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Abstract
We consider adjustable robust linear complementarity problems and extend the 
results of Biefel et al. (SIAM J Optim 32:152–172, 2022) towards convex and com-
pact uncertainty sets. Moreover, for the case of polyhedral uncertainty sets, we prove 
that computing an adjustable robust solution of a given linear complementarity 
problem is equivalent to solving a properly chosen mixed-integer linear feasibility 
problem.

Keywords Linear complementarity problems · Adjustable robustness · Robust 
optimization · Mixed-integer linear optimization

1 Introduction

We consider affinely adjustable robust (AAR) linear complementarity problems 
(LCPs). The classic, i.e., deterministic, LCP is defined as follows. Given a matrix 
M ∈ ℝ

n×n and a vector q ∈ ℝ
n , the LCP(q, M) is the problem to find a vector z ∈ ℝ

n 
that satisfies the conditions

or to show that no such vector exists. In the following, we use the standard ⟂-nota-
tion and abbreviate (1) as

(1)z ≥ 0, Mz + q ≥ 0, z⊤(Mz + q) = 0

(2)0 ≤ z ⟂ Mz + q ≥ 0.

 * Martin Schmidt 
 martin.schmidt@uni-trier.de

 Christian Biefel 
 cm.biefel@gmail.com

1 München, Germany
2 Department of Mathematics, Trier University, Universitätsring 15, 54296 Trier, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-023-02093-7&domain=pdf
http://orcid.org/0000-0001-8310-7724
http://orcid.org/0000-0001-6208-5677


1304 C. Biefel, M. Schmidt 

1 3

LCPs are very important both in applications as well as in mathematical theory 
itself. For instance, they are used to model market equilibrium problems in many 
applied studies of gas or electricity markets [11] but also play an important role 
in mathematical optimization, game theory, or general matrix theory. We refer the 
interested reader to the seminal book [10] for an overview.

Although there is a very strong connection between LCPs and mathematical 
optimization and although the latter has been studied a lot in the recent decades 
under data uncertainty, the field of LCPs under uncertainty is still in its infancy. 
Stochastic approaches can be found in [7–9, 15] and are mainly based on mini-
mizing the expected residual gap of the uncertain LCP. On the other hand, robust 
approaches for uncertain LCPs have been considered recently as well. The first 
rigorous analysis of robust LCPs can be found in [19, 20], where the authors 
apply the concept of strict robustness [18] to LCPs, which has been used later in 
[16] in the context of Cournot–Bertrand equilibria in power networks. Moreover, 
in [13, 14], LCPs have been studied using Γ-robustness as introduced in [3, 4, 
17]; see [6, 12] for some applications in power markets.

The most recent paper on robust LCPs, to the best of our knowledge, is [5], 
where robust LCPs are studied using the concept of adjustable robustness [2, 
21]. In [5], the authors study adjustable robust LCPs in the most simplest set-
ting, which is for affine decision rules and box uncertainties. In this short note, 
we stay with affine decision rules but generalize the results to general convex and 
compact uncertainty sets U  . In this context, our contribution is twofold. First, we 
characterize AAR solutions of robust LCPs and, second, use this characterization 
to prove that the AAR LCP with a polyhedral uncertainty set is equivalent to a 
properly chosen mixed-integer linear problem (MILP).

Let us finally note that our study is related to [1], where the authors consider 
multi-parametric LCPs for sufficient matrices M. However, our robust approach as 
well as the studied relation to MILPs differ from the concepts and results of [1].

We introduce the problem under consideration in Sect. 2 and derive our main 
results in Sect. 3. Afterward, we comment on some special cases and extensions 
in Sect. 4.

2  Problem statement

We now define the adjustable robust LCP with affine decision rules. To this end, 
let M ∈ ℝ

n×n and q ∈ ℝ
n as before and let T ∈ ℝ

n×k be given. We assume that q 
is perturbed by Tu with u ∈ U  . In what follows, we assume that U ⊂ ℝ

k is a con-
vex and compact uncertainty set that, w.l.o.g., contains 0 in its relative interior, 
i.e., 0 ∈ relint(U) . Then, the affinely adjustable robust LCP(q,M, T ,U  ) consists of 
finding an affine decision rule, i.e., we want to determine D ∈ ℝ

n×k and r ∈ ℝ
n 

such that z(u) = Du + r satisfies

(3)0 ≤ z(u) ⟂ Mz(u) + q(u) ≥ 0 for all u ∈ U.
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Equivalently, we can state the problem more explicitly as

Without loss of generality, we may assume that T ∈ ℝ
n×k has full column rank; see [1].  

In many applications, some variables are non-adjustable and thus have to be fixed 
before the uncertainty realizes. To model these so-called here-and-now variables, we 
simply require that the first h rows of D are zero for some h < n . For more details, 
we refer to [5].

We close this section by briefly introducing the following notation. Let A ∈ ℝ
m×n , 

b ∈ ℝ
m , and index sets  I ⊆ [m] ∶= {1,… ,m} as well as J ⊆ [n] be given. Then, 

AI,J ∈ ℝ
|I|×|J| denotes the submatrix of A consisting of the rows indexed by I and the 

columns indexed by J. Moreover, bI denotes the subvector with components speci-
fied by entries in I. If I = J , we also write AI instead of AI,I.

3  Main results

In this section, we state and prove our two main results. The first one is a full charac-
terization of AAR solutions of robust LCPs.

Theorem  1 Assume that U is convex and compact with 0 ∈ relint(U) and let 
B = {v1,… , v�} , � ∈ ℕ with � ≤ k , be a basis of the linear hull lin(U) of U . Moreo-
ver, let z(u) = Du + r such that z(u) ≥ 0 as well as Mz(u) + q + Tu ≥ 0 holds for all 
u ∈ U and define I ∶= {i ∈ [n] ∶ ri > 0} . Then, z(u) = Du + r is an AAR solution if 
and only if D and r satisfy the conditions

Proof First, let z(u) = Du + r be an AAR solution. Then, r is a nominal solution 
(as 0 ∈ U ) and therefore r satisfies MI,⋅r + qI = 0 , i.e., (5) is fulfilled. For every vj , 
j ∈ [�] , there exists a scalar 𝛿j > 0 such that �jvj ∈ U and 𝛿jDI,⋅v

j + rI > 0 holds. 
Thus, for every j ∈ [�] the AAR solution z satisfies

where we used (5) for the second equality. Thus, z satisfies (6).
Let now D and r satisfy (5) and (6). From 0 ∈ relint(U) , it follows that for 

all u ∈ U there exists an 𝜀 > 0 such that −�u ∈ U . Hence, nonnegativity of 
z(u) = Du + r yields

Thus, for Ī = [n] ⧵ I,

(4)0 ≤ Du + r ⟂ MDu +Mr + q + Tu ≥ 0 for all u ∈ U.

(5)MI,⋅r + qI = 0,

(6)(MI,⋅D + TI,⋅)v
j = 0, j ∈ [�].

0 = MI,⋅z(�jv
j) + qI + �jTI,⋅v

j = �jMI,⋅Dv
j + �jTI,⋅v

j = �j(MI,⋅D + TI,⋅)v
j,

{
i ∈ [n] ∶ ∃u ∈ U ∶ Di,⋅u + ri > 0

}
⊆ I.
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holds for all u ∈ U . On the other hand, every u ∈ U can be written as a linear combi-
nation u =

∑�

i=1
�jv

j with �j ∈ ℝ . Hence,

holds, where we used (5) for the first and (6) for the last equality. Therefore, 
z(u) = Du + r fulfills complementarity and is an AAR solution due to the additional 
assumptions of the theorem.   ◻

The last theorem states a rather abstract characterization of AAR solutions. For 
arbitrary convex and compact uncertainty sets, working with this characterization 
might be difficult. However, the characterization can be practically used in more 
specific cases, which is what we do in our second main result about polyhedral 
uncertainty sets, where we use the characterization of the last theorem to show that 
affinely adjustable robust solutions are the solutions of a properly chosen MILP.

Theorem  2 Let U = {u ∈ ℝ
k ∶ Θu ≥ �} with Θ ∈ ℝ

g×k and � ∈ ℝ
g and let 

B = {v1,… , v�} be a basis of lin(U) . Furthermore, let b ∈ ℝ be sufficiently large 
and consider the mixed-integer linear feasibility problem 

zĪ(u)
⊤(MĪ,⋅z(u) + qĪ + TĪ,⋅u) = 0

MI,⋅(Du + r) + qI + TI,⋅u = MI,⋅Du + TI,⋅u = (MI,⋅D + TI,⋅)

(
�∑

j=1

�jv
j

)
= 0

(7a)Find x ∈ {0, 1}n, D ∈ ℝ
n×k, r ∈ ℝ

n
≥0
, A,C ∈ ℝ

g×n

≥0

(7b)s.t. r
i
≤ bx

i
, i ∈ [n],

(7c)b(1 − xi) ≥ Mi,⋅r + qi ≥ 0, i ∈ [n],

(7d)b(1 − xi) ≥ (Mi,⋅D + Ti,⋅)v
j ≥ −b(1 − xi), i ∈ [n], j ∈[�],

(7e)𝜁⊤A
⋅,i
+ r

i
≥ 0, i ∈ [n],

(7f)Θ⊤
A
⋅,i
= D

⊤

i,⋅
, i ∈ [n],

(7g)𝜁⊤C
⋅,i
+M

i,⋅
r + q

i
≥ 0, i ∈ [n],

(7h)Θ⊤
C
⋅,i
= (M

i,⋅
D + T

i,⋅
)⊤, i ∈ [n],

(7i)D[h],⋅ = 0.
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If (7) is feasible, it returns an AAR solution of the form z(u) = Du + r of (4). If it is 
infeasible, no AAR solution exists.

Proof We show that z(u) = Du + r is an AAR solution if and only if there exist 
x, A, C such that x, D, r, A, C solve (7).

We start by proving complementarity of the solutions. Let z(u) = Du + r be an 
AAR solution. We define I ∶= {i ∈ [n] ∶ ri > 0} and xi = 1 for all i ∈ I and xi = 0 
for all i ∈ [n] ⧵ I . Then, Theorem 1 implies that x, D, r satisfy the constraints (7b)–
(7d) for sufficiently large b. On the other hand, if x, D, r, A, C satisfy the conditions  
(7b)–(7d), ri > 0 implies xi = 1 and thus D and r fulfill the conditions (5) and (6) of 
Theorem 1.

It remains to consider the nonnegativity constraints of (4). First, we prove non-
negativity of the solution, i.e., Du + r ≥ 0 for all u ∈ U , if and only if there exists 
a matrix A such that D, r, A satisfy (7e) and (7f). For all i ∈ [n] , we observe that 
Di,⋅u + ri ≥ 0 holds for all u ∈ U if and only if minu∈U{Di,⋅u + ri} ≥ 0 . We now 
employ duality and obtain that this is equivalent to the statement that there exists 
a vector a ∈ ℝ

g

≥0
 such that 𝜁⊤a + ri ≥ 0 and Θ⊤a = D⊤

i,⋅
 . The matrix A ∈ ℝ

g×n

≥0
 then 

contains the vectors a as columns.
Next, we show that MDu +Mr + q + Tu ≥ 0 holds for all u ∈ U if and only if 

there exists a matrix C such that D, r, C satisfy (7g) and (7h). This is analogous to the 
previous step and we observe that for every i ∈ [n] , Mi,⋅Du +Mi,⋅r + qi + Ti,⋅u ≥ 0 
for all u ∈ U is equivalent to minu∈U{Mi,⋅Du +Mi,⋅r + qi + Ti,⋅u} ≥ 0 . Again, this 
holds if and only if there exists a vector c ∈ ℝ

g

≥0
 such that 𝜁⊤c +Mi,⋅r + qi ≥ 0 and 

Θ⊤c = (Mi,⋅D + Ti,⋅)
⊤ . The matrix C ∈ ℝ

g×n

≥0
 then contains the vectors c as columns.

Finally, the remaining constraint (7i) enforces that the first h variables are non-
adjustable.   ◻

Remark 1 The linear hull lin(U) of the uncertainty set U can be computed in poly-
nomial time if U is a polyhedron, i.e., if U = {u ∈ ℝ

k ∶ Θu ≥ �} as in Theorem 2. 
We can then maximize once in every direction Θj,⋅ , j ∈ [g] , and check if the opti-
mal value is larger than �j . If it is equal to �j , we know �j = 0 due to 0 ∈ relint(U) 
and the inequality constraint can be replaced by an equality constraint. We obtain 
the representation U = {u ∈ ℝ

k ∶ Φu = 0,Θ�u ≥ � �} with Φ ∈ ℝ
(g−f )×k , f ≤ g , and 

Θ� ∈ ℝ
f×k . The basis of lin(U) is then given by the basis of ker(Φ).

Let us also comment on a difference to the setting considered in [5]. There, the subma-
trix MI has to be invertible for an AAR solution to exist if all entries of q are uncertain, 
cf. Theorem 4.5 in [5]. This is not the case in our setting as the following example shows.

Example 1 Consider the uncertain LCP given by

Then,

M =

[
1 − 1

1 − 1

]
, q(u) =

(
−1

−1

)
+

(
u1
u2

)
, U =

{
(u1, u2) ∶ −2 ≤ u1 = u2 ≤ 2

}
.
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is an AAR solution with I = {1, 2} , but the matrix M is not invertible.

Finally note that if T is the identity matrix and U is a box, the MILP (7) is equiva-
lent to the MILP in Theorem 4.7 in [5].

4  Remarks and extensions

In this section, we comment on a special case, namely the one in which M is positive 
semidefinite, and several possible extensions.

4.1  Positive semidefinite M

We first consider the case that the matrix M is positive semidefinite. In the follow-
ing, we show that in this setting an AAR solution can be found in polynomial time. 
The same result was shown for box uncertainties in [5] with similar arguments. For 
positive semidefinite M, Theorem 3.1.7 (a) in [10] states that

holds for any y, z ∈ SOL(q,M) , where SOL(q,M) denotes the set of solutions of the 
LCP(q, M). Let

Due to (8), every nominal solution r ∈ SOL(q,M) satisfies MP,⋅r + qP = 0 . There-
fore, every AAR solution has to satisfy

for all u ∈ U as otherwise there would exist a u� ∈ U with 
Mi,⋅(Du

� + r) + q̄ + Ti,⋅u
� < 0 for some i ∈ P . Thus, the set I in Theorem 1 can be 

replaced by P and the MILP (7) can be simplified to an LP as we do not need the 
binary variables anymore.

Furthermore, Theorem 3.1.7 (c) in [10] states that SOL(q,M) is given by

where z̄ ∈ SOL(q,M) is an arbitrary solution. Such a solution z̄ can be found by 
solving a single convex-quadratic optimization problem. With this polyhedral 
description of SOL(q,M) , P can be obtained by solving n linear programs in which 
zi , i ∈ [n] , is maximized over  SOL(q,M) and then checking, whether the opti-
mal value is strictly positive. This implies that P can be computed in polynomial 

D =

[
−1 0

0 0

]
, r =

(
2

1

)

(8)y⊤(Mz + q) = z⊤(My + q) = 0

P =
{
i ∈ [n] ∶ ∃z ∈ SOL(q,M) with zi > 0

}
.

MP,⋅Du + TP,⋅u = 0

SOL(q,M) =
{
z ∈ ℝ

n
≥0

∶ q +Mz ≥ 0, q⊤(z − z̄) = 0, (M +M⊤)(z − z̄) = 0
}
,
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time and, hence, we can find an AAR solution in polynomial time if M is positive 
semidefinite.

4.2  Discrete uncertainty sets

Next, we briefly discuss discrete uncertainty sets. In the following example, for any 
uncertainty realization in the discrete set, there exists a solution whereas there does 
not exist solutions for some realizations in the convex hull of the uncertainty set.

Example 2 Consider the LCP given by

and U = {±1} . Then, for u = 1 , z = (0, 0) is a solution and for u = −1 , z = (1, 0) is a 
solution. If U� = conv(U) , there is, however, no solution for u = −1∕2.

This example is in contrast to results for classic robust linear optimization, where 
one can always replace the uncertainty set with its convex hull. The reason for this 
behavior can be explained with classic LCP theory. In the literature, the cone of 
vectors q for which the LCP(q, M) with a given matrix M has a solution is usually 
denoted by K(M), i.e.,

In general, K(M) is not convex, and hence the convex hull of some points that lie in 
K(M) is not necessarily contained in K(M). However, K(M) is convex if and only if 
M is a so-called Q0-matrix, cf. Proposition 3.2.1 in [10], and we obtain the following 
result.

Corollary 1 Suppose that M is a Q0-matrix. Then, the uncertain LCP has a solution 
for all u ∈ conv(U) if it has a solution for all u ∈ U.

4.3  Decision‑dependent uncertainty sets

The MILP (7) can be extended to cover simple decision-dependent uncertainty sets. 
To this end, consider the uncertainty set

that depends on the chosen nominal solution  r. If the deviation caused by Ψr is 
not too large, in some cases the linear hull does not change. Hence, in these cases 
we only have to replace the constraints (7e) and (7g) by their respective quadratic 
versions that include the terms (Ψr)⊤A

⋅,i and (Ψr)⊤C
⋅,i , respectively. We leave the 

detailed study of such situations for future work.

M =

[
0 0

1 0

]
, q(u) =

(
1 + u

u

)

K(M) =
{
q ∈ ℝ

n ∶ SOL(q,M) ≠ �
}
.

U(r) = {u ∈ ℝ
k ∶ Θu ≥ � + Ψr}, Ψ ∈ ℝ

g×n,
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4.4  Mixed LCPs

Finally, we discuss so-called mixed LCPs. These problems consist in finding z ∈ ℝ
n 

and y ∈ ℝ
m such that 

 
with M ∈ ℝ

n×n , N ∈ ℝ
n×m , q ∈ ℝ

n , V ∈ ℝ
m×n , W ∈ ℝ

m×m , p ∈ ℝ
m . We refer to 

[10] for some source problems.
We now briefly demonstrate necessary adaptions to the MILP (7) to compute an 

AAR solution to an uncertain version of the mixed LCP (9). As before, we assume 
that q is affected by uncertainty in the form of q(u) = Tu , u ∈ U , and that z is aff-
inely adjustable, i.e., z(u) = Du + r . Several parameters might be uncertain in the 
case of mixed LCPs. In the simplest case, the matrices V, W, M, and N are certain, y 
is non-adjustable and only p(u) = p + Pu is uncertain for some given P ∈ ℝ

m×k and 
u ∈ U . In this case, the constraints (7c) and (7g) have to be extended by the term Ny. 
Moreover, D, r, and y have to satisfy the resulting slightly adapted version of the 
MILP (7) and the additional constraints

This also includes the special case in which all additional parameters p, V, W, M, 
and N are certain and y is non-adjustable. In this case, the second of the above 
constraints reduces to VDvj = 0 for all vj ∈ [l] . In the case of adjustable  y, i.e., 
y(u) = Eu + s , the MILP has to be adapted accordingly in a similar way. Addition-
ally, z and y have to satisfy the additional constraints

Compared to the classic LCP, on the one hand we get additional freedom by being 
allowed to choose more variables, while on the other hand, there are additional con-
straints, some of which might be quite restrictive.
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