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Abstract

Based on an analysis of changes in the yields of German government bonds, we
propose a simple model for the term structure of interest rates and show empiri-
cally that this model with two parameters (relating to the interest level and slope
of the term structure) fits empirically well the data for a change horizon of one
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1 Introduction
The term structure of interest rates is an important concept for an overview of the interest
environment in a given country. Understanding its shape and dynamics is of key interest
for various market participants, not the least banks, which usually have a high dependence
on interest income.

Interest rates vary over time and depend on the maturity. In other words, there is a
term structure, i.e. a collection of interest rates that mature after different periods for
each point in time, and one can also, for example, construct a time series for the overnight
interest rate, a time series for the two-year interest rates and a times series for the ten-year
interest rate.

The aim of this paper is (1) to show that for many applications (especially in the area
of banking), two parameters (relating to the level and slope of the term structure) are
sufficient to describe changes over one year or longer in the term structure in Germany,
(2) to show that under this two-factor model, closed-form expressions can be derived for
several key figures of interest bearing instruments and (3) to give a new interpretation
to the convexity, namely as the sensitivity to slope changes in the term structure. In
addition, we analyse changes in the term structure (yield curve for German government
bonds) over different time horizons and discuss the common factors observed in these
changes for different time spans.

Regarding the first point, there is a trade-off between the parsimony and the empir-
ical fit of the model which also depends on the time span considered. With the help of
information criteria, we analyse this trade-off and we empirically establish that this par-
simonious model explains well yearly (or longer) term structure changes. Our model fills
the gap between complex term structure models with many parameters which explain the
interest rates for a wide range of maturities (see e.g. Litterman and Scheinkman (1991),
Knez, Litterman, and Scheinkman (1994), Driessen, Melenberg, and Nijman (2003)), and
stylized models used e.g. in economic textbooks or in stress testing, where there is of-
ten only one rate to characterize the whole term structure or where changes in the term
structure are assumed to be parallel shifts (see e.g. Armerin, Jensen, and Björk (2007),
Basel Committee on Banking Supervision (2016)).

Taking into account possible slope changes is especially relevant for banks, as they
generate a substantial part of their earnings by term transformation, i.e. they grant long-
term loans and finance these operations by short-term deposits, thereby they benefit from
the usually higher interest rates for longer maturities. Our suggested model is the easiest
way to include the slope of the term structure in the model for their interest business.

Using this model for the term structure, we give closed-form solutions for the present
value, and the level and slope sensitivity of some interest bearing instruments, for instance
for instruments that generate a constant or geometrically declining cash flow or for normal
bonds. We are also able to derive closed-form solutions for a trading strategy that consist
in investing in a revolving manner into par-yield bonds. Using additional assumptions,
we can very much simplify the closed-form solutions without losing much precision.

Traditionally, the convexity is the summand relating to the second derivative of a
Taylor-approximation of the present value of a financial instrument, where the first term
is the far more important one and relates to the duration. In other words: without
the duration, the convexity has no meaning. Applying the assumption of the simple
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term structure model, we give a new interpretation to the convexity and show that the
convexity is closely related to changes in the steepness of the term structure in our model.

The empirical part of our analysis is closely related to the works by Litterman and
Scheinkman (1991) and Knez et al. (1994) who analyse short-term US money market
returns and long-term US government bond returns and find that the movements of these
returns can be well described by a limited set of factors. Litterman and Scheinkman
(1991) describe and interpret a three-factor model, where the three factors correspond to
term structure changes in the level, the slope and the curvature. The authors show that
for selected time series, the three-factor model can explain most of the variation of returns,
and they draw important conclusions for the setup of hedges from these insights. In a
follow-up work, Knez et al. (1994) show that a four-factor model can be more appropriate
in some cases, where they attribute the fourth (additional) factor to properties of private
issuers.

Later, Driessen et al. (2003) extend the analysis to compare the influence of different
factors for different jurisdictions. They analyse factors for bond returns of the USA,
Germany and Japan and show that the first (“level”) factor is a common factor across
different countries. The second and third factor in their model correspond, however, to
parallel shifts in selected countries, while the fourth and fifth factor describe changes
in the slope of single countries. In a similar spirit, Juneja (2012) analyse bond returns
from the USA, the UK and Germany and determine separate as well as common factors
underlying these time series. Abbritti, Dell’Erba, Moreno, and Sola (2018) extend this
idea and identify global factors underlying the change in yield curves across eight different
economies.

While our general approach is similar to the mentioned articles, we reconsider the
approach to analyse principal components of movements of the yield curve (in our case
for German government bonds) for several reasons. First, the analyses cited above were
performed on returns from certain historical time windows and mainly on US returns,
relating thus to a different market environment compared to the European markets in the
21st century. We think it is worth reevaluating the common factors in more recent times
and especially during the low-interest rate environment observed in the last decade. We
therefore analyse different regimes of interest rates, e.g. compare the Euro era to the time
before the introduction of the Euro, and also analyse the low-interest rate environment.

As a second point, several of the mentioned articles come to the conclusion that three
or more parameters are an adequate choice for describing changes in the term structure.
In our analysis, we provide an update and show that when aiming to model changes in
the term structure as parsimonious as possible, even two parameters may be sufficient for
many applications if one considers change periods of one year or more.

Our approach is to take historical time series of the term structure based on German
government bond yields, where we deal with an estimated term structure. A similar
approach has been used by Diebold, Rudebusch, and Aruoba (2006), but in contrast to
this work, we do not relate the parameters of the term structure to macro factors and
also do not try to predict the evolution of the yield curve based on the factors. Instead,
we concentrate on the empirical fit of the linear model of the term structure and discuss
the implications. We also do not deal with the explanation or forecasting of term premia
(see, for instance Dai and Singleton (2002)). Instead, we take the historical interest rates
for different maturities as given and try to model the relationship between the interest
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rates of different maturities and points in time as parsimonious as possible, thereby always
considering the model fit. There is a large literature about the precise modeling of the
term structure, especially at daily, weekly or monthly frequency (see Adrian, Crump,
and Moench (2013)). In our analysis, we compare different horizons and show that for
a change horizon of one year or longer, our model provides a pragmatic solution to the
trade-off of a parsimonious term structure model that still has a good fit to the empirical
data.

In applications to the banking sector, we show how to use the approach to derive
consistent and harmful stress scenarios, how to estimate the banks’ earnings from term
transformation and we estimate the “likelihood” of the increase in the interest level after
the end of the low-interest environment.

The paper is structured as follows. In Section 2, we explain the setup for modeling
the term structure and discuss the distinction between our proposed model and term
structure models which incorporate future interest rate paths. In Section 3, we show how
this model of the term structure can be used to value interest bearing instruments and
we apply this term structure model to some specific cash flow distributions. In Section
4, the empirical data used in the study is described and, in Section 5, we give the results
related to our parsimonious modeling of the term structure. In Section 6, we apply the
model to banking. Section 7 concludes.

2 Modeling the term structure

2.1 General approach
We collect risk-free interest rates (zero-bond returns) rt(m) of different maturities m =
m1, ...,mN in the vector Rt, where the index t gives the point in time and m1 to mN the
maturities of the interest rates:

Rt =

 rt(m1)
...

rt(mN)

 (1)

This spans, for every point in time, a term structure of interest rates, i.e. a collection
of interest rates that mature after different periods. In other words: The vector Rt

has a cross-sectional dimension of the different maturities. To make this cross-sectional
dimension more manageable, Nelson and Siegel (1987) model the term structure (for each
point in time) as a function, depending only on a small number of parameters (here: four,
namely α0,t, α1,t, α2,t and λt > 0):

rNeSi
t (m) = α0,t + α1,t

1− exp(−λt ·m)

λt ·m
+ α2,t

(
1− exp(−λt ·m)

λt ·m
− exp(−λt ·m)

)
(2)

Svensson (1994) added a further term (similar to the last one, but with a different pa-
rameter λt from that in Equation (2)), yielding a model with six parameters.

Often it is analytically easier to deal with linear relationships, for instance, one can
then estimate the coefficients with ordinary least squares (OLS) (see Equation (9)).

3



Diebold and Li (2006) turned Equation (2) into a linear relationship with three parame-
ters by setting the parameter λt as time-constant, namely to λ̄ = 12 ·0.0609 (see Equation
(8)). Generally, a linear model for the term structure has the form:

rlin.Model
t (m) = α0,t + α1,t · f1(m) + . . .+ αn,t · fn(m) (3)

For econometric reasons, as the interest rates do not seem to be stationary (see, for
instance, Diebold and Li (2006)), we often deal with changes in interest rates (where
the 4-operator represents, in our case, monthly, quarterly, half-yearly, yearly, one-and
half yearly or biennial changes). As the functions fi(m) do not depend on time-varying
parameters (like λt in Equation (2)), we obtain:

4rlin.Model
t (m) = β0,t + β1,t · f1(m) + . . .+ βn,t · fn(m) (4)

with βi,t = 4αi,t. Note, that a formulation in levels (with αi,t) contains nearly the
same information as a specification in changes (with βi,t). However, there is a slight
differences: A term structure with rt(m) = α0,t implies a flat term structure, whereas
4rt(m) = β0,t only implies a parallel shift, where the original term structure can have
any shape.

In Section 3 of this paper, we mainly deal with a simple model for the term structure
that includes the level and the steepness. We choose the following model to describe the
term structure:

rHeMe
t (m) = α0,t + α1,t ·m (5)

In this model, the parameter α0,t corresponds to the short-term interest level in time
t and the parameter α1,t gives the slope per unit of measurement, in our case years.

For comparison, we consider the following three linear models, which are all special
cases of the model in Equation (3), namely a constant interest level (leading to a parallel
shift), the model from above in Equation (5) and the model of Diebold and Li (2006) and
compare their explanatory power:

4rParallel
t (m) = β0,t (6)

.

4rHeMe
t (m) = β0,t + β1,t ·m (7)

4rDiLi
t (m) = β0,t + β1,t

1− exp(−λ̄m)

λ̄m
+ β2,t

(
1− exp(−λ̄m)

λ̄m
− exp(−λ̄m)

)
(8)

We regress the estimated changes 4rModel
t (m) of the three models on the true changes

4rt(m), having dim(Rt) · TPeriod observations.1

1If we look at the level, not at changes in the term structure, the two-factor-model of Equation (7)
outperforms the other models even more strongly. As it is more common in the field of banking to look
at changes in the term structure (not so much at the level), we stick to changes in the term structure
and look at different horizons.
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To determine the parameter vector βt, we run (for each point in time t) the following
OLS estimation for βt = (β0,t) (Equation (6)), βt = (β0,t, β1,t)

′ (Equation (7)) and βt =
(β0,t, β1,t, β2,t)

′ (Equation (8)):

β̂t = (X ′X)−1X ′4Rt. (9)
Depending on the model, the matrix X (of dimension dim(Rt) × d) consists of up

to three columns d, where the first column is always composed of ones. In the case
of Equation (7), the second column includes the maturities m1, ...,mN . In the case of
Equation (8), the second and third columns include time-constant function values of the
maturities m1 to mN . For instance for m = 1.5 (which is one and a half year or 18 months)
we obtain 0.8377 and 0.1437. Equation (9) makes it possible to transform a stress scenario
that includes changes in interest rates of various maturities into the number of parameters
of the vector β.

2.2 Discussion of alternative approaches
The models above are meant to describe the term structure, but they do not deal with
future paths of interest rates and their distribution as more complex stochastic models
(see, for instance, Vasicek (1977), Cox, Ingersoll, and Ross (1985) and Heath, Jarrow,
and Morton (1992)). That is, they do not aim to model the evolution of interest rates
based on underlying mechanisms such as volatility and mean reversion. This sets limits
to the applications of these model, e.g., instruments that are dependent on the interest
rate volatility can not be priced.2

This could be considered as a shortcoming of the simple models above, as, to some
extent, the models are modest in comparison with fully fledged (stochastic) interest models
that provide information about the distribution of future interest rates. However, we see
nevertheless merit in revisiting and analysing this type of models.

The knowledge about the distribution has little value if our knowledge about the port-
folio composition (and thereby interest sensitivity) is limited. As to banks, the knowledge
for outsiders is scarce because we have little information about their portfolio composition
and the extent to which they pass on changes in the market rates to their bank rates. Of-
ten, the regulatory requirements stipulate only that banks report aggregate values close
to the duration of their equity which do not reveal much on the underlying structure.
Here, the simple models seem more suitable and sufficient to take into account the scarce
information. Making use of the empirical distribution of the two parameters (level and
slope) that govern the term structure in our model, it is possible to derive applications
for banks (Section 6).

One has to bear in mind that even complex models are still models with a certain
range of application. The application and interpretation of stochastic interest rate mod-
els requires profound mathematical knowledge. By contrast, our simple model provides
closed-from solutions that can easily be interpreted and applied.

2For instance swaps can be priced with the deterministic models, but interest rate options like caps
are out of scope.
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3 Valuation of instruments

3.1 General
Generally speaking, the present value PV of a stream of risk-free cash flows CF is calcu-
lated as follows:

PV =

∫ ∞

0

CF (t)exp(−r(t)t)dt (10)

In the following, we show how the simple linear model of the term structure of Equation
(5) can be used to value interest bearing instruments. The simple term structure model
of Equation (5) allows us to investigate changing slopes of the term structure, even if we
use strict assumptions as to the shape of the term structure at the time of the shock. In
other words, the shape of the term structure at the time of the shock only determines the
weighting of future cash flows and some weighting schemes lead to closed-form expressions.
For instance, if we assume a flat term structure at the time of the shock, we obtain
manageable expressions without losing much precision (relative to the assumed true term
structure model of Equation (5)). This holds, especially, if there are no cash flows in
the far future, which is the case, for instance, for geometrically declining cash flows. By
contrast, if we look at a normal bond (with no extreme values for the maturity and for the
slope), the relative error is even below 5% for the relative level or slope shift (see Table
8).

In the following, we mainly deal with two assumptions: (i) we use the linear term
structure model r(t) = α0+α1 · t of Equation (5) (note that we now write t as dependent
variable instead of m for the valuation of future cash-flows) and (ii) we calculate the
present values and the derivatives at α1 = 0, i.e. at a flat term structure at the time of
the shock (later in Table 2 we give also closed-form solutions for the term structure model
(5) without the assumption of a flat term structure at the time of the shock):

PV |r(t) = α0 + α1 · t, α1 = 0
=

∫ ∞

0

CF (t) · exp(−α0t)dt (11)

∂PV

∂α0 |r(t) = α0 + α1 · t, α1 = 0
= −

∫ ∞

0

t · CF (t) · exp(−α0t)dt (12)

∂PV

∂α1 |r(t) = α0 + α1 · t, α1 = 0
= −

∫ ∞

0

t2 · CF (t) · exp(−α0t)dt (13)

We define fγ(t) := CF (t) · exp(−α0t)/PV |r(t) = α0 + α1 · t, α1 = 0
as the density

function of the variable γ, which is the standardized present value of cash flows (for a flat
term structure). Under the two assumptions from above, we obtain (see Equation (11)):∫ ∞

0

fγ(t)dt = 1 (14)

Equations (12) and (13) become more handy:
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Table 1: Relative slope sensitivity for different distributions

Cash flow
distribution
(present value)

Relative slope
sensitivity C

Remark(s)

Bernoulli
distribution,
probabilities are
0.5

2 ·D2 Special case of the
beta distribution,
β → 0

Exponential
distribution

2 ·D2

Uniform
distribution

4/3 ·D2 Special case of the
beta distribution,
β = 1

One-point
distribution

D2 corresponds to a zero
bond

This table shows the relative slope sensitivity c for different cash flow distributions (where the present
value of the cash flow γ is used) in dependence of the relative duration (D = E(γ)). Note that the term
structure is assumed to be flat at the time of the shock, i.e. α1 = 0.

D = −
∂PV
∂α0

PV |α1 = 0
=

∫ ∞

0

t · fγ(t)dt

= E(γ) (15)

C = −
∂PV
∂α1

PV |α1 = 0
=

∫ ∞

0

t2 · fγ(t)dt

=
(
E(γ)2 + var(γ)

)
(16)

where E(·) and var(·) denote the expectation and the variance operator, respectively.
Please note that the expectation and the variance are calculated with respect to the

present value of the cash flows γ, not with the nominal values CF ; only if the interest
level α0 reaches zero, they are both equal.

From Equation (14), we see that the (with the present value) standardized cash flows
(under the assumption of a flat term structure) fγ(t) corresponds to a density function
for a random variable with only non-negative values, i.e. for the point in time when a
certain standardized cash-flow is due. In Equation (16), we see that the relative slope
sensitivity is closely related to the expectation and the variance. In Table 1, the relative
slope sensitivity for different distributions are given. Apart from the case of the one-
point-distribution, we see that the variance of the cash flows substantially contributes to
the (relative) slope sensitivity, i.e. the present value effect of changes in the slope not
only depends on the points in time when the cash flows on average take place, but also
on their distribution.

In case of slope changes, the present value loss may be underestimated if one uses the
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duration, as the following example shows. We start by the total differential of the present
value (PV ), using the term structure model of Equation (5), i.e. 4r(t) = 4α0 +4α1 · t
(at a flat term structure at the time of the shock), and we standardize this relationship
with the present value and the Equations (15) and (16):

4PV

PV
= −D · 4α0 − C · 4α1 (17)

Considering only slope changes, i.e. 4α0 = 0, and using the slope change to calculate
the interest rate change at the relative duration D, i.e. t = D, so that 4r = 4α1 ·D, we
obtain:

4PV

PV
= −C · 4α1

= −h ·D · 4r (18)

with h = C/D2. If the parameter h is equal to one, i.e. all cash-flows are concentrated
in one point of time, Equation (18) is the well-known formula for the relative change in
present value due to a parallel shift in the term structure of 4r, for instance, if the relative
duration D is equal to 5 (years) and 4r equals 300 basis points, then the relative loss
in present value is 15%. According to Table 1, the parameter h is usually greater than
one for slope changes, for instance equal to 4/3 for a standardized cash flow following the
uniform distribution (third row). If one neglects this parameter although it is often larger
than one in reality one underestimates the loss in present value if changes in the steepness
are analyzed (here: by one third, for instance, if the calculated loss is 15% of the present
value, the true loss is 20%).

3.2 Convexity
The change in present value can be represented as a sum of derivatives and powers of the
change (here the change in the interest level α0). The approximation with a small number
of derivatives is the better the smaller the change.

4PV =
∂PV

∂α0

· 4α0 + 0.5 · ∂
2PV

(∂α0)2
· (4α0)

2 +Rest (19)

In finance, the first two summands are named: the first derivative is called the dura-
tion; the second derivative is the convexity.

In our model, there is a close connection to the concept of convexity ∂2PV
(∂α0)2

:
Calculating the second derivative of Equation (10) and assuming r(t) = α0, we obtain:

∂2PV

(∂α0)2 |r(t) = α0 + α1 · t, α1 = 0
=

∫ ∞

0

t2 · CF (t) · exp(−α0t)dt (20)

which is the same as the negative derivative with respect to α1 (slope sensitivity as in
Equation (13)). In other words, when assuming the linear model from above for the term
structure, the convexity corresponds to the negative sensitivity to changes in the steepness
of the term structure. In the context of the Taylor-approximation, it does not make sense
to look at the convexity in isolation because the first and most important summand in
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Equation (19), the duration times the change in the interest level, would be neglected. By
contrast, in the case of the linear term structure model of Equation (5), the convexity is
closely related to a change in the slope of the term structure, meaning that it is sensible
to look at the second derivative in isolation, especially in banking where a substantial
part of the net interest income comes from term transformation (see also Section 6.2).

As term structure changes in reality can be approximated by slope and intercept
changes (no matter the change horizon), the convexity is likely a good approximation of a
portfolio’s sensitivity to slope changes. This interpretation is one of the main contributions
of our paper.

3.3 Application to some instruments
Using the linear model with two parameters for the term structure of Equation (5), we can
calculate, for some cash flow functions CF (t) and instruments, the present value and the
derivatives in an explicit manner, which we show in the Table 2 (not necessarily under the
assumption of a flat term structure at the time of shock). We look at four different cash
flow distributions, namely a constant cash flow for some time, a geometrically declining
cash flow, a passive trading strategy and a normal bond.

The passive trading strategy consists in investing in default-free par-yield bonds in a
revolving manner. Whenever such a bond matures, one reinvests into the then current
par-yield bond of maturity M . The interest payments are taken out (see Memmel (2014)
for a discussion of these payments). For instance, if one chooses the maturity M as 10
years, then every month (if the frequency is monthly3) 1/120 = 1/(10 · 12) is invested
in the then current par-yield bond. This strategy is feasible, no matter the dynamics of
the term structure: whenever a bond matures, the repayment of the principal matches
exactly the new investment in a bond that is quoted at par. With this strategy, we want
to reproduce a bank’s continuous business model, which consists in granting loans of a
certain maturity in a revolving manner. The total investment of this strategy is one;
however, the present value of this bond portfolio can deviate from one due to shocks in
the term structure or a slope of the term structure different from zero; in the Equations
(56) and (61), we show the change in present value of this bond portfolio due to level and
slope shifts.

For all four cash flow distributions, we look at three different situations of the term
structure at the time of the shock: First, the case of a normal term structure, i.e. we
stipulate that the slope coefficient is positive (and not negative).4 Second, the situation in
which the slope is negligible and, third, the situation in which the level and the slope are
both close to zero. The time span during the low-interest rate environment (2014-2022)
in the Euro area or the interest environment in some countries (for instance, Japan or
Switzerland) comes close to this situation.

3For practical reasons and not continuous as used in the calculations elsewhere in the paper.
4We assume a normal term structure mainly for technical reasons: in case of a normal term structure

(i.e. a positive slope coefficient), the closed-form solution includes the wide-spread distribution function
of a normally distributed random variable (often, its symbol is Φ). In case of an inverse term structure,
there exists as well a closed-form solution, however it includes the less common imaginary error function.

5One obtains for the relative duration d = M/2 and for the relative convexity c = m2/3, yielding
c = 4/3d2 which corresponds to Table 1, third row.

6One obtains for the relative duration D = 1/λ and for the relative convexity C = 2/λ2, yielding
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Table 2: Closed-form solutions

Cash flow /
instrument Term structure

at the time of
the shock

Present
value

Level change Slope change

Constant cash
flow (Appendix
A.2)

Normal
(α1 > 0)

Eq. (37) Eq. (38) Eq. (39)

Flat (α1 = 0) Eq. (40) Eq. (41) Eq. (42)
Flat and zero5

(α0 = 0, α1 =
0)

k ·m −k · m2

2
−k · m3

3

Declining cash
flow (Appendix
A.3)

Normal
(α1 > 0)

Eq. (43) Eq. (44) Eq. (45)

Flat (α1 = 0) k
λ+α0

Eq. (46) Eq. (47)
Flat and zero6

(α0 = 0, α1 =
0)

k
λ

− k
λ2 −2·k

λ3

Passive trad.
strategy
(Appendix A.4 )

Normal
(α1 > 0)

Eq. (49) Eq. (50) Eq. (51)

Flat (α1 = 0) 1 Eq. (56) Eq. (61)
Flat and zero
(α0 = 0, α1 =

0)

1 −m
2

−m2

3

Normal bond
(Appendix A.5)

Normal
(α1 > 0)

Eq. (63) Eq. (64) Eq. (65)

Flat (α1 = 0) Eq. (66) Eq. (54) Eq. (59)
Flat and zero
(α0 = 0, α1 =

0)

1 + c ·m −m ·(
1 + c · m

2

) −m2
(
1 + c · m

3

)
This table shows closed-form solution for some cash-flow models and instruments, where k is the cash
flow at the beginning, m is the maturity, λ > 0 is the decay rate and c is the coupon rate of the normal
bond, which has a principal of one. Model for the term structure: r(t) = α0 + α1 · t.
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4 Data
For our analysis, we use zero-bond rates of different maturities, based on German gov-
ernment bonds and derived using the method according to Svensson (1994) with six
parameters (see also Schich (1997) for the application to German data). Note that we are
not dealing with single bonds, but with an already estimated term structure. The period
covers nearly fifty years (1975-01 to 2023-12) and we use monthly data; in the paper, we
have dim(Rt) = 20 maturities (maturities of up to 10 years in steps of 6 months) and
TPeriod = 588 monthly observations (49 years), yielding 11 760 observations.

In Table 3, we report summary statistics, where in each point in time, we perform a
linear fit rt(m) = α0,t+α1,t ·m (either on the yield curve itself or on the respective changes
over the different time horizons). While this could be considered as frontloading our results
discussed below, this is primarily done to obtain comparable (and easily interpretable)
information on the level and steepness.7 The average steepness is 13.52 bp per year (first
column, second row), meaning that on average, over the observed time span, for each
additional year of maturity, the return increases by around 14 bp. As a concrete example,
a bond with 10 years of maturity yields on average 1.35% p.a. more than the short-term (0
year) interest rate, as the ten years of maturity contribute 10 times 13.52 bp of additonal
return. The statistics on the level of changes in the yield curve show (not surprisingly)
that the longer the time horizon considered (going from “Change (1 month)” to “Change
(24 months)” in Table 3), the larger changes (in absolute values) in the level are observed.
When looking at both mean or median, the changes (in absolute values) in the level seem
to increase broadly linearly with the time horizon. The negative values can certainly be
attributed to the selected time span where interest rates overall decreased. Considering
the steepness of changes, however, no systematic (linear) increase (in absolute values)
is observed in mean or median values, while the standard deviation increases. The 99th
percentile of yearly changes is about 390 bp (fifth column, seventh row), significantly more
than the 200 bp of the Basel shock, which was informed by yearly changes. However, the
interest rate changes tend to be larger for short maturities and when the interest level is
higher, which was the case in the seventies and eighties of the last century.

5 Results

5.1 Changes of the term structure
We investigate changes of the term structure for the given maturities with the help of a
principal component analysis (PCA). We use different time horizons to calculate changes
in the term structure, i.e. changes of one month, three months, six months, 12 months, 18
months and 24 months. For illustration, the factor loadings of the three first components
for yearly (12 months) changes are displayed in Figure 1. Here, it is important to note that
the PCA is a completely statistical method, i.e. it is agnostic about possible structures
(like level or steepness shifts) in the data. Nevertheless, the first component (i.e. the most

C = 2D2 which corresponds to Table 1, last row.
7In the following description, with “level” and “steepness” we refer to the results for level and steepness

of the linear fit considering either the yield curve values (Term Structure row “Level”) or calculated
changes over the mentioned time horizon (e.g. “Term Structure Change (3 months)”).
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Table 3: Summary statistics

Term
structure

Model
parame-

ter

Unit Mean SD 1st perc. Median 99th perc.

Level Level Per cent 3.67 3.21 -0.99 3.69 11.65
Steep-
ness

bp per
year

13.52 13.08 -21.39 14.80 39.08

Change
(1
month)

Level bp -1.01 29.33 -91.49 -1.03 78.26
Steep-
ness

bp per
year

-0.04 2.68 -6.57 -0.15 8.69

Change
(3
months)

Level bp -3.02 62.38 -194.48 -2.09 172.11
Steep-
ness

bp per
year

-0.13 5.10 -15.64 -0.34 15.04

Change
(6
months)

Level bp -6.19 98.50 -308.89 -3.43 292.14
Steep-
ness

bp per
year

-0.27 7.91 -23.36 -0.40 23.10

Change
(12
months)

Level bp -13.20 150.56 -389.77 -11.37 391.51
Steep-
ness

bp per
year

-0.41 11.78 -32.50 -0.31 30.78

Change
(18
months)

Level bp -21.44 191.43 -522.50 -14.01 437.58
Steep-
ness

bp per
year

-0.37 14.90 -35.75 -1.45 38.54

Change
(24
months)

Level bp -30.07 222.29 -557.29 -34.36 579.11
Steep-
ness

bp per
year

-0.36 17.06 -36.20 -2.68 44.26

This table shows summary statistics for the level of and changes in the term structure (Period: 1975-
01 to 2023-12). “SD”, “bp”, “1st perc.” and “99th perc.” mean standard deviation, basis points, first
percentile and 99th percentile. The summary statistics are based on the model for the term structure
rt(m) = α0,t + α1,t ·m with m = 0.5, 1, ..., 10.
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Figure 1: PCA: Factor loadings
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This figure shows the factor loadings for the first three components of a principal component analysis
(PCA) of yearly changes in interest rates of different maturities. German government bonds up to 120
months maturity in steps of 6 months. Monthly data; period: 1975-01 to 2023-12.

important one) is very similar to a parallel level shift (with longer maturities less affected)
and the second component resembles a (concave) shift in the steepness. These results are
in line with the findings in the literature (see Litterman and Scheinkman (1991), Knez
et al. (1994), Bliss (1997) and Memmel (2014)).

The explained variance of changes in the term structure is shown in Table 4. Here,
one can see that the explanatory power of the first factor increases with the time horizon
over which changes are calculated. At the same time, the relevance of the second and
third factor decreases with increasing change horizon. While for a change horizon of one
month, the first factor explains “only” 83% and the second and third factors contribute
11% and 5%, respectively, the first factor can explain nearly 93% for a change horizon
of 24 months, and the second and third factors only contribute 6% and 1%, respectively.
This already indicates that the choice of an appropriate parsimonious approximation will
depend on the time horizon.

We also regress the interest rate changes derived from the models (Equations (6), (7)
and (8)) on the true interest rate changes and compare the coefficient of determination
R2 of the three different models. The results are shown in Table 5, where the following
can be noted:

• The parallel shift of the term structure is often applied, for instance it is prescribed
by bank regulators and used by supervisors in what is known as the Basel interest
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Table 4: Explained Variance of Changes in the Term Structure

Change in the
term structure Contribution Principal component

First Second Third

1 month Additional 82.60% 11.01% 4.97%
Cumulative 82.60% 93.61% 98.58%

3 months Additional 88.56% 8.33% 2.37%
Cumulative 88.56% 96.89% 99.26%

6 months Additional 90.39% 7.85% 1.30%
Cumulative 90.39% 98.24% 99.54%

12 months Additional 91.46% 7.23% 1.01%
Cumulative 91.46% 98.69% 99.70%

18 months Additional 92.25% 6.75% 0.79%
Cumulative 92.25% 98.99% 99.78%

24 months Additional 92.92% 6.18% 0.71%
Cumulative 92.92% 99.10% 99.81%

This table shows the fraction of the explained variance of the changes in the term structure over different
time horizons, derived from a principal component analysis (PCA). German government bonds up to 120
months maturity in steps of 6 months. Monthly data; period: 1975-01 to 2023-12. For each of the change
horizon, the additional contribution and the cumulative contribution are reported.

rate shock (see Basel Committee on Banking Supervision (2004)). One reason is the
analytical simplification when using a parallel term structure shift. When looking
at the first row of Table 5), there is also a profound empirical reason: A parallel
shift explains up to 90% of the variation and is close to the theoretical maximum
(see the first column of Table 4). The gap between the theoretical maximum and
the parallel shift may be due to the fact that the interest rates of longer maturities
are more sluggish and that the loadings for the first factor are not a parallel line,
but tend to decrease (see Figure 1 for an illustration for yearly changes).

• The same holds true if we compare the R2 of the two-factor model (in Table 5,
second row) with the theoretical maximum (Table 4, cells relating to the second
factor, cumulative values). Here, we assume that the model of linear changes (see
Equation (7)) cannot be considered an exact fit for the real interest rate changes
(see Figure 1, where the second component is not a straight line, but a concave
curve).

• The three-factor model has the highest explained variance (see Table 5). However,
the additional increase in the explained variance (relative to the two-factor model)
seems relatively small, especially for longer change horizons. Note that we are
only dealing with a section of the term structure (for insurance companies, longer
maturities may be relevant); if we looked at the whole term structure (including
longer maturities), the difference in explained variances relative to the two-factor
model might be more relevant.

• When we consider shorter horizons of changes in the interest rates (Table 4; 1 month
or, to some extent, 3 months), we see that the third principal component makes a
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Table 5: Different models: coefficient of determination

Coefficient of
determination

Change horizon
1 month 3 months 6 months 12 months 18 months 24 months

Parallel shift
(see Eq. (6))

82.25 87.21 88.52 89.10 89.31 89.53

Two factors (see
Eq.(7))

91.00 95.64 97.19 97.63 98.09 98.27

Three factors
(see Eq. (8))

97.23 97.90 98.24 98.52 98.64 98.70

This table shows the coefficient of determination R2 (in %) of three different interest rate models. German
government bonds up to 120 months maturity in steps of 6 months. Monthly data; period: 1975-01 to
2023-12.

substantial contribution to explaining the variance. Looking at one-year or longer
changes, this contribution is only about or less than one per cent.

5.2 Model selection with information criteria
There is a trade-off between finding the most parsimonious model (i. e. the model with
the lowest number of parameters) and explaining the changes in interest rates of different
maturities.We try to solve this trade-off by using two different information criteria: First,
the information criterion AIC (Akaike information criterion) which takes into account the
number of parameters and the model fit

AIC = −2 · loglikelihood+ 2 · (#parameters+ 1) (21)
and second, the Bayesian information criterion (BIC)

BIC = −2 · loglikelihood+ (#parameters) · log(#observations) (22)

For each month in our sample period 01/1975 to 12/2023 (which yields 588 observa-
tions), we regress the N = 20 interest rate changes for each of the three models on the
corresponding true interest rate changes. We determine each month which of the three
models performed best according to the two criteria. In Table 6, we report the shares
relative to our sample period of 588 months, for the three models and for six change
horizons for the AIC, and in Table 7, we report the equivalent information for the BIC.
We see that the three factor model often performs best of the three models considered
if the change horizon is relatively short; however we found only significant differences to
the two-factor-model for the one month horizon, the shortest horizon considered in our
study (see Appendix A.7). The turning point where the two factor model improves over
the three factor model is around yearly changes, where we see that the performance is
slightly better for the BIC. For longer horizons of 18 months or 24 months, the two factor
model performs on average better than the three factor model according to both criteria.
From this analysis, we conclude that the two factor model is not only easier to treat and
analytically tractable, but for longer change horizons, the two-factor-model outperforms
the three factor model.
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Table 6: Information criterion AIC

Model for the
term structure

Change horizon (months)
1 *** 3 6 12 18 24

Parallel shift
(see Eq. (6)) 0.5% 0.6% 0.2% 0.7% 0.5% 0.3%

Two factors
(see Eq.(7)) 39.5% 44.1% 46.1% 48.1% 54.3% 56.8%

Three factors
(see Eq. (8)) 60.0% 55.3% 53.7% 51.2% 45.2% 42.9%

This table shows how often the respective factor model for the term structure is the best one according
to the information criterion AIC. Sample period: 1975-01 to 2023-12, 588 points in time. *** means a
significance level of 1% for a test of the null-hypotheses that the 2- and 3-Factor-Model are equally good
(see Appendix A.7).

Table 7: Information criterion BIC

Model for the
term structure

Change horizon (months)
1 *** 3 6 12 18 24

Parallel shift
(see Eq. (6))

3.4% 1.2% 1.0% 1.0% 1.2% 0.34%

Two factors (see
Eq.(7))

39.1% 44.6% 47.6% 49.3% 54.8% 57.1%

Three factors
(see Eq. (8))

57.5% 54.3% 51.4% 49.7% 44.1% 42.5%

This table shows how often the respective factor model for the term structure is the best one according to
the information criterion BIC. Sample period: 1975-01 to 2023-12, 588 points in time. Deviations from
100% are due to rounding. *** means a significance level of 1% for a test of the null-hypotheses that the
2- and 3-Factor-Model are equally good (see Appendix A.7).
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5.3 Analysis of subperiods
In this section, we analyse different periods to gather whether the results obtained in the
two previous sections still hold for subsets of the time horizon.

First, we split our sample in the parts before and after the German reunification
(1990-10). After the reunification, the two-factor-model performs well, but before the
reunification, the three-factor-model outperforms the two-factor-model clearly. This is
also interesting with respect to the findings e.g. in Litterman and Scheinkman (1991) or
Knez et al. (1994) who find that three or even more factors are needed for an appropriate
description. According to our analysis, while this is true for the past (when these analyses
were performed), this does not hold anymore for the more recent term structure changes.

Second, we use the introduction of the euro (1999-01) as the starting point and set the
end point to the end of the sample period (2023-12). For this “Euro era”, the two-factor
model outperforms the three-factor model according to the information criteria for all
change horizons except 1 month (i.e. the respective proportion of the two-factor model in
Tables 6 and 7 would be higher than that of the three-factor model). This indicates that
especially for the nearer past, the two-factor model is even more relevant.

As complement, we next consider the “pre-Euro era” (1975-01 until 1998-12), in which
we find that the three-factor model outperforms the two-factor model according to the
information criteria for all change horizons.

To narrow this finding further down, as a third period, we look at the low-interest rate
environment in the euro area (assumed starting point at 2014-06, end point 2022-06 8).
Here, we find that the two-factor model even more clearly outperforms the three-factor
model for all change horizons.

When considering again the complement (Euro era before the low-interest rate envi-
ronment, i.e. 1999-01 until 2014-05), the results are rather mixed and similar to the ones
shown for the entire time series in the Tables 6 and 7, i.e. the two- and three-factor models
seem to be favorable for longer and shorter time horizons, respectively. We conclude from
this that the two-factor model has its biggest merits in an environment with low interest
levels.

6 Application to banks

6.1 Constructing stress scenarios
As said above, our modeling of the term structure neglects details about the distribution
of future interest rates. However, we can establish an empirical distribution of the change
in the future term structure, i.e. of the parameters β0 and β1 and thereby design stress
scenarios. We use yearly changes because a yearly horizon seems relevant in the banking
context. Due to the central limit theorem, there is good reason to believe that yearly
changes (as the sum of e.g. daily changes) are normally distributed. In our sample, we
have 49 yearly (1975-2023) non-overlapping observations. Below, we give two examples
of how the knowledge of the distribution may be helpful to design stress scenarios:

1. Designing consistent stress scenarios for the whole term structure. Assume that the
8During this time span, the rate of European Central Bank’s (ECB) deposit facility was negative.
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term structure model in Equation (7) is valid and that the change in the interest
rate 4r (m0) for any arbitrary maturity m0 is given. Then the expected change in
interest rate for any arbitrary maturity m1 is:

E (4r (m1) |4r (m0)) =

(
1 +

(m1 −m0)σ01 + (m1 −m0)m0σ
2
1

σ2
0 +m2

0 · σ2
1 + 2 ·m0 · σ01

)
· 4r (m0) (23)

where σ2
0 is the variance of the level change (in our study: 1.9422), σ2

1 the variance
of the slope change (in our study: 0.0117) and σ01 is the covariance between the
two (in our study: -0.1023, see Appendix A.8 for a derivation of Equation (23)).
This expression can thus be used to analyse expected changes in interest rates for
different maturities in a way that leads to consistent changes that take into account
the dependence structure of interest changes of different maturities. In our sample,
the correlation between level and slope changes is negative (σ01 < 0) and more
significant than the expression m0σ

2
1. We would thus deduct that consistently with

historical observations, the expected change should be smaller for longer maturities
(which is also in line with the first principal component in Figure 1).

2. Finding the stress scenario that hurts most, i.e. the combination of β0 and β1that
yields the maximal loss in present value for a given instrument and a significance
level p. We assume that a bank’s interest business can be represented by the passive
trading strategy of Section 3.3 where the derivatives of the present value with respect
to the parameters α0 and α1 according to Table 2 are set to γ0 and γ1.We further
assume that the loss in present value of the equity is the relevant metric.9 This
yields to optimized changes β∗

0 and β∗
1 :

β∗
0 =

γ0 · σ2
0 + γ1 · σ01

2 · λ
(24)

β∗
1 =

γ0 · σ01 + γ1 · σ2
1

2 · λ
(25)

with

λ = −

√
−γ2

0 · σ2
0 + 2 · γ0 · γ1 · σ01 + γ2

1 · σ2
1

8 · ln(p)
(26)

where again σ2
0 is the variance of the level change, σ2

1 the variance of the slope change
and σ01 is the covariance between the two ( see Appendix A.9 for a derivation of
the Equations (24) to (26), parameter values in our study given above).

In Figure 2, the two interest rate shocks are shown for a certain parameter constellation
(Example 1: 4-year interest rate change as 200 bp given and Example 2: passive trading
strategy with a maturity of 10 years, 10% significance level and a normal term structure
at the time of the shock (average values in Table 3 for the parameters α0 = 3.67% and
α1 = 13.52 bp/year). One can thus deduct that a high shock at small maturities and

9Even if we can describe the banks by the passive trading strategy, according to accounting rules the
banks do not have to disclose all present value losses. Therefore, the present value of the equity is only
then the relevant metric for the bank management if it steers the bank by the present value of the bank’s
equity (and not by accounting figures, for instance the return of the equity on the balance sheet).
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Figure 2: Interest rate shocks

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10

Sh
o

ck
 [

b
as

is
p

o
in

ts
]

Maturity [years]

Consistent Most harmful

This figure shows the two interest rate scenarios derived in Section 6.1. The ’consistent shock’ relates to a
shock for the 4-year interest rate of 200 basis points. For the other maturities, the expected shock (given
the shock for the 4-year interest rate) is calculated according to Equation (23). The ’most harmful shock’
relates to the passive trading strategy of Section 3.3 for M = 10 years, a probability of p = 10% and the
average values in Table 3 for the parameter α0 and α1, which are needed to compute the sensitivities
according the Equations (50) and (51).

lower shock at higher maturities is the most harmful scenario for the assumed bank. This
could also be used to design hedging strategies.

6.2 Earnings from term transformation
We assume that a bank’s interest business can be modeled by the passive trading strategy
of Section 3.3. This is, for instance, the case if this bank grants loans of a certain maturity
in a revolving manner. For this strategy, we know the average return and its risk, measured
by its duration. In addition, we often have, for a bank, supervisory risk figures for its
term transformation risk, for instance the loss in present value as a consequence of a
200-bp-upward shock of the term structure.

We scale the (excess) return of the passive trading strategy such that bank i’s risk from
term transformation corresponds to the risk of this scaled strategy. In other words, we
determine bank i’s interest rate risk exposure and those of the passive trading strategy’s
and assume that this is same ratio as the bank’s earnings from term transformation to the
excess return of the passive trading strategy. The following formula results (see Appendix
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(A.10)):

shareTT,i =
1

NIMi

· ERi ·Dmod,i · rr (27)

where NIMi is the net interest margin, i.e. net interest income over total assets, ERi

is the equity ratio (equity over total assets), Dmod,i is the bank i’s modified duration of
its equity (often close to supervisory figures)10 and rr is the passive trading strategy’s
remuneration of risk. For the German banking system, we can make the following guess
ShareTT,DE = 12.5%.11

6.3 Increase in the interest level
In summer 2022, the low-interest environment ended in the euro-area; the end was fol-
lowed by a sharp increase in the interest level. In an out-of-sample study, we ask how
extreme (i.e. unlikely) this increase was. To answer this question, we calculate the return
parameters until summer 2022 and apply them to the (realized) yearly changes of the
level β0 and the slope β1 from summer 2022 to summer 2023.

We obtain the following expression for the probability that such an (or more extreme)
event occurs (see Appendix A.11).

p = exp

(
−

1
2
β2
0σ

2
1 +

1
2
β2
1σ

2
0 − β0β1σ01

σ2
0σ

2
1 − σ2

01

)
(28)

where σ2
0 is the variance of the level change, σ2

1 the variance of the slope change and
σ01 is the covariance between the two. Note that the estimates for the return parameters
differ from the ones of Section 6.1 because the estimation period ended in summer 2022.
For the whole sample (i.e. starting from January 1975), we estimate a probability of
p = 10%, i.e. 10% of the (realized) yearly changes in the term structure were equal to or
more extreme than the development after the end of the low-interest rate environment.
If we look only at the period after the introduction of the euro, i.e. the parameters σ2

0,
σ2
1 and σ01 are estimated in the period from January 1999 to June 2022, this probability

is close to zero (p = 0.4%).

7 Conclusion
In our empirical study for Germany, we show that changes in the term structure over
different change horizons can be described by a small number of factors and that defining
an appropriate parsimonious model depends on the change horizon and on the historical
period considered. We show that yearly (or longer) changes in the term structure can be

10For instance, in Germany, banks have to report the present value losses as a consequence of a 200-
bp-shift of the term structure. As the reporting includes all the interest bearing products (i.e. on the
asset- and liability-side), it corresponds to the equity’s present value loss. As the shift-size is known (200
bp), one can compute something close to the equity duration.

11The following values (averages of the last five years) are used: NIMDE = 0.92%, ERDE = 7.88%,
and Dmod,DE = 4.65. The remuneration of risk for the passive trading strategy is 0.0031 (see Appendix
(A.10)).
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reasonably well described by a two-factor model, where one factor relates to the interest
level and one to the slope of the term structure. This finding is especially relevant in the
context of banking, where the planning horizon is often one year or longer. Furthermore,
we discuss these results for different eras during the past 50 years and show that the
two-factor model is especially relevant for the recent low-interest rate environment. We
apply our findings to banks and show how to construct stress scenarios that are consistent
in themselves and that are tailored to the banks’ business model. We furthermore analyse
the banks’ earnings from term transformation and estimate how extreme the increase in
the interest level was after the low-interest rate environment.

In addition, we show a new interpretation for the convexity and give closed-form so-
lutions for some interest bearing instruments. The expressions in case of a term structure
close to zero are often very handy and make it possible to have a first guess about the
effects as a consequence of shocks to the term structure. The simple model proposed may
thus give practitioners tools at hand to estimate broadly the effects of changes in the
interest rate environment on banks’portfolios.

A Appendix

A.1 Useful integrals
For δ > 0 and m > 0, we obtain:∫ m

0

exp(−δt)dt =
1− exp(−δm)

δ
(29)∫ m

0

t · exp(−δt)dt =
1

δ2
(1− (1 + δm) exp(−δm)) (30)∫ m

0

t2 · exp(−δt)dt =
1

δ3
(
2−

(
2 + 2δm+ δ2m2

)
exp(−δm)

)
(31)

∫ m

0

exp
(
−at− bt2

)
dt =

(
Φ

(√
2b ·m+

a√
2b

)
− Φ

(
a√
2b

))
·
√

π

b
· exp

(
a2

4b

)
(32)

where b > 0 and Φ (·) is the cumulative density function of the standard normal
distribution. The equality of both sides of the equation can be seen by using the following
relationship:

∫ e

f
1√
2π
exp (−1/2z2) dz = Φ(e)−Φ(f) and we replace −at− bt2 by −1/2z2+

a2/(4b) in the left-hand side of Equation (32), and we apply the substitution method,
using z(t) =

√
2b · t + a√

2b
, so that e = z(m) =

√
2b · m + a√

2b
, f = z(0) = a√

2b
and

dt = dz · 1√
2b

.
From the website WolframAlpha (2023), we obtain:
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∫ m

0

t · exp
(
−at− bt2

)
dt =

1− exp (−a ·m− b ·m2)

2b

− 1

2 · b3/2
·
√
π · a · exp

(
a2

4b

)
·

(
Φ

(√
2b·m+

a√
2b

)
− Φ

(
a√
2b

))
(33)

∫ m

0

t2exp
(
−at− bt2

)
dt =

exp (−m · (a+ b ·m))

4 · b5/2
· [
√
π
(
a2 + 2b

)
exp

(
(a+ 2bm)2

4b

)
·

(
Φ

(√
2b·m+

a√
2b

)
− Φ

(
a√
2b

))
−

√
b (a · (exp (m · (a+ b ·m))− 1) + 2 · b ·m)] (34)

∫ ∞

0

t2exp
(
−at− bt2

)
dt =

√
π (a2 + 2b) exp

(
a2

4b

)
Φ
(
− a√

2b

)
− a

√
b

4 · b5/2
(35)

and

∫ m

0

t3exp
(
−at− bt2

)
dt =

exp (−m · (a+ b ·m))

8 · b7/2

· [
√
b
((
a2 + 4b

)
· exp (m(a+ bm))− a2 + 2abm− 4b2m2 − 4b

)
−

√
π · a

(
a2 + 6b

)
exp

(
(a+ 2bm)2

4b

)
·

(
Φ

(√
2b·m+

a√
2b

)
− Φ

(
a√
2b

))
] (36)

where b > 0 and Φ (·) is the cumulative density function of the standard normal
distribution.

A.2 Constant cash flows
We consider the case of constant cash flows CF (t) = k in the future for 0 ≤ t ≤ m (and
zero after m). With the help of Equation (32), we can determine the present value of the
payment stream (for a normal term structure) as

PV |r(t) = α0 + α1 · t, α1 > 0
= k ·

(
Φ

(√
2α1 ·m+

α0√
2α1

)
− Φ

(
α0√
2α1

))
·
√

π

α1

· exp
(

α2
0

4α1

)
. (37)

where Φ(·) is the cumulative density function of the standard normal distribution.
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The derivative of the present value in Equation (37) is

∂PV

∂α0

= PV ·

 1√
2·α1

(
ϕ
(√

2α1 ·m+ α0√
2α1

)
− ϕ

(
α0√
2α1

))
Φ
(√

2α1 ·m+ α0√
2α1

)
− Φ

(
α0√
2α1

) +
α0

2 · α1

 . (38)

where ϕ(·) is the density function of the standard normal distribution. Using Equation
(33) for the slope sensitivity of the present value in Equation (37), we obtain:

∂PV

∂α1

= −k · exp (−m(α0 + α1m))

4 · α5/2
1

· [
√
π
(
α2
0 + 2α1

)
exp

(
(α0 + 2α1m)2

4α1

)
·

(
Φ

(√
2α1·m+

α0√
2α1

)
− Φ

(
α0√
2α1

))
−

√
α1 (α0 · (exp (m · (α0 + α1m))− 1) + 2α1m)] (39)

For a flat term structure at the time of the shock (α1 = 0), we obtain (See Equation
(11) in connection with Equation (29))

PV |r(t) = α0 + α1 · t, α1 = 0
= k · (1− exp(−α0m))/α0. (40)

For the derivative with respect to the interest level we get (using the Equations (12) and
(30)):

∂PV

∂α0 |r(t) = α0 + α1 · t, α1 = 0
= − k

α2
0

(1− (1 + α0m) exp(−α0m)) (41)

where m is the maturity.
Using the Equations (13) and (31), we obtain for the slope sensitivity:

∂PV

∂α1 |r(t) = α0 + α1 · t, α1 = 0
= − k

α3
0

(
2−

(
2 + 2α0m+ α2

0m
2
)
exp(−α0m)

)
(42)

Using the rule of l’Hôpital, we obtain the expressions of Table (2) (third row) for the
Equations (40) to (42).

A.3 Geometrically declining cash flows
We look at the case of a geometrically declinig distribution, i.e. CF (t) = k · exp(−λ · t),
where λ is the decay parameter. The present value can be calculated with the help of
Equation (32) (for m → ∞ , a = α0 + λ and Φ(−x) = 1− Φ(x)):

PV |r(t) = α0 + α1 · t, α1 > 0
= k · Φ

(
−α0 + λ√

2α1

)
·
√

π

α1

· exp
(
(α0 + λ)2

4α1

)
(43)
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where Φ(·) is the cumulative density function of the standard normal distribution.
The derivative of the present value in Equation (43) is

∂PV

∂α0

= −PV ·

 −1√
2·α1

ϕ
(

α0+λ√
2α1

)
Φ
(
−α0+λ√

2α1

) +
α0 + λ

2 · α1

 . (44)

where ϕ(·) is the density function of the standard normal distribution. Using Equation
(35) for the slope sensitivity of the present value in Equation (43), we obtain:

∂PV

∂α1

=

√
π ((α0 + λ)2 + 2α1) exp

(
(α0+λ)2

4α1

)
Φ
(
−α0+λ√

2α1

)
− (α0 + λ)

√
α1

4 · α5/2
1

(45)

Under the assumption of a flat term structure at the time of the shock, the present
value of this strategy is k/(λ + α0) (see Equation (29) for m → ∞ and a = α0 + λ) and
the negative duration is (see Equation (30) for m → ∞ and a = α0 + λ):

∂PV

∂α0 |r(t) = α0 + α1 · t, α1 = 0
= − k

(λ+ α0)2
(46)

and the slope sensitivity is (see Equation (31) for m → ∞ and a = α0 + λ):

∂PV

∂α1 |r(t) = α0 + α1 · t, α1 = 0
= − 2k

(λ+ α0)
3 (47)

A.4 Passive trading strategy
The cash-flow CF in time t is (when the trading strategy in t0 = 0 is interrupted; for
0 < t ≤ m, after t = m, the cash-flow is zero):

CF (t) =
1

m
+

m− t

m
· cPari (48)

where cpari = (1− exp (−α0m− α1m
2)) /

∫ m

0
exp (−α0t− α1t

2) dt is the coupon of a
par-yield bond (The integral can be solved using Equation (32) to obtain a closed-form
solution). The present value is (using the term structure model of Equation (5) and
Equations (32) and (33)):

PV =

(
1

m
+ cPari

)
·
∫ m

0

exp
(
−α0t− α1t

2
)
dt− cPari

m

∫ m

0

t · exp
(
−α0t− α1t

2
)
dt

=

(
1

M
+ cPari

)
·
(
Φ

(√
2α1 ·M +

α0√
2α1

)
− Φ

(
α0√
2α1

))
·
√

π

α1

· exp
(

α2
0

4α1

)
− cPari

m
· exp (−m · (α0 + α1 ·m))

4 · b3/2
·
√
π · a · exp

(
(α0 + 2α1m)2

4α1

)
·

(
Φ

(√
2α1·m+

α0√
2α1

)
− Φ

(
α0√
2α1

))
− cPari

m
· (exp (m · (α0 + α1 ·m))− 1)

2α1

(49)
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For the sensitivities with respect to the level and the slope, we obtain (closed-form
solutions can be obtained using the Equations (33), (34) and (36)):

∂PV

∂α0

= −
(

1

m
+ cPari

)
·
∫ m

0

t · exp
(
−α0t− α1t

2
)
dt+

cPari

m

∫ m

0

t2exp
(
−α0t− α1t

2
)
dt

(50)

∂PV

∂α1

= −
(

1

m
+ cPari

)
·
∫ m

0

t2exp
(
−α0t− α1t

2
)
dt+

cPari

m

∫ m

0

t3exp
(
−α0t− α1t

2
)
dt

(51)
Now, we turn to the case of a flat term structure at the time of shock. The present

value of a default-free normal bond given the linear term structure model r(t) = α0+α1 · t
of Equation (5) is:

PV =

∫ m

0

c · exp
(
−α0t− α1t

2
)
dt+ exp

(
−α0m− α1m

2
)

(52)

with c as the coupon and m as the maturity. The derivation with respect to the level
α0 at α1 = 0 is:

∂PV

∂α0 |r(t) = α0 + α1 · t, α1 = 0
= −c

∫ m

0

t · exp (−α0t) dt−Mexp (−α0m) (53)

Applying (30), we get

∂PV

∂α1 |r(t) = α0 + α1 · t, α1 = 0
= − c

α2
0

+
c

α2
0

·exp (−α0m)+
c ·m
α0

·exp (−α0m)−m·exp (−α0m)

(54)
For par-yield bonds, we have α0 = c and we obtain:

dPV 0 :=
∂PV

∂α0 |r(t) = α0 + α1 · t, α1 = 0
= − 1

α0

· (1− exp (−α0m)) (55)

For the passive trading strategy, we obtain:

dPV 0 :=
1

m

∫ M

0

dPV 0(t)dt = − 1

α2
0m

· (α0m− 1 + exp (−α0m)) (56)

which corresponds to the expression in Memmel (2011).
By applying the rule of l’Hôpital twice, we obtain for a small interest level α0 (which

is shown in Table (2)):

lim
α0→0

dPV 0 = −1

2
m (57)

Similarly to Equation (53), we can calculate the derivation with respect to the steep-
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ness α1 at α1 = 0 and get:

∂PV

∂α1 |r(t) = α0 + α1 · t, α1 = 0
= −c

∫ ´m

0

t2 · exp (−α0t) dt−m2exp (−α0m) (58)

Applying (31), we obtain

∂PV

∂α1 |r(t) = α0 + α1 · t, α1 = 0
= − 2c

α3
0

+
2c

α3
0

· exp (−α0m) +
2α0c ·m

α3
0

· exp (−α0m)

+
α2
0cM

2

α3
0

· exp (−α0m)−m2exp (−α0m) (59)

For par-yield bonds, we have α0 = c , i.e. the flat interest level α0 corresponds to the
coupon c and we obtain:

dPV 1 :=
∂PV

∂α1 |r(t) = α0 + α1 · t, α1 = 0
= −2

1− (1 + α0m) · exp (−α0m)

α2
0

(60)

For the passive trading strategy, we obtain:

dPV 1 :=
1

m

∫ m

0

dPV 1(t)dt = − 2

α3
0m

(α0m− 2 + (2 + α0m) exp(−α0m)) (61)

By applying the rule of l’Hôpital several times, we obtain for a small interest level α0

(which is shown in Table 2):

lim
α0→0

dPV 1 = −1

3
m2 (62)

A.5 Normal bond
The linear modeling of the term structure from above makes it possible to derive a closed-
form solution for the present value of a (bullet) bond given a term structure with strictly
positive slope (α1 > 0) (see Equation (52) in connection with (32)):

PV |r(t) = α0 + α1 · t, α1 > 0
= c ·

(
Φ

(√
2α1 ·m+

α0√
2α1

)
− Φ

(
α0√
2α1

))
·
√

π

α1

· exp
(

α2
0

4α1

)
+ exp

(
−α0m− α1m

2
)

(63)

with Φ(·) as the cumulative density function of the standard normal distribution, c as
the coupon and M as the maturity (the principal is 1). Using Equation (38) and Equation
(39), we can determine the derivative of Equation (63) with respect to the level (α0) and
the slope (α1):
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∂PV

∂α0

= −c ·
(
Φ

(√
2α1 ·m+

α0√
2α1

)
− Φ

(
α0√
2α1

))
·
√

π

α1

· exp
(

α2
0

4α1

)

·

 1√
2·α1

(
ϕ
(√

2α1 ·m+ α0√
2α1

)
− ϕ

(
α0√
2α1

))
Φ
(√

2α1 ·m+ α0√
2α1

)
− Φ

(
α0√
2α1

) +
α0

2 · α1


− m · exp

(
−α0m− α1m

2
)

(64)

∂PV

∂α1

= −c · exp (−m(α0 + α1m))

4 · α5/2
1

· [
√
π
(
α2
0 + 2α1

)
exp

(
(α0 + 2α1m)2

4α1

)
·

(
Φ

(√
2α1·m+

α0√
2α1

)
− Φ

(
α0√
2α1

))
−

√
α1 (α0 · (exp (m · (α0 + α1m))− 1) + 2α1m)]

− m2exp
(
−α0m− α1m

2
)

(65)

If we assume a flat term structure at the time of the shock (see Equation (40), we obtain:

PV |r(t) = α0 + α1 · t, α1 = 0
= c · (1− exp(−α0m))/α0 + exp (−α0m) (66)

The level and slope sensitivities are given in the Equations (54) and (59). Using the rule
of l’Hôpital for the part of the coupon payments, one obtains the expressions in the last
row of Table 2.

A.6 Example: Normal bond
We assume that the term structure model of Equation (5) is the true one, we apply this
model (see Equations (63), (64) and (65)) to a bond at the average values for the level
and the slope (see Table 3) that is line with the underlying of the Euro-BUND-future
contract, i.e. m = 10 years and coupon c = 6%. The values and the relative errors when
using the approximations of Table 2 are displayed in Table 8.

A.7 Tests statistics
Let pi with i = 1, 2, 3 be the probabilities that the optimal model Xt = (Xt,1, Xt,2, Xt,3)
in t = 1, ..., T consists of i factors, where Xt,i can take either the value 0 or 1 (for the
best performing one). For instance, if in time t = 10 the two factor model is the optimal
one, i.e. performs best, then X10,2 = 1 and X10,1 = X10,3 = 0. As the sum of Xt is
multinomially distributed,12 we have:

cov (Xt,i, Xt,j) =

{
pi · (1− pj)

−pipj

∀i = j

∀i 6= j
(67)

12see, for instance, Weisstein (2024)
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Table 8: Example: Normal bond

Term structure Present
value

Level shift Slope shift
Measure Abs. Rel. Abs. Rel.

Normal (α1 > 0) Value 1.088 8.265 7.599 74.605 68.595

Flat (α1 = 0) Value 1.195 9.286 7.770 84.508 70.716
Rel. error 9.9% 12.4% 2.3% 13.3% 3.1%

Flat and zero
(α0 = 0, α1 = 0)

Value 1.600 13.000 8.125 120.000 75.000
Rel. error 47.1% 57.3% 6.9% 60.8% 9.3%

This table shows the present value and the (negative) derivatives with respect to level and slope for a
normal bond (maturity M = 10 years, coupon c = 6%, principal = 1, which is line with the underlying
bond of the Euro BUND future contract) at the mean values of Table 3 (term structure model of Equation
(5) with level: 3.67% and slope: 13.52 bp/year). “Abs.” means the (negative) deviation; “Rel.” means
the (negative) deviation relative to the present value. “Rel. error” means the relative error, where the
true term structure model is the linear one of Equation (5).

Accordingly and taking account of the central limit theorem, we have
√
T ((p̂i − p̂j)− (pi − pj)) −→ N (0; pi · (1− pi) + 2pipj + pj · (1− pj)) (68)

with p̂i = 1/T ·
∑T

t=1Xti .
If the null-hypothesis is pi = pj, we obtain:

√
T ((p̂i − p̂j)) −→ N (0; 2pi) (69)

For the empirical implementation, we replaced the variance 2pi in the distribution (69)
by the sum p̂i + p̂j.

Note that T means the number of non-overlapping observations in the time dimension.
For instance, if we look at yearly changes, the number of non-overlapping observations
is not 588 monthly observations (from January 1975 to December 2023), but 49 yearly
observations (from 1975 to 2023).

A.8 Derivation of the conditional expectation
We assume that the term structure model in Equation (7) is valid and that the changes
in the level (β0) and in the slope (β1) of the term structure are normally distributed. We
write down the unconditional distribution (where we assume that the expectations of the
unconditional level and slope change are zero, see Table 3 for an empirical justification):

β0

β1

4r (m0)
4r (m1)

 ∼ N




0
0
0
0

 ;


σ2
0 σ01 σ04r0 σ04r1

σ01 σ2
1 σ14r0 σ14r1

σ04r0 σ14r0 σ2
4r0 σ4r04r1

σ04r1 σ14r1 σ4r04r1 σ2
4r1


 (70)

with 4r (mi) = β0 + mi · β1, σ2
4ri = σ2

0 + m2
i · σ2

1 + 2 · mi · σ01, σ04ri = σ2
0 + mi · σ01,

σ14r0 = σ01+mi ·σ2
1 and σ4r04r1 = σ2

0+(m0 +m1)σ01+m0m1σ
2
1. All interest rate changes

are normally distributed if the linear term structure model (7) applies and the level and
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slope changes β0 and β1 are jointly normally distributed. In this case, we can make use
of an approach which was inspired by an approach of Black and Litterman (1992). Using
the result for the expectation of condition normal distributions13 E (4r (m1) |4r (m0)) =
σ4r04r1/σ

2
4r0 · 4r (m0), we can write:

E (4r (m1) |4r (m0)) =
σ2
0 + (m0 +m1)σ01 +m0m1σ

2
1

σ2
0 +m2

0 · σ2
1 + 2 ·m0 · σ01

· 4r (m0) (71)

which corresponds - after some transformations - to Equation (23).

A.9 Change parameters
The change in present value is the weighted sum of the changes (β = (β0, β1)

′) in the term
structure where the weights are the derivatives of the present value according to Table 2,
i.e. ∂PV/∂α0 and ∂PV/∂α1. To see this, we calculate the total differential

4PV =
∂PV

∂α0

· 4α0 +
∂PV

∂α1

· 4α1

= γ′β (72)

with γ = (∂PV/∂α0, ∂PV/∂α1)
′ and β = (4α0,4α1)

′. We assume that the changes in
the term structure are normally distributed

β ∼ N (0,Σ) (73)

then the following expression is chi-squared distributed with the rank of the covariance
matrix Σ as the degrees of freedom (See, for instance, Greene (2012)):

β′Σ−1β ∼ χ2(rg(Σ)) (74)
For rg(Σ) = 2 (as in our case), we can establish the critical value (cr) as a closed-form
expression, namely as cr = −ln (p) · 2 where p is the significance level14 (see Leemis and
McQueston (2008) for the relationship of a chi-squared distribution with two degrees of
freedom and the exponential distribution with the parameter λ = 1

2
).

We look for extreme losses and, at the same time, the critical value (cr) must not be
exceeded. The Lagrangian function is:

L = γ′β + λ ·
(
β′Σ−1β − cr

)
(75)

Calculating the derivative with respect to β, we obtain

∂L

∂β
= γ + 2 · λΣ−1β (76)

13See, for example, Greene (2012).
14In this case, the expression cr gives the critical value that a chi-squared distributed random variable

with two degrees of freedom exceeds this critical value with probability p. This probability is just the
complement to 100% of distribution function (cdf); therefore the quantile function (in the case of two
degrees of freedom) is q = −2 · ln (1− p).
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Setting Equation (76) to zero and solving it for β, we get:

β∗ =
1

2 · λ
Σγ (77)

which corresponds to the Equations (24) and (25) for the case of a dimension of rg(Σ) = 2.
Setting Equation (77) into the constraint cr = β′Σ−1β, we obtain:

λ2 = − 1

4 · cr
γ′Σγ (78)

Equation (78) has two solutions, one leading to the maximum and one to the minimum.
The solution leading to the minimum in the case of a dimension of rg(Σ) = 2 is given in
Equation (26).

With the help of Equation (72) in which we set in the optimized changes of Equation
(77) (and the λ of Equation (26)), we can determine the Value-at Risk (VaR) of the
change in present value (4PV ). Note that this VaR differs from the usual VaR because
there are two (instead of one) random variables and that to achieve unambiguousness we
have to make the additional assumption of maximizing losses (see the Equations (75ff)).
Note as well that the sensitivities γ0 and γ1 depend on the maturity m (see Table 2).

A.10 Earnings from term transformation
According to Equation (5), the return ret(m) in excess of the risk-free short-term rate is

ret(m) = r(m)− r(0)

= α0 + α1 ·m− α0 (79)

From Table 3, we obtain the average value for the steepness of the term structureα1 as
13.52 bp per year and a duration D(TS(m))) = 4.35 (Equation (50) at the average values
of Table 3 and m = 10 years, which yields a remuneration of risk of rr = (0.001352 ·
10)/4.35 = 0.0031. To derive a bank’s (implicit) income from term transformation, we
assume that the bank’s maturity mismatch results from investing in the passive trading
strategy, which yields a scaling factor sci of:

sci =
Dmod,i · Eqi
D(TS(m))

(80)

where Dmod,i is the modified equity duration of bank i and Eqi is its equity in euro.

E (NIITT,i) = sci · ret(m)

=
Dmod,i · Eqi
D(TS(m))

· ret(m)

= TAi ·
Eqi
TAi

·Dmod,i ·
ret(m)

D(TS(m))
(81)

where TAi denotes bank i’s total assets. If we divide Equation (81) by bank i’s net
interest income NIIi, we obtain Equation (27).
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A.11 Extreme event
We assume that the distribution (74) is valid and the special case just underneath applies
(i.e. rg(Σ) = 2, see also Footnote 14). Then:

Pr
(
β′Σ−1β ≤ −2 · ln(1− p)

)
= p

Pr

(
1− exp

(
−β′Σ−1β

2

)
≤ p

)
= p (82)

Therefore, the expression 1 − exp
(
−β′Σ−1β

2

)
for rg(Σ) = 2 is standard uniformly dis-

tributed (U(0, 1)), i.e.

1− exp

(
−

1
2
β2
0σ

2
1 +

1
2
β2
1σ

2
0 − β0β1σ01

σ2
0σ

2
1 − σ2

01

)
∼ U(0, 1) (83)

where the matrix expressions Σ =

(
σ2
0 σ01

σ01 σ2
1

)
and β = (β0, β1)

′ are replaced by the

corresponding scalars. This is given in Equation (28), where the relationship is used that
1−X ∼ U(0, 1) if X ∼ U(0, 1).15
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