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Abstract
Stochastic frontier models commonly assume positively skewed inefficiency. However, if the data speak against this
assumption, sample-failure problems are often cited, but less attention is paid to economic reasons. We consider this
phenomenon as a signal of distinctive population characteristics stemming from the inefficiency component, emphasizing its
potential impact on evaluating market conditions. Specifically, we argue more generally that “wrong” skewness could
indicate a lack of competition in the market. Moreover, endogeneity of model regressors presents another challenge,
hindering the identification of causal relationships. To tackle these issues, this paper proposes an instrument-free estimation
method based on Gaussian copulas to model the dependence between endogenous regressors and composite errors, while
accommodating positively or negatively skewed inefficiency through simultaneous identification. Monte Carlo simulation
experiments demonstrate the suitability of our estimator, comparing it with alternative methods. The contributions of this
study are twofold. On the one hand, we contribute to the literature on stochastic frontier models by providing a
comprehensive method for dealing with “wrong” skewness and endogenous regressors simultaneously. On the other hand,
our contribution to an economic understanding of “wrong” skewness expands the comprehension of market behaviors and
competition levels. Empirical findings on Vietnamese firm efficiency indicate that endogeneity hinders the detection of
“wrong” skewness and suggests a lack of competitive market conditions. The latter underscores the importance of policy
interventions to incentivize firms in non-competitive markets.
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1 Introduction

The classical assumption in production stochastic frontier
(SF) models is that inefficiency exhibits positive skewness,
while the noise term is symmetrically distributed, resulting
in the composite error, i.e., the regression residuals, having

negative skewness.1 However, in empirical applications, the
residuals may exhibit positive skewness.2 Although the
methodological SF literature has proposed some approaches
to handle skewness issues (e.g., Hafner et al. 2018), another
substantial empirical challenge arises in the case of
regressor endogeneity. For example, feedback mechanisms
linking output to input can introduce endogeneity if pro-
ducers adjust their inputs based on the inputs that yield the
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1 Our focus is on the production SF model. In the cost SF model, the
classical assumptions imply positive skewness of the regression
residuals.
2 Waldman (1982) first demonstrated that if the residuals from the SF
model exhibit “wrong” skewness, i.e., positive under the production
SF model, inefficiency variance effectively becomes zero. Conse-
quently, efficiency scores tend to one, leading to false conclusions of
high efficiency (Hafner et al. 2018; Parmeter and Racine 2013). Green
and Mayes (1991) argue that this either indicates “super efficiency”
(all firms in the industry operate close to the frontier) or the inap-
propriateness of the SF analysis technique to measure inefficiencies.
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highest marginal outcome (Siebert 2017). Endogeneity can
also be introduced if firms know their own inefficiency and
adjust their inputs accordingly, but this is unobserved to the
analyst (Haschka and Herwartz 2022). While there are many
economic reasons for endogeneity, potential economic
understandings of “wrong” skewness are far less explored.

The occurrence of “wrong” skewness has been attributed
to poor samples (Almanidis and Sickles 2011; Hafner et al.
2018). Simar and Wilson (2009) confirm that small samples
can lead to incorrect skewness measures despite correct
skewness in the underlying population. To address this issue,
researchers should prioritize increasing the sample size rather
than making changes to the model specification (Almanidis
and Sickles 2011, p. 201). However, what if “wrong”
skewness occurs in large samples, such that explaining it by
poor sampling or bad luck might not be justified? Metho-
dologically, three reasons for “wrong” skewness have been
considered in the literature: (i) asymmetry of idiosyncratic
noise, (ii) dependence between idiosyncratic noise and
inefficiency, or (iii) “wrong” skewness of the inefficiency
component. In contrast, existing economic explanatory
approaches for “wrong” skewness deal with the issue in
general (for a recent summary, see Papadopoulos and Par-
meter 2023), but do not delve into investigating where (i.e.,
from which component) it might originate.

By assuming that “wrong” skewness is due to the inef-
ficiency component, our contribution to the economic
explanation aims to question the characteristics of the
market. If “wrong” skewness is detected in a market that is
expected to be competitive, we argue that it suggests that
market competition is not generating adequate incentives
for producers to improve their efficiency, thus indicating
that the market may not be as competitive as expected. In
the absence of competitive pressure that forces producers to
increase efficiency to avoid falling behind competitors, we
might observe many inefficient producers and only a few
efficient ones. In such situations, assuming “wrong” skew-
ness is due to the inefficiency term offers explanations for
competition levels and market dynamics.

Since any empirical detection of “wrong” skewness
requires estimation, this depends on the performance and
consistency of the estimation method used. Even if the
underlying (production) model is correctly specified,
endogeneity can lead to biased results, making it difficult to
detect “wrong” skewness. Endogeneity can be loosely
defined as regressor-error dependence, which is particularly
important for SF models, as this dependence can stem from
correlation with inefficiency or idiosyncratic noise (Griffiths
and Hajargasht 2016; Mutter et al. 2013). While the linkage
of endogenous covariate information and composite errors
can not only lead to biased estimates for causal effects if
applied methods build upon assumptions of regressor exo-
geneity, but the residual distribution may also be distorted,

making it difficult to capture skewness correctly. The
standard approach to handle the endogeneity problem in SF
models is to use likelihood-based instrumental variable
(ML-IV) estimation methods (Amsler et al. 2016; Haschka
and Herwartz 2022; Kutlu 2010; Prokhorov et al. 2021;
Tran and Tsionas 2013). However, a general drawback of
ML-IV methods is that they rely on the availability of
consensual outside information to construct the instruments.

Against this background, we propose an estimation
approach to handle endogenous regressors while simulta-
neously identifying “correct” or “wrong” skewness to assess
market competition levels as an “empirical test of concept”,
aiming to contribute to the economic understanding of
“wrong” skewness. Given the often limited availability or
weakness of suitable instrumental variables (IVs) in SF
models, we conceptualize our approach as a methodological
extension of the IV-free joint regression model using
copulas introduced by Park and Gupta (2012). The core idea
is to construct the joint distribution of the endogenous
regressor and composite error, enabling simultaneous
identification of “correct” or “wrong” skewness without the
need for IVs. While copula-based endogeneity corrections
have been extensively studied and successfully applied in
classical SF models (Karakaplan and Kutlu 2015; Tran and
Tsionas 2015; Tsionas 2017), their general applicability in
SF models with “wrong” skewness remains unexplored.
Our proposed approach builds upon and generalizes several
existing methods, integrating models presented by Hafner
et al. (2018), Park and Gupta (2012), and Tran and Tsionas
(2015) into a unified framework. We conduct a series of
Monte Carlo simulation experiments to demonstrate the
suitability of the proposed estimator and compare it with
alternative methods. Since there is currently no method
capable of simultaneously addressing both endogeneity and
skewness issues, our comparison includes methods that
assume exogeneity (Hafner et al. 2018) or “correct” skew-
ness (Tran and Tsionas 2013, 2015).

The empirical application aims to provide an unbiased
understanding of the determinants of firm performance using
data from 16,474 Vietnamese firms in 2015. Our findings
lead to three major conclusions. First, we identify significant
regressor endogeneity, challenging the estimation of firm
productivity in Vietnam. Under the exogeneity assumption,
marginal effects are overestimated, suggesting increasing
returns to scale (RTS). However, accounting for endogeneity
reveals constant RTS, aligning with the Vietnamese gov-
ernment’s priority of steady growth rates over rapid expan-
sion. Second, the detection of “wrong” skewness is hindered
by endogeneity, as explored within the Monte Carlo simu-
lations. Despite lower-than-implied efficiency levels,
accounting for endogeneity without addressing “wrong”
skewness results in even lower efficiency levels, as the
skewness might be falsely attributed to endogeneity. Third,
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empirical evidence points to moderate efficiency levels and
“wrong” skewness, indicating a growing number of ineffi-
cient firms in the market, which contradicts the assumption
of competitiveness, given our considerations that “wrong”
skewness is due to market forces are valid. This lack of
incentives to improve efficiency may be attributed to factors
such as corruption and the constraints of the communist
regime, hindering the establishment of liberal and competi-
tive market conditions. Policy interventions are therefore
necessary to create incentives for firms to optimize their
processes and enhance efficiency.

The paper begins by discussing the presence of “wrong”
skewness in competitive markets, followed by a brief
review of the (IV-free) SF literature addressing endogene-
ity. Section 3 introduces the model and discusses the copula
approach to handle regressor endogeneity in SF models
with “wrong” skewness when instrumental information is
unavailable. In Section 4, we assess the finite sample per-
formance of the proposed approach through Monte Carlo
simulations. The empirical application is detailed in Section
5, followed by the concluding remarks in Section 6.

2 Background

In this section, we first summarize potential explanations for
the occurance of “wrong” skewness which have been dis-
cussed in the literature. Subsequently, we elaborate on
economic perspectives that are based on the informative
nature of detecting “wrong” skewness in (competitive)
markets. Finally, we provide a literature overview focusing
on endogeneity in SF models, with particular emphasis on
instrument-free approaches.

2.1 Reasons for “wrong” skewness

Since “wrong” skewness has primarily been considered an
empirical phenomenon (Almanidis and Sickles 2011; Hafner
et al. 2018; Waldman 1982), the prevailing reason for its
detection is often attributed to small sample sizes (Simar and
Wilson 2009, pp. 8–9). In cases where the true skewness is
correct but “wrong” skewness is observed in a small sample,
an inadequate sample size is typically identified as the cause.
However, other reasons behind detecting “wrong” skewness
have received less attention (for an excellent recent review,
see Papadopoulos and Parmeter 2023). While there are some
studies that detect “wrong” skewness in empirical applica-
tions (e.g., Almanidis and Sickles 2011; Hafner et al. 2018;
Parmeter and Racine 2013), they do not delve into dis-
cussing potential characteristics in the population for this
finding (one exception is Haschka and Wied 2022).

On the one hand, certain characteristics of the data struc-
ture may contribute to “wrong” skewness. The asymmetry of

the idiosyncratic error term can lead to multimodality in the
distribution of efficiency scores, which in turn can cause
“wrong” skewness (e.g., Badunenko and Henderson 2024;
Bonanno et al. 2017; Horrace et al. 2024; Son et al. 1993).
Additionally, unmodeled dependence between idiosyncratic
noise and inefficiency can be another contributing factor (e.g.,
Bonanno et al. 2017; Bonanno and Domma 2022; Smith
2008). On the other hand, from an economic perspective,
specific characteristics of the underlying population, such as
unique features of the market in which firms operate, could
also explain “wrong” skewness. As suggested by Papado-
poulos and Parmeter (2023), when encountering skewness
issues, researchers are advised to first consider the market’s
specific attributes and potential peculiarities. Subsequently,
they should reassess their arguments and determine whether
the skewed result reflects an inherent characteristic of the
population or is merely a consequence of a flawed sample.

In reviewing these contributions, two points stand out.
First, the literature that discusses methodological reasons for
the occurrence of “wrong” skewness fails to relate them to
characteristics in the population. Specifically, explaining
market mechanisms that introduce dependence between
idiosyncratic noise and inefficiency or cause asymmetry in
the distribution of idiosyncratic noise requires a sound eco-
nomic understanding. For instance, to what extent should
unobserved production shocks simultaneously increase (or
reduce) efficiency, and what accounts for the prevalence of
positive shocks over negative ones (or vice versa)? Second, if
we start addressing skewness issues more generally by dis-
cussing economic reasons, the question arises as to which of
the model components requires an adjustment to reflect this
peculiarity. Beyond the dependence within the composite
error or asymmetry of idiosyncratic noise, skewness issues
can also be attributed to inefficiency. What insights can we
derive regarding market characteristics by presuming that
“wrong” skewness stems from the inefficiency component?

2.2 Economic explanations and market competition

Stochastic frontier models often assume positive skewness in
the inefficiency distribution to align with competitive market
dynamics in which producers operate (Aigner et al. 1977).
This assumption is grounded in economic reasoning, parti-
cularly in microeconomic production models that assume
producers strive to optimize output given the inputs they use.
In competitive markets, producers should minimize costs and
maximize outputs, thus operating near the efficiency frontier
due to competitive pressure that incentivizes efficiency
improvements. Inefficiency is seen as deviations from the
frontier, with highly inefficient producers likely exiting the
market (Haschka and Herwartz 2020). Thus, specifying sto-
chastic frontier models with positively skewed inefficiency
distributions, such as the common half-normal distribution
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(Kumbhakar et al. 2020), is justified for evaluating producer
efficiency in competitive markets.

What if only a small fraction of the firms attain a level of
productivity close to the frontier while a large fraction attains
considerable inefficiencies? According to Carree (2002),
such a situation that is at odds with the assumption of
positively skewed inefficiency might be found in industries
characterized by alternating cycles of innovation and imita-
tion, with periods in which a few firms innovate and improve
their efficiency, while many firms remain inefficient, yielding
“wrong” skewness. In subsequent periods, these firms imitate
the innovations and efficiency levels converge, yielding
correct skewness. However, these examples impose specific
requirements on the market, such as the necessity for inno-
vations to drastically and suddenly enhance efficiencies, the
occurrence of these “leapfrog innovations” in a cyclical
manner, and that innovation markets are distinguished by a
clear distinction between innovation leaders and followers.

Furthermore, Torii (1992) mentions that “wrong” skew-
ness in inefficiency results from technological progress and
the non-immediate replacement of assets within each pro-
ducer, leading to misalignment when a few firms quickly
renew their capital stock while the majority do so slowly.
However, this implies that “wrong” skewness disappears in
the long run once all firms have renewed their capital stock
(Torii 1992). This suggests that increased competitive
pressure leads to a more rapid renewal of capital stock by
firms, resulting in a shorter duration for the phenomenon of
“wrong” skewness to be observable.

Both of these explanations implicitly assume that the
inefficiency term is responsible for the skewness issues, albeit
without explicitly labeling it as such. While they describe very
specific situations, our explanatory approach more generally
aims to outline that the existence of negative skewness in the
inefficiency distribution contradicts the expectations of a
competitive market environmen. Given the absence of other
reasons for “wrong” skewness (e.g., poor samples), an
observation that the majority of producers operate at lower
efficiency levels, with only a few operating close to the
frontier, could be explained by limited competition in the
market, where producers may not face sufficient pressure to
operate at their maximum efficiency levels (Haschka and
Herwartz 2022). Papadopoulos and Parmeter (2023) mention
markets with heavy regulation or entry barriers as potential
reasons why the majority of established firms sit comfortably
near higher inefficiency values without seeing a need to
reduce inefficiency.3 Moreover, factors such as limited market
transparency (Møllgaard and Overgaard 2001), technological
constraints (Ortega 2010), market imperfections (Cohen and

Winn 2007), seller’s markets (Redmond 2013), or structural
reasons (Haschka and Wied 2022) could contribute to this
lack of competition. Unlike oligopolistic markets, the absence
of competition does not necessarily result from market con-
centration or a small number of producers. In the absence of
competitive market mechanisms, producers lack the necessary
incentives to improve their efficiency levels.

To illustrate these considerations and our contribution to
the economic reasoning that explains “wrong” skewness by
attributing it to the inefficiency component, Fig. 1 depicts
(potential) reasons and implications that emerge from skew-
ness issues discussed in the literature. While no concerns are
expressed if the skewness is correct,4 methodological, eco-
nomic, and small sample sizes have been identified as reasons
for “wrong” skewness in the literature. While economic
explanatory approaches deal with the problem in general and
do not discuss which model component could be responsible,
methodological explanatory approaches do not inquire about
the economic causes. Likewise, attributing it solely to poor
samples or data issues is an oversimplification, especially if it
appears in larger samples (in small samples, however, it can
never be ruled out with acceptable degree of certainty that the
sample is poor). In contrast, we suggest a lack of competitive
pressure and associated incentives for producers to enhance
their efficiency levels as another potential explanation. Since
our explanation is aimed at “wrong” skewness originating
from the inefficiency term, existing economic explanations in
the literature can be linked (Carree 2002; Papadopoulos and
Parmeter 2023; Torii 1992). Assuming the inefficiency term is
the source, empirical identification of negative skewness likely
provides valuable insights into the general competitive market
dynamics (indicated by the green blocks in Fig. 1). A more
detailed examination should then follow to determine why
there are no incentives to increase efficiency in this market.

2.3 Endogeneity and the use of copulas in
SF models

While skewness issues require careful model specification
when estimating SF models, endogeneity can greatly hinder
the detection of causal effects.5 Regressor endogeneity can
have various causes. If producers have some a priori
information on potentially inefficient output generation, it
seems likely that the choice of production inputs is adjusted

3 While this explanation could also apply to the scenario described by
Torii (1992), in the example by Papadopoulos and Parmeter (2023),
“wrong” skewness may also persist in the long run.

4 As shown in the Monte Carlo simulations in Section 4, endogeneity
can lead to correct skewness being detected in a sample even though
the true skewness is “wrong”. This is relevant because “wrong”
skewness can also be justified in the population (Haschka and Wied
2022).
5 For recent approaches to cope with endogeneity in nonlinear models
(including SFA), the reader may consult the special volume of the
J Econom. entitled Endogeneity Problems in Econometrics, edited by
Kumbhakar and Schmidt (2016).
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accordingly (Haschka and Herwartz 2022). In effect, the
described unobserved correlation between production input
factors and stochastic inefficiency is among the most common
forms of endogeneity in the context of efficiency modeling
(Cincera 1997). More generally, since output generation is
typically seen as a reflection of input activities, successful
output generation might also lead to further input activities,
inducing endogeneity as a result of patterns of reverse caus-
ality. Furthermore, technology shocks that affect investment
decisions provide a third origin of endogeneity. Since such
shocks are unobserved to analysts, they manifest in model
terms assessing productive efficiency (Haschka and Herwartz
2020). Endogeneity bias might also occur when firms respond
to demand or supply shocks (that are unobserved to the
analyst) by adjusting their inputs, such as the number of
employees (Ehrenfried and Holzner 2019). For instance,
global health shocks, energy crises, or political tensions might
trigger unexpected hiring or investment decisions (Reeb et al.
2012). Lastly, the presence of omitted variables, such as
subsidies large enough to have a significant impact on output
generation, can also give rise to endogeneity bias.

Traditional approaches for dealing with endogenous
regressors in stochastic frontier settings often involve

instrumental variable estimation (Amsler et al. 2016; Grif-
fiths and Hajargasht 2016). These methods utilize exogen-
ous instruments to exploit their informational content and
typically employ two-stage-least squares (Amsler et al.
2016; Griffiths and Hajargasht 2016), ML-IV (Amsler et al.
2016; Haschka and Herwartz 2022), control functions
(Centorrino and Pérez-Urdiales 2023), or GMM (Shee and
Stefanou 2015; Tran and Tsionas 2013) for estimation.
However, the validity of instruments remains debatable.
Instruments may be scarce, weak, or even unavailable,
prompting researchers to explore IV-free alternatives.

The use of copulas has gained increasing attention in
stochastic frontier settings, although many applications are
not aimed at endogeneity corrections. Amsler and Schmidt
(2021) identify three different motivations for the use of
copulas in the SF literature: (i) allowing idiosyncratic noise
and inefficiency to be correlated in an otherwise standard
SF model (e.g., Amsler et al. 2016, 2017; El Mehdi and
Hafner 2014; Smith 2008; Wiboonpongse et al. 2015);6 (ii)
allowing dependence between different composite errors

Fig. 1 Implications of detecting correct and “wrong” skewness that are discussed in the literature. The literature references include only studies that
refer to “wrong” skewness. What we derive from an empirical detection of “wrong” skewness is shown in green

6 This allows addressing one of the potential reasons for “wrong”
skewness (see Fig. 1).
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and/or other types of errors; for example, to model auto-
correlation in panel data (e.g., Amsler et al. 2014; Das 2015;
Lai and Kumbhakar 2020), or across different equations in a
multi-equation model (e.g., Carta and Steel 2012; Haschka
and Herwartz 2022; Huang et al. 2018); and (iii) allowing
non-standard types of dependence between the errors in a
multi-equation system (e.g., Amsler et al. 2021).

The potentials arising from (i) and (ii) have led to the
possibility of taking the endogeneity of regressors into
account. That is, it allows for correlation between the
regressors and idiosyncratic noise and/or inefficiency
(Amsler et al. 2016, 2017). Following instrumental variable
theory, Amsler et al. (2016) assume that the endogenous
regressor can be decomposed into a part that is correlated
with the error and a part that is truly exogenous (i.e., the
instrument). Because this decomposition introduces a new
equation, this class of models may be seen as multi-
equation-type. They use the Gaussian copula to obtain the
joint distribution of this correlated part, idiosyncratic noise,
and the inefficiency term. Amsler et al. (2017) generalize
this approach and allow for environmental variables to
affect inefficiency.

To avoid the assumption of decomposability of the
endogenous regressors and therefore not belong to the class
of multi-equation models, copula approaches directly model
regressor-error dependence, and are increasingly explored
in SF settings. This class of models uses copula functions to
approximate the joint distribution of endogenous regressors
and composite errors without requiring instruments. In the
first step, data-driven cumulative distribution functions
(cdfs) of endogenous regressors are obtained. These, along
with an assumed distribution for composite errors, are used
as plug-in estimates for the copula function in the second
step, and estimates are derived based on the joint distribu-
tion. Tran and Tsionas (2015) directly construct this joint
distribution using empirical cdfs and Gaussian copula (see
also Tsionas 2017). Karakaplan and Kutlu (2015) rearrange
the model proposed by Tran and Tsionas (2015) and show
that targeting the joint distribution is not necessary because,
with two-stage generated regressors, focusing on the mar-
ginal distribution of composite errors for ML estimation is
sufficient. Papadopoulos (2021) develops a two-tier SF
model to handle latent variables, building on the copula
approach of Tran and Tsionas (2015).

Note that in the first strand of literature, copulas are
employed instead of a closed-form expression for the like-
lihood function to model the dependence between the error
terms, yet instruments are still utilized. This distinction is
crucial because this literature avoids many of the identifi-
cation difficulties encountered by the second stream of lit-
erature. The identification problem the second strand faces
arises if endogenous regressors have the same distribution
as the errors, or if the distributions are very close. In that

case, model identification without IVs breaks down because
copulas fail to distinguish noise from variation due to
endogenous regressors (Tran and Tsionas 2015).

Assuming normality of the idiosyncratic noise compo-
nent and the half-normal distribution for inefficiency is a
natural choice, since these assumptions lead to the closed
skew normal distribution (CSN) for composite errors
(Domınguez-Molina et al. 2003; González-Farıas et al.
2004); a distribution that is well-defined parametrically.
Since joint estimation using copulas requires both the
cumulative distribution function (cdf) and the probability
density function (pdf) of the composite error distribution,
the use of the CSN distribution allows the approach to be
implemented in a straightforward manner.

The fact that little attention is paid to skewness issues in
SF models becomes even clearer when reviewing these
contributions, since extant studies entirely base
endogeneity-robust SF modeling on the assumption of
“correctly” skewed inefficiency. To our knowledge,
regressor endogeneity and “wrong” skewness have not been
simultaneously addressed so far. Therefore, we aim to offer
a simple solution to this issue by building on previous work
by Hafner et al. (2018), Park and Gupta (2012), and Tran
and Tsionas (2015).

3 Copula-based handling of endogenous
regressors under “wrong” skewness

Consider the typical stochastic frontier model:

yi ¼ x0iβ þ z0iδþ vi � ui|fflfflffl{zfflfflffl}
ei

; i ¼ 1; ¼ ; n;
ð1Þ

where yi is the output of producer i, xi is L × 1 vector of
exogenous inputs, zi is K × 1 vector of endogenous inputs, β
and δ are L × 1 and K × 1 vector of unknown parameters,
respectively, vi is a symmetric random error, ui is the one-
sided random disturbance representing technical efficiency,
and the composite error is therefore ei= vi− ui. We assume
that xi is uncorrelated with vi and ui, but zi is allowed to be
correlated with vi and possibly with ui, and this generates
the endogeneity problem. We also assume that ui and vi are
independent and leave the skewness of ui unrestricted. The
discussion that follows can be easily extended for the case
where the (exogenous) environmental variables are included
in the distribution of ui (Battese and Coelli 1995; Haschka
and Herwartz 2022).

3.1 “Wrong” skewness of inefficiency distribution

According to standard SF practices, we assume that vi �
Nð0; σ2vÞ captures two-sided idiosyncratic noise. Following
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Hafner et al. (2018), we distinguish two cases for ui which
characterize the shape of distribution of composite errors
ei= vi− ui:

‘Correct’ skewness :

ui � N 0;1½ Þð0; γ2Þ; γ > 0
ð2Þ

‘Wrong’ skewness :

ui � N 0;a0jγj½ Þða0jγj; γ2Þ; γ < 0
ð3Þ

The assumption in (2) is well-disseminated and describes
“correct” skewness of ui (and thus also ei) because the
density of ui is strictly decreasing in 0;1½ Þ(Kumbhakar and
Lovell 2003).7 By contrast, “wrong” skewness is induced
by (3), where a0 ≈ 1.389 is the non-trivial solution of ϕð0Þ

Φð0Þ ¼
a0 þ ϕ a0ð Þ�ϕð0Þ

Φ a0ð Þ�Φð0Þ and the density of ui is strictly increasing and
bounded in [0, a0∣γ∣]. It is worth highlighting that expecta-
tions of both ui and ei remain unaffected by the sign of
skewness (Hafner et al. 2018). Thus, inefficiency variance
and sign of skewness are directly related because γ > 0
(γ < 0) induces correct (“wrong”) skewness but E½ui� and
E½ei� are not subject to the sign of γ. The density of
ei= vi− ui is given by:

‘Correct’ skewness :

gþe ðeÞ ¼ 2
σ ϕ

e
σ

� �
Φ � eγ

σσv

� �
;

ð4Þ

‘Wrong’ skewness :

g�e ðeÞ ¼ 1
σ Φ a0ð Þ�Φð0Þð Þϕ

e�a0γ
σ

� �
Φ Aw þ a0σ

σv

� �
�Φ Awð Þ

h i
;

Aw ¼ e�a0γ
σ

γ
σv
;

ð5Þ

with σ2 ¼ γ2 þ σ2v and
R
egþe ðeÞ de ¼

R
eg�e ðeÞ de. Note

that under “correct” skewness, e � CSNð0; σ2;� γ
σvσ

; 0; 1Þ,
while as shown by Haschka and Wied (2022), under

“wrong” skewness, it is e � CSN1�2 a0γ; σ2;
γ=σ
�γ=σ

� �
;

�
�a0σ
0

� �
;

σ2v 0
0 σ2v

� �
Þ. The shape of inefficiency distribu-

tion under “correct” and “wrong” skewness is shown in
Panel (a) of Fig. 2, and the corresponding distributions of
composite errors in Panel (b). For γ > 0, the distribution of u
(e) has positive (negative) skewness, whereas for γ < 0 its
skewness is negative (positive). Note that composite error
distributions in both cases are only determined by σv and γ.
Accordingly, we can distinguish “correct” and “wrong”
skewness without the necessity to identify further para-
meters (Hafner et al. 2018).8

3.2 Joint estimation using copulas

Let F(z1,…, zK, e) and f(z1,…, zK, e) be the joint distribution
and the joint density of (z1,…, zK) and e, respectively. In
practice, F(⋅) and f(⋅) are typically unknown and hence need
to be estimated. Following Park and Gupta (2012), we
adopt a copula approach to construct this joint density. The
copula essentially captures dependence in the joint dis-
tribution of endogenous regressors and composed errors.

Let ωz;i ¼ ðFz1ðz1iÞ; ¼ ;FzKðzKiÞÞ0 and ωe,i=G(ei; σv, γ)
denote the margins ðωz;i;ωe;iÞ0 2 ½0; 1�Kþ1 based on a

Fig. 2 Densities of u and e for γ= 2.5, i.e., correct skewness (dotted lines) and γ=− 2.5, i.e., wrong skewness (solid lines); with σv= 0.5.
a Density of u; b Density of e

7 In general, “correct” skewness in the production SF model means
positive skewness of ui and in consequence negative skewness of
ei= vi− ui due to symmetry of vi.

8 The adopted one-sided distribution is parsimonious. However, other
approaches that allow for a data-driven choice of correct or “wrong”
skewness either involve the identification of multiple parameters that
determine inefficiency distribution (see, e.g. Tsionas 2007, for Weibull
inefficiency), or an a priori determination of the sign of skewness
(COLS or MOLS). While Li (1996) argues that a one-sided error
component with unbounded range always has a positive skewness,
Johnson et al. (1995) shows that the two-parameter Weibull distribu-
tion can have positive and (small) negative skewness for specific
parameter combinations.
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probability integral transform. The F’s denote the respective
marginal cumulative distributions functions of observed
endogenous regressors and G(ei; σv, γ) is the cumulative
distribution function of the CSN distribution for errors,
which is subject to the sign of γ. Building on Tran and
Tsionas (2015), we replace F1 z1ið Þ; ¼ ;Fp zpi

� �
by their

respective empirical counterparts in a first stage. Given
observed samples of zji, j= 1,…, p; i= 1,…, n, we use the
empirical cumulative distribution function of zj, i.e.,
F̂j ¼ 1

nþ1

Pn
i¼1 1 zji � z0j

� �
.9

Using a Gaussian copula, ξ̂z;i ¼ ðΦ�1ðF̂z1ðz1iÞÞ; ¼ ;

Φ�1ðF̂zKðzKiÞÞÞ0, and ξ̂e;i ¼ Φ�1ðĜðêi; σ̂v; γ̂ÞÞ follow a
standard multivariate normal distribution of dimension
(K+ 1) with correlation matrix Ξ.10 Then, the joint density
can be derived as

f ðzi; eiÞ ¼ 1ffiffiffiffiffiffiffiffiffi
detðΞÞ

p exp � 1
2

ξ̂z;i

ξ̂e;i

 !0
Ξ�1 � I
� � ξ̂z;i

ξ̂e;i

 ! !

�gðei; σv; γÞ �
QK
k¼1

f zk �zkið Þ;

ð6Þ

where ξe,i and g(ei; σv, γ) is again subject to “correct” or
“wrong” skewness. The copula density in the first row links
the error and all explanatory variables to encode informa-
tion about the entire dependence in the model whereas
densities in the second row describe marginal behavior. The
marginal densities f zk �zkið Þ in (6) do not contain any
parameter of interest and can be dropped when deriving
the likelihood, since they enter as normalizing constants.

Before deriving the likelihood, we briefly discuss model
identification. Under our setting, model identification requires

the distribution of endogenous regressors to be different from
that of the composite error (for a more detailed discussion on
identification issues, see Haschka 2022b; Park and Gupta
2012). Accordingly, the model is identified as long as γ is not
zero (or very close to zero) and endogenous regressors are not
normally distributed. However, model identification breaks
down if both (i) γ= 0 (such that the composite error is normal)
and (ii) endogenous regressors are normal. In this case, the
joint distribution of endogenous regressors and composite
error is multivariate normal, which implies that E½ejz� is a
linear function, making it impossible to identify the linear
effect δ without instrumental variable information (Haschka
2022b). Thus, external instrumental information is needed to
provide model identification (Tran and Tsionas 2013). Con-
sequently, the identification problem has important implica-
tions when ∣γ∣→ 0. In this scenario, identification requires the
endogenous regressors to be non-normally distributed.
Therefore, in empirical applications, assessing the marginal
distribution of endogenous regressors before estimation is a
common approach in the empirical literature using copula-
based identification (e.g., Datta et al. 2017; Haschka and
Herwartz 2022; Papies et al. 2017).

To obtain a simultaneous choice of “correct” or “wrong”
skewness that is determined by the sign of γ, we follow
Haschka (2024) and use an indicator function for the like-
lihood. As an alternative to using indicator function in the
likelihood, Hafner et al. (2018) argue that choice of “correct”
or “wrong” skewness can be made a priori by inspecting
skewness of the OLS residual. However, in our approach, the
sign of γ is not predetermined but is instead estimated simul-
taneously with all other parameters. This approach is adopted
because any prior determination of residual skewness could be
influenced by (potential) endogeneity. Accordingly, we have

To explicitly consider the case of only fully efficient firms, the
likelihood also allows for γ= 0. Here, the marginal distribu-
tion of the errors is a normal distribution with mean zero and
variance σ2v , it is ξ0e;i ¼ ei=σv. Note that our approach nests
those by Hafner et al. (2018), Tran and Tsionas (2015), and
Park and Gupta (2012). In case of exogeneity of all regressors,
i.e. ρk= 0 ∀ k= 1,…,K, the likelihood in (7) collapses to that
in Hafner et al. (2018); in case of “correct” skeweness, i.e.,

Lðθjy; z; xÞ / 1ðγ > 0ÞQn
i¼1

1ffiffiffiffiffiffiffiffiffi
detðΞÞ

p exp � 1
2

ξ̂z;i

ξ̂
þ
e;i

 !0
Ξ�1 � I
� � ξ̂z;i

ξ̂
þ
e;i

 !0@ 1Agþðei; σv; γÞ

þ1ðγ < 0ÞQn
i¼1

1ffiffiffiffiffiffiffiffiffi
detðΞÞ

p exp � 1
2

ξ̂z;i

ξ̂
�
e;i

 !0
Ξ�1 � I
� � ξ̂z;i

ξ̂
�
e;i

 ! !
g�ðei; σv; γÞ

þ1ðγ ¼ 0ÞQn
i¼1

1ffiffiffiffiffiffiffiffiffi
detðΞÞ

p exp � 1
2

ξ̂z;i

ξ̂
0
e;i

 !0
Ξ�1 � I
� � ξ̂z;i

ξ̂
0
e;i

 !0@ 1Aϕðei; σvÞ:

ð7Þ

9 The rescaling factor 1/(n+ 1) instead of 1/n ensures that the
empirical cumulative distribution is well bounded in (0, 1).
10 In general, any other copula that is capable of modeling multivariate
dependency structures can also be used. According to Papadopoulos
(2022), the Gaussian copula is most flexible and has many desirable
properties. Furthermore, if the true dependence is different from what the
Gaussian copula assumes, literature has demonstrated its robustness to
capture various non-Gaussian dependencies (Becker et al. 2022; Haschka
2022b; Park and Gupta 2012); although the true dependence should not
be nonparametric (Haschka 2022a) or asymmetric (Papadopoulos 2022).
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γ > 0, that is the traditional SF model, the likelihood collapses
to that in Tran and Tsionas (2015); and in case of only fully
efficient firms, i.e., γ= 0, it collapses to that in Park and Gupta
(2012). Finally, the likelihood is logarithmised and maximized
with respect to the vector of unknown parameters
θ ¼ ðβ; δ; σ2v ; γ; vechl ½Ξ�Þ, where vechl ½Ξ� ¼ ðρ1; ¼ ; ρKÞ0
stacks the lower diagonal elements of the correlation matrix Ξ
into a column vector.11

3.3 Bootstrap inference and testing under
endogeneity

In their recent work, Breitung et al. (2023) argue that it
remains unclear a priori whether the standard properties of
ML estimation hold for joint estimation using copulas, and
under which assumptions they may carry over. The problem
of deriving precise statements about limiting properties in
the presence of a nonparametrically generated regressor is
highly non-trivial. This issue is common to all copula-based
approaches that rely on joint estimation of errors and
endogenous regressors with a priori estimated cumulative
distribution functions (Haschka 2022b; Park and Gupta
2012; Tran and Tsionas 2015). Nonetheless, Papadopoulos
(2022) and Tran and Tsionas (2015) conjecture that such
estimators exhibit consistency and asymptotic normality in
SFA settings (for further simulation-based evidence on
asymptotic behavior, see Haschka 2022b; Haschka and
Herwartz 2022). Although specific consistency (i.e.,
robustness) theory for the quasi-MLE for Gaussian copula-
based models exists (Prokhorov and Schmidt 2009), it is not
clear if these results are valid in the case of generated
regressors. Accordingly, no general, i.e., theoretical, state-
ment can be made about the consistency of the estimator.

Although ML inference is believed to be (asymptotically)
valid if the identifying assumptions are satisfied (Breitung et al.
2023), we follow the literature on copula-based endogeneity-
correction models (Haschka 2022b; Park and Gupta 2012) and
recommend bootstrapping to obtain standard errors. However,
simple bootstrapping can be problematic in stochastic frontier
models for two reasons: (i) subsampling with replacement
from the empirical CDF of the data can change the skewness
of the distribution, and (ii) wild bootstrapping may fail to
mimic the properties of the underlying conditional distribution
of the error term. To address these issues, we adopt Algorithm
#3 from Simar and Wilson (2009) and modify it for the copula

model. The difference between the algorithm we are using and
that from Simar and Wilson (2009) arises in step 2, where we
draw from the conditional distribution of composed errors
given regressors using a copula representation instead of
drawing from the marginal distribution.

Algorithm 1 Bootstrapping procedure for the SF copula model
1. Using pairs of the sample data fðyi; xi; ziÞgni¼1,

maximize the log-likelihood in (7) to obtain estimates
θ̂; recover σ̂v; γ̂, and Ξ̂.

2. For i= 1,…, n, draw pairs of e�i from
gejz;x ¼ c G�

eðe; σ̂v; γ̂Þ; F̂1ðx1Þ; ¼ ; F̂LðxLÞ; F̂1ðz1Þ; ¼ ; F̂KðzKÞ; Ξ̂
� �

g�eðe; σ̂v; γ̂Þ, where G�
e (g

�
e) is the cdf (pdf) of the CSN

distribution given in (4) for the case of “correct”, and
in (5) for “wrong” skewness.

3. Compute y�i ¼ x0iβ̂þ z0iδ̂þ e�i .
4. Using the pseudo-data fðy�i ; xi; ziÞgni¼1, compute boot-

strap estimates.
5. Repeat the steps 2.–4. B times to obtain estimates

fðθ̂�bÞg
B

b¼1.

The bootstrap estimates fðθ̂�bÞg
B

b¼1 can be used to esti-
mate confidence intervals for the parameters of the model
(Simar and Wilson 2009). We follow the recommendation
by Haschka and Herwartz (2022) and use a high number of
bootstrap replications (say 1999) when trying to bootstrap
standard errors and confidence intervals in copula-based
endogeneity-correction frontier models.

Significance can then be assessed based on parameter
estimates and (bootstrap) standard errors. This allows for an
empirical detection of endogeneity and “wrong” skewness.
Under exogeneity, the generated regressors do not enter the
asymptotic distributions, and the test statistic for H0 : ρk= 0
follows an asymptotic standard normal distribution (Brei-
tung et al. 2023). Furthermore, the usual approach based on
a textbook t-statistic remains valid. Accordingly, these
results imply that under exogeneity, the null hypothesis
H0 : γ= 0 can be easily tested as the asymptotic distribution
remains valid. By contrast, testing the null hypothesis
H0 : γ= 0 under endogeneity is challenging because the
asymptotic distribution is unknown. As shown by Breitung
et al. (2023) for linear regression models with Gaussian
outcomes (i.e., no SF specifications), the asymptotic dis-
tribution depends on unknown parameters (under endo-
geneity). We assume that in the case of an SF specification
(non-zero γ), the asymptotic distribution is different from
that derived in Breitung et al. (2023)—more precisely, it
depends on other, unknown parameters. Accordingly, we
refrain from proposing a test for this null hypothesis.
Nevertheless, since (bootstrap) standard errors are valid (as
will be shown in the simulations), we recommend deter-
mining if γ= 0 if an interval plus or minus two times its
standard error does not cover zero.

11 The likelihood function is continuous for fixed γ, but is not con-
tinuous in γ in the transition from a negative to positive values because
of the indicator function. Because all unknown coefficients are
simultaneously optimized, which usually requires the likelihood to be
continuous, we usually do not recommend using gradient-based
methods but rather the derivative-free simplex method for numerical
optimization of Nelder and Mead (1965) that is applicable to non-
differentiable functions.
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With parameter estimates, technical inefficiency ui can be
predicted based on Jondrow et al. (1982):

‘Correct’ skewness :

ûi ¼ Ê uijeið Þ ¼
ffiffiffiffiffiffiffiffiffi
γ̂2þσ̂2v

p
ðγ̂=σ̂vÞ

1þðγ̂=σ̂vÞ2
ϕððγ̂=σ̂vÞêi=

ffiffiffiffiffiffiffiffiffi
γ̂þσ̂vÞ

p
Þ

1�Φððγ̂=σ̂vÞêi=
ffiffiffiffiffiffiffiffiffi
γ̂þσ̂vÞ

p
Þ �

ðγ̂=σ̂vÞêiffiffiffiffiffiffiffiffiffiffiffi
γ̂2þσ̂2v Þ

p

 �

ð8Þ

‘Wrong’ skewness :

ûi ¼ Ê uijeið Þ ¼
Z a0

0
jγ̂j expf�uigf�ðuijeiÞdui ð9Þ

Note that only in case of “correct” skewness predicted
technical a has closed form expression, whereas the integral
under “wrong” skewness has to be solved numerically
(Hafner et al. 2018).

4 Monte Carlo simulations

To examine the finite sample properties of the proposed
estimator, we conduct Monte Carlo experiments.12 For
comparison purposes, we also compute the MLE by Hafner
et al. (2018), which considers both “correct” and “wrong”
skewness but does not take endogeneity into account, an
instrument-based GMM estimator (Tran and Tsionas 2013),
and an IV-free copula estimator (Tran and Tsionas 2015),
both of which account for endogenous regressors but
assume correctly skewed inefficiency. In summary, our
comparative investigation involves four estimators.

We consider two scenarios. First, we introduce endo-
geneity through correlation between explanatory variables
and the two-sided noise component, following Tran and
Tsionas (2015). In the second scenario, we consider the case
where endogeneity results from correlation between the
explanatory variable and the one-sided inefficiency com-
ponent. In each scenario, we also generate an instrumental
variable to implement the GMM estimator.

4.1 Correlation between regressors and
idiosyncratic noise

Consider the following data generating process (DGP):

yi ¼ βxi þ δzi þ vi � ui ð10Þ

zi ¼ αsi þ ηi ð11Þ

ui �
N 0;1½ Þð0; γ2Þ if γ > 0;

N½0;a0jγj�ða0jγj; γ2Þ if γ < 0;

(
ð12Þ

In (12), positive (negative) values of γ result in the
distribution of uit having positive (negative) skewness.
Recall that both distributions have the same expectation.
The random variables xi and si are each generated
independently as χ2(2). To introduce endogeneity, the
vector of errors ðvi; ηiÞ0 is generated by:

vi

ηi

� �
� N

0

0


 �
;

1 ρ

ρ 1


 �� �
: ð13Þ

In our experiments, we fix α= β= δ= 0.5 and rescale
vi= vi/2 such that the signal-to-noise ratio is γ/σv= 2. To
assess scenarios under exogeneity and endogeneity, we set
ρ= {0,0.7} and further distinguish γ= {−1, 1} to introduce
either negative or positive skewness. Finally, the sample size
is N= 750 and we replicate each experiment 1000 times.

Estimation results for scenarios of exogeneity (ρ= 0) and
endogeneity (ρ= 0.7) with either “correct” or “wrong” skew-
ness are shown in Table 1. It is interesting to observe how
endogeneity alters the skewness of the OLS residuals. Under
exogeneity, assessing the sign of the skewness of the OLS
residuals appear valid for detecting “wrong” skewness. How-
ever, the presence of endogenous regressors significantly com-
plicates the detection of “wrong” skewness, as the OLS residuals
indicate “correct” skewness. Specifically, when the true ineffi-
ciency term exhibits “wrong” skewness, the (average) skewness
of the OLS residuals change from 0.0439 to −0.0276 when
endogeneity is introduced. Therefore, under endogeneity, it is
notable that the ML estimator fails to detect “wrong” skewness.

When the skewness of the inefficiency distribution is
correctly specified (upper panel) and regressors are exo-
genous, all estimators are unbiased. In this scenario, ML is
the method of choice as it yields the smallest standard
deviations, while the remaining approaches (GMM, copula,
proposed) are characterized by higher uncertainty as they
unnecessarily account for endogeneity. However, when
endogeneity is introduced, ML quickly deteriorates and
becomes biased for all model parameters. While GMM,
copula, and the proposed method perform equally well and
remain unbiased, GMM estimates are most tightly centered
around true values. This is because it is IV-based, and
access to valid instruments strongly benefits efficiency (for
similar findings, see Tran and Tsionas 2015).

Misspecifying the skewness of the inefficiency distribution
(lower panel) has particularly detrimental effects on the GMM
and copula estimators. In the absence of endogeneity (ρ= 0),

12 In all simulations, the starting values for the proposed estimator are
chosen as follows: for the idiosyncratic variance, the starting value is
given by the empirical variance of the dependent variable, i.e.,
σ2v ¼ dVar ½y�; for all other coefficients, we use zeros as starting values.
The indicator function therefore takes effect at the starting point via
1ðγ ¼ 0Þ. This is equivalent to starting with fitting a stylized normal
distribution to the dependent variable.
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both estimators yield biased slope coefficients. This finding is
intriguing, as the misspecification of the error distribution due
to “wrong” skewness is falsely identified as endogeneity,
leading to biased estimates (for further simulation-based evi-
dence, see Haschka and Herwartz 2022). Consequently, effi-
ciency scores are also biased. In the case of endogeneity
(ρ= 0.7), GMM and copula remain biased due to the mis-
specified error distribution, while ML is now also biased.

The proposed approach remains generally unaffected,
being unbiased for all coefficients, and provides accurate
assessments of efficiency. Therefore, the simultaneous
consideration of the skewness sign, coupled with the use of
a Gaussian copula to handle regressor endogeneity, proves
adequate and allows for unbiased assessments.

4.2 Correlation between regressors and stochastic
inefficiency

While most simulation studies introduce endogeneity as
correlation between regressors and idiosyncratic noise (e.g.
Tran and Tsionas 2013, 2015, refer to the setup in the
previous subsection), we next assess whether the proposed
approach can handle endogeneity stemming from the cor-
relation between regressors and stochastic inefficiency. For
this purpose, consider the following DGP:

yi ¼ βxi þ δzi þ vi � ui ð14Þ

vi � Nð0; 0:25Þ ð15Þ

Table 1 Monte Carlo results for simulations using DGP in (10)–(13) under exogeneity (ρ= 0) and endogeneity (ρ= 0.5) with “correct” (γ > 1)
and “wrong” skeweness (γ < 0), respectively, and N= 750

ML (Hafner et al. 2018) GMM (Tran and
Tsionas 2013)

Copula (Tran and
Tsionas 2015)

Proposed

Parameter Mean Sd MSE Mean Sd MSE Mean Sd MSE Mean Sd Se MSE

γ= 1 ρ= 0 β 0.5001 0.0211 0.0004 0.4999 0.0220 0.0005 0.4999 0.0204 0.0004 0.5018 0.0215 0.0199 0.0005

δ 0.5003 0.0304 0.0009 0.4998 0.0998 0.0099 0.4859 0.1442 0.0209 0.4952 0.1438 0.1449 0.0207

σv 0.4967 0.0620 0.0038 0.4977 0.0629 0.0038 0.4958 0.0615 0.0038 0.5011 0.0785 0.0801 0.0063

γ 0.9966 0.1044 0.0110 0.9967 0.1481 0.0220 0.9834 0.1822 0.0334 0.9836 0.1841 0.1833 0.0342

ρ – – – 0.0099 0.1627 0.0264 0.0192 0.1822 0.0336 −0.0074 0.1821 0.1838 0.0332

E½uje� – – 0.0672 – – 0.0688 – – 0.0691 – – – 0.0701

Average skewness of the OLS residuals: −0.1350 (Q1: −0.2056; Q3: −0.0687)

ρ= 0.7 β 0.4981 0.0179 0.0004 0.5058 0.0222 0.0005 0.5001 0.0221 0.0005 0.4971 0.0222 0.0223 0.0005

δ 0.7478 0.0296 0.0622 0.4950 0.0999 0.0100 0.5032 0.1457 0.0212 0.5037 0.1450 0.1431 0.0210

σv 0.2560 0.0501 0.0619 0.4980 0.0620 0.0038 0.4942 0.0632 0.0040 0.5016 0.0801 0.0788 0.0067

γ 1.311 0.0710 0.0980 0.9983 0.1488 0.0219 0.9909 0.1842 0.0344 0.9879 0.1861 0.1850 0.0348

ρ – – – 0.4920 0.1661 0.0278 0.5029 0.1885 0.0356 0.4981 0.1871 0.1888 0.0350

E½uje� – – 0.4299 – – 0.0699 – – 0.0695 – – – 0.0722

Average skewness of the OLS residuals: −0.2491 (Q1: −0.3138; Q3: −0.1787)

γ=− 1 ρ= 0 β 0.5000 0.0199 0.0004 0.4996 0.0208 0.0004 0.4979 0.0200 0.0004 0.5012 0.0201 0.0184 0.0004

δ 0.4985 0.0275 0.0007 0.3895 0.0903 0.0203 0.4011 0.1378 0.0287 0.4931 0.1759 0.1800 0.0310

σv 0.5018 0.0304 0.0013 0.5011 0.0298 0.0014 0.4891 0.0302 0.0016 0.5035 0.0533 0.0541 0.0041

γ −0.9719 0.0790 0.0070 0.7794 0.1312 3.182 0.7395 0.1695 30.053 −0.9637 0.2351 0.2341 0.0566

ρ – – – 0.1411 0.1645 0.0469 0.1240 0.1773 0.0469 −0.0055 0.2422 0.2433 0.0587

E½uje� – – 0.0590 – – 0.6922 – – 0.7043 – – – 0.0761

Average skewness of the OLS residuals: 0.0424 (Q1: 0.0067; Q3: 0.0780)

ρ= 0.7 β 0.4995 0.0186 0.0003 0.4990 0.0178 0.0003 0.4993 0.0184 0.0003 0.5019 0.0193 0.0200 0.0004

δ 0.7469 0.0281 0.0619 0.1411 0.1422 0.7583 0.1400 0.1800 0.0619 0.5161 0.1918 0.1915 0.0371

σv 0.4140 0.0327 0.0085 0.4275 0.0302 0.0359 0.4140 0.0321 0.0085 0.5011 0.0337 0.0332 0.0013

γ 0.3615 0.0718 10.859 0.7318 0.1388 30.139 0.4166 0.2430 2.059 −0.9828 0.2299 0.2305 0.0532

ρ – – – 0.7742 0.1590 0.2342 0.7747 0.1910 0.1122 0.5131 0.2314 0.2298 0.0537

E½uje� – – 0.3676 – – 0.7271 – – 0.8292 – – – 0.0750

Average skewness of the OLS residuals: −0.0278 (Q1: −0.0599; Q3: 0.0006)

The table shows the mean estimates, standard deviations of the respective coefficients, and mean squared errors. For each simulation experiment,
the skewness of the OLS residuals was stored, and the table shows the average skewness as well as the first and third quantiles of the distribution
in parentheses
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Again, the random variable xi is generated independently as
χ2(2). To introduce correlation between zi, and ui, we draw:

ηi
ξui

� �
� N

0

0


 �
;

1 0:7

0:7 1


 �� �
: ð16Þ

zi ¼ ηi þ si ð17Þ

ui ¼
F�1
N 0;1½ Þð0;γ2Þ ΦðξuiÞð Þ if γ > 0;

F�1
N½0;a0 jγj�ða0jγj;γ2Þ

ΦðξuiÞð Þ if γ < 0;

8<: ð18Þ

F�1
N 0;1½ Þð0;γ2Þ and F�1

N½0;a0 jγj�ða0jγj;γ2Þ
are inverse cumulative

distribution function of the half normal and truncated
normal distributions, respectively. Finally, we keep all other
parameters (including the signal-to-noise ratio) and vari-
ables unchanged when comparing with the simulations in
the previous section.

Simulation results are presented in Table 2. Similar to the
findings in the previous section, the OLS residuals con-
sistently exhibit negative skewness in the presence of
endogeneity. This observation is intriguing because,
according to the assumed data generating process (DGP)
with γ=− 1 (lower panel), a positive skewness is expected.
Hence, it is unsurprising that the ML estimator fails to
detect the “wrong” skewness.

While stylized ML estimation encounters significant bias
stemming from endogeneity, it is worth noting that the GMM
estimator also struggles to address this bias effectively. This
is due to the assumption underlying the GMM estimator,

which posits that endogeneity arises from correlation with
idiosyncratic noise rather than inefficiency (Tran and Tsionas
2013). An intriguing observation is that although the GMM
estimator correctly identifies endogeneity, it attributes it
incorrectly to correlation with idiosyncratic noise. As a result,
the estimates obtained are biased in the opposite direction
compared to those of the ML estimator.

Under correct skewness, the copula estimator by Tran
and Tsionas (2015) yields unbiased estimates. This indi-
cates that the Gaussian copula-based endogeneity correc-
tion, modeling the joint distribution of endogenous
regressors and composite errors, effectively handles endo-
geneity arising from correlation with idiosyncratic noise or
inefficiency. Our simulations thus validate the claims made
by Tran and Tsionas (2015), as this scenario had not been
previously explored in research. However, under the
“wrong” skewness assumption, this copula estimator exhi-
bits severe bias and fails to identify the true coefficients. In
contrast, the proposed estimator provides unbiased esti-
mates regardless of the skewness sign, with standard errors
showing only marginal changes compared to simulations
where endogeneity resulted from correlation with idiosyn-
cratic noise (see Table 1).

5 Estimating firm efficiency in Vietnam

We provide empirical evidence of the applicability of the
proposed approach by evaluating firm efficiency using data
on Vietnamese firms in 2015 obtained from the Vietnam

Table 2 Monte Carlo results for simulations using DGP in eqs. (14)–(18)

ML (Hafner et al. 2018) GMM (Tran and Tsionas
2013)

Copula (Tran and Tsionas
2015)

Proposed

Parameter Mean Sd MSE Mean Sd MSE Mean Sd MSE Mean Sd Se MSE

γ= 1 β 0.4956 0.0189 0.0004 0.5012 0.0225 0.0005 0.5021 0.0199 0.0004 0.5014 0.0229 0.0307 0.0005

δ 0.1815 0.0372 0.1028 0.8184 0.1415 0.1214 0.5240 0.1496 0.0230 0.5018 0.1477 0.1589 0.0218

σv 0.4511 0.0531 0.0051 0.4195 0.0718 0.0116 0.4911 0.0530 0.0029 0.5028 0.0790 0.0799 0.0070

γ 0.9657 0.0858 0.0085 0.8195 0.1501 0.0551 1.008 0.0820 0.0067 1.200 0.1871 0.1802 0.0750

ρ – – – −0.6894 0.1675 10.690 −0.3083 0.1417 0.0201 −0.3099 0.1870 0.1864 0.0351

E½uje� – – 0.3734 – – 0.4208 – – 0.0703 – – – 0.0710

Average skewness of the OLS residuals: −0.1043 (Q1: −0.1621; Q3: −0.0439)

γ=− 1 β 0.4911 0.0187 0.0004 0.4995 0.0224 0.0005 0.4976 0.0184 0.0184 0.5017 0.0312 0.0301 0.0010

δ 0.2922 0.0345 0.0444 0.3891 0.1433 0.0328 0.6454 0.1471 0.0428 0.4891 0.1500 0.1489 0.0226

σv 0.3926 0.0504 0.0141 0.0984 0.0511 0.0123 0.8365 0.0412 0.1349 0.5028 0.0442 0.0458 0.0027

γ 0.9438 0.0814 0.0098 0.7844 0.1401 0.0661 0.9889 0.0780 0.0062 −1.027 0.2070 0.2081 0.0435

ρ – – – −0.1844 0.1500 0.0232 −0.3138 0.0591 0.0142 −0.2164 0.2241 0.2250 0.0503

E½uje� – – 0.2239 – – 0.4223 – – 0.2561 – – – 0.0777

Average skewness of the OLS residuals: −0.0657 (Q1: −0.1237; Q3: 0.0049)

For further description, see Table 1
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Enterprise Survey (VES). The dataset consists of 16,641
observations. Conducted annually by the General Statistics
Office (GSO) of Vietnam, the VES is a nationally repre-
sentative survey that includes all firms with 30 or more
employees, as well as a representative sample of smaller
firms (O’Toole and Newman 2017).13 Focusing on firms
within a single (developing) country allows us to best
unravel endogenous interrelations and their implications for
understanding “wrong” skewness empirically. This
approach helps us avoid difficulties associated with time
dependencies or panel analysis, as additional endogeneities
channeled through unobserved heterogeneity are ruled out.
To assess firm performance, we adopt common specifica-
tions employed in related literature by relating firm reven-
ues to wages and assets (Haschka et al. 2023, 2021).
Following Haschka et al. (2021) and related studies using
VES data, we first remove outlier observations from the
sample. Observations are excluded if revenues fall outside
the 99.5th percentile or the 0.5th percentile of their dis-
tributions. This process leaves us with a sample size of
16, 474. Descriptive statistics of the continuous variables
involved are presented in Table 3.

By considering each firm as a single producer, we use a
log-linear Cobb-Douglas production function and specify
the following model:

log revenuei ¼ αþ δ1 logwagesi þ δ2 log assetsi
þ x0iβþ vi � ui;

ð19Þ

where i= 1,…, 16, 474 denotes firms, and vi � Nð0; σ2vÞ is
idiosyncratic noise. The firms may be very different
according to the sector in which they operate, and
unobserved regional effects such as local subsidies or
advantages of location may also have a meaningful effect
on output generation. Accordingly, the vector xi contains
sector-specific and regional dummy variables to tease out
heterogeneity in the error term and to immunize our analysis
to adverse effects stemming from unobserved cross-industry
or regional heterogeneities as another potential channel of
endogeneity.

Our specification diverges from related models in the
following two directions. First, we allow stochastic ineffi-
ciency to vary over i and consider both “correct” and
“wrong” skewness by means of a data-driven choice of
distribution of ui, i.e.,

ui ¼ 0 or ui � N 0;1½ Þð0; γ2Þ or ui � N½0;a0jγj�ða0jγj; γ2Þ:
ð20Þ

The latter case has yet not been considered in empirical
development literature and thus offers a novel perspective to
unravel structural inefficiencies in firm performance in
Vietnam. Note that although we label it as “data-driven
choice”, the sign of γ is not estimated a priori but rather
simultaneously with all other parameters because any a
priori determination of residual skewness would be subject
to (potential) endogeneity. In this regard, we consider the
possibility of correlated production inputs with composed
errors, denoted as ei= vi− ui. Endogeneity of inputs can
arise due to their correlation with vi, with ui, or both. The
presence of omitted variables in the production function,
such as subsidies or governmental grants that are large
enough to have meaningful effects may lead to correlation
with vi. Furthermore, if producers possess prior knowledge
of potential inefficiencies in output generation, they are
likely to adjust their inputs accordingly (Haschka and
Herwartz 2022). As these adjustments are unobserved by
the analyst, they introduce correlation with ui.

5.1 Estimator setup

Before estimation, we assess whether the identifying
assumptions for the proposed estimator are met. Following
Papadopoulos (2022), we first test for the multivariate
normality of the endogenous regressors under a copula-
based transformation to verify the adequacy of the Gaussian
copula. The Doornik-Hansen test yields a p value of
p= 0.3014, indicating that the Gaussian copula assumption
is not violated. Next, we examine whether the marginal
distribution of the endogenous regressors deviates suffi-
ciently from normality. Figure 3 displays the distribution of
the log-transformed endogenous variables. It is evident that
the distributions are skewed and exhibit excess kurtosis.
Therefore, this deviation should provide ample information

Table 3 Summary statistics
Variable N. obs. Mean Median Std. Dev. IQR Min Max

revenues 16,474 21,981 2658 82,149 9050 9 1,226,094

wages 16,474 2387 466.3 9588 941.6 3 359,494

assets 16,474 9858 1594 44,189 3457 2.5 1,373,647

All variables are measured in million Vietnamese Dong. Revenues denotes total revenue from sales and
supplying of services, wages denotes total amount spent on wages, and assets denote total value of fixed
assets

13 Each firm in the VES dataset is classified according to the Vietnam
Standard Industrial Code (VSIC). For more information, see https://
vietnamcredit.com.vn/products/industries.
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for model identification even in the absence of skewness in
the error distribution.

The model encompasses numerous unknown parameters
(because of sector and regional dummies), and the like-
lihood function exhibits discontinuity in γ around values of
zero skewness. Since numerical optimization techniques are
employed (Nelder and Mead 1965), it is imperative to
ensure that the optimizer avoids getting trapped in local
maxima, particularly given the absence of theoretical
insights into the continuity of likelihood functions in
copula-based endogeneity correction models. Consequently,
there is no guarantee that the optimizer consistently con-
verges to the global maximum, and its performance may be
influenced by the selection of starting values.

To address these challenges, we employ a grid-based
approach to search for optimal starting values for numerical
optimization. The process unfolds as follows: we estimate
the model in (19) using stylized least squares estimation to
derive estimates for the regression coefficients and residual
variance. The grid is constructed around these estimates,
spanning ± ten times their corresponding standard errors,
and consists of 100 values for each parameter. For the
skewness parameter, the grid extends from −5 to 5 in
increments of 0.1. We initialize the optimizer from each of
these potential starting points and select the model with the
maximum (log) likelihood value. Finally, bootstrapping is
employed on the optimal model to derive standard errors.

We conduct a comparative analysis between the pro-
posed estimator, which accommodates endogeneity of
inputs and both “correct” and “wrong” skewness of ineffi-
ciency, and the maximum likelihood estimator (MLE)
introduced by Hafner et al. (2018). The MLE also considers
“correct” and “wrong” skewness but does not address
endogeneity. Furthermore, we compare it to the instrument-
based generalized method of moments (GMM) estimator

(Tran and Tsionas 2013) and the IV-free copula estimator
(Tran and Tsionas 2015), both of which handle endogenous
regressors but assume correctly skewed inefficiency. For
IV-based GMM estimation, we utilized one-year lagged
assets and one-year lagged wages as instruments, following
a methodology similar to previous studies (Haschka and
Herwartz 2022). However, it is important to note that such
internal instrumentation may suffer from weak instruments
and might not be entirely suitable for addressing
endogeneity.

5.2 Returns to scale and Vietnamese growth
strategies

The estimation results are presented in Table 4. The pro-
posed estimator reveals a negatively skewed inefficiency,
whereas the remaining estimators all indicate “correct”
skewness. Furthermore, all employed estimators con-
sistently highlight human capital as the primary driver of
firm performance in Vietnam. This is evident from the
substantially higher coefficient attached to ðlogÞwages
compared to the coefficient attached to ðlogÞ assets , repre-
senting gross fixed capital formation. Accounting for
endogeneity through GMM, copula, and the proposed
estimator reduces this difference. It is worth noting that both
GMM and copula estimators may still be affected by
remaining endogeneity when “wrong” skewness is present,
while GMM may face additional challenges due to weak
instrumentation.

In examining the outcomes of the different estimators on
the production function, distinct patterns in returns to scale
(RTS) emerge. The ML estimator reveals increasing returns
to scale, as the sum of coefficients is significantly greater
than 1 (RTSML= 1.153, CI= (1.11, 1.19)). Conversely,
both the GMM and copula estimators indicate significantly

Fig. 3 Histograms and density plots of the explanatory variables log(wages) and log(assets). The magenta curves show fitted normal distributions.
In addition, Cramér-von Mises tests were performed to test for normality, which yielded pvalues of p < 0.001 in both cases
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decreasing returns to scale (RTSGMM= 0.8949, CI=
(0.818, 0.972); and RTScopula= 0.891, CI= (0.8110,
0.971)). This suggests that, on average, as firms increase
their inputs, the growth rate of output diminishes. In con-
trast, the proposed estimator paints a different picture,
depicting a scenario of constant returns to scale. This is
visible as the sum of coefficients in the production function
is roughly 1 (RTSProposed= 0.9906, CI= (0.906, 1.08)).14

While increasing RTS suggest that it should be easy for
firms to scale up, decreasing RTS urges firms to assess their
expansion strategies critically, as indiscriminate scaling
might not yield proportional increases in output, and con-
siderations for optimizing resource allocation and opera-
tional efficiency are paramount. Constant returns to scale
are indicative of a more consistent and predictable pro-
duction process, allowing firms to plan and allocate
resources with greater confidence.

The question that now arises is which results seem most
economically feasible for the case of Vietnam. Vietnam
stood out as the sole emerging economy in Southeast Asia
to avoid recession in 2009 amidst the global crisis. More-
over, Vietnam has demonstrated sustained growth rates over
the past few decades (Cling et al. 2010). However,
explaining increasing returns to scale would be difficult
given the predominance of small firms in the dataset
(O’Toole and Newman 2017). Although there is significant
growth potential in the Vietnamese economy (Bai et al.
2019), the government prioritizes achieving stable and
consistent economic growth over pursuing rapid growth at
the expense of stability (Nguyen et al. 2018). This

perspective favors constant returns to scale, as it means that
the government’s economic goals can be attained while
maintaining stability (Nghiem Tan et al. 2021). This sug-
gests that MLE, GMM, and copula estimators may be
flawed due to (remaining) endogeneity.

5.3 Endogeneity bias and efficiency levels

Additional evidence in favor of endogeneity is provided by
significant estimates of correlations between production
inputs and errors when using copula and the proposed
estimators. Specifically, the correlation coefficients are
estimated as ρ̂e;logwages ¼ 0:2510 and ρ̂e;log assets ¼
0:2442 for the proposed estimator. These metrics directly
reflect the interdependence and provide valuable economic
information by allowing an evaluation of how firms adapt to
fluctuations in inefficiency or random disturbances, on
average (Haschka and Herwartz 2022). Substantial positive
correlation estimates suggest notable adjustments in inputs
in response to implicit shifts in production technology or
idiosyncratic shocks. It seems intuitive for both correlation
estimates to be positive. For example, adverse external
technological shocks are likely to diminish efficiency,
indirectly leading to reduced output. At the same time, an
increase in production inputs becomes necessary to main-
tain the output level.

The distribution of efficiency scores is shown in Fig. 4.
Considering firm efficiency, we find rather high mean firm
efficiency when using MLE, with an average score of
0.8785. These results initially seem plausible, because it is
in line with other efficiency levels documented in the lit-
erature (Le and Harvie 2010; Le et al. 2018; Nguyen et al.
2018; Tran et al. 2008; Vu 2003). However, it should be
mentioned that none of these studies consider potential
regressor-endogeneity. Accounting for endogeneity while

Table 4 Estimation results using
MLE (Hafner et al. 2018), GMM
(Tran and Tsionas 2013), copula
(Tran and Tsionas 2015), and
the proposed estimator

MLE GMM Copula Proposed

Est. SE Est. SE Est. SE Est. SE

Const 1.140 0.0625 0.9814 0.0752 1.055 0.0800 1.241 0.0812

logwages 0.9102 0.0114 0.6211 0.0198 0.5994 0.0201 0.6493 0.0210

log assets 0.2428 0.0086 0.2738 0.0188 0.2916 0.0199 0.3413 0.0213

σv 0.5918 0.0142 0.6561 0.0295 0.6290 0.0308 0.8993 0.0301

γ 0.6345 0.0310 0.8181 0.0393 0.8544 0.0409 −0.8803 0.0404

ρe;logwages 0.3310 0.0391 0.2510 0.0404

ρe;log assets 0.1822 0.0365 0.2442 0.0361

Mean Efficiency 0.7985 0.4252 0.4516 0.6552

Sector Dummies Yes Yes Yes Yes

Regional Dummies Yes Yes Yes Yes

Standard errors of the copula-based estimators (copula and proposed) are obtained by means of bootstrap
procedures with 1999 replications. Efficiency scores are calculated using the estimator by Jondrow et al.
(1982). The skewness of the OLS residuals is −0.0981

14 Regarding the estimated RTS obtained by the proposed estimator,
one can see that if a firm simultaneously increases its wages and assets
by 1%, it can expect .9906% more revenues. Since this value is not
significantly different from 1, we can conclude that returns to scale are
constant.
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assuming “correct” skewness through GMM and copula
estimators substantially decreases the mean efficiency
scores to 0.4252 (GMM) and 0.4516 (copula), respectively.
While these values seem very low, the proposed approach
reveals a mean efficiency of 0.6552, still indicating a con-
siderable shortfall of about 0.35% from maximum feasible
output of Vietnamese firms. This is in line with Haschka
et al. (2023), who also consider potential endogeneity and
find similarly low efficiency levels. Important factors
identified by the literature on low efficiency scores in
Vietnam are corruption and the level of local financial
development (Haschka et al. 2023, 2021). Previous studies
have highlighted a direct correlation between corruption and
inefficiency (Nguyen and Van Dijk 2012; Rand and Tarp
2012), as well as a negative impact of higher local financial
development on firm efficiency in Vietnam (O’Toole and
Newman 2017). These findings align with broader research
indicating that while financial development tends to bolster
technical efficiency in highly efficient economies, its effects
are diminished or even adverse in less-efficient ones (Are-
stis et al. 2006; Rioja and Valev 2004).

Another possible explanation for low-efficiency levels is
the connection with the adjustment of inputs, i.e., as a
reflection of endogeneity (Haschka and Herwartz 2022). If
firms are aware of their own low inefficiency levels, and
increase their inputs according to that, a positive (unob-
served) input-inefficiency dependence might be present.
Since the simulations show that a positive correlation leads
to an overestimation of the efficiency levels (see also Tran
and Tsionas 2015), and the proposed estimator indicates a
positive dependence between inputs and errors, this could
provide another explanation for the actually lower effi-
ciency levels. A positive sign of both correlation estimates
is intuitively reasonable. For instance, (adverse) external
technological shocks are likely to reduce efficiency and
result indirectly in less output. At the same time, the pro-
duction inputs have to be simultaneously increased to retain
the output level. Exemplifying such shocks, one might
notice environmental regulations of the Vietnamese gov-
ernment (Ho 2015). Consequently, stronger production

restrictions or sharper regulations might be considered as
potential manifestations of endogenous technological shocks.

While the OLS residuals point to correct skewness and
MLE also favors the traditional SF specification, the pro-
posed estimator indicates the presence of “wrong” skewness
after accounting for endogeneity. Although MLE can also
detect “wrong” skewness, the presence of endogenous
regressors likely hinders that. The pronounced difference in
the efficiency scores obtained by GMM, copula, and the
proposed estimator is interesting insofar as the latter indi-
cates “wrong” skewness, but at the same time delivers
higher efficiencies. We assume that since GMM and copula
cannot deal with skewness issues, this was falsely identified
as endogeneity, and the efficiency values are therefore
underestimated (as could also be shown in the simulations).

5.4 Competition and market characteristics

The insights offered by the proposed estimator provide
evidence supporting the presence of endogenous regressors
and “wrong” skewness. While the former has already been
emphasized in the existing empirical development literature,
the latter has not yet been acknowledged. While correct
skewness coupled with low efficiency scores would prob-
ably be accepted, “wrong” skewness gives reason to ques-
tion the market conditions. As mentioned in Section 2, we
argue that “wrong” skewness contradicts the assumption of
a competitive market situation. Yet, unless alternative
explanations for the “wrong” skewness can be ruled out,
such as a poor sample or asymmetry in idiosyncratic noise,
relying solely on an economic rationale may lack persua-
siveness. The notion that “wrong” skewness is attributed to
bad luck with the sample becomes less plausible given the
substantial size of our dataset, which is representative for
Vietnam (O’Toole and Newman 2017). While it would be
conceivable that asymmetry exists in the two-sided noise
term or this term may be correlated with inefficiency, a shift
in the model specification towards asymmetric two-sided
distributions or a dependency between inefficiency and
noise would necessitate a sound economic rationale.

Fig. 4 Distribution of efficiency scores obtained by the four estimators via TEi ¼ E½� expfûig� (see Eqns. (8) and (9)). aMLE; b GMM; c Copula;
d Proposed
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High efficiencies combined with the “wrong” skewness
revealed by the proposed estimator, collectively cast doubt
on the prevailing market conditions and raise concerns
about competition levels. These findings might be attributed
to a lack of incentives for firms to optimize their efficiency,
resulting in many firms lacking the pressure to improve
their operations. This situation can be attributed to various
factors, despite the already mentioned corruption in Viet-
nam, burdens imposed by the communist regime, which
hinder the emergence of liberal and competitive market
conditions (Rand and Tarp 2012; Sahut and Teulon 2022),
or a lack of market orientation of many companies (Evan-
gelista et al. 2013). Despite extensive reforms in this regard,
their effectiveness appears to be limited (Gupta et al. 2014;
Tran et al. 2008). On the one hand, Vietnam established a
central committee dedicated to combating corruption and
enacted an anti-corruption law in 2005, followed by ratifi-
cation of the UN Convention Against Corruption in 2009.
Despite these proactive measures, the country’s standing in
the Corruption Perception Index of 2018 remained rela-
tively low, with a ranking of 117th among 180 countries.
This position represented a decline of ten places compared
to the previous year,15 indicating ongoing challenges in
addressing corruption effectively. On the other hand, a lack
of market orientation of firms in Vietnam is often attributed
to the influence of cultural, economic, and institutional
characteristics. As noted by Evangelista et al. (2013),
market orientation can have a significant impact on business
efficiency, when its adoption is influenced by a combination
of internal organizational dynamics and external market
forces. Therefore, further policy interventions are necessary
to provide firms with incentives to optimize their processes
and enhance efficiency since the market alone fails to
generate adequate incentives in this regard. Specifically,
steps to combat corruption are already being taken in the
right direction, while incentives to strengthen the market
orientation of Vietnamese producers could prove advanta-
geous and contribute further to the overall improvement of
business processes.

6 Conclusion

Under the traditional production SF specification, compo-
site errors are assumed to have negative skewness. Viola-
tions of this assumption, commonly termed “wrong”
skewness, have been highlighted in the literature on SF
analysis (Choi et al. 2021; Curtiss et al. 2021; Daniel et al.
2019). While earlier discussions attributed such skewness
issues to dataset peculiarities like small or poor samples
(Almanidis and Sickles 2011; Hafner et al. 2018; Simar and

Wilson 2009), recent studies increasingly delve into eco-
nomic rationales (see Papadopoulos and Parmeter 2023, for
a review). We contribute to this discourse by outlining that
when assuming that “wrong” skewness stems from the
inefficiency term, it might indicate a lack of market incen-
tives, leading producers to perceive no need to address their
inefficiencies.

While various methodological approaches exist to
address skewness issues empirically (e.g., Hafner et al.
2018), our work contributes to the economic explanation of
“wrong” skewness. However, existing studies have not
considered the potential endogeneity of regressors. Endo-
geneity of production inputs is likely if firms adjust their
resource allocation based on their own inefficiency levels,
which may go unnoticed by the analyst. In the presence of
endogeneity, examining firm processes becomes challen-
ging for analysts, making it even more difficult to uncover
underlying market characteristics.

Against this background, the methodological scope of
this paper is to propose an approach for estimating SF
models while simultaneously identifying inefficiency
skewness, considering potential endogeneity of regressors.
Adapting the approach by Park and Gupta (2012), we utilize
a Gaussian copula function to construct the joint distribu-
tion of endogenous regressors and composite errors, cap-
turing mutual dependency without relying on instrumental
variables. Our model distinguishes between “correct” and
“wrong” skewness in one model without imposing a priori
sign restrictions on inefficiency skewness or needing to
identify additional parameters determining skewness. We
assess the finite sample behavior of the proposed approach
through Monte Carlo simulations.

We analyze the determinants of firm performance in
Vietnam using data from 16,474 unaffiliated firms in 2015.
Our findings reveal three key insights. Firstly, endogeneity
significantly affects firm productivity estimation, indicating
constant returns to scale rather than increasing returns. This
finding aligns with the government’s goal for steady
growth. Secondly, endogeneity complicates the detection of
“wrong” skewness, leading to lower efficiency estimates.
Lastly, evidence of low efficiency and “wrong” skewness
suggests a lack of competitiveness due to factors like cor-
ruption and government constraints. Policy interventions
are crucial to incentivize firms to optimize processes and
improve efficiency.
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