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Abstract
We investigate a bracketing property that purports to yield upper- and lower bounds on the treatment 
effects obtained from a fixed effects- and lagged dependent variable model. Referencing both analytical 
results and a Monte Carlo simulation, we explore the conditions under which the bracketing property 
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unobserved heterogeneity or feedback effects from a lagged dependent variable (LDV). However, when the 
DGP is characterized by both features simultaneously, we find that bracketing of the treatment effect only 
holds under certain conditions – but not in general. Practitioners can nevertheless obtain the lower bound 
estimate by referencing a model that includes both fixed effects and a LDV. While the Nickell bias in the 
coefficient of the LDV is known to be of order 1/T, we show that the Nickell-type bias in the estimator of the 
treatment effect is of order 1/T   2.
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1. Introduction

“So what’s an applied guy to do?” Angrist and Pischke (2009, p. 245) pose this question in
their discussion of the choice between the fixed-effects- and the lagged-dependent-variable
model, addressing a dilemma that often confronts analysts of panel data. The dilemma
comes down to this: The fixed-effects (FE) estimator, while controlling for unobserved,
time-invariant heterogeneity that may be correlated with the regressors, relies on strict
exogeneity.1 One violation of this assumption is given by so-called feedback effects, wherein
the past realization of the dependent variable affects the contemporaneous value of an
explanatory or treatment variable. At the same time, while accommodating such feedback
effects, the lagged-dependent-variable (LDV) estimator assumes that the unobserved
heterogeneity is uncorrelated with the explanatory variables. For many causal questions,
the assumptions underpinning either of the procedures are unlikely to be plausible (Angrist
and Pischke, 2009, p. 245).

Drawing on the discussion in Guryan (2001), Angrist and Pischke (2009) suggest a way
out of the dilemma by exploiting a bracketing property that is based on both the FE and
the LDV estimates and allows practitioners to gauge the robustness of any estimate. The
bracketing property is summarized by Guryan (2001, p. 55-56) as follows: If treatment
is selected positively either on fixed characteristics or on a lagged dependent variable,
then the FE estimator will yield a lower bound estimate while the LDV estimator will
yield an upper bound estimate. Conversely, if treatment is selected negatively either on
fixed characteristics or on a lagged dependent variable, then the FE estimator will yield
an upper bound estimate while the LDV estimator will yield a lower bound estimate.
The bracketing property thus suggests that by estimating both FE and LDV models,
practitioners can bracket the causal effect of interest. Ding and Li (2019) have shown that
this bracketing property of FE and LDV models also extends to general nonparametric
settings.

The bracketing property has been increasingly applied in empirical papers in political
science. For example, it is used by Keele et al. (2021), Tomberg et al. (2021), and Marsh
(2023) to analyze voter behavior and by Keele et al. (2013) to analyze public spending. Yet
it has also been used in other disciplines, for example in economics to analyze labor markets
(Beckmann and Kräkel, 2022; Falk et al., 2018; Kampkötter and Sliwka, 2018), in biology
to analyze the effect of biodiversity on the functioning of ecosystems (Dee et al., 2023),
and in psychology by von Hippel (2022) to analyze the effect of replications on citations.2
In addition, Angrist and Pischke’s (2009) as well as Ding and Li’s (2019) discussion of
the properties of FE and LDV models is also referred to in the recent methodological
syntheses of Roth et al. (2023) and Arkhangelsky and Imbens (2024).

The purpose of this article is to take a closer look at the conditions under which the brack-
eting property holds, both analytically and using a Monte Carlo simulation. Specifically,
we demonstrate that the treatment effect cannot be bracketed when the unobserved hetero-

1Strict exogeneity is summarized by Wooldridge (2010) as E(x‘isεit|αi) = 0, s, t = 1, ..., T , i.e., the
explanatory variable (x) is uncorrelated with all past and future disturbances (ε), conditional on fixed
effects (α).

2We note that many of these studies do not rely exclusively on bracketing, but employ it as one of several
identification strategies.
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geneity is correlated with the regressors and the data generation process is characterized
by feedback effects. We therefore conclude that the bracketing property may afford an
unfounded picture of the true bounds and should be used with caution, particularly when
the assumptions underpinning both models are questionable. In this instance, we advocate
estimating an additional model that includes both fixed effects and a lagged dependent
variable. Although this model does not allow for bracketing, the analytical results as well
as the Monte Carlo evidence suggest that it can serve to identify the lower bound estimate
of the treatment effect. Moreover, while the Nickell bias in the coefficient of the LDV is
known to be of order 1/T , we derive an expression for the “secondary” Nickell bias in the
estimator of the treatment effect that is shown to be of order 1/T 2 in our setup.

2. Background and Research Question

Our analysis picks up on the suggestion of Ding and Li (2019), who conclude with the open
question of how the bracketing property would extend to a model that incorporates both
fixed effects and a lagged dependent variable (we refer to this as the “FE-LDV model”).3
Although the FE-LDV model simultaneously controls for time-invariant unobserved het-
erogeneity and the feedback effect, its estimation requires stronger assumptions than either
the FE or LDV models individually, a point recognized by Ding and Li (2019).

Indeed, the appeal of the bracketing property lies in its inherent promise to be an alternative
to estimating the FE-LDV model, for which estimation will suffer from “Nickell bias” if the
number of time periods is fixed (Nickell, 1981).4 Under these circumstances, a Generalized
Method of Moments approach in the style of the Arellano and Bond (1991) estimator
(AB estimator) is a common way to obtain a consistent estimate of the treatment effect,
τ .5 However, as the AB estimator instruments the lagged dependent variable, yi,t−1,
with deeper lags of yit, the method requires the availability of sufficient time periods.
Additionally, the deeper lags of yit need to be strong instruments for yi,t−1, which may
render the AB estimator inapplicable in many cases. Leszczensky and Wolbring (2022)
discuss several of the challenges in applying the AB estimator, including downward bias in
the face of a large number of moment conditions (Hsiao, 2022), weak instruments problems
(Bun and Windmeijer, 2010), and poor finite-sample performance (Moral-Benito et al.,
2019).

The bracketing property afforded by separate estimation of FE and LDV models avoids
these complexities, and covers the circumstance when unobserved heterogeneity or feedback

3While Ding and Li (2019) employ a binary treatment and a two-period difference-in-differences estimator,
we use a continuous treatment variable xit and, similar to Angrist and Pischke (2009), a fixed-effects
estimator with multiple time periods. While this difference does not matter for the bracketing property
in general, we discuss in Section 7 a difference in the testability of the underlying assumptions between
Ding and Li’s (2019) and our setting.

4Nickell (1981) bias describes the bias that arises when a lagged dependent variable is included in a fixed
effects model. In this case, the demeaned error term will be correlated with the lagged dependent
variable, which leads to a bias.

5The cross-lagged panel model with FE (Moral-Benito, 2013; Moral-Benito et al., 2019) is another
approach for obtaining consistent estimates. Leszczensky and Wolbring (2022) provide a comprehensive
overview of alternative methods for addressing causal questions with panel data.
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effects of the lagged outcome on the treatment are deemed threats to identification. This
cuts to the issue raised by Ding and Li (2019): Their analysis, along with that of Guryan
(2001) and Angrist and Pischke (2009), applies to the situation in which either the
assumption underlying the FE model or the assumption underlying the LDV model is
fulfilled. But given a concern for the validity of each assumption individually, the question
arises as to the consequences for bracketing when the assumptions are simultaneously
violated.

3. Biases in Case of Feedback and Endogeneity

An insightful case in which the assumptions of the FE model and the LDV model are
violated is given by a DGP in which both the outcome variable y and the explanatory
variable of interest x are functions of individual time-invariant factors αi, i.e. fixed effects:

yit = δY αi + τxit + εit, (1)

where xit depends on the past realization yi,t−1 of the outcome y, thereby constituting a
violation of the strict exogeneity assumption due to a correlation between xit and εi,t−1:

xit = δXαi + ρyi,t−1 + uit, (2)

for i = 1, . . . , N and t = 1, . . . , T . The effect of x on y, captured by τ , is the main
parameter of interest. The coefficient ρ captures what we term the “feedback effect,” and
the condition |τρ| < 1, together with suitable choice of the initial conditions yi0, ensures
stationarity, which we assume throughout our analysis:

Assumption 1 Let yit and xit, i = 1, . . . , N , t = 1, . . . , T , be generated as in (1) and
(2), where |τρ| < 1 and the initial condition is given as

yi0 = (δY + τδX) αi

1 − τρ
+ τui0 + εi0√

1 − (τρ)2
.

To focus on the essential aspects, the individual units are sampled independently but are
distributed heterogeneously as implied by the following assumption.6

Assumption 2 The disturbances εit ∼ (0, σ2
εi) and uit ∼ (0, σ2

ui), as well as the unobserved
effects αi ∼ (µα, σ2

α), are mutually independent sequences of heterogeneous independent

6The assumption is fairly general considering the type of data we model. Like the usual i.i.d assumption,
it implies independent units – while allowing for different, unit-specific as well as time-specific specific
distribution shapes. Moreover, it allows for different error variances across the panel. In exchange, we
require a moment condition somewhat less general than finite variances: the imposed uniform (in i)
moment boundedness allows for the application of suitable laws of large numbers (see the Technical
Appendix C.1), and can best be interpreted in terms of an overall controlled propensity of the error
distributions to generate only few large outliers.
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random variables with uniformly bounded moments of order 2 + δ for some δ > 0, where
1
N

∑N
i=1 σ2

ui → σ̄2
u and 1

N

∑N
i=1 σ2

εi → σ̄2
ε as N → ∞.

It seems plausible that the simultaneous presence of fixed effects and a feedback effect as
described in Equations (1) and (2) would emerge frequently. One example of this is the
analysis of electoral outcomes: Much research is concerned with the question of how the
regional variation of a factor xit affects regional electoral outcomes (yit), where the DGP
may be subject to both feedback effects and unobserved heterogeneity. A feedback effect
occurs when xit – say, for example, regional unemployment or demographic composition –
depends on past electoral outcomes (yi,t−1) and thus on the existing political majorities
in the time period between t − 1 and t. Unobserved heterogeneity may be manifested in
the form of unobservable time-constant factors, such as cultural or geographical features.
In fact, three of the research papers mentioned in the introduction, in which FE and
LDV models are estimated and reference is made to the bracketing property, are directly
concerned with the analysis of electoral outcomes: Marsh (2023) analyzes the effects of
traumatic events such as arson, mass shootings or natural disasters on voter turnout, Keele
et al. (2021) analyze the impact of voting restrictions on voter registration, and Tomberg
et al. (2021) analyze the impact of the presence of refugees on election outcomes.

If fixed effects and a feedback effect are simultaneously present, the estimate of τ from
fitting either a FE model ( ...

y it = τ
...
x it + error with ...· indicating within-transformation

of the respective variable, e.g., ...
y it = yit − 1

T

∑T
t=1 yit) or a LDV model (yit = intercept +

ωyi,t−1 + τxit + error) will be biased. As derived for our setup in Appendix A.2, these
biases (denoted by BF E

τ and BLDV
τ ) are analytically tractable and can be simplified as

summarized in the following

Proposition 1 Under Assumptions 1 and 2, as N → ∞, we have

BF E
τ = −ρ

1 + ρτ

T

σ̄2
ε

σ̄2
u + ρ2σ̄2

ε

+ O
( 1

T

)
, (3)

and

BLDV
τ = δXδY σ2

α(τ 2σ̄2
u + σ̄2

ε)
(σ̄2

u + δ2
Xσ2

α)(ρ2σ̄2
u + σ̄2

ε) + σ̄2
uσ2

α
1+τρ
1−τρ

(δY + τδX)2 . (4)

where O(·) denotes the order of magnitude.7

Proof: See Sections A.2.3 and A.2.4 in the Appendix.

Let us for instance take the approximation in Equation (3) at face value. For the bracketing
property to hold in this case, it is necessary that sign(BF E

τ ) /= sign(BLDV
τ ), i.e., the signs

of BF E
τ and BLDV

τ must always be in opposite directions for all combinations of different
values for ρ, τ, σ̄2

ε , σ̄2
u, σα, δX , and δY in the DGP. Yet, it is clearly visible that the sign of

7Therefore, O(1/T ) stands for a vanishing quantity as T increases, and the approximation using just the
leading term increases in precision as T increases.
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BF E
τ depends on the sign of ρ, while the sign of BLDV

τ depends on the sign of δX × δY .
Thus, as illustrated in Table 1, the bracketing property only holds if ρ and δX × δY have
the same signs. As discussed in Section 7, whether this is the case is likely to be difficult
to determine in most practical applications.

If the signs are the opposite, then the bracketing property does not hold, i.e., both the FE
and the LDV estimates of τ lie above or below the true value of τ . This means that the
bracketing property fails given a DGP in which y and x are positively selected on the fixed
effect αi while the feedback effect is negative, i.e., the treatment is negatively selected on
past realizations of the outcome. Moreover, the bracketing property fails given a DGP in
which y is positively selected on the fixed effect, while x is negatively selected on the fixed
effect and the feedback effect is positive.

Table 1: Illustration of the conditions under which the bracketing property holds, i.e.,
sign(BF E

τ ) /= sign(BLDV
τ )

ρ δX × δY sign(BF E
τ ) /= sign(BLDV

τ )

+ + Yes
− − Yes
− + No
+ − No

The following section confirms the predictions of Table 1 using Monte Carlo simulations.

4. Simulation Evidence

To illustrate these theoretical results, we conduct a Monte Carlo Simulation that demon-
strates the performance of the FE and LDV estimators given a DGP containing fixed
effects as well as feedback effects. As a comparison, we also investigate the performance of
an OLS estimator (yit = intercept + τxit + error) as well as a FE-LDV estimator that
includes both fixed effects and a lagged dependent variable (ÿit = ωÿi,t−1 + τ ẍit + error)8,
which is known to suffer from Nickell bias.

As a starting point, we parameterize the DGP described by Equations (1) and (2) as follows:
The fixed effect αi is generated as a random variable drawn from a normal distribution
with mean = 0 and standard deviation = 1 [N(0, 1)] once for each individual and remains
constant over time. Then, ε, the error term affecting y, and u, the error term affecting x,
are both i.i.d. and drawn from a N(0, 1) distribution. The starting values for the dynamic
process are i.i.d. draws from a N(0, 1) distribution. Following Chudik and Pesaran (2019),
we discard the first 50 simulated periods to avoid an influence of the starting values on

8As with the FE estimator, ·̈ symbolizes a within-transformation here; unlike the FE estimator, the mean
values required for the transformation are formed here starting from period t=2 instead of t=1, since
in common empirical applications there is no observation for the lagged dependent variable in the first
period.
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the simulation results, such that y0i may be seen as being drawn from the stationary
distribution.

Our parameterization of the DGP is intentionally very simplified to make the simulation
results as comprehensible as possible. Therefore, the simulation results can only be
interpreted in terms of the presence and direction of the bias. The reader should not
over-interpret the magnitude of the bias in the simulated estimators, as the magnitude
depends strongly on the underlying parameterization for which there is an infinite number
of different possible combinations.

4.1. Evidence for Bracketing

To illustrate the bracketing relationship, we simulate scenarios in which either the as-
sumptions underlying the LDV model or those underlying the FE model are fulfilled,
with the results of these simulations being reported in Tables 2 and 3. Scenarios A to D
in Table 2 are based on DGPs that contain a feedback effect of lagged outcomes yi,t−1
on contemporaneous xit, but there are no fixed effects. In this case, the LDV and OLS
estimators are unbiased, as they only require contemporaneous exogeneity of x, which
holds here. In contrast, the estimate of the FE model is biased owing to the violation of
strict exogeneity due to the feedback effect. The estimate of the FE-LDV model is also
biased due to two channels: the standard Nickell bias of order 1/T that applies to the
estimator of the autoregressive coefficient, and, as we show below, a secondary Nickell bias
of order 1/T 2 that applies to the coefficients of the remaining explanatory variables.

Table 2: Monte Carlo Simulation results if the LDV model is correct, that is, ρ /= 0
and there are no fixed effects: δX = 0 = δY

Data generating process Estimates of τ
Scenario τ δX ρ δY OLS FE LDV FE-LDV Bracketing

A 1.00 0.00 0.50 0.00 1.00 0.89 1.00 0.95 Yes
B 1.00 0.00 -0.50 0.00 1.00 1.03 1.00 0.99 Yes
C -1.00 0.00 0.50 0.00 -1.00 -1.03 -1.00 -0.99 Yes
D -1.00 0.00 -0.50 0.00 -1.00 -0.89 -1.00 -0.95 Yes

Results based on Monte Carlo Simulations with 500 repetitions, 300 individuals and 6 time periods. The data generating
process is defined by Equations (1) and (2). The variables αi, εit, uit and yi1 are all i.i.d. draws from a normal distribution
with mean = 0 and standard deviation = 1. To mitigate the potential influence of the starting value yi1 on the simulation
results, we simulate 50 additional time periods and discard the first simulated 50 periods prior to estimating τ .

Next, the data underlying Scenarios E to H is generated by a DGP that includes a fixed
effect that simultaneously influences y and x. As expected, the OLS estimator is biased
in all cases, as ignoring fixed effects leads to omitted variable bias (Table 3). The LDV
model suffers from the same bias. Conversely, the FE model eliminates this bias and yields
correct estimates of the treatment effect. The FE-LDV model again suffers from Nickell
bias.
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Table 3: Monte Carlo Simulation results if the fixed effects model is correct, that is,
δX /= 0 /= δY and there is no feedback effect: ρ = 0

Data generating process Estimates of τ
Scenario τ δX ρ δY OLS FE LDV FE-LDV Bracketing

E 1.00 0.50 0.00 0.50 1.20 1.00 1.14 0.98 Yes
F 1.00 -0.50 0.00 0.50 0.80 1.00 0.80 0.98 Yes
G -1.00 0.50 0.00 0.50 -0.80 -1.00 -0.80 -0.98 Yes
H -1.00 -0.50 0.00 0.50 -1.20 -1.00 -1.14 -0.98 Yes

See notes to Table 2.

To exemplify the validity of the bracket relationship, we employ the definition given by
Angrist and Pischke (2009, p. 246) and focus on the results of Scenario B presented in
Table 2 and the results on Scenario F reported in Table 3. According to Angrist and
Pischke (2009), for positive treatment effects, τ > 0, the bracketing property reads as
follows: If the LDV-model ”is correct, but you mistakenly use fixed effects, estimates
of a positive treatment effect will tend to be too big. On the other hand, if [the fixed
effects model] is correct and you mistakenly estimate an equation with lagged outcomes,
[...] estimates of a positive treatment effect will tend to be too small.” This definition is
summarized in the following Table 4:

Table 4: Illustration of the direction of biases that lead to the bracketing property as
described by Angrist and Pischke (2009)

LDV Model FE Model Estimated Model Bias if τ > 0

correct incorrect FE model +
incorrect correct LDV model -

Given the treatment effect estimate τ̂LDV = 0.80 resulting from mistakenly estimating a
LDV model while the FE model is correct (Scenario F in Table 3), and the alternative
estimate τ̂F E = 1.04 resulting from mistakenly estimating a FE model while the LDV
model is correct (Scenario B in Table 2), the bracketing property holds, as claimed by
Angrist and Pischke (2009):

τLDV = 0.80 < τ = 1 < τ̂F E = 1.04.

We focused in this exemplary illustration of the bracketing property on scenarios in which
the feedback effect is negative (Scenario B) or treatment is negatively selected on the
fixed effect (Scenario F), because Angrist and Pischke (2009) use an example in which the
treatment is a government-sponsored training program that targets individuals with poor
labor market outcomes in the past. If contemporaneous labor market outcomes are the
outcome variable of interest, such a selection process is represented by a negative feedback
effect (ρ < 0, Scenario B) or a negative selection of treatment on unobservable ‘ability’
(δX < 0, Scenario F), which may subsume factors such as intelligence that are largely
constant across reasonable observation windows.
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A more general definition of the bracketing property is provided in Guryan (2001, p. 55),
who explicitly specifies how the bracketing property depends on the signs of ρ and δX : “if
treatment is positively (negatively) selected on lagged outcomes, [that is, if ρ > 0 (ρ < 0),]
the difference in-differences [or the fixed effects] estimator produces negatively (positively)
biased estimates of the treatment effect.” Moreover, “if treatment is positively (negatively)
selected on fixed characteristics, [that is, if δX > 0 (δX < 0),] the estimator that controls
for lagged outcomes produces positively (negatively) biased estimates of the treatment
effect.”

Based on this summary in Guryan (2001), the bracketing property is entirely confirmed
by our simulation results, as presented in the following Table 5:

Table 5: Illustration of how the bracketing property manifests itself in our simulation
results

Scenario (Parameters) Lower bound τ Upper bound Scenario (Parameters)

τ > 0 : A (ρ > 0, δX = 0) τ̂F E = 0.89 τ = 1 τ̂LDV = 1.14 E (ρ = 0, δX > 0)
F (ρ = 0, δX < 0) τ̂LDV = 0.80 τ = 1 τ̂F E = 1.03 B (ρ < 0, δX = 0)

τ < 0 : C (ρ > 0, δX = 0) τ̂F E = -1.03 τ = −1 τ̂LDV = -0.80 G (ρ = 0, δX > 0)
H (ρ = 0, δX < 0) τ̂LDV = -1.14 τ = −1 τ̂F E = -0.89 D (ρ < 0, δX = 0)

4.2. Evidence against Bracketing if the FE-LDV Model holds True

Having established that our DGP is in line with the bracketing property of LDV and FE
models, we now allow for both a fixed effect that influences y and x and a feedback of
lagged outcomes yi,t−1 on contemporaneous xit. As predicted by the analytical results
in Section 3, the figures in Table 6 illustrate that all estimates are biased and that the
bracketing property no longer holds generally, although in Scenarios A, D, E, and H, the
true effect lies within the FE and the LDV estimates.

Table 6: Results when there is a feedback effect of yi,t−1 on xit and a fixed effect simul-
taneously influences yit and xit

Data generating process Estimates of τ
Scenario τ δX ρ δY OLS FE LDV FE-LDV Bracketing

A 1.00 0.50 0.50 0.50 1.19 0.89 1.09 0.95 Yes
B 1.00 -0.50 0.50 0.50 0.87 0.89 0.80 0.95 No
C 1.00 0.50 -0.50 0.50 1.05 1.03 1.18 0.99 No
D 1.00 -0.50 -0.50 0.50 0.87 1.03 0.80 0.99 Yes

E -1.00 0.50 0.50 0.50 -0.87 -1.03 -0.80 -0.99 Yes
F -1.00 -0.50 0.50 0.50 -1.05 -1.03 -1.18 -0.99 No
G -1.00 0.50 -0.50 0.50 -0.87 -0.89 -0.80 -0.95 No
H -1.00 -0.50 -0.50 0.50 -1.19 -0.89 -1.09 -0.95 Yes

See notes to Table 2.
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However, in Scenarios B, C, F and G, the true effect is not bracketed by the estimates of
the FE and the LDV models, as these estimates are both either above or below the true
value of τ . When examining the parameters entered into the DGP for these models, it
becomes apparent that these are precisely the situations for which we predict the bracketing
property not to hold based on the analytical expressions of the biases (see Table 1).

5. Deriving a Lower Bound from the FE-LDV Model

Our results so far show that the bracketing property afforded by the FE and the LDV
models does not generally hold in the presence of unobserved heterogeneity and feedback
effects. Hence, when there is a concern that the DGP is characterized by both these
features simultaneously, relying on bracketing to identify the upper and lower bounds of
the estimated treatment effect is ill-advised. Nevertheless, the results from the simulations
suggest that it is at least possible to identify a lower bound estimate: Regardless of the
DGP, the FE-LDV model always yields an estimate that is in absolute terms lower than
the true coefficient, thus providing a lower bound of the true causal effect of x on y.

To confirm this pattern, we explored several DGPs with different parametrizations and
found no instances in which the FE-LDV estimate is either larger than the true causal
effect in absolute terms or in which it has a different sign than the true causal effect. These
robustness tests are documented in Appendix B.1 and include variations in the intensity
of the feedback effects (Appendix Table A3), the introduction of a dependence between
the magnitude of the fixed effect (αi) and the feedback effect (Appendix Table A4) and
variations in the noise levels, i.e., the standard deviations of ϵit, αt, uit (Appendix Table
A5). Apart from noting that none of these changes to the DGP alter the key findings from
our main simulation specification, the potential to draw generalizable conclusions from
our robustness tests is limited, as the behavior of the estimates is highly dependent on the
particular parametrization. Nonetheless, in the cases where a direct comparison is possible,
the response of our simulation results to changes in DGP proves to be consistent with the
theoretical predictions from Equations (3) and (4) as well as Equation (6) derived below.
For example, stronger feedback effects seem to be associated with a stronger downward
bias in the FE-LDV estimate, but only when sign(τ) = sign(ρ), otherwise it is the other
way around (Table A3), and we find that a relative increase in the standard deviation of
uit tends to reduce the bias of all estimators (Table A5).

In the following, we analytically derive the bias of the FE-LDV estimator of τ (denoted by
BF E−LDV

T ) for any T . Starting with T = 3, the bias is given by9

Proposition 2 Under the Assumptions of Proposition 1 it holds as N → ∞ that

BF E−LDV
3 = −

1
4τ σ̄2

uσ̄2
ε

σ̄2
u

τ2σ̄2
u+σ̄2

ε

1−τ2ρ2 − 1
4τ 2σ̄4

u

= −τ
1

τ 2 σ̄2
u

σ̄2
ε

(
4

1−τ2ρ2 − 1
)

+ 4
1−τ2ρ2

.

9Note that T = 3 is the smallest possible number of time periods given our notation. This is because the
first period (t = 1) is the initial period for which we have an observation for y but not for the lagged
dependent variable, and one further needs at least two periods to apply the within transformation.
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Proof: See Section A.2.2 in the Appendix.

This expression highlights that the bias of the FE-LDV estimator is negative for positive
τ and positive for negative τ , respectively. In turn, this hinges on the condition that
|BF E-LDV

τ | ≤ |τ |. Should this not be met, the FE-LDV estimator would provide an estimate
of τ that has the wrong sign, which would critically limit the applicability of the FE-LDV
estimator to provide a lower bound estimate. The condition |BF E-LDV

τ | ≤ |τ | translates
into:

τ 2 σ̄2
u

σ̄2
ε

(
4

1 − τ 2ρ2 − 1
)

+ 4
1 − τ 2ρ2 > 1, (5)

which holds true generally, since τ 2 σ̄2
u

σ̄2
ε

> 0 and 4
1−τ2ρ2 > 4 ∀ |τρ| < 1.

While these considerations may be repeated for any T , the corresponding expressions
become less tractable as T increases, and we consider an approximation following the lines
of Nickell (1981). The result takes the following form:

Proposition 3 Under the Assumptions of Proposition 1 it holds as N → ∞ that

BF E-LDV
τ = − τ

(T − 1)2
σ̄2

ε

τ 2σ̄2
u + σ̄2

ε

1 + τρ

1 − τρ
+ O

( 1
T 2

)
. (6)

Proof: See Section A.2.2 in the Appendix.

Interestingly, this bias in the estimator of the effect τ vanishes at rate 1/(T − 1)2, which
is an order of magnitude faster than the Nickell bias in the FE-LDV estimator of the
autoregressive (AR) coefficient, which is itself inversely proportional to T . This somewhat
surprising finding is, to the best of our knowledge, new, and it is of immediate relevance
to practitioners interested in identifying the causal effect of a treatment. The standard
expression for Nickell bias, which is of order 1/T , applies only to the AR coefficient, and
does not in general carry over to other explanatory variables, a point often neglected in
the applied literature.10 Equation (6) provides an approximate expression for a secondary
Nickell bias that applies to the remaining explanatory variables. We provide a discussion
of its relation to Nickell’s original result in Appendix A.2.2.

Notwithstanding its speed of convergence, the bias of the FE-LDV estimator is negative
for positive τ and positive for negative τ , respectively, and thus suggests that the FE-LDV
estimator may indeed provide a lower bound estimate for T > 3 as well. The condition
|BF E-LDV

τ | ≤ |τ | simplifies to:

τρ ≤ 1 − 2
1 + (T − 1)2 τ2σ̄2

u+σ̄2
ε

σ̄2
ε

, (7)

10For example, Acemoglu et al. (2019) (p. 59) conclude that the bias emerging from a FE-LDV model of
the effect of democratization on GDP growth is 1/T .
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which almost certainly holds as long is T is large and the time series of y is stationary, i.e.,
−1 < τρ < 1.

What about if T is small? We have seen that the condition |BF E-LDV
τ | ≤ |τ | holds for

T = 3 irrespective of the actual persistence. Moreover, we simulate scenarios with low T
and τρ close to unity in Table A1 in the Appendix. In these simulations the bias of the
FE-LDV model does not even get close to the size of τ , supporting the analytical results.

To illustrate the behavior of the estimators at different T and in the presence of fixed
effects and feedback effects, we present our simulation results using the parametrization
from Table 6 over different values of T in Appendix B.5 (Figure A2). It can be seen
that the biases of the OLS and LDV models are not affected by increasing T , so these
estimators do not approach the true effect as T increases. In contrast, both the FE
and FE-LDV estimators converge towards the true effect. While they are approximately
equidistant from the true value of τ at T = 3, the bias of the FE-LDV estimator vanishes
quickly and is relatively close to the true effect from T = 20 in our simulated case, while
this convergence takes longer for the FE model. In line with our theoretical results, the
FE-LDV model converges to the correct value from below in all simulated cases, while
the FE model sometimes converges from below (Scenarios A and B) and sometimes from
above (Scenarios C and D).

Concluding, when suspecting the simultaneous presence of fixed effects and a violation
of strict exogeneity due to a feedback effect, referencing the FE-LDV model avails the
practitioner with a conservative estimate of the treatment effect, including when T is
small – although in this case a substantial underestimation of the treatment effect is to
be expected. Indeed, we would caution against trying to discern an upper bound, even
in cases where one seems apparent. In Scenario A from Table 6, for example, where the
FE-LDV estimate is above the FE- and below the LDV estimates, the LDV model cannot
be interpreted unambiguously as an upper bound. This is because all estimates could be
downward biased while the FE-LDV estimate lies coincidentally between the FE and LDV
estimates, a particular case that is presented in Scenario A in Table A2 of the Appendix.
Similarly, if the FE-LDV estimate is below both the FE and the LDV estimate, as in
Scenario C from Table 6, it again cannot be guaranteed that the LDV estimate is an upper
bound estimate, as all estimates may be downward biased, a case presented in Scenario B
from Table A2 in the Appendix.

6. The Implications of State Dependence and
Nonstationarity

One natural extension of our DGP is to include state dependence in yit, i.e., to allow yit

to be directly influenced by yi,t−1. This changes Equation (1) to:

yit = δY αi + πyi,t−1 + τxit + εit. (8)
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This DGP requires the stationarity condition |π + τρ| < 1, reflecting that yit now depends
on yi,t−1 both directly (via πyi,t−1 in (8)) and indirectly (via the feedback to τxit).

The simulations based on this DGP (setting π to 0.2), are presented in Appendix Tables
A3, A4, and A5. Note that the OLS and FE models are still estimated as static models,
i.e., not including yi,t−1 among the regressors. There are several important takeaways
from this extension of the DGP: First, in the case where there are no fixed effects but a
feedback effect of yi,t−1 on xit, the inclusion of a direct effect of yi,t−1 on yit in the DGP
leads to bias in the OLS estimates (Table A3), which were unbiased before (Table 2). This
is intuitive, as the omission of yi,t−1, which is now correlated with yit as well as xit, leads
to omitted variable bias due to the correlation between the error term and xit.

Second, somewhat surprisingly, given state dependence, the static fixed effects estimator
is also biased if there are fixed effects but no feedback effect of yi,t−1 on xit (compare
Table A4 with Table 3). The intuition for this bias was recently laid out by Klosin (2024):
Omitting the lagged dependent variable in the estimating equation leads to εi,t+1 being a
function of yit and thus of xit. This violates the assumption of strict exogeneity required
by the FE model. The upshot, demonstrated in Scenarios F and G in Table A4, shows
that it is not even necessary for both fixed effects and a feedback effect to be present for
the bracketing property to be violated. Even with a completely random xit, the bracketing
property of FE and LDV can fail if the DGP contains state dependence.

A further result that calls for caution, especially when interpreting the FE model, can be
found in Appendix Figure A3. There we show the behavior of the different estimators in
the face of feedback effects, fixed effects and state dependence over different observation
periods T . Scenarios A - in which FE and LDV would actually bracket the true effect
in the absence of state dependence - and B show that the FE estimator changes its sign
with increasing T . This means that while the FE and LDV models bracket the true effect
in Scenario A at low T , they fail to do so at higher T . Analogously, in Scenario B the
two estimators do not bracket the true effect at low T , while they do so at higher T .
This supports our conclusion that the presence of state dependence makes a bracketing
approach profoundly unreliable.

As in the case without state dependence, the estimates of the FE-LDV model are con-
sistently below the true effect in absolute values. We corroborate these with theoretical
results established in the Technical Appendix and summarized below.

Proposition 4 Let yit be generated as in (8) with xit given by (2), where

yi0 = (δY + τδX) αi

1 − (π + τρ) + τui0 + εi0√
1 − (π + τρ)2

s.t. |π + τρ| < 1 and uit, εit and αi obey Assumption 2. Then, it holds as N → ∞ that

BF E
T = ρ

σ̄2
ε

(
− 1

T
1

1−(π+τρ)

)
(
ρ2 τ2σ̄2

u+σ̄2
ε

1−(π+τρ)2 + σ̄2
u

)+π

ρ

τ2σ̄2
u+σ̄2

ε

1−(π+τρ)2

(
1 − 1

T
1+(π+τρ)
1−(π+τρ)

)
(
ρ2 τ2σ̄2

u+σ̄2
ε

1−(π+τρ)2 + σ̄2
u

) + τ
σ̄2

u

(
− 1

T
1

1−(π+τρ)

)
(
ρ2 τ2σ̄2

u+σ̄2
ε

1−(π+τρ)2 + σ̄2
u

)
+O

( 1
T

)
,
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BLDV
T = δXδY σ2

α (τ 2σ̄2
u + σ̄2

ε)
(σ̄2

u + δ2
Xσ2

α) (τ 2σ̄2
u + σ̄2

ε) + σ̄2
uσ2

α
1+(π+τρ)
1−(π+τρ) (δY + τδX)2 .

and
BF E−LDV

T = − τ

(T − 1)2
σ̄2

ε

(τ 2σ̄2
u + σ̄2

ε)
1 + (π + τρ)
1 − (π + τρ) + O

( 1
T 2

)
.

Proof: See Section A.3 in the Appendix.

Compared to the baseline case without explicit state dependence, the expressions for BLDV
T

and BF E−LDV
T do not change significantly, in fact the only difference is that now π + τρ

is the relevant persistence parameter. Only the expression of BF E
T changes compared

to Proposition 1, given that the FE model is misspecified when there is direct state
dependence and the bias now has two sources, namely the omission of yi,t−1 as well as the
lack of strict exogeneity of xit. Notwithstanding this change, the conclusions about the
validity of the bounding behavior do not change.

A further relevant extension consists in relaxing the stationarity assumption. In particular,
we consider nonstationarity in form of a unit root, π + τρ = 1. Detailed derivations
pertaining to this case are provided in the Technical Appendix, and the following proposition
shows that the bias of the FE-LDV estimator behaves qualitatively the same even under
nonstationarity.

Proposition 5 Let yit be generated as in (8) with xit given by (2), π + τρ = 1, and uit,
εit and αi obey Assumption 2. Then, it holds as N → ∞ that

BF E−LDV
T = −τ

σ̄2
ε

1
3

(
(δY + τδX)2 σ2

α(T − 1)T + (τ 2σ̄2
u + σ̄2

ε) (4T − 3)
)

− τ 2σ̄2
u

Proof: See Section A.4 in the Appendix.

Like above, the direction of the bias is opposite to that of the effect τ . The exact expression
of the bias does differ from the stationary case. One interesting difference is that the
unobserved heterogeneity αi does play a role in the limit. In fact, the rate at which the
bias vanishes as T → ∞ depends on whether unobserved heterogeneity is present in the
model. If this is not the case (i.e., δY = 0 and δX = 0), the rate of convergence is 1/T
as opposed to the rate of convergence of 1/T 2 that we found for all other settings. On
the other hand, the initial conditions yi0 need not be restricted in any way, as they are
eliminated by the fixed effects transformation. Nevertheless, it is evident that the bias is
smaller in magnitude than the effect for any T ≥ 3 and the overall conclusion does not
change.

Appendix B.3 contains simulation results for the case of a unit root (ρ = 1, τ = 1, π = 0)
and confirms the theoretical results: The FE-LDV model continues to provide an estimate
that is consistently lower in absolute terms than the true effect. In addition, when
comparing, for example, Scenario A in Table A9 to Scenario A in Table A10, i.e., once
without and once with an effect of unobserved heterogeneity on X and Y at constant T ,
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the simulation results confirm that the bias of the FE-LDV model is actually larger if
there is no effect of unobserved heterogeneity.

7. Practical Implications

Returning to the initial question “so what’s an applied guy to do?” (Angrist and Pischke,
2009, p. 245), the key implication of our results is that the bracketing property is not
a panacea in situations where empirical researchers are concerned with confounding
by unobserved time-constant heterogeneity as well as violations of the assumption of
strict exogeneity, for example because of feedback effects or state dependence. This
is because the bracketing property is only reliable if either strict exogeneity holds or
there is no confounding by unobserved time-constant heterogeneity. Given the likely
uncertainty surrounding this issue, it may be possible to avail diagnostics tests that allow
the researcher to rule out one source of bias or the other. For example, unobserved
time-constant heterogeneity can be explored using tests in the spirit of Hausman’s (1978)
specification test (Frondel and Vance, 2010), while statistical tests for the strict exogeneity
assumption are proposed by Wooldridge (2010, p. 285). The outcome of such an exercise
may clearly point to the preferability of the FE or LDV model, as would be the case if
either the strict exogeneity assumption is violated or a fixed effects model is required.
Bracketing in this case is unnecessary.

Another case in which there is clarity about the path forward is the two-period setting
with a binary treatment covered by Ding and Li (2019). The authors propose a test in
which the cumulative distribution function (CDF) of the pre-treatment outcome variable
for the treatment and the control group are plotted against each other (see Keele et al.,
2021 for an application). If one CDF is monotonically above/below the other (stochastic
monotonicity), Ding and Li’s (2019) results imply that the bracketing property is likely
hold.

However, if one moves away from the two-period difference-in-differences setting with
binary treatment, this approach reaches its limits. As our analysis has shown, with multiple
periods, bracketing only works if the selection of the independent variable of interest x
depends in the same direction, i.e., positively or negatively, on lagged outcomes and the
relevant omitted time constant variables (sign(ρ) = sign(δX × δY ), see Table 1), and if
there is no state dependence. One example in which these conditions might be met is the
study of Beckmann and Kräkel (2022), who, among other identification strategies, estimate
FE and LDV models to bracket the effects of work autonomy (x) on work engagement (y).
In this case, we might tell a story about an unobservable fixed factor such as ability that
makes the sign of δX × δY positive, coupled with the expectation that past engagement
positively affects today’s autonomy, making ρ positive as well. Under this circumstance,
the potential selection of x on fixed effects should go in the same direction as the potential
selection of x on past outcomes, supporting bracketing.

Whether such a story is convincing is, of course, open to interpretation. In our view,
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an analyst will typically be hard-pressed to make an airtight case for bracketing.11 We
therefore recommend that authors transparently discuss their theoretical considerations
on the possible selection process, taking into account our insights from Section 3, and
indicate in which of the cases listed in Table 1 they see their setting. If these theoretical
considerations lead to an ambiguous result, as we believe will often be the case, authors
should not rely on the validity of a bracketing approach. Instead, authors should pay
particular attention to the FE-LDV model, which provides a conservative reference point,
yielding a lower bound of the true effect, even if the nature of the selection process is
unclear. Moreover, we show that the bias of the FE-LDV estimator of the explanatory
variables decreases at rate 1/T 2 (see Proposition 3), so that the results of the FE-LDV
model converge relatively fast towards the true effect as T increases.

An empirical example in which the presence of fixed effects, state dependence, and feedback
effects would hypothetically render the result of a bracketing approach misleading can
be found in Acemoglu et al. (2019). The authors estimate the effect of democratization
on economic growth using a panel of 175 countries from 1960 to 2010. The authors
implement several specifications but do not reference bracketing. A key observation,
demonstrated descriptively in their Figure 1, is that democratization is often preceded by
a decline in GDP, which suggests the presence of a feedback effect with ρ < 0. Moreover,
they argue persuasively that “democracies differ from nondemocracies in unobserved
characteristics, such as institutional, historical, and cultural aspects” (p. 49). Together,
these considerations lead the authors to estimate dynamic panel data models, including
a FE-LDV model, throughout the paper. Using the replication files of Acemoglu et al.
(2019), we estimate the results if the authors had tried to bracket the true effect with FE
and LDV models, focusing on the simplest specification in column (1) of their Table 2.
The estimate of the effect of democratization on log GDP per capita would be 0.457 (0.300)
in the LDV model and -10.112 (4.316) in the FE model (standard errors in parentheses).12

In contrast, their reported and replicable result of the FE-LDV model is 0.973 (0.294),
while the result of their preferred specification in column (3), which includes four lags of
the dependent variable, is 0.787 (0.226), both falling outside the range of the bracket.

Throughout most of this article, we have assumed contemporaneous exogeneity, i.e., zero
correlation between xit and εit for all t and conditional on accounting for fixed effects. If
this condition is not met, conventional approaches to causal inference (e.g., instrumental
variables), possibly also in combination with a bracketing approach, should be considered.
Furthermore, the dynamic structure that we have adopted in our DGPs is relatively simple,
but should cover a wide range of applications. Nevertheless, there may be cases in which
deeper lags of the dependent or explanatory variables may be part of the DGP (e.g.,
Acemoglu et al., 2019). A generalization of our results to these cases and a discussion of
the implications for the interpretability of the estimated coefficients, e.g., with respect to
short-run and long-run effects (Beck and Katz, 2011; Keele and Kelly, 2006), is beyond
the scope of this article.

11The relationship between traumatic events and voter turnout analyzed by Marsh (2023), or the effect of
biodiversity on productivity analyzed by Dee et al. (2023), are examples in which various confounders
can influence the selection mechanism in very complex ways.

12See Table A11 in the Appendix for details.
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8. Conclusion

This article has explored the conditions under which a fixed effects- and a lagged dependent
variable model can be used to bracket a causal effect of interest. We draw two conclusions.
First, bracketing works in the presence of either unobserved heterogeneity or violations of
strict exogeneity, but not both simultaneously. Second, even when it is unclear whether
the data generation process is determined by fixed effects and/or a lagged dependent
variable, our results indicate that the analyst can at least identify a conservative lower
bound estimate of the treatment effect with a model that includes both features. Of
particular relevance to the case of short panels, we provide an approximate expression for
a secondary Nickell bias of this treatment effect and the remaining explanatory variables,
which is of order 1/T 2.

We recommend that before employing a bracketing approach, practitioners should first
use diagnostic tests to investigate whether selection based on time-constant unobservable
variables and violations of strict exogeneity are present simultaneously. If only one or
the other is present, a researcher should be able to obtain an unbiased estimate from
either an FE or LDV model. If there is reason to expect simultaneous selection based on
time-constant unobservable variables and violations of strict exogeneity, for example due to
a feedback effect, researchers should form a theoretical expectation about the direction of
these two selection effects. If they are in the same direction, e.g., positive selection based
on a time-constant confounder and positive selection based on past outcomes, a bracketing
approach may be valid. However, as there exists no test for this, such a consideration is
always associated with uncertainty, and sometimes the conceivable selection effects can
be so complex that no meaningful theoretical expectation is possible. Furthermore, the
presence of state dependence, i.e., a direct effect of past outcomes on current outcomes,
can jeopardize the validity of a bracketing approach by introducing an additional source
of bias in the FE model.

These considerations lead us to regard the bracketing approach with FE and LDV models
to be a risky strategy in most cases. When used, we recommend complementing the
approach with an FE-LDV model. This model provides an estimate that converges reliably
from below (i.e. from 0) to the true effect in the scenarios considered at a rate of 1/T 2.
One exception is the case in which there is no selection on time-constant unobservables
and at the same time there is a unit root. In this case, the estimator continues to converge
from below towards the true value, but with the convergence rate 1/T . Furthermore,
we recommend that the estimation of an FE-LDV model should completely replace a
bracketing approach when the number of observed periods is sufficiently large. Our
simulations show that the number of periods should be at least 20 for the FE-LDV model
to provide a good approximation of the true effect.
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Appendix

A. Formal derivation of biases

A.1. Estimators and tools

In the FE-LDV model, one accounts for both unobserved heterogeneity and feedback
and we fit

ÿit = ω̂F E−LDV ÿi,t−1 + τ̂F E−LDV ẍit + error,

where “ ·̈ ” signifies that the variables have been within-transformed. To maintain
consistency, we take the within transformation to be applied onto the r.h.s. after lagging
yit, that is, we compute for t = 2, . . . , T the individually demeaned variables ẍit =
xit − 1

T −1
∑T

t=2 xit = xit − x̄i, ÿit = yit − 1
T −1

∑T
t=2 yit = yit − ȳi and ÿi,t−1 = yi,t−1 −

1
T −1

∑T
t=2 yi,t−1 = yi,t−1 − ȳi−.13 This ensures e.g. that

ÿit = τ ẍit + ε̈it, t = 2, . . . , T,

where ε̈it = εit − 1
T −1

∑T
t=2 εit, and, with üit = uit − 1

T −1
∑T

t=2 uit,

ẍit = ρÿi,t−1 + üit.

The estimated effect is given by

τ̂F E−LDV =
∑N

i=1
∑T

t=2 ẍitÿit −∑N
i=1

∑T
t=2 ẍitÿi,t−1

(∑N
i=1

∑T
t=2 ÿ2

i,t−1

)−1∑N
i=1

∑T
t=2 ÿi,t−1ÿit∑N

i=1
∑T

t=2 ẍ2
it −∑N

i=1
∑T

t=2 ẍitÿi,t−1
(∑N

i=1
∑T

t=2 ÿ2
i,t−1

)−1∑N
i=1

∑T
t=2 ÿi,t−1ẍit

.

It will be convenient to stack all observations unit-wise, resulting in

τ̂F E−LDV =
1
N

∑N
i=1 ẍ′

iÿi − 1
N

∑N
i=1 ẍ′

iÿi−

(
1
N

∑N
i=1 ÿ′

i−ÿi−

)−1 1
N

∑N
i=1 ÿ′

i−ÿi

1
N

∑N
i=1 ẍ′

iẍi − 1
N

∑N
i=1 ẍ′

iÿi−

(
1
N

∑N
i=1 ÿ′

i−ÿi−

)−1 1
N

∑N
i=1 ÿ′

i−ẍi

where ÿi stacks ÿi2, . . . , ÿiT , ẍi stacks ẍi2, . . . , ẍiT and ÿi− stacks ÿit−1 for t = 2, . . . , T .

In the FE model, the regression does not control for a lagged dependent variable and one
uses the standard within-transformed data, ...

y it = yit− 1
T

∑T
t=1 yit and ...

x it = xit− 1
T

∑T
t=1 xit

for t = 1, . . . , T , ...
y it = τ̂F E ...

x it + error,

13We allow for a slight inconsistency in notation: the lagged ÿit does not equal ÿi,t−1 because the two
variables are demeaned in a different manner, ȳi = 1

T −1
∑T

t=2 yit /= 1
T −1

∑T
t=2 yi,t−1 = ȳi−. This does

not have any impact on the derivations here, though, since only ÿi,t−1 appears as a lag variable in the
derivations.
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leading to the somewhat simpler expression

τ̂F E =
∑N

i=1
∑T

t=1
...
x it

...
y it∑N

i=1
∑T

t=1
...
x 2

it

=
1
N

∑N
i=1

...
x ′

i
...
y i

1
N

∑N
i=1

...
x ′

i
...
x i

.

For the LDV model one fits

yit = intercept + ω̂LDV yit−1 + τ̂LDV xit + error

without individual dummy variables. Therefore, we have

τ̂LDV =
∑N

i=1
∑T

t=2 x̃itỹit −∑N
i=1

∑T
t=2 x̃itỹi,t−1

(∑N
i=1

∑T
t=2 ỹ2

i,t−1

)−1∑N
i=1

∑T
t=2 ỹi,t−1ỹit∑N

i=1
∑T

t=2 x̃2
it −∑N

i=1
∑T

t=2 x̃itỹi,t−1
(∑N

i=1
∑T

t=2 ỹ2
i,t−1

)−1∑N
i=1

∑T
t=2 ỹi,t−1x̃it

,

where “ ·̃ ” signifies that the variables have been demeaned using the “full-panel” means,
x̃it = xit − 1

N(T −1)
∑N

i=1
∑T

t=2 xit = xit − x̄, ỹit = yit − 1
N(T −1)

∑N
i=1

∑T
t=2 yit = yit − ȳ,

ỹi,t−1 = yit−1 − 1
N(T −1)

∑N
i=1

∑T
t=2 yi,t−1 = yi,t−1 − ȳ− etc.14 Then, with ỹi stacking ỹit, x̃i

stacking x̃it and ỹi− stacking ỹit−1 for t = 2, . . . , T , we have analogously that

τ̂LDV =
1
N

∑N
i=1 x̃′

iỹi − 1
N

∑N
i=1 x̃′

iỹi−

(
1
N

∑N
i=1 ỹ′

i−ỹi−

)−1 1
N

∑N
i=1 ỹ′

i−ỹi

1
N

∑N
i=1 x̃′

ix̃i − 1
N

∑N
i=1 x̃′

iỹi−

(
1
N

∑N
i=1 ỹ′

i−ỹi−

)−1 1
N

∑N
i=1 ỹ′

i−x̃i

.

All estimators are given in terms of sample averages of independent variables, and we
resort to a suitable law of large numbers to analyze the respective limits of the estimators
and the implied asymptotic biases. To this end, we use the following result.

Theorem 1 If zi are uniformly integrable, independent random vectors, then 1
N

∑N
i=1 (zi − E (zi))

p→
0;15 furthermore, if 1

N

∑N
i=1 E (zi) converges to a fixed E (zi), then 1

N

∑N
i=1 zi

p→ E (zi).

We therefore only need to work out the corresponding expectations and argue that their
average converges to a fixed number, which is done in the Technical Appendix (Appendix
C).

14There is again a slight inconsistency in notation, since lagging ỹit does not give ỹit−1 because the two vari-
ables undergo a different demeaning scheme, ȳ = 1

N(T −1)
∑N

i=1
∑T

t=2 yit /= 1
N(T −1)

∑N
i=1
∑T

t=2 yit−1 =
ȳ−.

15This is proved in Chow (1971). To use it in our setup, note first that uniform boundedness of moments
of any order η > 1 implies uniform integrability, and second that quantities like ẍ′

iÿi− do indeed have
uniformly bounded such moments – since the Cauchy-Schwarz inequality implies that any expectation
of the form E

(∣∣ẍ′
iÿi−

∣∣η) is uniformly bounded for some η > 1 if ẍi and ÿi− have uniformly bounded
moments of some order larger than 2, and is indeed the case here given that ẍi and ÿi− are essentially
linear combinations of errors fulfilling this moment condition.
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A.2. Derivations for the baseline setup

A.2.1. Data generating process

The data generating process is

yit = δY αi + τxit + εit, t = 1, . . . , T, (A1)

exhibiting feedback and fixed effects correlated with the regressor,

xit = δXαi + ρyit−1 + uit, t = 1, . . . , T. (A2)

Following the assumptions in the main text, the error vectors εi = (εi1, . . . , εiT )′ and
ui = (ui1, . . . , uiT )′, i = 1, . . . , N , are mutually independent zero-mean sequences with
unit-specific variances and free of correlation in the time dimension, i.e.

Cov (εi) = σ2
εiIT Cov (ui) = σ2

uiIT ,

where IT stands for the identity matrix of order T . The fixed effects αi are independent
across the panel, independent of the errors εj and uj for all 1 ≤ j ≤ N , and satisfy
E [αi] = µα and Var [αi] = σ2

α. We furthermore impose stationarity requirements (which
imply |τρ| < 1 in this formulation of the DGP) on the initial conditions yi0; see the main
text and Technical Appendix C.2.1).

A.2.2. Asymptotic bias of the FE-LDV estimator

Since within-transforming Equation (A1) ensures that

ÿi = τ ẍi + ε̈i,

it follows in the FE-LDV model that

τ̂F E−LDV = τ +
1
N

∑N
i=1 ẍ′

iε̈i − 1
N

∑N
i=1 ẍ′

iÿi−

(
1
N

∑N
i=1 ÿ′

i−ÿi−

)−1 1
N

∑N
i=1 ÿ′

i−ε̈i

1
N

∑N
i=1 ẍ′

iẍi − 1
N

∑N
i=1 ẍ′

iÿi−

(
1
N

∑N
i=1 ÿ′

i−ÿi−

)−1 1
N

∑N
i=1 ÿ′

i−ẍi

. (A3)

We refer to the Technical Appendix (Appendix C.2.2) for the derivation of the limits of
these sample cross-product moments.

Let, for ease of notation, the limits of the average expectations be denoted by an overline,
e.g. limN→∞

1
N

∑N
i=1 E [ẍ′

iε̈i] := E [ẍ′ε̈].

To first understand the direction of the asymptotic bias of τ̂ , it suffices to examine the
sign of the limit of the numerator of the term capturing the estimation error in Equation
(A3), i.e.,

M̈T := E [ẍ′
iε̈i] −

E
[
ẍ′

iÿi−

]
· E

[
ÿ′

i−ε̈i

]
E
[
ÿ′

i−ÿi−

] .
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This expression simplifies in our setup, since within-transforming Equation (A2) implies

ẍi = ρÿi− + üi,

such that

M̈T = ρE
[
ÿ′

i−ε̈i

]
+ E [ü′

iε̈i] −

(
ρE

[
ÿ′

i−ÿi−

]
+ E

[
ü′

iÿi−

])
E
[
ÿ′

i−ε̈i

]
E
[
ÿ′

i−ÿi−

] .

Note now that E [ü′
iε̈i] must be zero since εi and ui are zero-mean mutually independent

vectors, and we have

M̈T = ρE
[
ÿ′

i−ε̈i

]
−

ρE
[
ÿ′

i−ÿi−

]
· E

[
ÿ′

i−ε̈i

]
E
[
ÿ′

i−ÿi−

] −
E
[
ü′

iÿi−

]
· E

[
ÿ′

i−ε̈i

]
E
[
ÿ′

i−ÿi−

]
= −

E
[
ü′

iÿi−

]
· E

[
ÿ′

i−ε̈i

]
E
[
ÿ′

i−ÿi−

] .

The denominator of the expression of the asymptotic bias,

N̈T = E [ẍ′
iẍi] −

E
[
ẍ′

iÿi−

]
· E

[
ÿ′

i−ẍi

]
E
[
ÿ′

i−ÿi−

] ,

is positive by construction, just like E
[
ÿ′

i−ÿi−

]
; we furthermore have from the Technical

Appendix (Appendix C.2.2) that

E
[
ü′

iÿi−

]
= (T − 1) τ σ̄2

u

(
− 1

T − 1
1

1 − τρ

)
+ O (1)

E
[
ÿ′

i−ε̈i

]
= (T − 1) σ̄2

ε

(
− 1

T − 1
1

1 − τρ

)
+ O (1)

with O(·) denoting the order of magnitude (and therefore O(1) standing for a bounded
quantity as T increases). We may therefore state (approximately) that

sign
(

E
[
ü′

iÿi−

])
= − sign(τ)

and
sign

(
E
[
ÿ′

i−ε̈i

])
= −1.

Summing up, the sign of the leading term of the asymptotic bias of the estimated effect is
the opposite of the sign of τ . This implies that the bias is in the opposite direction of the
actual effect, just as supported by the simulation results.

To justify the statement from the main text on the FE-LDV estimate as a lower bound for
the effect, we need to derive the magnitude of the asymptotic bias. Taking into account
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that
E
[
ẍ′

iÿi−

]
= E

[
ÿ′

i−ẍi

]
= ρE

[
ÿ′

i−ÿi−

]
+ E

[
ÿ′

i−üi

]
,

the asymptotic bias, say BF E−LDV
T , is then given by

BF E−LDV
T = M̈T

N̈T

= −
E
[
ü′

iÿi−

]
· E

[
ÿ′

i−ε̈i

]
E [ẍ′

iẍi] · E
[
ÿ′

i−ÿi−

]
−
(

ρE
[
ÿ′

i−ÿi−

]
+ E

[
ÿ′

i−üi

])2 ,

where
E [ẍ′

iẍi] = ρ2 E
[
ÿ′

i−ÿi−

]
+ 2ρ E

[
ÿ′

i−üi

]
+ E [ü′

iüi]
and therefore

E [ẍ′
iẍi] = ρ2E

[
ÿ′

i−ÿi−

]
+ 2ρE

[
ÿ′

i−üi

]
+ E [ü′

iüi],
such that

BF E−LDV
T = −

E
[
ü′

iÿi−

]
· E

[
ÿ′

i−ε̈i

]
E [ü′

iüi] · E
[
ÿ′

i−ÿi−

]
−
(

E
[
ÿ′

i−üi

])2 .

Using again the results from the Technical Appendix (Appendix C.2.2), this results e.g. for
T = 3 in

BF E−LDV
3 = −

1
4τ σ̄2

uσ̄2
ε

σ̄2
u

τ2σ̄2
u+σ̄2

ε

1−τ2ρ2 − 1
4τ 2σ̄4

u

= −τ
1

τ 2 σ̄2
u

σ̄2
ε

(
4

1−τ2ρ2 − 1
)

+ 4
1−τ2ρ2

.

The case τ = 0 leads (almost trivially) to a zero bias, while, for τ /= 0, the condition∣∣∣BF E−LDV
3

∣∣∣ < |τ | translates into

τ 2 σ̄2
u

σ̄2
ε

(
4

1 − τ 2ρ2 − 1
)

+ 4
1 − τ 2ρ2 > 1,

which is easily seen to hold true since τ 2 σ̄2
u

σ̄2
ε

> 0 and 4
1−τ2ρ2 > 4 ∀ |τρ| < 1.

Since the expression of BF E−LDV
T gets involved already for T = 4, we resort to the

approximations derived in the Technical Appendix (Appendix C.2.2), which are quite
precise for larger T . We have in this case

E
[
ü′

iÿi−

]
· E

[
ÿ′

i−ε̈i

]
= τ σ̄2

uσ̄2
ε

(
1

1 − τρ

)2

+ O(1);

furthermore,

E [ü′
iüi] · E

[
ÿ′

i−ÿi−

]
= (T − 1)2 σ̄2

u

(
1 − 1

T − 1

)
τ 2σ̄2

u + σ̄2
ε

1 − (τρ)2

(
1 − 1

T − 1
1 + τρ

1 − τρ

)
+ O(T )

= (T − 1)2 σ̄2
u (τ 2σ̄2

u + σ̄2
ε)

1 − (τρ)2 + O(T ),
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and, finally, (
E
[
ÿ′

i−üi

])2
= τ 2σ̄4

u

(
1

1 − ρτ

)2

+ O (1) .

Summing up,

BF E−LDV
T = − τ

(T − 1)2
σ̄2

ε

(τ 2σ̄2
u + σ̄2

ε)
1 + τρ

1 − τρ
+ O

( 1
T 2

)
.

We notice that the bias decreases in T 2 (i.e. faster than the Nickell bias in the autoregressive
coefficient estimator which is inversely proportional to T ) and is thus negligible for large
T . It is even negligible for moderate T as long as the absolute value of τρ is not too close
to unity. When focusing on the leading term as an approximation for the asymptotic bias,
one may learn more about the behaviour of the bias; note however that the approximation
likely deteriorates when |τρ| is very close to unity, and is entirely invalid when τρ = ±1.

In order to justify the magnitude of the estimated effect as a lower bound for the actual
effect (while maintaining the direction of the effect), it should hold that∣∣∣BF E−LDV

T

∣∣∣ ≤ |τ | ,

or, with 1+τρ
1−τρ

being positive under the stationarity restriction −1 < ρτ < 1,

σ̄2
ε

(τ 2σ̄2
u + σ̄2

ε)
1 + τρ

1 − τρ
< (T − 1)2 .

This is equivalent to
τρ < 1 − 2

1 + (T − 1)2 (τ 2σ̄2
u + σ̄2

ε) /σ̄2
ε

Since (τ 2σ̄2
u + σ̄2

ε) /σ̄2
ε > 1, the above inequality is satisfied if τρ < 1− 2

1+(T −1)2 , irrespective
of the variances of the error components. Several such upper bounds on persistence are
plotted in Figure A1 as a function of the time dimension and of the signal-to-noise ratio
τ 2σ̄2

u/σ̄2
ε .

We note that the effect itself plays an important role, since a non-zero τ (i.e. a positive
signal-to-noise ratio) shifts this bound closer to unity (the simulations in Table A1 suggest
that the lower-bound interpretation does not experience difficulties even when |τρ| = 0.99
and T = 3, where 1 − 2

1+(T −1)2 = 0.6).

Finally, it would be of interest to align our results with those of Nickell (1981) when
considering additional r.h.s. variables. His discussion assumes exogenous regressors. Denote
by ω̂ the fitted autoregressive coefficient, and note that, in the model without state
dependence, ω = 0. Then, in our notation, his Eq. (24) implies that

plim τ̂F E−LDV − τ = − plim
1
N

∑N
i=1 ẍ′

iÿi−
1
N

∑N
i=1 ẍ′

iẍi

plim (ω̂ − ω) + plim
1
N

∑N
i=1 ẍ′

iε̈i

1
N

∑N
i=1 ẍ′

iẍi

,

where, in Nickell’s 1981 setup with exogeneity of xi, plim (ω̂ − ω) = O(1/(T − 1)) and the
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Figure A1: The conservative upper bound for the persistence τρ

2nd term on the r.h.s. is 0. This leads to his Eq. (26) which seems to suggest that there
are cases where BF E−LDV

τ is of order O(1/T ).

To explain this seeming discrepancy, we distinguish in our setup between the cases without
and with feedback.

Take first the case without feed-back in our setup, i.e. set ρ = 0. Then Nickell’s 1981
Eq. (26) does follow, since 1

N

∑N
i=1 ẍ′

iε̈i
p→ 0. However,

plim
1
N

∑N
i=1 ẍ′

iÿi−
1
N

∑N
i=1 ẍ′

iẍi

= plim
1
N

∑N
i=1 ü′

iÿi−
1
N

∑N
i=1 ü′

iüi

p→
E
[
ÿ′

i−üi

]
E [ü′

iüi]
= O

( 1
T − 1

)

such that the resulting magnitude of the bias of τ̂F E−LDV is, as derived above, indeed
1/(T − 1)2.

Take now the case with a feed-back effect, ρ /= 0. In this case,

plim
1
N

∑N
i=1 ẍ′

iε̈i

1
N

∑N
i=1 ẍ′

iẍi

p→
ρE

[
ÿ′

i−ε̈i

]
+ E [ü′

iε̈i]

ρ2E
[
ÿ′

i−ÿi−

]
+ 2ρE

[
ÿ′

i−üi

]
+ E [ü′

iüi]
/= 0,
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in fact the r.h.s. can be seen to be O(1/(T − 1)). Since in this case

plim
1
N

∑N
i=1 ẍ′

iÿi−
1
N

∑N
i=1 ẍ′

iẍi

=
ρE

[
ÿ′

i−ÿi−

]
+ E

[
ÿ′

i−üi

]
ρ2E

[
ÿ′

i−ÿi−

]
+ 2ρE

[
ÿ′

i−üi

]
+ E [ü′

iüi]
= O(1),

and still plim (ω̂ − ω) = O(1/(T − 1)), Eq. (26) of Nickell (1981) is not valid under our
setup. Rather, it can be seen after some algebra that we recover the result of Propositions
2 and 3 from the main text as follows. Write

plim τ̂F E−LDV − τ = 1
E [ẍ′

iẍi]

(
−E

[
ẍ′

iÿi−

]
plim (ω̂ − ω) + E [ẍ′

iε̈i]
)

where

ω̂F E−LDV =
1
N

∑N
i=1 ÿ′

i−ε̈i
1
N

∑N
i=1 ẍ′

iẍi − 1
N

∑N
i=1 ÿ′

i−ẍi
1
N

∑N
i=1 ẍiε̈i

1
N

∑N
i=1 ÿ′

i−ÿi−
1
N

∑N
i=1 ẍ′

iẍi − 1
N

∑N
i=1 ÿ′

i−ẍi
1
N

∑N
i=1 ẍ′

iÿi−
.

p→
E
[
ÿ′

i−ε̈i

]
· E [ẍ′

iẍi] − E
[
ÿ′

i−ẍi

]
· E [ẍ′

iε̈i]

E
[
ÿ′

i−ÿi−

]
· E [ẍ′

iẍi] − E
[
ÿ′

i−ẍi

]
· E

[
ẍ′

iÿi−

] .
Then,

BF E−LDV
τ = −

E
[
ẍ′

iÿi−

]
· E

[
ÿ′

i−ε̈i

]
· E [ẍ′

iẍi] − E
[
ẍ′

iÿi−

]
· E

[
ÿ′

i−ẍi

]
· E [ẍ′

iε̈i]

E [ẍ′
iẍi]

(
E
[
ÿ′

i−ÿi−

]
· E [ẍ′

iẍi] − E
[
ÿ′

i−ẍi

]
· E

[
ẍ′

iÿi−

])

+
E [ẍ′

iε̈i] · E
[
ÿ′

i−ÿi−

]
· E [ẍ′

iẍi] − E [ẍ′
iε̈i] · E

[
ÿ′

i−ẍi

]
· E

[
ẍ′

iÿi−

]
E [ẍ′

iẍi]
(

E
[
ÿ′

i−ÿi−

]
· E [ẍ′

iẍi] − E
[
ÿ′

i−ẍi

]
· E

[
ẍ′

iÿi−

])

=
E [ẍ′

iε̈i] · E
[
ÿ′

i−ÿi−

]
· E [ẍ′

iẍi] − E
[
ẍ′

iÿi−

]
· E

[
ÿ′

i−ε̈i

]
· E [ẍ′

iẍi]

E [ẍ′
iẍi]

(
E
[
ÿ′

i−ÿi−

]
· E [ẍ′

iẍi] − E
[
ÿ′

i−ẍi

]
· E

[
ẍ′

iÿi−

])

=
E [ẍ′

iε̈i] · E
[
ÿ′

i−ÿi−

]
− E

[
ẍ′

iÿi−

]
· E

[
ÿ′

i−ε̈i

]
E
[
ÿ′

i−ÿi−

]
· E [ẍ′

iẍi] − E
[
ÿ′

i−ẍi

]
· E

[
ẍ′

iÿi−

] .
Exploiting like above ẍi = ρÿi− + üi, we obtain immediately that

BF E−LDV
τ =

E [ẍ′
iε̈i] · E

[
ÿ′

i−ÿi−

]
− E

[
ẍ′

iÿi−

]
· E

[
ÿ′

i−ε̈i

]
E
[
ÿ′

i−ÿi−

]
· E [ẍ′

iẍi] − E
[
ÿ′

i−ẍi

]
· E

[
ẍ′

iÿi−

]
=

E [ü′
iε̈i] · E

[
ÿ′

i−ÿi−

]
− E

[
ü′

iÿi−

]
· E

[
ÿ′

i−ε̈i

]
E
[
ÿ′

i−ÿi−

]
· E [ẍ′

iẍi] − E
[
ÿ′

i−ẍi

]
· E

[
ẍ′

iÿi−

]
where the denominator is easily checked to be O((T −1)2). At the same time, the numerator
is O(1) since both E

[
ü′

iÿi−

]
and E

[
ÿ′

i−ε̈i

]
are O(1) and E [ü′

iε̈i] = 0 due to the mutual
independence of the two error sequences uit and εit. This confirms the result on BF E−LDV

τ
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derived above.

A.2.3. Asymptotic bias of the FE estimator

In what concerns the FE regression, we obtain analogously to the FE-LDV case that

τ̂F E = τ +
1
N

∑N
i=1

...
x ′

i
...
ε i

1
N

∑N
i=1

...
x ′

i
...
x i

p→ τ + ρ
E [ ...

y ′
i−

...
ε i]

E [ ...
x ′

i
...
x i]

, (A4)

where we used the fact that ...
x ′

i
...
ε i = ρ

...
y ′

i−
...
ε i + ...

u ′
i
...
ε i with E [ ...

u ′
i
...
ε i] = 0 since εi and ui

are zero-mean mutually independent.

Therefore, the direction of the bias depends directly on the sign of ρ, in fact it is the
negative sign of ρ since sign

(
E [ ...

y ′
i−

...
ε i]
)

= −1. The magnitude follows from the results
in the Technical Appendix (Appendix C.2.2),

BF E
T = ρ

E [ ...
y ′

i−
...
ε i]

E [ ...
x ′

i
...
x i]

= −ρ
σ̄2

ε

(
1

1−τρ

)
+ O(1)

T
(
ρ2 τ2σ̄2

u+σ̄2
ε

1−(ρτ)2 + σ̄2
u

)
+ O(1)

= −ρ
1 + ρτ

T

σ̄2
ε

σ̄2
u + ρ2σ̄2

ε

+ O
( 1

T

)
.

The FE bias vanishes as T increases of course, albeit slower than the FE-LDV bias,
which is inversely proportional to T 2. The same caveats arise, in that the quality of the
approximation deteriorates for small T and |τρ| close to unity. In any case, note that
the magnitude of the bias is not “under control” since ρ could be large if τ is small in
magnitude under our assumptions, the stationarity restriction being |τρ| < 1; in fact ρ
could be any real number if τ = 0 as there would be no feed-back in this extreme case.

A.2.4. Asymptotic bias of the LDV estimator

Note first that, not surprisingly, omitting individual-unit dummies does not remove the
fixed effects, in fact we obtain from Equations (A1) and (A2) that

ỹi = δY α̃i + τ x̃i + ε̃i

x̃i = δX α̃i + ρỹi− + ũi,

where α̃i = αi − ᾱ with ᾱ = 1
N

∑N
i=1 αi, and δX and δX are (T − 1)-vectors having δX and

δY as entries (i.e. δX = ιδX with ι a vector of ones). This and the Frisch-Waugh-Lovell
theorem imply in turn that

τ̂ = τ +
1
N

∑N
i=1 x̃′

i (ε̃i + δY α̃i) − 1
N

∑N
i=1 x̃′

iỹi−

(
1
N

∑N
i=1 ỹ′

i−ỹi−

)−1 1
N

∑N
i=1 ỹ′

i− (ε̃i + δY α̃i)
1
N

∑N
i=1 x̃′

ix̃i − 1
N

∑N
i=1 x̃′

iỹi−

(
1
N

∑N
i=1 ỹ′

i−ỹi−

)−1 1
N

∑N
i=1 ỹ′

i−x̃i

.

(A5)
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We note that τ̂ is invariant to µα since all quantities are demeaned, so we may assume,
without loss of generality, that µα = 0. This implies E [yit] = E [xit] = 0.

We now argue that demeaning does not have an asymptotic impact on the probability
limit of τ̂ . Take e.g.

1
N

N∑
i=1

x̃′
iỹi− = 1

N

N∑
i=1

(xi − x̄ι)′
(
yi− − ȳ−ι

)
= 1

N

N∑
i=1

x′
iyi− − (T − 1) x̄ȳ−

where x̄ and ȳ− are both Op

(
N−1/2

)
, as a straightforward calculation of the variances

shows. Therefore
1
N

N∑
i=1

x̃′
iỹi− = 1

N

N∑
i=1

x′
iyi− + Op

(
T

N

)
.

To put things in perspective, note that 1
N

∑N
i=1 x′

iyi− = Op (T ). Moreover, ᾱ = Op

(
N−1/2

)
as well, and it is easily shown that ε̄ = Op

(
T −1/2N−1/2

)
and ū = Op

(
T −1/2N−1/2

)
, such

that the analogous result may be derived for all involved cross-product moments in
Equation (A5). Summing up, for fixed T ,

τ̂ = τ+
1
N

∑N
i=1 x′

i (εi + δY αi) − 1
N

∑N
i=1 x′

iyi−

(
1
N

∑N
i=1 y′

i−yi−

)−1 1
N

∑N
i=1 y′

i− (εi + δY αi)
1
N

∑N
i=1 x′

ixi − 1
N

∑N
i=1 x′

iyi−

(
1
N

∑N
i=1 y′

i−yi−

)−1 1
N

∑N
i=1 y′

i−xi

+Op

( 1
N

)

such that the asymptotic bias BLDV
T is given by the ratio of

M̃T = E [x′
i (εi + δY αi)] −

E
[
x′

iyi−

]
· E [y′

i− (εi + δY αi)]

E
[
y′

i−yi−

]
and

ÑT = E [x′
ixi] −

E
[
x′

iyi−

]
· E [y′

i−xi]

E
[
y′

i−yi−

] .

Plugging in xi = δXαi + ρyi− + ui, we obtain thanks to the linearity of the expectation
operator,

BLDV
T = M̃T

ÑT

=
E
[
(ui + δXαi)′ (εi + δY αi)

]
· E

[
y′

i−yi−

]
− E

[
(ui + δXαi)′ yi−

]
· E [y′

i− (εi + δY αi)]

E
[
(ui + δXαi)′ (ui + δXαi)

]
· E

[
y′

i−yi−

]
−
(
E [y′

i− (ui + δXαi)]
)2 .

Using the results from the Technical Appendix (Appendix C.2.3), we have that

BLDV
T =

δXδY σ2
α

(
(δY +τδX)2

(1−ω)2 σ2
α + τ2σ̄2

u+σ̄2
ε

1−ω2

)
− δXδY σ2

α
(δY +τδX)2

(1−ω)2 σ2
α

(σ̄2
u + δ2

Xσ2
α)
(

(δY +τδX)2

(1−ω)2 σ2
α + τ2σ̄2

u+σ̄2
ε

1−ω2

)
− δ2

Xσ2
α

(δY +τδX)2

(1−ω)2 σ2
α

= δXδY σ2
α (τ 2σ̄2

u + σ̄2
ε)

(σ̄2
u + δ2

Xσ2
α) (τ 2σ̄2

u + σ̄2
ε) + σ̄2

uσ2
α

1+τρ
1−τρ

(δY + τδX)2 ,

which confirms the direction of the bias (and also the dependence on all involved quanti-
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ties).

A.3. State-dependent model

A.3.1. Data generating process

The data generating process is now

yit = δY αi + πyi,t−1 + τxit + εit, t = 1, . . . , T, (A6)

with the regressors behaving as in Eq. (A2) above. The estimators remain the same.

As we argue in the Technical Appendix (Appendix C.3), the data generating mechanism
of yit from the baseline case is recovered by setting ω = π + τρ. We may therefore build
on the corresponding limits for the cross-product sample moments.

A.3.2. Asymptotic bias of the FE-LDV estimator

The expressions obtained in Section C.2.2 are valid and we obtain the expression of the
bias for the state-dependent case by replacing τρ by π + τρ,

BF E−LDV
T = − τ

(T − 1)2
σ̄2

ε

(τ 2σ̄2
u + σ̄2

ε)
1 + (π + τρ)
1 − (π + τρ) + O

( 1
T 2

)
.

The discussion on the sign and the magnitude of this bias remain valid (with π + τρ
replacing τρ of course) such that the FE-LDV estimator still offers a lower bound for the
magnitude of the effect.

A.3.3. Asymptotic bias of the FE estimator

Here the expression of the bias does change in an essential manner since the FE model is
misspecified whenever π /= 0. We have for

τ̂F E − τ =
1
N

∑N
i=1

...
x ′

i

( ...
ε i + π

...
y ′

i−

)
1
N

∑N
i=1

...
x ′

i
...
x i

p→ ρ
E [ ...

y ′
i−

...
ε i]

E [ ...
x ′

i
...
x i]

+ πρ
E
[ ...

y ′
i−

...
y i−

]
E [ ...

x ′
i
...
x i]

+ π
E
[ ...
u ′

i
...
y i−

]
E [ ...

x ′
i
...
x i]

,

such that

BF E
T = ρ

σ̄2
ε

(
− 1

T
1

1−ω

)
(
ρ2 τ2σ̄2

u+σ̄2
ε

1−ω2 + σ̄2
u

) + π

ρ

τ2σ̄2
u+σ̄2

ε

1−ω2

(
1 − 1

T
1+ω
1−ω

)
(
ρ2 τ2σ̄2

u+σ̄2
ε

1−ω2 + σ̄2
u

) + τ
σ̄2

u

(
− 1

T
1

1−ω

)
(
ρ2 τ2σ̄2

u+σ̄2
ε

1−ω2 + σ̄2
u

)
+ O

( 1
T

)
.

We notice two bias components: The first is due to the feed-back effect to the regressor,
whereas the second is due to the presence of the lagged dependent variable in the model.
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The latter can be decomposed in two components as well, one that yet again depends on
the feed-back effect, while the other depends on the actual effect of the regressor.

A.3.4. Asymptotic bias of the LDV estimator

As we show in the Technical Appendix (Appendix C.3), the data generating mechanism of
yit from the baseline case is recovered by setting ω = π + τρ. The arguments regarding the
negligibility of the demeaning step hold just like in the baseline setup, and we ultimately
obtain

BLDV
T = δXδY σ2

α (τ 2σ̄2
u + σ̄2

ε)
(σ̄2

u + δ2
Xσ2

α) (τ 2σ̄2
u + σ̄2

ε) + σ̄2
uσ2

α
1+(π+τρ)
1−(π+τρ) (δY + τδX)2 .

A.4. Nonstationarity

Let us now consider the case of a unit root (π + τρ = 1) as a specific form of deviation
from stationarity.

Like before, the FE transform implies for i = 1, . . . , N that

ÿi = πÿi− + τ ẍi + ε̈i and ẍi = ρÿi− + üi,

where, for t = 2, . . . , T , ui and εi stack uit and εit, and yi and yi− stack yit and yit−1,
and ·̈ stands for individually demeaned quantities, say ÿit = yit − 1

T −1
∑T

t=2 yit and ÿit−1 =
yit−1 − 1

T −1
∑T

t=2 yit−1.

With initial conditions yi0, we have

xi1 = δXαi + ρyi0 + ui1

and, with τρ + π = 1, it follows that

yi1 = δY αi + πyi0 + τxi1 + εi1 = yi0 + (δY + τδX) αi + (τui1 + εi1) .

Iterating, we obtain for all 1 ≤ t ≤ T

yit = yi0 + t (δY + τδX) αi +
t∑

s=1
(τuis + εis) .

Let now ι1:t denote the T -vector whose first t elements are 1 and the rest are 0. We thus
have for all 1 ≤ t ≤ T

yit = yi0 + (δY + τδX) ι′
1:tιT αi + τι′

1:tuT,i + ι′
1:tεT,i,

where ιT = ι1:T stands for a T -vector of ones and uT,i and εT,i stack uit and εit for
t = 1, . . . , T ; these are distinct from ui and εi which stack uit and εit for t = 2, . . . , T
only.
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Furthermore, denote by Θ− the (T − 1) × T matrix stacking ι′
1:t for t = 1, . . . , T − 1, i.e.

Θ− =



1 0 0 · · · · · · 0 0
1 1 0 · · · · · · 0 0
1 1 1 . . . 0 0
... ... ... . . . . . . ... ...
1 1 1 . . . 0 0
1 1 1 · · · · · · 1 0


.

As such, we obtain, with ιT −1 a T − 1-vector of ones,

yi− = yi0ιT −1 + (δY + τδX) αiΘ−ιT + τΘ−uT,i + Θ−εT,i.

and, with QT −1 = IT −1 − 1
T −1ιT −1ι

′
T −1 the usual “demeaning matrix” (which, recall, is

symmetric and idempotent by construction),

ÿi− = QT −1yi− = (δY + τδX) αiQT −1Θ−ιT + τQT −1Θ−uT,i + QT −1Θ−εT,i.

We note in passing that, unlike in the stationary case, the fixed-effects transformation
does not remove the cumulated unobserved effect t (δY + τδX) αi (which effectively acts
like a trend in this model) from either yit or yit−1, and therefore the unobserved effects αi

will still play a role in the limit. The initial conditions yi0 are however washed out by the
fixed-effects transform.

Like in Eqn. A3, we have that the asymptotic bias of τ̂F E−LDV is given by the probability
limit of a certain ratio,

BF E−LDV
T = plim

N→∞

∑
ẍ′

iε̈i −∑
ẍ′

iÿi−

(∑
ÿ′

i−ÿi−

)−1∑
ÿ′

i−ε̈i∑
ẍ′

iẍi −∑
ẍ′

iÿi−

(∑
ÿ′

i−ÿi−

)−1∑
ÿ′

i−ẍi

,

which simplifies due to ẍi = ρÿi− + üi to

BF E−LDV
T = plim

N→∞

1
N

∑
ü′

iε̈i
1
N

∑
ÿ′

i−ÿi− − 1
N

∑
ü′

iÿi− · 1
N

∑
ÿ′

i−ε̈i

1
N

∑
ü′

iüi
1
N

∑
ÿ′

i−ÿi− −
(

1
N

∑
ü′

iÿi−

)2 .

Since, as N → ∞ , 1
N

∑
ü′

iε̈i
p→ 0 and 1

N

∑
ÿ′

i−ÿi− is bounded, we obtain

BF E−LDV
T = −

plim
N→∞

1
N

∑
ü′

iÿi− · plim
N→∞

1
N

∑
ÿ′

i−ε̈i

plim
N→∞

1
N

∑
ü′

iüi plim
N→∞

1
N

∑
ÿ′

i−ÿi− −
(

plim
N→∞

1
N

∑
ü′

iÿi−

)2 .

Analyzing the sample averages, we know from Section C.2.2 that

1
N

∑
ü′

iüi
p→ E [ü′

iüi] = (T − 1) σ̄2
u

(
1 − 1

T − 1

)
= (T − 2) σ̄2

u;

the other terms require however a nonstationarity-specific analysis which we provide in
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the following.

Note first that
1
N

∑
ü′

iÿi− = 1
N

∑
ü′

i ((δY + τδX) αiQT −1Θ−ιT + τQT −1Θ−uT,i + QT −1Θ−εT,i)
p→ τE [ü′

iQT −1Θ−uT,i];

this is because αi and ui, as well as ui and εi, are mutually independent. With S the
(T − 1) × T selector matrix, selecting ui = (ui2, . . . , uiT ) from uT,i,

S =



0 1 0 0 · · · · · · 0
0 0 1 0 · · · · · · 0
0 0 0 1 . . . 0
... ... ... ... . . . . . . ...
0 0 0 0 . . . 0
0 0 0 0 · · · · · · 1


s.t. ui = SuT,i, we have

E [ü′
iQT −1Θ−uT,i] = E

[
u′

T,iS′Q′
T −1QT −1Θ−uT,i

]
= E

[
tr
(
uT,iu′

T,iS′QT −1Θ−
)]

= σ̄2
u tr (S′QT −1Θ−) .

Similarly, with εi = SεT,i, it follows that

1
N

∑
ÿ′

i−ε̈i
p→ E

[
ε′

iΘ′
−Q′

T −1ε̈i

]
= E

[
tr
(
Θ′

−Q′
T −1ε̈iε′

i

)]
= σ̄2

ε tr
(
Θ′

−QT −1S
)

= σ̄2
ε tr (S′QT −1Θ−) .

Finally, since αi and ui, ui and εi, as well as αi and εi are mutually independent, it
immediately follows that

1
N

∑
ÿ′

i−ÿi−
p→ (δY + τδX)2 σ2

αι′
T Θ′

−Q′
T −1QT −1Θ−ιT +

(
τ 2σ̄2

u + σ̄2
ε

)
tr
(
Θ′

−QT −1Θ−
)

.

To obtain the exact expressions, we note that

QT −1Θ−ιT = QT −1 (1, 2, . . . , T − 1)′ =
(

1 − T

2 , 2 − T

2 , . . . , (T − 1) − T

2

)′

such that

ι′
T Θ′

−Q′
T −1QT −1Θ−ιT =

T −1∑
t=1

(
t − T

2

)2
=

T −1∑
t=1

t2 − 2T

2

T −1∑
t=1

t +
T −1∑
t=1

T 2

4

= (T − 1)T (2T − 1)
6 − (T − 1)T 2

2 + (T − 1)T 2

4

= (T − 1)T
2

(2T − 1
3 − T

2

)
= T (T − 1)(T − 2)

12 .
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Then,

QT −1Θ− =



0 −T −2
T −1 −T −3

T −1 · · · · · · − 1
T −1 0

0 1
T −1 −T −3

T −1 · · · · · · − 1
T −1 0

0 1
T −1

2
T −1

. . . − 1
T −1 0

... ... ... . . . . . . ... ...
0 1

T −1
2

T −1
. . . − 1

T −1 0
0 1

T −1
2

T −1 · · · · · · T −2
T −1 0


.

Since the ith row of Θ′
− is the vector consisting of T − 1 − i zeros and i ones, it is

straightforward to compute the diagonal terms of Θ′
−QT −1Θ− such that

tr
(
Θ′

−QT −1Θ−
)

= 0 + (T − 2) 1
T − 1 + (T − 3) 2

T − 1 + . . . + 1 · T − 2
T − 1 + 0

= 1
T − 1

T −2∑
t=1

t(T − 1 − t) = 1
T − 1

(
(T − 1)

T −2∑
t=1

t −
T −2∑
t=1

t2
)

= (T − 2)(4T − 3)
12 ,

and, analogously,

tr (S′QT −1Θ−) = 0 −
T −2∑
t=1

T − 1 − t

T − 1 + 0 = −T − 2
2 .

Summing up, this leads to

BF E−LDV
T = − τ σ̄2

uσ̄2
ε (tr (S′QT −1Θ−))2

(T − 2) σ̄2
u plimN→∞

1
N

∑
ÿ′

i−ÿi− − τ 2σ̄4
u (tr (S′QT −1Θ−))2

= −
τ σ̄2

uσ̄2
ε

(T −2)2

4

(T − 2) σ̄2
u

(
(δY + τδX)2 σ2

α
T (T −1)(T −2)

12 + (τ 2σ̄2
u + σ̄2

ε) (T −2)(4T −3)
12

)
− τ 2σ̄4

u
(T −2)2

4

= −τ
σ̄2

ε

1
3

(
(δY + τδX)2 σ2

α(T − 1)T + (τ 2σ̄2
u + σ̄2

ε) (4T − 3)
)

− τ 2σ̄2
u

.

This will be smaller in magnitude than τ whenever

σ̄2
ε

1
3

(
(δY + τδX)2 σ2

α(T − 1)T + (τ 2σ̄2
u + σ̄2

ε) (4T − 3)
)

− τ 2σ̄2
u

< 1,

or
1
3 (δY + τδX)2 σ2

α(T − 1)T +
(
τ 2σ̄2

u + σ̄2
ε

)(4T − 3
3 − 1

)
> 0,

which is the case for T = 3 already.
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B. Simulation Results

B.1. Robustness Tests

Table A1: Results when there is a feedback effect of Yi,t−1 on Xit and a fixed effect
simultaneously influences Yit and Xit. Cases with small T and ρτ close to
unity.

Sample size Data generating process Estimates of τ
Scenario N T τ δX ρ δY OLS FE LDV FE-LDV

A 300 3 1.00 0.50 0.95 0.50 1.03 0.64 1.01 0.68
B 300 3 1.00 0.50 0.99 0.50 1.01 0.71 1.01 0.73

Results based on Monte Carlo Simulations with 500 repetitions. N: Number of individuals. T: Number of time periods

Table A2: Results when there is a feedback effect of Yi,t−1 on Xit and a fixed effect
simultaneously influences Yit and Xit. Cases in which the FE-LDV estimate
lies between the FE and LDV estimates (Scenario A) or all estimates are be
downward biased (Scenario B).

Sample size Data generating process Estimates of τ
Scenario N T τ δX ρ δY OLS FE LDV FE-LDV

A 1000 6 1.00 -0.20 0.95 0.20 1.00 0.80 0.96 0.87
B 1000 3 1.00 -0.20 0.30 0.20 0.97 0.88 0.96 0.81

Results based on Monte Carlo Simulations with 500 repetitions. N: Number of individuals. T: Number of time periods
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Table A3: Results when there is a feedback effect of yi,t−1 on xit and a fixed effect
simultaneously influences yit and xit. Small (ρ = 0.1) vs high (ρ = 0.9)
feedback effects.

Data generating process Estimates of τ
Scenario τ δX ρ δY OLS FE LDV FE-LDV

A 1.00 0.50 0.10 0.50 1.22 0.98 1.13 0.98
B 1.00 -0.50 0.10 0.50 0.80 0.98 0.80 0.98
C 1.00 0.50 -0.10 0.50 1.17 1.02 1.15 0.98
D 1.00 -0.50 -0.10 0.50 0.80 1.02 0.80 0.99
E -1.00 0.50 0.10 0.50 -0.80 -1.01 -0.80 -0.98
F -1.00 -0.50 0.10 0.50 -1.17 -1.01 -1.15 -0.98
G -1.00 0.50 -0.10 0.50 -0.80 -0.98 -0.80 -0.98
H -1.00 -0.50 -0.10 0.50 -1.22 -0.98 -1.13 -0.97

I 1.00 0.50 0.90 0.50 1.05 0.80 1.02 0.88
J 1.00 -0.50 0.90 0.50 0.98 0.80 0.80 0.88
K 1.00 0.50 -0.90 0.50 1.00 1.01 1.20 1.00
L 1.00 -0.50 -0.90 0.50 0.98 1.01 0.80 1.00
M -1.00 0.50 0.90 0.50 -0.97 -1.01 -0.80 -1.00
N -1.00 -0.50 0.90 0.50 -1.00 -1.01 -1.20 -1.00
O -1.00 0.50 -0.90 0.50 -0.98 -0.80 -0.80 -0.88
P -1.00 -0.50 -0.90 0.50 -1.05 -0.80 -1.02 -0.88

Results based on Monte Carlo Simulations with 500 repetitions, 300 individuals and 6 time periods.

Table A4: Results when there is a feedback effect of yi,t−1 on xit and a fixed ef-
fect simultaneously influences yit and xit. The size of the feedback ef-
fect (ρ) depends on the fixed effect (αi): ρ = 0.5 if αi < 0; ρ =
0.1 (in Scenarios A to D) or 0.9 (in Scenarios E to H) if αi ≥ 0.

Data generating process Estimates of τ
Scenario τ δX ρ if αi ≥ 0 δY OLS FE LDV FE-LDV

A 1.00 0.50 0.10 0.50 1.21 0.93 1.10 0.95
B 1.00 -0.50 0.10 0.50 0.84 0.93 0.81 0.95
C -1.00 0.50 0.10 0.50 -0.84 -1.02 -0.81 -0.98
D -1.00 -0.50 0.10 0.50 -1.10 -1.03 -1.16 -0.98
E 1.00 0.50 0.90 0.50 1.07 0.84 1.01 0.91
F 1.00 -0.50 0.90 0.50 0.96 0.84 0.82 0.91
G -1.00 0.50 0.90 0.50 -0.96 -1.01 -0.82 -0.98
H -1.00 -0.50 0.90 0.50 -1.01 -1.01 -1.18 -0.98

Results based on Monte Carlo Simulations with 500 repetitions, 300 individuals and 6 time periods.
Idea behind this robustness test: In many applications, it may be the case that feedback effects are especially pronounced if
an observation scores high on a specific fixed characteristic. For example, districts with strong partisan leanings might also
show a stronger response to past election outcomes. To investigate the robustness of our findings in such a setting, we adapt
the data generating process such that ρ is a function of αi ∼ N(0, 1).
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Table A5: Results when there is a feedback effect of yi,t−1 on xit and a fixed effect
simultaneously influences yit and xit. Differences in noise levels.

Data generating process Estimates of τ
Scenario τ δX ρ δY σϵ σα σu OLS FE LDV FE-LDV

A 1.00 0.50 0.50 0.50 5 1 1 1.06 0.53 1.18 0.89
B 1.00 -0.50 0.50 0.50 5 1 1 0.98 0.53 0.81 0.91
C 1.00 0.50 -0.50 0.50 5 1 1 1.01 1.13 1.20 0.99
D 1.00 -0.50 -0.50 0.50 5 1 1 0.97 1.14 0.80 0.98
E -1.00 0.50 0.50 0.50 5 1 1 -0.98 -1.14 -0.80 -0.98
F -1.00 -0.50 0.50 0.50 5 1 1 -1.01 -1.14 -1.20 -0.98
G -1.00 0.50 -0.50 0.50 5 1 1 -0.97 -0.52 -0.80 -0.90
H -1.00 -0.50 -0.50 0.50 5 1 1 -1.06 -0.53 -1.18 -0.90

I 1.00 0.50 0.50 0.50 1 5 1 1.32 0.89 1.14 0.95
J 1.00 -0.50 0.50 0.50 1 5 1 0.21 0.89 0.14 0.95
K 1.00 0.50 -0.50 0.50 1 5 1 1.88 1.03 1.55 0.99
L 1.00 -0.50 -0.50 0.50 1 5 1 0.21 1.03 1.14 0.99
M -1.00 0.50 0.50 0.50 1 5 1 -0.21 -1.03 -1.14 -0.99
N -1.00 -0.50 0.50 0.50 1 5 1 -1.88 -1.03 -1.55 -0.99
O -1.00 0.50 -0.50 0.50 1 5 1 -0.21 -0.89 -0.14 -0.95
P -1.00 -0.50 -0.50 0.50 1 5 1 -1.32 -0.89 -1.14 -0.95

Q 1.00 0.50 0.50 0.50 1 1 5 1.02 1.00 1.01 1.00
R 1.00 -0.50 0.50 0.50 1 1 5 0.99 0.99 0.99 1.00
S 1.00 0.50 -0.50 0.50 1 1 5 1.00 1.00 1.01 1.00
T 1.00 -0.50 -0.50 0.50 1 1 5 0.99 1.00 0.99 1.00
U -1.00 0.50 0.50 0.50 1 1 5 -0.99 -1.00 -0.99 -1.00
V -1.00 -0.50 0.50 0.50 1 1 5 -1.00 -1.00 -1.01 -1.00
W -1.00 0.50 -0.50 0.50 1 1 5 -0.99 -0.99 -0.99 -1.00
X -1.00 -0.50 -0.50 0.50 1 1 5 -1.02 -0.99 -1.01 -1.00

Results based on Monte Carlo Simulations with 500 repetitions, 300 individuals and 6 time periods.
Idea behind this robustness test: Some political variables may be measured much more noisily than others. Administrative
data, for example, will often exhibit less noise than survey responses. Therefore, we systematically vary the standard
deviations of the different disturbances in our data generating process.
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Further robustness tests: The following listing provides an overview of several further
scenarios we investigated to ensure that the FE-LDV model provides in absolute terms
a lower bound of the true causal effect of X on Y . A check (✓) indicates that given the
described change in the DGP and throughout all specifications presented in Tables 2, 3
and 6, the FE-LDV model provides an estimate that is in absolute terms lower than the
true effect and has the correct sign.

• Change in the number of time periods from 6 to 3: ✓

• Change in the number of time periods from 6 to 16: ✓

• Change in the number of individuals from 300 to 10: ✓

• Change in the number of individuals from 300 to 1000: ✓

• Change in the value of δX and δY from ± 0.5 to ± 1: ✓

• Change in the value of ρ from ± 0.5 to ± 0.95: ✓

• Change in the value of ρ from ± 0.5 to ± 0.05: ✓
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B.2. State Dependence

Table A6: Monte Carlo Simulation results if the LDV model is correct, that is, ρ /= 0
and there are no fixed effects: δX = 0 = δY . Yit follows a stationary AR(1)
process (state dependence) according to Equation (8) with π = 0.2.

Data generating process Estimates of τ
Scenario τ δX ρ δY π OLS FE LDV FE-LDV

A 1.00 0.00 0.50 0.00 0.20 1.20 0.97 1.00 0.92
B 1.00 0.00 -0.50 0.00 0.20 0.86 0.89 1.00 0.99
C -1.00 0.00 0.50 0.00 0.20 -0.86 -0.89 -1.00 -0.99
D -1.00 0.00 -0.50 0.00 0.20 -1.20 -0.97 -1.00 -0.92

Results based on Monte Carlo Simulations with 500 repetitions, 300 individuals and 6 time periods.

Table A7: Monte-Carlo Simulation results if the fixed effects model is correct, that is,
δX /= 0 /= δY and there is no feedback effect: ρ = 0. Yit follows a stationary
AR(1) process (state dependence) according to Equation (8) with π = 0.2.

Data generating process Estimates of τ
Scenario τ δX ρ δY π OLS FE LDV FE-LDV

E 1.00 0.50 0.00 0.50 0.20 1.30 0.96 1.12 0.97
F 1.00 -0.50 0.00 0.50 0.20 0.80 0.96 0.80 0.97
G -1.00 0.50 0.00 0.50 0.20 -0.80 -0.96 -0.80 -0.97
H -1.00 -0.50 0.00 0.50 0.20 -1.30 -0.96 -1.12 -0.97

Results based on Monte Carlo Simulations with 500 repetitions, 300 individuals and 6 time periods.

Table A8: Results when there is a feedback effect of yi,t−1 on xit and a fixed effect
simultaneously influences yit and xit. Yit follows a stationary AR(1) process
(state dependence) according to Equation (8) with π = 0.2.

Data generating process Estimates of τ
Scenario τ δX ρ π δY OLS FE LDV FE-LDV

A 1.00 0.50 0.50 0.50 0.20 1.44 0.97 1.06 0.92
B 1.00 -0.50 0.50 0.50 0.20 1.06 0.97 0.80 0.92
C 1.00 0.50 -0.50 0.50 0.20 0.91 0.89 1.16 0.99
D 1.00 -0.50 -0.50 0.50 0.20 0.74 0.89 0.80 0.99
E -1.00 0.50 0.50 0.50 0.20 -0.74 -0.89 -0.80 -0.99
F -1.00 -0.50 0.50 0.50 0.20 -0.91 -0.89 -1.16 -0.99
G -1.00 0.50 -0.50 0.50 0.20 -1.06 -0.97 -0.80 -0.92
H -1.00 -0.50 -0.50 0.50 0.20 -1.44 -0.97 -1.06 -0.92

Results based on Monte Carlo Simulations with 500 repetitions, 300 individuals and 6 time periods.

36



B.3. Nonstationarity

Table A9: Monte Carlo Simulation results if the LDV model is correct, that is, ρ /= 0
and there are no fixed effects: Unit root case (π + τρ = 1).

Data generating process Estimates of τ
Scenario τ δX ρ δY OLS FE LDV FE-LDV

A 1.00 0.00 1.00 0.00 1.00 0.79 1.00 0.86
B 1.00 0.00 -1.00 0.00 1.00 1.00 1.00 1.00
C -1.00 0.00 1.00 0.00 -1.00 -1.00 -1.00 -1.00
D -1.00 0.00 -1.00 0.00 -1.00 -0.78 -1.00 -0.86

Results based on Monte Carlo Simulations with 500 repetitions, 300 individuals and 6 time periods.

Table A10: Results when there is a feedback effect of yi,t−1 on xit and a fixed effect
simultaneously influences yit and xit. Unit root case (π + τρ = 1).

Data generating process Estimates of τ
Scenario τ δX ρ δY OLS FE LDV FE-LDV

A 1.00 0.50 1.00 0.50 1.01 0.91 1.01 0.94
B 1.00 -0.50 1.00 0.50 1.00 0.79 0.80 0.86
C 1.00 0.50 -1.00 0.50 1.00 1.00 1.20 1.00
D 1.00 -0.50 -1.00 0.50 1.00 1.00 0.80 1.00
E -1.00 0.50 1.00 0.50 -1.00 -1.00 -0.80 -1.00
F -1.00 -0.50 1.00 0.50 -1.00 -1.00 -1.20 -1.00
G -1.00 0.50 -1.00 0.50 -1.00 -0.79 -0.80 -0.86
H -1.00 -0.50 -1.00 0.50 -1.01 -0.91 -1.01 -0.94

Results based on Monte Carlo Simulations with 500 repetitions, 300 individuals and 6 time periods.
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B.4. Empirical Example

Table A11: Replication of column (1) in Table 2 from Acemoglu et al., 2019 and esti-
mation of the corresponding FE and LDV models

(1) (2) (3) (4)
FE-LDV (replication of

FE (restric- col. (1) in Table 2 from
FE ted sample) LDV Acemoglu et al., 2019)

Democracy -10.112 -9.815 0.457 0.973
(4.316) (4.375) (0.296) (0.294)

Log GDP, first lag 1.002 0.973
(0.001) (0.006)

Observations 6,934 6,790 6,790 6,790
Countries in sample 175 175 175 175

“This table presents estimates of the effect of democracy on the growth rate of GDP per capita. The reported coefficient on
democracy is multiplied by 100. [...] In all speciations we control for a full set of country and year fixed effects. [...]
Standard errors robust against heteroskedasticity and serial correlation at the country level are reported in parentheses.”
(Acemoglu et al., 2019, p. 67).
Since the static FE model allows the inclusion of an additional period in the estimation, the sample differs across columns.
To rule out that the additional period is the cause of the strong difference between the FE model and the other models, we
estimate an FE model in column (2) where the additional period is excluded, and the sample is therefore identical to that in
columns (3) and (4).
These results are obtained by using the file “Table2_final.do” in the supplemental material “Data Archive” for Acemoglu et
al. (2019, https://www.journals.uchicago.edu/doi/suppl/10.1086/700936#) and replacing the command in Line 463 by
xtreg y dem yy*, fe r cluster(wbcode2) (column 1), xtreg y dem yy* if l.y!=., fe r cluster(wbcode2) (column
2), or reg y l.y dem yy*, r cluster(wbcode2) (column 3). After removing the prefix quietly:, the unchanged command
line 463 (xtreg y l.y dem yy*, fe r cluster(wbcode2)) generates the results in column (4).
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B.5. Simulations with varying T
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Figure A2: This figure extends the results shown in Table 6 of the main manuscript
for different time periods T . With the exception of T , all other parameters
are the same as in the corresponding scenarios in Table 6. Scenarios E to
H are not shown here as they are exact mirror images of scenarios A to D
in negative space.
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Figure A3: This figure extends the results shown in Table A8, the case of state de-
pendence, for different time periods T . With the exception of T , all other
parameters are the same as in the corresponding scenarios in Table A8.
Scenarios E to H are not shown here as they are exact mirror images of
scenarios A to D in negative space.
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C. Technical Appendix

C.1. Preliminaries

For any |ω| < 1, we approximate

T −1∑
j=0

ωj = 1 − ωT

1 − ω
= 1

1 − ω
+ O

(
e−T

)
T −1∑

j=−T +1
ω|j| = −1 + 2

T −1∑
j=0

ωj = 1 + ω

1 − ω
+ O

(
e−T

)
,

where the negligible terms vanish at exponential rates as T increases.16 Furthermore,

T −2∑
j=1

T − j

T − 1ωj =
T −1∑
j=0

ωj − 1
T − 1

T −2∑
j=1

jωj = 1
1 − ω

+ O
(
e−T

)
+ O

(
T −1

)

since, with |ω| < 1, the sum ∑T −2
j=1 jωj is easily shown to be bounded as T increases.

Therefore, all three approximation errors above are of at most magnitude order O (T −1).
Finally, for the same reasons,

T∑
t=2

T∑
s=2

ω|s−t| = (T − 1)1 + ω

1 − ω
+ O (1) .

C.2. Baseline DGP

C.2.1. Data generating process

Plugging in the regressor DGP in the panel model gives for t = 1, . . . , T

yit = δY αi + τ (δXαi + ρyi,t−1 + uit) + εit

= (δY + τδX) αi + τρyi,t−1 + τuit + εit.

Let ω = τρ and vit = τuit + εit.

Via the usual recursive argument, we immediately obtain for t = 1, . . . , T

yit = ωtyi0 + (δY + τδX) αi

t−1∑
j=0

ωj +
t−1∑
j=0

ωjvi,t−j.

Weak stationarity is then achieved by specifying the initial condition as

yi0 = (δY + τδX) αi

1 − ω
+ vi0√

1 − ω2
,

16The famous expression for the Nickell bias was derived using similar approximations; see Nickell (1981).

41



where |τρ| = |ω| < 1, s.t. we have for t = 1, . . . , T that

yit = (δY + τδX) αi

1 − ω
+ ωt vi0√

1 − ω2
+

t−1∑
j=0

ωjvi,t−j (A7)

and
yi,t−1 = (δY + τδX) αi

1 − ω
+ ωt−1 vi0√

1 − ω2
+

t−2∑
j=0

ωjvi,t−1−j, (A8)

where the convention ∑j
i · = 0 for j < i was used. Due to stationarity of yit and the

mutual independence of the error components, we have for 1 ≤ s, t ≤ T

E [yityis] = ω|t−s| τ
2σ2

ui + σ2
εi

1 − ω2 + (δY + τδX)2

(1 − ω)2

(
µ2

α + σ2
α

)
and

E
[(

yit − (δY + τδX) αi

1 − ω

)(
yis − (δY + τδX) αi

1 − ω

)]
= ω|t−s| τ

2σ2
ui + σ2

εi

1 − ω2 .

C.2.2. Within-transformed data

Since all variables are demeaned in a unit-specific manner that washes out any fixed
components, we may set w.l.o.g. µα, σ2

α = 0 in the following.

We first study the case of demeaning when an LDV is included as regressor (i.e., for
the FE-LDV estimator). Naturally, this leads to an effectively shorter panel, 2 ≤ t ≤ T .
Then,

E
[
ÿ2

it−1

]
= E

[
y2

it−1

]
− 2 E [ȳi−yit−1] + E

[
ȳ2

i−

]
= τ 2σ2

ui + σ2
εi

1 − ω2

1 − 2
T − 1

T∑
j=2

ω|t−j| + 1
T − 1

1 + 2
T −2∑
j=1

T − j

T − 1ωj


and therefore

E
[
ÿ′

i−ÿi−

]
= τ 2σ2

ui + σ2
εi

1 − ω2

T − 1 − 2
T − 1

T∑
t=2

T∑
j=2

ω|t−j| + 1
T − 1

T∑
t=2

1 + 2
T −2∑
j=1

T − j

T − 1ωj


= (T − 1) τ 2σ2

ui + σ2
εi

1 − ω2

(
1 − 1

T − 1
1 + ω

1 − ω

)
+ O (1)

for which we have as N → ∞ that

1
N

N∑
i=1

E
[
ÿ′

i−ÿi−

]
= (T − 1)

τ 2 1
N

∑N
i=1 σ2

ui + 1
N

∑N
i=1 σ2

εi

1 − ω2

(
1 − 1

T − 1
1 + ω

1 − ω

)
+ O(1)

→ (T − 1) τ 2σ̄2
u + σ̄2

ε

1 − ω2

(
1 − 1

T − 1
1 + ω

1 − ω

)
+ O(1),
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since the O (1) terms remain O (1) upon averaging. For T = 3, the exact expression is

E
[
ÿ′

i−ÿi−

]
= τ 2σ2

ui + σ2
εi

1 − ω2 ,

whose average converges as N → ∞,

1
N

N∑
i=1

τ 2σ2
ui + σ2

εi

1 − ω2 =
τ 2 1

N

∑N
i=1 σ2

ui + 1
N

∑N
i=1 σ2

εi

1 − ω2 → τ 2σ̄2
u + σ̄2

ε

1 − ω2

Write then
E
[
ÿ′

i−üi

]
=

T∑
t=2

E [üitÿit−1] .

Note now that E [uitvis] = τσ2
ui for s = t and 0 otherwise, such that

E [uityis] =
τσ2

uiω
s−t 2 ≤ t ≤ s < T

0 1 ≤ s < t ≤ T
.

This implies

E [üitÿit−1] = E [uityit−1] − E [ūiyit−1] − E [ȳi−uit] + E [ūiȳi−]

= τσ2
ui

− 1
T − 1

t−3∑
j=0

ωj − 1
T − 1

T −1−t∑
j=0

ωj + 1
T − 1

T −3∑
j=0

T − j − 2
T − 1 ωj

 ,

s.t.

E
[
ÿ′

i−üi

]
= τσ2

ui

− 1
T − 1

T∑
t=2

t−3∑
j=0

ωj − 1
T − 1

T∑
t=2

T −1−t∑
j=0

ωj + 1
T − 1

T∑
t=2

T −3∑
j=0

T − j − 2
T − 1 ωj


= (T − 1) τσ2

ui

(
− 1

T − 1
1

1 − ω

)
+ O (1) ;

for T = 3, we obtain
E
[
ÿ′

i−üi

]
= −1

2τσ2
ui,

and both quantities behave in the limit in an obvious manner upon averaging. Moreover,

E
[
ÿ′

i−ε̈i

]
=

T∑
t=2

E [ε̈itÿit−1] ,

where E [εitvis] = σ2
εi for s = t and 0 otherwise, such that

E [εityis] =
σ2

εiω
s−t 2 ≤ t ≤ s ≤ T

0 1 ≤ s < t ≤ T

leading analogously to the case of E
[
ÿ′

i−üi

]
to

E
[
ÿ′

i−ε̈i

]
= (T − 1) σ2

εi

(
− 1

T − 1
1

1 − ω

)
+ O (1)
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and
E
[
ÿ′

i−ε̈i

]
= (T − 1) σ̄2

ε

(
− 1

T − 1
1

1 − ω

)
+ O (1) .

The exact expression is for T = 3

E
[
ÿ′

i−ε̈i

]
= −1

2 σ̄2
ε .

We now move on to
E [ü′

iüi] =
T∑

t=2
E
[
ü2

it

]
,

where

E
[
ü2

it

]
= E

[
u2

it

]
− 2 E [ūiuit] + E

[
ū2

i−

]
= σ2

ui

(
1 − 1

T − 1

)
such that

E [ü′
iüi] = (T − 1) σ̄2

u

(
1 − 1

T − 1

)
.

For T = 3, we have
E [ü′

iüi] = σ̄2
u

(and note that there is no need for an approximation since E [ü′
iüi] is tractable to begin

with).

Finally,

E [ẍ′
iẍi] = ρ2 E

[
ÿ′

i−ÿi−

]
+ 2ρ E

[
ÿ′

i−üi

]
+ E [ü′

iüi]

= (T − 1)
[
ρ2 τ 2σ2

ui + σ2
εi

1 − ω2

(
1 − 1

T − 1
1 + ω

1 − ω

)
+ 2ρτσ2

ui

(
− 1

T − 1
1

1 − ω

)
+ σ2

ui

(
1 − 1

T − 1

)]
+ O(1).

= (T − 1)
(

ρ2 τ 2σ2
ui + σ2

εi

1 − ω2 + σ2
ui

)
+ O(1),

whose average converges,

E [ẍ′
iẍi] = (T − 1)

(
ρ2 τ 2σ̄2

u + σ̄2
ε

1 − ω2 + σ̄2
u

)
+ O(1),

Next we study the case when no LDV is included as regressor (i.e., for the simple
FE estimator). The above expressions change slightly since, for t = 1, . . . , T , ...

x it =
xit − T −1∑T

t=1 xit. Using the same arguments as for the case with an LDV included, it is
not difficult to obtain that

E [ ...
y ′

i−
...
ε i] = T σ̄2

ε

(
− 1

T

1
1 − ω

)
+ O (1)
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and
E [ ...

x ′
i
...
x i] = T

(
ρ2 τ 2σ̄2

u + σ̄2
ε

1 − ω2 + σ̄2
u

)
+ O(1),

as well as
E [ ...

y ′
i−

...
u i] = Tτσ̄2

u

(
− 1

T

1
1 − ω

)
+ O (1)

and
E
[ ...

y ′
i−

...
y i−

]
= T

τ 2σ̄2
u + σ̄2

ε

1 − ω2

(
1 − 1

T

1 + ω

1 − ω

)
+ O (1) .

C.2.3. Pooled demeaning

Setting w.l.o.g. µα = 0, Equation (A8) together with the mutual independence of the error
components implies immediately that

E
[
y′

i−yi−

]
=

T∑
t=2

E
[
y2

it−1

]
= (T − 1)

(
(δY + τδX)2

(1 − ω)2 σ2
α + τ 2σ2

ui + σ2
εi

1 − ω2

)
.

Therefore, since N−1∑N
i=1 σ2

ui → σ̄2
u and N−1∑N

i=1 σ2
εi → σ̄2

ε ,

1
N

N∑
i=1

E
[
y′

i−yi−

]
= (T − 1) (δY + τδX)2

(1 − ω)2 σ2
α + (T − 1)

N (1 − ω2)

N∑
i=1

(
τ 2σ2

ui + σ2
εi

)

→ (T − 1)
(

(δY + τδX)2

(1 − ω)2 σ2
α + τ 2σ̄2

u + σ̄2
ε

1 − ω2

)
.

Then, with δX the column vector stacking δX T − 1 times,

E
[
(ui + δXαi)′ yi−

]
=

T∑
t=2

E [yit−1uit] + δX

T∑
t=2

E [yit−1αi]

= (T − 1) δX (δY + τδX)
1 − ω

σ2
α

not depending on i, and also obtain analogously

E
[
(εi + δY αi)′ yi−

]
= (T − 1) δY (δY + τδX)

1 − ω
σ2

α.

Finally, we make use of the same arguments relying on the independence of the error
components, leading immediately to

E
[
(ui + δXαi)′ (εi + δY αi)

]
= E [u′

iεi] + E [u′
iδY αi] + E [δ′

Xαiεi] + E
[
δ′

XδY α2
i

]
= (T − 1) δXδY σ2

α

and
E
[
(ui + δXαi)′ (ui + δXαi)

]
= (T − 1)

(
σ2

ui + δ2
Xσ2

α

)
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such that
1
N

N∑
i=1

E
[
(ui + δXαi)′ (ui + δXαi)

]
→ (T − 1)

(
σ̄2

u + δ2
Xσ2

α

)
.

C.3. State-dependent DGP

We note that plugging in the regressor DGP in the panel model gives for t = 2, . . . , T

yit = δY αi + πyit−1 + τ (δXαi + ρyit−1 + uit) + εit

= (δY + τδX) αi + (π + τρ) yit−1 + τuit + εit

and therefore can be nested in the original case by setting ω = π + τρ instead of τρ.
Therefore all relevant expectations may be derived the same way as for the baseline setup,
provided that the stationarity condition |π + τρ| < 1 is fulfilled.
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