429 0.3523
DSA −3.9899 4.3059 3.9323 −0.1287 0.3351 0.4484 0.0529 1.7401 2.3370 0.0017 0.3165 0.4560
DSA-R −5.0668 10.0134 12.3165 −0.4232 0.9035 1.4123 0.0691 3.9807 5.9361 0.0071 0.5036 0.9771

SA AMB −0.0153 0.7978 0.9537 0.0006 0.2334 0.3132 −0.0005 0.5220 0.6753 −0.0014 0.2541 0.3361
X-11 0.1084 1.8441 2.4413 −0.0411 0.5882 1.1439 0.0155 1.4474 2.0535 −0.0076 0.6421 1.4390
STL 0.0374 2.2437 2.9857 0.0483 0.4578 1.1250 −0.0318 1.4918 1.9481 −0.0151 0.2657 0.6292
STL-R 2.1308 5.5131 6.9959 0.0440 0.5704 0.8656 −0.1715 4.1429 5.6881 −0.0026 0.7835 1.1595
DSA 4.1072 4.9991 5.1034 −0.1650 0.5455 2.0886 −0.0652 1.6925 2.8091 0.0005 0.3069 1.2174
DSA-R 7.4571 12.3056 16.0476 1.0067 1.5234 4.0021 −0.2665 4.0860 6.2392 0.0742 0.7636 1.8667

Notes: 1 Revision measures are mean revision (MR), mean absolute revision (MAR) and standard deviation (SD) of revisions, which have
been calculated from the 2022 W01 to 2022 W52 vintages, with the 2024 W01 vintage being considered the final vintage. 2 The suffix “-R”
indicates usage of robustness weights in the STL-based methods. 3 Bold figures indicate the smallest absolute value of the revision measure
for the considered signal.
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Table 10: Revision measures for signal estimates of the TTMI series

PCE revisions (7) P2P revisions (8)

{rt} {rt(1)} {r%t } {r%t (1)}

Signal Method MR MAR SD MR MAR SD MR MAR SD MR MAR SD

DOW AMB 0.0195 1.4606 2.1984 0.0086 1.0303 1.6971 0.2699 3.6707 10.5069 0.5835 2.9175 11.2431
X-11 0.0181 1.3287 2.1022 0.0002 0.6259 0.9508 −0.0109 2.7305 6.6669 0.1589 1.3857 3.6637
STL 0.0219 1.7745 2.7460 0.0050 0.8294 1.3494 0.7172 4.4772 12.9571 0.4424 1.8836 7.3714
STL-R 0.1108 2.3912 4.7985 0.0181 0.4306 1.6068 0.0814 2.8902 6.5829 0.0683 0.8990 2.7931
DSA 0.3664 5.0294 7.5429 0.0392 2.1210 3.8612 −0.6775 15.9859 43.1123 −0.2424 6.9289 26.4939
DSA-R 0.0816 1.9088 4.1741 0.0109 0.3765 1.5949 0.1988 2.3508 5.5251 0.0742 0.6624 2.3110

DOY AMB 0.1111 0.8006 1.4221 0.0177 0.4557 0.8556 0.0125 0.6406 1.1404 −0.0263 0.3055 0.6840
X-11 0.1270 0.6800 1.2489 0.0087 0.2023 0.4879 0.0074 0.6164 1.0589 −0.0192 0.2222 0.4502
STL 0.0658 0.8022 1.4969 −0.0227 0.1782 0.6092 0.0087 0.9234 1.6362 −0.0277 0.1776 0.4574
STL-R 0.0827 0.6642 1.8942 −0.0813 0.1705 0.9074 0.0059 0.9306 2.7806 −0.0198 0.2046 1.0114
DSA 0.0589 1.4485 2.2582 0.0394 0.3481 0.6771 −0.0202 1.8700 2.8602 0.0052 0.4375 0.8329
DSA-R 0.0959 0.4191 0.6201 −0.0317 0.0937 0.3698 0.0037 0.4308 0.8171 −0.0050 0.1402 0.5627

SA AMB 0.0215 1.4787 2.1333 0.0247 0.9720 1.5527 −0.0102 1.5725 2.4688 0.0342 0.9999 1.7806
X-11 0.0058 1.4092 2.2768 0.0218 0.5521 0.9163 −0.0452 1.7366 3.0652 −0.0082 0.7109 1.2562
STL 0.0937 1.8512 2.7469 0.0560 0.6972 1.1375 −0.0841 2.2201 3.4592 −0.0074 0.7535 1.2661
STL-R 0.1735 2.6855 5.4140 0.1190 0.5366 1.9238 −0.2327 3.6151 7.8962 −0.0386 0.6740 2.5656
DSA 3.2011 5.9926 9.4187 0.2401 2.4847 4.7488 0.6713 7.0521 14.0862 −0.0586 2.4511 5.1080
DSA-R −1.0323 10.2205 12.3251 1.1241 7.4628 12.5132 −0.1559 4.1963 11.0910 0.2478 3.5045 12.5941

Notes: 1 Revision measures are mean revision (MR), mean absolute revision (MAR) and standard deviation (SD) of revisions, which have
been calculated from the 2022 W01 to 2022 W52 vintages, with the 2024 W01 vintage being considered the final vintage. 2 The suffix “-R”
indicates usage of robustness weights in the STL-based methods. 3 Bold figures indicate the smallest absolute value of the revision measure
for the considered signal.
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� The mean (absolute) revisions are generally small for the DOW signals irrespective
of both extraction method and implementation. As for the DOY and SA signals,
however, they markedly deviate from zero for some extraction methods and series,
indicating non-ignorable biases in initial estimates. This pattern is best seen in the
mean final PCE revisions.

� The standard deviations of the revisions tend to be smallest for the DOW signal
and highest for the SA signal for most extraction methods and series. Noteworthy
exceptions are the PC and TTMI series for which, regardless of extraction method,
the revisions in the DOW estimates are much more volatile than the revisions in
the other two signal estimates, especially when looking at the P2P revisions.

� The extended AMB approach seems to produce the lowest and least volatile revisions
in most signal estimates. Notable margins are recorded especially for the AP and
TF series, bearing in mind that the unadjusted TF series is barely revised at all.

� The extended X-11 approach and the non-robust STL implementations also perform
acceptably well for most series, producing quite similar revision measures in many
cases.

� Despite a few good performances (e.g. for the DOY signal of the TTMI series),
the robust STL estimates fall behind as they display some unacceptably high and
volatile revisions in the longer DOY and SA signals.

� Both the non-robust and robust STL estimates obtained from JD+ tend to produce
lower and less volatile revisions than their DSA counterparts.

Rounding out these findings, Figure 8 shows for each series the convergence curve (9)
of the lag-k PCE revisions in the DOW estimates obtained from the extended AMB and
X-11 methods as well as from the non-robust DSA variant.7 The revisions converge within
5 weeks for the PC and TTMI series for all three extraction methods. The same speed
is achieved for the AP series when DOW estimation is carried out with a non-parametric
approach whereas the revisions in the AMB estimates show symptoms of convergence
after 28–30 weeks, mirroring the classic trade-off between size of revisions and speed of
convergence. Finally, convergence of revisions takes about 10–15 weeks for the EC and
TF series for all three extraction methods.

4.3 Weekly Google trends

Unadjusted data In contrast to the daily WAI component series, the entire history
of the GT series may be revised with the release of a new data vintage. Therefore, the
relatively high revisions in the GT series come as no surprise; in particular, the lag-1 PCE
and P2P revisions are noticeably larger than those of the daily WAI component series (see
Table 3). These findings are somewhat in line with the opaqueness that often surrounds
the publicly available information about Google’s data compilation and, consequently,
with recent expressions of quality concerns about Google trends data (see e.g. Cebrián
and Domenech, 2023, 2024; Fenga, 2020).

7The convergence curves for the DOY and SA signals were also checked but turned out to evolve much
more erratically. Due to this lack of clarity, they are not shown here.
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Figure 8: Rate of convergence (9) with k ∈ {1, . . . , 30} for the DOW estimates obtained from
the extended AMB (solid line) and X-11 (dashed line) methods and from the non-robust DSA
variant (dotted line).

Pretreatment Figure 9 visualises the cross-vintage stability of the parameter estimates
and their point-wise standard errors obtained from model (5). In general, it seems that
there is an initial 10-vintage phase of marked changes followed by a longer period of relative
stabilisation. Hence, at first glance, the estimated holiday effects shown in Panels (a)–(g)
appear to evolve more erratically across vintages than those shown in Figure 3 through
Figure 7 for the daily WAI component series. But this is just an optical illusion due to
a finer scale of the vertical axis; in fact, recalling Table 4, they are of similar stability as
indicated by their cross-vintage standard deviations that range between 0.0035 (Carnival)
and 0.0061 (Christmas). In contrast, the estimated MA parameters shown in Panels (h)–
(i) indeed fluctuate somewhat stronger than the estimates obtained for the daily WAI
component series; more precisely, their cross-vintage standard deviations are given by
0.0415 for θ̂1 and 0.0418 for θ̂52.18. Similar comments apply to the point-wise standard
errors.

Complementing the descriptive outlier statistics reported in Table 5, it is finally noted
that the number of automatically detected outliers varies between 0 and 7 across all
vintages, with average and standard deviation being 2.51 and 1.41, respectively.
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Figure 9: Estimated holiday effects and MA parameters from (5) for the GT series. Shaded
areas mark point-wise ±1 SE intervals.

Signal estimates Table 11 reports the revision measures for the concurrent estimates
of the WOY pattern and the seasonally adjusted GT series. These measures are generally
low for either signal and very similar across the JD+ methods. Nevertheless, the lowest
and least volatile revisions in the WOY pattern are often produced by the extended AMB
approach yet again, followed by the extended X-11 method. In contrast, somewhat mixed
results are obtained for the SA signal. The extended AMB and X-11 approaches are still
competitive; however, the non-robust STL method produces the smallest measures for the
lag-1 PCE revisions whereas the robust STL method gains a slight advantage in terms
of low lag-1 P2P revisions. Interestingly, the mean PCE revisions indicate that for each
method the initial SA estimates are slightly corrected upwards after one week but largely
revised downwards in the end. Overall, the average size and volatility of the revisions in
the concurrent estimates of the seasonally adjusted GT series are very similar to those of
the unadjusted GT series (see Table 3).

4.4 Cautionary remarks

Sub-weekly revisions in unadjusted daily data As mentioned at the beginning of
Section 2, each weekly Bundesbank vintage contains seven new observations on average
for the daily series. Therefore, each of those new observations (except the last one) might
have already been subject to prior daily or other sub-weekly revisions made by the original
data provider; the Bundesbank vintages essentially cover the weekly net effects of these
sub-weekly data revisions and hence tend to display more data revisions towards their
ends. For that reason, slightly different results might be obtained for the daily data when
rerunning the present study with the sub-weekly vintages of the original data providers.

26



Table 11: Revision measures for signal estimates of the GT series

PCE revisions (7) P2P revisions (8)

{rt} {rt(1)} {r%t } {r%t (1)}

Signal Method MR MAR SD MR MAR SD MR MAR SD MR MAR SD

WOY AMB −0.4388 0.7823 0.8190 −0.3734 0.4663 0.3966 0.0007 0.7418 0.9550 −0.0152 0.3379 0.5093
X-11 −0.2073 0.6962 0.8483 −0.1986 0.5044 0.6820 0.0231 0.7838 0.9976 −0.0091 0.7385 0.9593
STL −0.3952 0.7884 0.9457 −0.3865 0.4811 0.4545 0.0683 0.9033 1.2708 0.0037 0.4159 0.6043
STL-R −0.4069 0.7913 0.9542 −0.2981 0.4709 0.5337 0.0711 0.9718 1.4162 0.0005 0.5674 0.7580

SA AMB 4.0205 4.0205 2.1533 −0.9727 1.5745 1.8987 0.0116 1.9282 2.7060 0.1104 1.8977 3.0305
X-11 3.7805 3.7882 2.1955 −1.1409 1.7636 2.0919 −0.0170 1.9686 2.7270 0.1060 2.1551 3.3152
STL 3.9765 3.9814 2.1702 −0.9600 1.5540 1.8705 −0.0487 1.9948 2.6436 0.0992 1.9093 3.0325
STL-R 3.9927 4.0106 2.3508 −1.0461 1.6680 1.9377 −0.0652 2.0199 2.6779 0.0936 1.9553 3.0241

Notes: 1 Revision measures are mean revision (MR), mean absolute revision (MAR) and standard deviation (SD) of revisions, which have
been calculated from the 2022 W01 to 2022 W52 vintages, with the 2024 W01 vintage being considered the final vintage. 2 The suffix “-R”
indicates usage of robustness weights in the STL method. 3 Bold figures indicate the smallest absolute value of the revision measure for the
considered signal.
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Asymmetric signal extraction filters Ideally, the final signal estimates should be
obtained from a sub-span of the final data vintage vT that has been chosen such that only
symmetric signal extraction filters can be applied. This is in fact the case for the final
DOW estimates in our revision analysis; however, the final DOY/WOY and SA estimates
for the series with a relatively short sample span might be affected by bias-variance
trade-offs and/or phase shifts introduced through the application of asymmetric signal
extraction filters near the sample boundaries. In these cases, relatively short seasonal
filters are often specified in the non-parametric methods to compensate for limited data
availability (see Appendix B). As a result, leakage of the aforementioned undesired effects
should not pose a problem for the PC and TF series from which, for example, the DOY
pattern is extracted with the short 3×1 seasonal filter in X-11; it should also be no source
of major concern for the AP and EC series for which DOY extraction is carried out with
the relatively short 3× 3 seasonal filter. However, presence of such leakage effects cannot
be ruled out completely for the TTMI and GT series as DOY/WOY extraction utilises
the relatively longer 3 × 5 and 3 × 9 seasonal filters, respectively. Overall, it seems fair
to say that for some series the final PCE and P2P revisions have been calculated from
“nearly final” signal estimates in our analysis.

Quality diagnostics Standard quality diagnostics have been consulted to set up both
pretreatment model (5) and the seasonal adjustment specification for each WAI compo-
nent series using the unadjusted data released in the 2022 W01 vintage (see Appendix
B for details). In practice, those diagnostics would typically also be looked at when val-
idating, or further calibrating, the initial specification with later data releases. These
regular checks, however, are not performed here; instead, the initial specification is kept
fixed across all vintages for the sake of retaining tractability, in line with other large-scale
analyses of real-time revision profiles.

Nevertheless, we can still perform a final overall check for systematic seasonal ad-
justment inadequacy across the 2022 W01 through 2024 W01 vintages. To this end, we
calculate the sample first-order seasonal autocorrelation, say ρ̂τ , of the seasonally adjusted
series from each data vintage and a kernel-based density estimate from the resulting 105
realisations of ρ̂τ . This estimated density should ideally have most of its mass centred
closely around zero (ρ̂τ = 0); significant mass shifts to the left or right, however, indi-
cate systematic over-adjustment (ρ̂τ < 0) and under-adjustment alias residual seasonality
(ρ̂τ > 0), respectively. Utilising the Epanechnikov kernel, Figure 10 reveals minor symp-
toms of residual DOW dynamics in the seasonally adjusted AMB and X-11 estimates
for some daily WAI component series and somewhat larger symptoms in the non-robust
DSA estimates of the EC and TTMI series. Inadequacies with respect to DOY and WOY
seasonality, however, seem for each method to tilt more towards over-adjustment, which
is often regarded the less severe issue. Overall, the systematic inadequacies witnessed
here are not dramatic in general and, in most cases, least pronounced for the extended
AMB approach. Hence, they could be seen rather as a gentle invitation to fine-tune the
specifications of the non-parametric seasonal adjustment methods further and, in partic-
ular, to revise the selected STL and X-11 filters in the future. This would also agree with
the conclusion one might draw from the high revision measures recorded for some signal
estimates obtained with the robust STL method (see especially the high revisions in the
estimated DOY and SA signals for the relatively short PC series reported in Table 8).
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Figure 10: Epanechnikov kernel density estimates for ρ̂τ obtained from the differenced logged
seasonally adjusted WAI component series using the extended AMB (solid line) and X-11 (dashed
line) methods and the non-robust DSA variant (dotted line). Shaded areas mark ±1 Bartlett
approximation to the large-lag SE of ρ̂τ .
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Table 12: DSA estimates of the holiday component in (1) at no-holiday days

Robustness weights Vintage AP EC PC TF TTMI

No First 1.0036 1.0023 1.0090 1.0022 1.0264
2024 W01 1.0036 1.0021 1.0092 1.0021 1.0258

Yes First 1.0042 1.0032 1.0118 1.0032 1.0337
2024 W01 1.0041 1.0030 1.0121 1.0030 1.0326

Note: The first vintage is the 2022 W19 vintage for the PC series and the 2022 W01 vintage
for the other series.

Estimated holiday component in DSA Borrowing notations from model (5), the

holiday component at time t is naturally estimated as ĥt = f−1
(
x⊤
t,hβ̂h

)
where xt,h is

the sub-vector of xt that contains only the holiday-related exogenous variables and βh

is the corresponding sub-vector of β. Hence, when no holidays occur at t (meaning
xt,h = 0), we expect ĥt = 0 in the additive version of (1) and ĥt = 1 in the multiplicative
version. This requirement is met when estimating {ht} from model (5) in JD+; in DSA,
however, a slight yet constant bias is introduced so that in the absence of holidays the
estimated holiday component never equals the neutral element of the UC decomposition
(1), that is ĥt = ch /∈ {0, 1}. Table 12 exemplarily reports the values of ch recorded
for the multiplicative models of the five daily WAI component series as released in the
first and last data vintages. It is seen that these values are always larger than one—
indicating an unwarranted downward correction—, change gradually across vintages and
are slightly larger when robustness weights are used (for DOW estimation). Although
these distortions are clearly unsatisfactory from a theoretical standpoint, they exhibit
little cross-vintage variation and hence should not introduce severe biases in the revision
measures for the DSA estimates of the DOY and SA signals.

5 Summary

Recent theoretical advances in the modelling and seasonal adjustment of infra-monthly
time series have sparked interest in empirical evaluations of those new methods. Using
real-time data of selected daily and weekly seasonal time series relevant for the calculation
of the weekly activity index (WAI) for the German economy, the present paper contributes
to this research strand by assessing the cross-vintage stability of estimated holiday-related
deterministic pretreatment effects and the revision profiles of various signal estimates
obtained with tailored methods, such as generalisations of the popular ARIMA model-
based (AMB) and X-11 seasonal adjustment approaches implemented in a recent release of
the JDemetra+ (JD+) time series software for official statistics. The performance of these
methods is also compared with that of the STL-based DSA approach that is currently in
use for running experimental seasonal adjustments of the daily WAI component series.

There are three key findings. First, the tailored JD+ methods—and especially the
pretreatment routine including automatic outlier detection—were often noticeably faster
than the DSA approach. Second, the JD+ and DSA linearisation steps produced pa-
rameter estimates of similar cross-vintage stability even in cases of different outcomes
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regarding automatic outlier detection. Third, there is no universally dominant method
in terms of low revisions; nevertheless, the extended AMB approach tended, on average,
to generate lower and less volatile revisions in various concurrent signal estimates than
any other method considered at the occasional expense of slower convergence of revisions
(which was observed for the day-of-the-week signal in one out of the five daily WAI com-
ponent series). The extended X-11 approach and the non-robust STL implementations
also provided acceptable results in many cases. The robust STL implementations, how-
ever, produced unacceptably high and volatile revisions in the estimated day-of-the-year
pattern and in the seasonally adjusted figures of some daily series, signalling inadequate
adjustments (a phenomenon that has already been documented in Gray and Thomson,
1990).

The present real-time revision analysis can be extended in multiple ways. For example,
considering additional data-specific holiday variables could foster more nuanced pretreat-
ment models; in this regard, implementing standard errors that are robust against residual
autocorrelation and/or heteroskedasticity could improve the quantification of parameter
uncertainty. Additional benefits could also be gained from further customising signal
extraction with the tailored JD+ methods. The extended X-11 approach, for instance,
implements a wide range of options for kernel-based trend-cycle extraction (Proietti and
Luati, 2008; Quartier-la-Tente, 2024) while the extended AMB approach enables not only
sequential but also simultaneous extraction of the seasonal patterns in (2). As regards
STL, mixed usage of robustness weights for daily data, that is running robust STL when
extracting the day-of-the-week pattern and non-robust STL when extracting the day-of-
the-year pattern, could be explored.

The focus of the revision analysis could also be shifted from the present real-time per-
spective to an isolated assessment of technical (filtering) revisions that are caused merely
through the addition of new observations, as data revisions turned out here to contribute
in a minor way to revisions in seasonally adjusted estimates. To this end, a quasi-real-
time study or a sliding-spans analysis in the sense of Findley, Monsell, Shulman, and
Pugh (1990) could be conducted, elaborating our findings for the daily total flights series.
The attention could also be changed from analysing revision profiles of concurrent signal
estimates, which utilises (fully) asymmetric filters, to exploring the potential benefits of
using projected seasonal factors, which requires forecast extensions for the unadjusted
data that in turn have long been known to have reductive effects on revisions (Cleveland,
1983). Finally, the tailored JD+ methods could be compared with structural time series
models or other elaborate seasonal adjustment approaches not considered here (see e.g.
Webel, 2022, for an overview).
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Appendix

A Conceptual differences between the DSA and JD+ approaches

There are three key conceptual differences between the STL-based seasonal adjustment
approach for daily data implemented in the {dsa} package (Ollech, 2021) and the JD+
methods that are applicable to time series of any seasonal periodicity (see Webel and
Smyk, 2024, for a detailed description).

Order of sequential signal extraction The DSA approach starts with an extraction
of the DOW pattern from the unadjusted data. In a second step, the DOW-adjusted data
is corrected for outliers and other deterministic effects, such as holiday-related ones, using
a linear time series regression model that is similar to (3) and (5). In a third step, the
day-of-the-month (DOM) pattern is extracted from the linearised DOW-adjusted data.
Finally, the DOY pattern is extracted from the remainder. Although each of these four
steps can be optionally skipped, the above order is mandatory in the DSA approach.

In contrast, signal extraction with any JD+ method can be arranged in any order.
Throughout this paper, we stick to the classic order, that is we start with data pretreat-
ment using model (5); afterwards, the DOW pattern is extracted from the linearised data,
which is followed by the extraction of the DOM and DOY patterns in the aforementioned
DSA order. Therefore, when interpreting our results, one should keep in mind that the
DSA estimates of the holiday component {ht} in (1) and of the DOW pattern {s(7)t }
in (2) will most likely contain some dynamics that are intentionally not present in the
corresponding estimates obtained from any JD+ method, and vice versa.

Modelling seasonality in data linearisation In DSA, the time series regression
model for the linearisation of the DOW-adjusted data contains as exogenous variables
a user-specified number of Fourier terms evaluated at the DOY harmonics to capture
DOM/DOY-related dynamics. The residuals of this model are assumed to follow a non-
seasonal ARIMA model. In contrast, the JD+ pretreatment models (3) and (5) rely
on a stochastic Airline-type representation of the seasonal movements in the regression
disturbances, which is often more parsimonious than the deterministic DSA framework.
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Handling fractional periodicities In DSA, the fractional periodicities of the DOM
and DOY patterns—30.4369 and 365.2425, respectively—are temporarily made integers
through data regularisation. More specifically, the DOM extraction step begins by stretch-
ing each month to 31 days where the artificial observations for missing days are obtained
as cubic spline interpolations. Similarly, the DOY extraction step begins by dropping all
observations recorded on 29 February, treating each year as if it had 365 days; the result-
ing missing values in the final estimates of the DOY pattern and the seasonally adjusted
data are interpolated with cubic splines yet again. In JD+, however, the extended AMB
and X-11 methods utilise the first-order Taylor approximation (4) to handle fractional
periodicities, whereas the STL implementation automatically rounds down each seasonal
periodicity to its nearest integer.

Either concept has merits and demerits. The weighted averaging principle (4) always
captures the exact seasonal frequencies but sacrifices the unit-root properties of the sea-
sonal summation operator (6) whenever ατ > 0, which has consequences for the extended
AMB and X-11 approaches. As regards the AMB method, any seasonal pattern whose
(derived) component ARIMA model contains (6) as a factor will be stationary; as regards
the X-11 method, the resulting seasonal filters will compromise some extraction power
at the higher seasonal harmonics. Temporary data regularisation, on the other side, en-
ables the application of seasonal filters that possess high extraction power at all seasonal
frequencies. However, the squared gains of these filters will display peaks that are not
located at the exact seasonal frequencies, especially for the higher harmonics.

B Seasonal adjustment specifications

The calibration of the seasonal adjustment specification for each WAI component series
is based upon the unadjusted data released in the 2022 W01 vintage. Once completed,
each specification is held fixed over all subsequent data vintages. It should be noted
that our large-scale analysis will involve some pragmatic choices with respect to building
pretreatment model (5); however, more nuanced models may be warranted for other types
of analyses especially when the focus is on capturing particular data subtleties at specific
points in time. Given the relatively short sample span of most WAI component series,
estimation of such subtle effects is usually difficult due to the low number of observed
cases, so our pragmatic choices seem sufficient for the time being.

Type of UC model The choice between the additive or multiplicative version of UC
model (1) is based upon a set of commonly accepted model selection criteria calculated
from pretreatment model (5) as specified below. The results reported in Table 13 indicate
that the multiplicative UC model is preferred for each WAI component series.

Pretreatment A common set of user-defined dummy regression variables is considered
in model (5) to estimate the effects of selected fixed and moving holidays for the daily
WAI component series. The fixed holidays are New Year’s Day (1 January), Epiphany
(6 January), Labour Day (1 May), German Unification Day (3 October), the 500-th
Reformation Day (31 October 2017), All Saints’ Day (1 November), Christmas Eve (24
December), Christmas Day (25 December), Boxing Day (26 December) and New Year’s
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Table 13: Model selection criteria for the daily and weekly WAI component series

Series UC model (1) AIC AICC BIC HQ

AP Additive 12,109.54 12,109.97 12,229.03 12,153.22
Multiplicative 9,574.50 9,575.06 9,695.66 9,619.20

EC Additive 24,460.87 24,461.61 24,636.17 24,524.45
Multiplicative 19,215.90 19,216.82 19,392.24 19,280.36

GT Additive 6,503.52 6,503.85 6,561.63 6,525.67
Multiplicative 5,866.09 5,866.51 5,928.32 5,889.88

PC Additive 12,212.23 12,213.31 12,347.35 12,262.86
Multiplicative 7,744.06 7,746.18 7,895.26 7,801.61

TF Additive 41,321.85 41,322.60 41,473.94 41,377.61
Multiplicative 32,967.94 32,968.84 33,114.77 33,022.29

TTMI Additive 31,513.84 31,515.81 31,971.53 31,674.08
Multiplicative 27,887.28 27,889.93 28,391.49 28,064.48

Notes: 1 The considered criteria are Akaike’s information criterion (AIC), the corrected AIC (AICC),
the Bayesian information criterion (BIC) and the Hannan-Quinn criterion (HQ). 2 For multiplicative
UC models, the criteria are defined in terms of the untransformed data, that is the maximised log
likelihood obtained from the differenced logged data is corrected using the Jacobian log transformation
adjustment.

Eve (31 December). Fixed holidays that fall onto a Sunday are treated as regular Sun-
days except for the TF series. The moving holidays are Good Friday, Easter Monday,
Ascension, Ascension Friday, Pentecost Monday, Corpus Christi and Corpus Christi Fri-
day. The corresponding regression variables have been corrected for their long-term means
calculated from 1 January 1950 to 31 December 2030 to avoid confounding with annual
seasonality. There are three exceptions to this design: first, the 500-th Reformation Day
is not considered for the PC series since the event happened before the beginning of the
sample span; second, only the five dummy variables related to New Year and Christmas
are considered for the TF series along with four additional dummy variables for selected
U.S. federal holidays (Easter Sunday, Independence Day, Thanksgiving, Thanksgiving
Friday); third, two additional dummy variables covering the start and end of daylight
saving time (DST) are considered for the EC series. In addition, automatic detection
of additive outliers and level shifts with length-adjusted critical t-values based upon the
U.S. Census Bureau’s modifications to the original formula derived in Ljung (1993) is run
for each series. The same setup is used in the DSA approach, noting that in practice the
experimental seasonal adjustments of the daily WAI component series often utilise much
higher critical t-values for automatic outlier detection.

The visual evidence provided in Figure 1 and Figure 2 suggests the presence of strong
day-of-the-week (DOW) and day-of-the-year (DOY) patterns in each daily WAI compo-
nent series. Therefore, we set S = {7, 365.2425} in (2) and (5), along with d = 2 in
the latter equation.8 In DSA, seasonality in the linearisation step is modelled with a set

8Following Webel and Smyk (2024), the choice of d = 2 has been mainly motivated by pairwise compar-
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of 20 Fourier terms plus—for the sake of consistency with (5)—a (011) specification for
the orders of the non-seasonal ARIMA model driving the regression residuals. No fore-
casts are generated from either linearisation model; this intentionally takes a MINIMAX
perspective as we seek the seasonal adjustment method that amongst all competitors gen-
erates minimal revisions (on average) in signal estimates under maximally inconvenient
circumstances.

For the weekly GT series, two types of weekly user-defined holiday regression variables
are considered in (5), where weeks are counted according to the U.S. CDC version of an
epidemiological (EPI) week: first, dummy variables are used to capture the effects related
to Carnival, Good Friday, Easter Monday, Pentecost and Corpus Christi; second, weekly
shares of k-day periods are used to capture the effects of those holidays that are spread
across k consecutive days and hence may be distributed across two adjacent weeks in some
years. In particular, we have k = 3 for the Christmas period and k = 2 for the New Year
period, whereby holidays that fall onto a Sunday are always counted as holidays. Long-
term means are removed from all weekly regression variables, noting that even holidays
with a fixed datum are moving on the weekly scale. For example, each fixed holiday of
the 3-day Christmas period can fall in either EPI week 51 or 52. In addition, automatic
outlier detection is run in the exact same way as for the daily WAI component series.
Based upon spectral evidence (Figure 2), stochastic seasonality in model (5) is captured
through a single week-of-the-year (WOY) pattern, that is through setting S = {52.18}
and again d = 2.

Signal extraction The sequential extraction of the DOW and DOY patterns from the
(linearised) daily WAI component series is carried out with the following specifications:

� The extended AMB approach is run in full default mode without calculating back-
and forecasts of any estimated signal. Asymmetric Wiener-Kolmogorov filters are
therefore applied automatically near the sample boundaries.

� The extended X-11 approach is run with trend-cycle filters constructed from a cubic
Henderson kernel. The length of the symmetric filter is always set to the smallest
odd integer larger than the seasonal periodicity, that is the length is 9 for DOW
extraction and 367 for DOY extraction. Asymmetric variants are obtained through
the cut-and-normalise approach (Gasser and Müller, 1979). As for the seasonal
filters, the 3 × 9 filter is chosen for DOW extraction from each series. For DOY
extraction, however, the maximum length of the seasonal filters is dictated by the
number of observations available in the 2022 W01 vintage (Table 1). Therefore, the
chosen seasonal filters are 3× 9 for the TTMI series, 3× 3 for the AP and EC series
and 3 × 1 for the PC and TF series, bearing in mind that seasonal adjustment of
the PC series has to start with the 2022 W19 vintage since earlier vintages are too
short even for applying the 3 × 1 filter. It should also be noted that the extended
X-11 method does not generate naive forecasts of any seasonal pattern; as a result,
asymmetric trend-cycle and seasonal extraction filters are used near the beginning
and end of the series. Finally, the default σ-limits of (1.5, 2.5) are specified for the
automatic detection of extreme values in the detrended data.

isons between model-based trend-cycle estimates and out-of-sample forecasts obtained from model (5)
with d ∈ {1, 2, 3}.
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� The STL method in JD+ is run with trend-cycle and seasonal LOESS smoothers
whose lengths match the lengths of their X-11 counterparts, regardless of whether
the non-robust or robust STL variant is applied.

� The DSA approach is run with the same trend-cycle and seasonal LOESS smoothers
specified in the JD+ implementation of STL. In addition, the “combined factors”
option is selected to interpolate the seasonally adjusted values on 29 Februaries.

The extraction of the single WOY pattern from the linearised weekly GT series is
generally based upon the same setup for each JD+ method. The only slight exception
is the length of the symmetric X-11 trend-cycle filter, which is set to 55 in place of 53
alongside the 3× 5 seasonal filter.
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