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Abstract
Innovation is a key driver of productivity growth. This paper proposes a novel methodology in order to explore the impact of
farm-level innovations on farm productivity and its components (i.e. technology, efficiency and scale) using representative
data from Irish dairy farms. We measure innovation by an index based on employed production practices, continuous
innovation activity and knowledge weighted by expert opinions. The results suggest that more innovative Irish dairy farmers
are more productive. Specifically, all farmers improve their production technology and efficiency through their use of
innovations, but farmers at specific levels of innovativeness may experience a decrease in productivity due to the small scale
at which they operate. This indicates that innovation has a non-linear effect on productivity. We discuss the policy
implications for reducing the unequal gains of innovation across farmers.

JEL classification D24 ● Q12 ● O33

Keywords Agricultural Innovation System (AIS) ● Total factor productivity ● Efficiency ● Agriculture ● Dairy production ●

Stochastic frontier analysis

1 Introduction

Productivity and efficiency analysis is a particularly popular
research topic in agricultural economics (e.g. Alvarez et al.
2012; Brümmer et al. 2002; Emvalomatis 2012; Fuglie et al.
2016; Hadley 2006; Karagiannis et al. 2004; Kellermann
2015; Latruffe 2010; O’Donnell 2012; Sauer and Latacz-
Lohmann 2015; Skevas et al. 2018; Zhu and Oude Lansink
2010), due to its important policy implications. Productivity
is recognized as an indicator of long-term competitiveness

in agriculture (e.g. Latruffe 2010; Newman and Matthews
2006), while the efficient use of production factors can be
viewed as an indicator of sustainability (e.g. Chambers and
Serra 2018; Färe et al. 2005; Malikov et al. 2015; Murty
et al. 2012; Sidhoum et al. 2019). For example, the Com-
mon Agricultural Policy (CAP) of the EU recognizes the
necessity of productivity gains through technology and
efficiency improvements at the farm level while reducing
environmental pressures (Latruffe et al. 2017): increasing
agricultural output with the same or smaller amounts of
resources, while minimizing the impact on the environment
is referred as sustainable intensification (SI) in the literature
and policy documents (e.g. Benton and Bailey 2019;
Campbell et al. 2014; Garnett et al. 2013; Godfray and
Garnett 2014; Tilman et al. 2011).

Innovation is a key driver of productivity growth and
sustainability (e.g. Moreddu and Gruere 2019), and a
voluminous literature on the link between innovation and
productivity has developed over the years (Sauer 2017;
Sauer and Latacz-Lohmann 2015). Innovation is a broad
concept, which can be generally defined as the successful
utilization of an idea (Knickel et al. 2009). In the case of
firms/farms, innovation encompasses both creation and
adoption of ideas that can be new to the firm, the market or
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the world (OECD and Eurostat 2005). A firm is character-
ized as innovative if, during the review period, it has
implemented any type of innovation, including (i) new or
improved product, (ii) process, (iii) marketing or (iv)
organizational method (OECD and Eurostat 2005). Due to
the wide nature of the concept of innovation, oper-
ationalizing it in applied research is not straightforward and,
indeed various approaches to proxy innovation activity at
the farm level have been employed. An established
approach to measuring innovation is through investment
expenditures at the farm level (e.g. Emvalomatis et al. 2011;
Minviel and Sipiläinen 2018; Sauer 2017; Sauer and
Latacz-Lohmann 2015; Serra et al. 2011; Silva and
Stefanou 2007). However, innovation can also be non-
physical (OECD and Eurostat 2005), for example, taking
the form of information acquisition, the development and
use of tacit knowledge. As such, innovation can be created
within the farm through learning-by-doing (Shee and Stefa-
nou 2016; Stefanou 2009), as well as through the interaction
with other actors, in particular, farmers interacting with their
peers, advisors, academic institutions, input suppliers or other
actors, thus forming an Agricultural Innovation System
(Klerkx et al. 2012; Lamprinopoulou et al. 2014).

The contribution of AIS actors to supporting SI can be
considered more important than physical investments at the
farm level, with the CAP and Farm to Fork strategy officially
promoting the role of AIS actors to foster a more competitive,
resource efficient and sustainable agricultural sector. The
reason is that physical investments (e.g in machinery) are not
always consistent with the SI vision, since although they
result in productivity gains, these may come at the cost of
sustainability, e.g. through exerting increasing pressure on the
environment (e.g. FAO 2013). To achieve SI, farmers need to
combine their own tacit knowledge with information coming
from external AIS actors in order to adapt their farming
practices, while considering the various environmental, eco-
logical, cultural and socioeconomic characteristics (Laurent
et al. 2006; Polanyi 2000; Rossel and Bouma 2016).

This paper builds a framework for examining whether
the impact of innovation on farm-level productivity is in
line within the wider definition of SI. A stochastic frontier
analysis (SFA) model is employed, which examines total
factor productivity (TFP) differences across farmers that
arise from differences in the innovations they employ. The
Irish dairy sector is considered as an interesting case study,
given the ambitious growth targets set out for the industry in
the post-quota environment, which is predicated on the idea
of knowledge adoption augmenting productivity by farmers
and other economic agents within the agricultural sector
(DAFM 2015). On the basis of an innovation index, which
captures the differences in the employed innovations across
farmers, we construct a cross-sectional TFP index similar to
Orea (2002), by extending the approach taken by Karafillis

and Papanagiotou (2011), where the time dimension in a
panel study of productivity growth is replaced by the
innovation index. In this setup we are able to examine the
contribution of innovation to cross-sectional differences in
TFP and its components, i.e. on the production technology,
efficiency and scale effects. Hence, the main advantages of
the proposed framework is that it can examine whether the
contribution of innovation to productivity is in line with the
vision of SI and, in particular, the objective of producing
more agricultural output with the same or less inputs. Our
results suggest a non-linear effect of innovation to pro-
ductivity. Specifically, more innovative farmers are more
productive, which is driven mostly by a positive effect of
innovation on technology and efficiency. The scale effect is
negative at lower levels of innovation but positive at higher
levels of innovation, i.e. innovation has a higher effect on
the productivity of larger farmers.

The remainder of the paper is organized as follows:
Section 2 summarizes previous empirical research regarding
innovation and productivity, and explains how this paper
extends this stream of literature. Section 3 outlines the
conceptual framework, building a TFP index in which the
contribution of AIS is incorporated explicitly. Section 4
presents the data and summary statistics. Section 5 reports
the results and Section 6 concludes.

2 Background and conceptual framework

2.1 Literature review

Many empirical studies have examined the contribution of
innovations promoted by specific AIS actors to farm-level
productivity and its components, while accounting for the
possibility of suboptimal utilization of resources (e.g.
Bravo-Ureta and Evenson 1994; Bravo-Ureta et al. 2012;
Dinar et al. 2007; Henningsen et al. 2015; Martinez-Cillero
et al. 2018; O’Neill et al. 1999; Rao et al. 2012). This vein
of research was undertaken using mostly cross-sectional
data, possibly due to lack of panel data. The contact of a
farmer with an AIS actor is measured usually with a binary
variable, indicating whether a farmer contacted an AIS actor
during a specific period.

From a methodological perspective, cross-sectional stu-
dies either split the samples into farmers who contacted the
AIS actor of interest and those who did not, and compare
the differences in marginal productivities and efficiency
scores between the two groups (e.g. Bravo-Ureta et al.
2012; Henningsen et al. 2015; Rao et al. 2012), or with the
use of a metafrontier for more than two groups (DeLay et al.
2022). An alternative methodological approach is to include
the innovation variable as part of the technology and/or
inefficiency (Dinar et al. 2007; McFadden et al. 2022).
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The adopted methodologies of the aforementioned cross-
sectional studies have a common limitation when one
investigates the impact of innovation in SFA framework:
the impact of innovation on productivity through the scale
effect is not taken into account. The adoption of an inno-
vation changes the production technology and, thus, it may
alter the optimal levels of factors of production and, con-
sequently, their optimal usage ratios. In this respect, tech-
nical progress, especially embedded technical progress,
tends to favor larger farms (e.g. Alvarez and del Corral
2010; Alvarez et al. 2012; Balaine et al. 2020; Läpple and
Thorne 2019). During the Green Revolution, physical
innovations, such as introduction of specialized machinery,
enabled farmers to increase their scale of operation
(Weersink et al. 2018) with a commensurate reduction in
the total number of farms.

However, knowledge and information, as provided by
AIS actors, can assist farmers to sustainably intensify their
production processes by reducing the need for large-scale
farming. This is because farmers can use knowledge instead
of scarce (e.g. labor, land) or harmful (e.g. chemicals)
inputs (Bongiovanni and Lowenberg-DeBoer 2004; Finger
et al. 2019; Gallardo and Sauer 2018; Lajoie-O’Malley et al.
2020; Mcbratney et al. 2005; Rossel and Bouma 2016) and
produce more with the same or less inputs. Thus, when
examining the impact of innovation on SI in a productivity
and efficiency analysis framework, it is necessary to
account for the impact of innovation on the technology,
efficiency scores and optimal scale, simultaneously.

Taking a different approach from the aforementioned
studies, Karafillis and Papanagiotou (2011) estimated a profit
function using cross-sectional farm-level data and constructed
a TFP index on the basis of an innovation index. The index
consisted of aggregate (mostly physical) technologies that
were used at the farm level. The limitation in Karafillis and
Papanagiotou (2011), again in relation to SI, is that their TFP
index consisted only of the technology and scale effects,
neglecting efficiency. Nevertheless, their approach is amen-
able to modifications which can include the efficiency com-
ponent of TFP in the analysis. We extend this approach to
examine the impact of innovation on the technology, effi-
ciency and scale and their aggregate net effect on TFP using
cross-sectional data from Irish dairy farms.

2.2 Conceptual framework

Individual farmers typically have different needs and face
different constraints, which leads them to utilize various
technologies/sources of information at any point in time
(Chavas 2001, 2012). Taking this into consideration, we do
not focus on the contribution of a specific actor or tech-
nology on productivity, but we consider innovation at the
farm level to stem from the contribution of multiple AIS

actors. Previous studies examined the simultaneous impact
of multiple innovations on farm level productivity and
efficiency (DeLay et al. 2022; Dinar et al. 2007; McFadden
et al. 2022). Neglecting to take into account the contribution
of various innovations may result in biased estimates, e.g.
part of productivity gains may be attributed to a technology
that is not included in the analysis.

Furthermore, if one is interested in examining the impact
of multiple AIS actors, then it is necessary to consider the
relationship between these actors, as these usually form the
wider institutional context and regional/national policy
objectives (Klerkx and Jansen 2010; World Bank 2006).
For instance, Dinar et al. (2007) considered the use of
public and private advisors as two separate determinants of
production technology and efficiency, utilizing the whole
sample in the empirical application. This is because, in the
context of their application, private advisors assist farmers
with practical problems associated with the use of certain
inputs, while public advisors focus on more general pro-
blems (Dinar et al. 2007).

In the case of Ireland, the national AIS is one of the most
integrated systems in the EU, with an organized and coor-
dinated structure. Specifically, Irish dairy farmers may
simultaneously use information or technologies from var-
ious Irish AIS actors, who offer complementary technologies/
advice (e.g. Prager and Thomson 2014). These technologies
are related to grassland, breeding and financial management,
that will, overall, allow dairy farmers to better utilize the low-
cost grass-based feed system (Läpple et al. 2019; Thorne
et al. 2017) and, as a result, improve competitiveness in a
sustainable manner. For instance, a farmer may use
milk recording, which provides more information about
cows’ productive capacity (Balaine et al. 2020) and then
contact an advisor for assistance in order to use the infor-
mation obtained for breeding management (Balaine et al.
2020; Regan 2019).

Capturing the impact of complementary Irish AIS tech-
nologies by using separate variables for each technology
may create issues such as multicollinearity in the empirical
specification. Thus, we use the composite innovation index
developed by Läpple et al. (2015) specifically for the Irish
dairy sector in 2012, which captures the employed inno-
vations at the farm level that arise from the interaction of
various innovations promoted by the Irish AIS: farmers with
higher index scores use more innovations promoted by AIS.
Thus, the overall index reflects the degree of innovativeness
of individual farmers, where innovativeness is defined as
“the degree to which an individual, or any other unit of
adoption is relatively earlier in adopting new ideas than
other members of a system” (Rogers 2003, p. 22).

Previous farm-level studies focused on examining the
impact of specific components of the AIS, such as FAS or
the use of specific technologies, using binary indicators on
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efficiency and TFP growth (Parikoglou et al. 2022a, b).
However, the TFP growth index and its components are not
informative regarding the starting point in productivity, but
only measure rates of change. On the contrary, in this study
we focus on TFP differences in the dimension of innova-
tiveness. In this regard, we are able to determine, at a
specific point in time, whether farms with a higher inno-
vation index are indeed more productive: instead of simply
measuring the productivity level for each innovation group
and comparing the results (which is particularly difficult to
do or requires stronger assumptions compared to measuring
productivity changes), we amend the methodology designed
to measure productivity changes over time to allow us to
measure productivity differentials across different levels of
innovativeness.

At higher levels of innovativeness, farmers experience
better information flow, which can inform input use, choices
and access to technology embodied in inputs (Batte and
Schnitkey 1989). Better information flow may shift the pro-
duction technology outwards (DeLay et al. 2022; Dinar et al.
2007; McFadden et al. 2022). Furthermore, better informa-
tion flow may have a twofold impact on efficiency. First,
acquisition of knowledge may improve the way inputs are
used and lead to higher efficiency. For example, a farmer who
starts using a grassland management system could make
better use of the available area. Conversely, the introduction
of a new product or production method may adversely affect
efficiency if the farmer incurs learning costs when imple-
menting the innovation, as predicted by the adjustment-cost
theory (Stefanou 2009). For instance, Henningsen et al.
(2015) examined cross-sectional productivity differences
between contract and non-contract farmers in Tanzania in
2012. The results showed that contract farmers had much
lower average technical efficiencies compared to non-contract
farmers, although the former were more productive. The
authors argue that this finding can be attributed to the lack of
advisor services that assist farmers in making better use of the
information gained from contract farming.

Lastly, different types of employed technologies may
lead to different optimal scales of operation (Varian 2010).
For example, some technologies are input saving, e.g.
grassland management techniques were developed as a
response to the lack of available land. Others may be out-
put-enhancing, such as milk recording. In the latter case,
farmers may endure external adjustment costs in relation to
these factors of production (Stefanou 2009) and divert
resources from production to innovation investments (e.g.
Serra et al. 2011). This alters the optimal scale of produc-
tion, which could cause either a decrease or an increase in
productivity. Ultimately, discrepancies in productivity
among farmers due to varying levels of innovativeness can
be attributed to the aggregate impact on the technology,
efficiency and scale.

3 Modeling approach and empirical
specification

Irish specialist dairy farms produce more than a single
output, thus we use an output distance function to represent
their production technology (Newman and Matthews 2006).
In general, the choice between an input-reducing and
output-expanding view does not make a difference when the
technology exhibits constant returns to scale (Newman and
Matthews 2006; Orea et al. 2004). We choose the distance
function to be output-expanding since, despite the quota
scheme operating in the period covered by our data, quotas
were tradeable within regions.

It is conventional in applications that involve time-series
or panel data to capture improvements in the production
technology over time by the exogenous passage of time.
These improvements result in an outward shift of the
technology of the production possibilities set. Following
Dinar et al. (2007); Karafillis and Papanagiotou (2011);
McFadden et al. (2022), in a cross-sectional setting, dif-
ferences in the technology employed by farmers are attrib-
uted to the level of their innovativeness, captured by I,
where, a priori, we expect higher levels of I to result in a
similar outward shift of the technology. The output
expanding distance function is defined as:

Doðx; y; IÞ ¼ min θ :
y
θ
2 output possibility set, given I

n o
ð1Þ

where y 2 RM and x 2 RN represent, respectively, the
vectors of outputs and inputs. Both vectors are assumed to
be functions of I, as innovativeness affects the employed
technology and, thus, the levels of and proportions at which
inputs are combined to produce outputs. We also assume
that I is exogenously determined.1

The output distance function in equation (1) reflects the
distance of a producer from the boundary of the production
possibilities set for each level of the innovation index, with the
inverse of the value of the distance function indicating the
maximum amount by which the output vector can be expanded
to reach this boundary. Technical efficiency can be defined as:

Do y; x; Ið Þ ¼ TE ð2Þ

Taking logs of both sides, totally differentiating with
respect to I, and re-arranging gives:

XM
m¼1

∂ logDo

∂ log ym
ŷm þ

XN
n¼1

∂ logDo

∂ log xn
x̂n þ ∂ logDo

∂I
¼ d log TE

d I
ð3Þ

1 We relax this assumption later, treating the variable as endogenous
in our empirical framework.
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where ŷm; x̂n represent growth rates in outputs and inputs in
the I dimension (ŷm ¼ ∂ym

∂I =ym ¼ ∂ log ym
∂I for example).

Following the definition of TFP growth in the time
dimension, we define TFP change in the I dimension as
the weighted growth in outputs minus the weighted growth
rate in inputs:

d log TFP
d I

¼
XM
m¼1

∂ logDo

∂ log ym
ŷm �

XN
n¼1

εn
ε
x̂n ð4Þ

with εn ¼ ∂ logDo

∂ log xn
; ε ¼Pnεn. Finally, by inserting (4) in (3)

and rearranging we get:

d log TFP
dI

¼ d log TE
d I

� ∂ logDoðx; y; IÞ
∂I

� ðεþ 1Þ
XN
n¼1

εn
ε
x̂n

ð5Þ

This relationship decomposes TFP differences into three
components: (i) efficiency effect, (ii) effect on the tech-
nology, and (iii) scale effect. This decomposition is similar
to Orea (2002), but here the time variable is replaced by the
innovation index. In this way, the contribution of I to each
component can be assessed and examined as to whether it is
in accordance with the SI vision.

An empirical counterpart to the distance function is
needed to evaluate the distance elasticities that enter the
formulas of the components of TFP. We depart from the
typical translog specification of the distance function and,
instead, specify it as Cobb-Douglas in inputs, but translog in
outputs and including all interaction terms with I. This
assumption was dictated by the relatively small sample size
and to avoid overparameterization of the distance function.2

The complete specification is:

� log yIM;i ¼ α0 þ
P
n
αn log xIn;i þ

P
m
βm log

yIm;i
yIM;i

� �
P
m

P
‘

ϕm‘ log
yIm;i
yIM;i

� �
log

yI
‘;i

yIM;i

� �
þ ηIi þ

P
n
λnIi log xIn;i

þP
m
ξmIi log

yIm;i
yIM;i

� �
þ νIi � logðTE I

i Þ

ð6Þ

where i is used to index farms, yM is the normalizing output,
νIi is an error term with a normal distribution and
� logðTEI

i Þ � uIi is the technical inefficiency term, assumed
here to be a draw from an exponential distribution (e.g. van
den Broeck et al. 1994), with rate parameter eθþδIi , where θ

and δ are parameters to be estimated. Thus, we assume that
technological innovations can result in a shift to the
production technology, but also as innovativeness, as a
general attitude, can also lead to improvements in the
managerial ability of farmers, through the gathering and
processing of relevant information, which is translated to
improved efficiency.3

The dependent variable in eq (6) is negative and
logðTE I

i Þ is subtracted from the right-hand side. In this
setup, distance elasticities should be negative with respect
to inputs and positive with respect to outputs. The innova-
tion index, I, plays a similar role as the time-trend variable
in panel-data models: as I increases from low values to
higher ones, the technology of the production possibilities
set is expected to move outwards, reflecting an improve-
ment in the employed technology. For a given combination
of inputs and outputs, the value of the distance function
reduces with an outward shift, as the output vector needs to
be divided by a smaller number to reach this new boundary.
Thus, the distance elasticity with respect to I is expected, a
priori, to be negative.

So far, we assumed that innovation is exogenous.
However, innovations are “are choice variables that could
be correlated with the operator’s unobserved managerial
ability or human capital, unobserved pest pressure, or other
unobservable factors directly correlated with output”
(McFadden et al. 2022, page 592). We express this algeb-
raically as:

Ii ¼ hðziÞ þ ν2i ð7Þ

where Ii measures the innovation at the farm level, zi is a
vector of farm-specific characteristics that can explain
differences in the management practices of farms, and ν2i is
an error term. Thus, in our empirical framework we estimate
eq. (6)–(7) simultaneously in a system, so the latter equation
is used as a control function that accounts for potential
endogeneity of innovation (e.g. Hausman 1978; Heckman
1978; Heckman and Robb 1985; Wooldridge 2014). The
control-function approach has been discussed and used in
nonlinear models, including stochastic frontier analysis
(Amsler et al. 2016; Griffiths and Hajargasht 2016; Horrace
and Jung 2018; Kutlu 2010; McFadden et al. 2022; Shee
and Stefanou 2015; Wechsler and Smith 2018; Wechsler
et al. 2018).

With estimates of the distance elasticities at hand, the
effect on the technology caused by an increase in I

2 A simple comparison between the full translog specification and the
semi-translog was performed using the Deviance Information Criterion
(DIC) (Griffin and Steel 2007). The DIC value for the translog and
semi-translog were 460.8 and 405.6 respectively, which suggests that
the semi-translog specification is favoured by the data against the
translog specification.

3 We would like to thank an anonymous reviewer for pointing
this out.
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becomes:

∂ logDoðx; y; IÞ
∂I

¼ ηþ
X
n

λn log x
I
n;i þ

X
m

ξm log
yIm;i
yIM;i

 !
ð8Þ

Analogously to neutral and biased technical progress, η
captures the common effect of innovations on the distance
function, while the λns and ξms the impact of innovation on
the use of inputs or the production of outputs (Alvarez and
del Corral 2010; Alvarez et al. 2012; Finger et al. 2019;
Gallardo and Sauer 2018).

The impact of innovations on efficiency (efficiency

effect) is calculated as
dE log TEI

i

� �
dI ¼ dE �uIið Þ

d I
¼ δe� θþδIð Þ.

Since the second term in this product is always positive, the
sign of δ determines the effect of innovation on the expected
value of technical efficiency: a positive (negative) δ would
indicate a positive (negative) effect of I on technical effi-
ciency. The effect of I on efficiency can be, as discussed,
either positive or negative.

Finally, the scale effect is calculated as:

�ðεi þ 1Þ
XN
n¼1

εn;i
εi

x̂n;i ð9Þ

with εn;i ¼ αn þ λnIi; εi ¼
PN

n¼1εn;i and x̂n;i ¼ d log xIn;i
d I

� �
is

the rate of change in the quantity of input n used in the
production process caused by a small change in the value of
the innovation index. As discussed in the previous section,
the scale effect can be positive or negative and as a result,
its sign cannot be determined a priori.

In applications involving time-series or panel data, the
components of TFP are calculated over time. No adjust-
ments are required when calculating the effect on the
technology when the time index is replaced by I, as in both
cases the effect is obtained by differentiating the distance
function in the relevant dimension. Calculation of the effi-
ciency change and scale effects, however, a typical TFP
growth decomposition involves taking differences of the
efficiency scores (for the efficiency change effect) or of the
logarithms of inputs (to approximate x̂n;i in the scale effect)
in adjacent time periods. In the cross-sectional setting things
are complicated because I is a continuous variable with
varying intervals between adjacent observations, but also
because one may observe more than a single farm with a
specific value of I.

We proceed by transforming the composite innovation
index into a discrete innovation variable, which denotes
innovation groups. Farmers with similar values are then

assigned to each group. More details on the construction of
the innovation index and the transformation procedure are
presented in the following section. The discrete innovation
variable presents clusters of values and, in this setting, the
required differences are approximated between each farm in
a cluster of values for the innovation index and the average
of the relevant variable over farms in the immediately
preceding cluster. Therefore, the analysis takes place in two
steps. First, we estimate the parameters of the frontier as
presented in equation (6) as if I was a continuous variable.
Second, using the estimated parameters from the first step,
we calculate the three components of TFP change over I as
follows:

● The efficiency difference is calculated as the average of
the sum of each farmer’s logarithm of efficiency in
group Ig with the average logarithm efficiency of farms
in group Ig−1.

● The technology difference is calculated as the average
value of ∂ logDo

∂I (where logDo is predicted using the
estimates of all parameters, including those whose values
are restricted when imposing linear homogeneity in the
distance function) at each innovation group, Ig, and the
average value ∂ logDo

∂I for the preceding group, Ig−1.
● The scale effect is calculated as the average of the sum

of each farmer’s scale in group Ig with the average scale
effect of farms in group Ig−1. Similarly, the growth of
inputs is calculated as the difference between input n of
each farmer in Ig and the average input n used in Ig−1.

Ultimately, the net impact of Ig on TFP is conditional on
the aggregated impact on the individual components of
TFP. Specifically, for a farm i in group Ig, the difference in
TFP relative to the innovation group Ig−1 is:

dTFP I

i ¼ 1
2

1
Jg

P
j2Ig�1

dEðlogTEjÞ
dI þ dEðlogTEiÞ

d I

 !

� 1
2

1
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P
j2Jg�1

∂ logDo;j

∂I þ ∂ logDo;i
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 !

� 1
2

PN
n¼1

1
Jg

P
j2Ig�1

εjþ1
εj

εj;n þ εiþ1
εi

εi;n

 !
� x̂i;n
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where x̂i;n ¼ d log xIi;n
d I

� log xi;n � log 1
Jg

P
j2Igxj;n

� �
.

Thus, the differences in TFP and its components among
farmer groups are decomposed by using sample averages,
similarly to Orea (2002). We note two differences in our
approach compared to the TFP growth decomposition of
Orea (2002). First, we do not go into the details of exam-
ining the properties of the decomposition. Second, the
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productivity growth decomposition is derived with respect
to the continuous dimension of time. Nevertheless, the
upper bound of the innovation index is unity, implying that
farmers with the highest innovation score cannot achieve a
higher level of innovation. Taking the derivative with
respect to the innovation index has no meaningful inter-
pretation for farmers at this boundary. The latter holds even
when discretizing the innovation index; but it allows to
calculate TFP differences as discrete differences with
respect to innovation groups IG (instead of the discrete time
dimension as in Orea). The practical implication of the
transformation is that we do not focus in examining the
absolute but rather the relative effect of innovation across
farmers. Classification of farmers to innovation groups is
additionally linked conceptually to the agricultural innova-
tion theory. This will be discussed further in the data section
when the classification strategy is explained.

We use Bayesian inference to estimate eq. (6)–(7) in a
system.4 The posterior moments are estimated using Markov
Chain Monte Carlo (MCMC) techniques (Koop et al. 1995)
and the priors on the parameters are based on Griffin and Steel
(2007); van den Broeck et al. (1994). We write the error terms
of eq. (6)–(7) in vector form as νi ¼ νIi ; ν2i

� 	0
and assume

νi � Nð0;ΣÞ. For Σ we choose a prior in the inverted
Wishart family, with q= 1 degree of freedom and scale matrix
V= I ⋅ 1000, where I is the identity matrix. (e.g. see Koop
2003; Kumbhakar and Tsionas 2016, 2005). A multivariate
normal prior is used for the vector of slope parameters that
appear in the distance function and an independent bivariate
normal prior for a vector that contains the two parameters that
enter the specification of the distribution of inefficiency,
θ; δ½ �0. In both cases the prior mean is a vector of zeros and the
covariance matrix with diagonal entries equal to 1000.

4 Data

Our data are from the Teagasc National Farm Survey (NFS)
database, which is part of the Irish FADN data. The NFS
data are collected annually through face to face interviews
by professional farm recorders, providing a statistically
representative sample of Irish farming. Then, farms are
classified into “specialised” farming systems conditional on
their major enterprise which is calculated on a standard
gross margin basis (Läpple et al. 2015). We use a repre-
sentative sample of specialist Irish dairy farmers in 2012,
where a supplementary survey was carried out on the topic
of new technologies and knowledge transfer. We define two
outputs and four categories of inputs, similar to Newman

and Matthews (2006). The main output (y1) is value of milk
sold5 and other output (y2), such as sales of meat and other
products. In relation to inputs, we account for capital (K) as
the sum of the value of machinery and buildings, plus the
value of livestock, land (A) as the utilized agricultural area,
measured in hectares, labor (L) as both unpaid and paid
labor units, and materials (M), including expenditures in
seeds and plants, fertilizers, crop protection, energy, con-
tract work, purchased feed, upkeep of buildings, machinery
hire and upkeep of land. As a measure of the state of
innovativeness at the farm level, the innovation index
developed by Läpple et al. (2015) is used. Knowledge
transfer and innovation experts collaborated in selecting and
weighting three indicators from different components of the
Irish AIS (e.g. research, education, agribusiness and advi-
sory services etc.) that capture process innovations at the
dairy-farm level.

The three selected innovation indicators and their respec-
tive weights (weights reflect the perceived importance of each
component of the Irish AIS) are: (i) innovation adoption with
weight 0.45, which is comprised of five selected innovative
technologies relating to improving farm performance
(E-profit monitor usage, ICT usage, soil testing, reseeding
application and milk recording), weighted by how innovative
the technologies were considered and their implementation
effort by farmers; (ii) continuous innovation with weight
0.15, which measures whether a farmer renewed some of his
machinery, underlining the need for ongoing innovation
(OECD 2013);6 (iii) acquisition of knowledge with weight
0.40, taking into account the importance of knowledge
development for innovation (Spielman and Birner 2008). The
acquisition of knowledge is measured by whether a farmer
had a contract with Teagasc Farm Advisory Services (FAS),
without the contact being for environmental scheme assis-
tance only (Cawley et al. 2018; Läpple et al. 2015;
Parikoglou et al. 2022a). This is an important distinction
because in the latter case, farmers participate for the purpose
of fulfilling bureaucratic requirements to receive subsidy
payments instead of receiving technical advice regarding
breeding, financial and grassland management. On the con-
trary, farmers who are not contacting FAS for scheme
assistance only, are contacting FAS for technical advice that
will allow them to be more productive in line with the sus-
tainable intensification vision.

4 Estimating system of equations in Bayesian inference for accounting
for endogeneity has been previously suggested in the literature (see
Chan and Tobias 2020, 2015).

5 The quantity of milk produced in kilograms could be used alter-
natively. However, monetary measures are preferred, as these also
capture partly differences in quality, which are reflected in prices.
6 As pointed out by an anonymous reviewer, renewal of machine in a
given year may have an impact on the production possibilities set not
only in the year the expenditures occur, but in subsequent years as
well. However, this would require re-constructing the innovation index
and imposing additional ad hoc weights for lagging effects. We leave
this for future work.
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By aggregating them, the innovation index is constructed
with values bounded between zero and one. Hence, a farmer
with a score of one uses all available innovations from all
three presented indicators in relation to the AIS to the
greatest extent (meaning he applies more of the examined
technologies, replaced higher amounts of machinery etc.),
while the opposite applies for a farmer with a score of zero.
Switching from zero to a higher value implies that a farmer
is using more innovations, resulting in a higher level of
innovativeness.

We categorise farmers into groups in order to accom-
modate the calculation of TFP differences with respect to the
innovation index. Beyond this, the categorization of farmers
also offers a conceptualization explaining differences in
productivity: similar to the treadmill hypothesis, differences
in productivity are explained by differences in innovativeness
(Cochrane 1958). Classification of farmers have been pre-
viously used in empirical studies, considering three innova-
tion groups (Diederen et al. 2003; Läpple et al. 2015; Läpple
and Thorne 2019). Rogers (2003) suggests considering five
innovation groups that could be expanded potentially to six
groups, allowing in this way for cases of non-adoption. The
choice of six groups could also be relevant for the Irish dairy
context: accounting for a smaller number of groups would
require farmers to be aggregated into larger groups, which
implies loss of important information regarding less innova-
tive, smaller farms.7 In this paper, we use the K-means
clustering approach to identify the innovation groups that will
be used for the TFP differences, avoiding in this way to select
the number of the innovation groups and their cut-off points
arbitrarily.8 The results of the K-means clustering indicate
that there are three innovation groups (IG). In Appendix A,
we briefly explain how the approach resulted in the three
innovation groups.

Furthermore, following Läpple et al. (2015) we choose
marital status (binary=1 if farmer is married), off-farm
income (binary=1, if farmer has off-farm income), educa-
tion (binary=1, if farmer has formal agricultural education)
and farm size (measured in ha) to be the vector of Z vari-
ables included in the control function estimation. In general,
the use of a control function, either in linear or non-linear
settings, requires the use of suitable instruments, such as
prices (Bound et al. 1995; Smith and Landry 2021). As
McFadden et al. (2022) note, the control function tends to

be more robust when the choice of the selection variables is
not clear (Heckman and Navarro-Lozano 2004). Alternative
methods to account for potential endogeneity such as pro-
pensity score matching tend to be quite sensitive to the
choice of conditioning variables (Heckman and Navarro-
Lozano 2004).

Table 1 reports summary statistics for the entire sample
and for each of the three innovation groups. It can be
observed that, on average, farmers with higher values of I
utilize input quantities at different proportions and produce
more of both outputs. This corroborates the assumption in
our conceptual framework that farmers at different states of
innovativeness utilize inputs at different proportions.
Notably, the average amount of employed capital is almost
two times larger in group three than in group one. Farms in
group three utilize, on average, much more labor and land
compared to farmers in group one and two; the differences
in terms of the utilized labor and area between group one
and two are very small. Regarding the use of materials,
farms in group three have 50% higher expenditures than
farms in group two; similarly, farms in group two have 50%
higher expenditures than farms in group one.

Table 1 Summary statistics: Irish dairy farms, 2012

Means for each Innovation Group IG

Variables 1 2 3

(N= 45) (N= 69) (N= 140)

Milk output (1000 €) 71.05 100.95 141.57

Other output (1000 €) 30.46 39.81 62.29

Capital (1000 €) 158.88 239.98 343.17

Labor (Units) 1.46 1.48 1.80

Area (Ha) 46.8 50.3 70.3

Materials (1000 €) 45.80 63.91 82.56

Innovation score I 0.16 0.51 0.85

Married (binary) 0.8 0.8 0.7

Higher education (binary) 0.5 0.8 0.7

Off-farm income (binary) 0.1 0.0 0.0

Full Sample statistics (N= 254)

Variables Mean St. Dev. Min. Max.

Milk output (1000 €) 118.04 76.65 12.29 471.14

Other output (1000 €) 50.54 35.17 3.29 276.29

Capital (1000 €) 282.17 196.02 13.49 1006.13

Labor (Units) 1.65 0.68 0.5 5.31

Area (Ha) 60.88 30.43 8.06 198.1

Materials (1000 €) 70.98 48.79 6.79 306.14

Innovation index 0.6 0.2 0 1

Married (binary) 0.8 0.3 0 1

Higher education (binary) 0.7 0.4 0 1

Off-farm income (binary) 0.1 0.1 0 1

7 Smaller farms are important for the SI of the Irish dairy sector,
because they play a number of socio-economic roles, such as
increasing welfare by keeping rural areas populated, contributing to
the rural non-farm economy and providing environmental public
goods, for example, attractive landscapes (Dillon et al. 2017). The exit
of small farms results in higher poverty, financial losses from non-farm
enterprises, depopulation (especially in remote areas), but also in
environmental degradation (Dillon et al. 2017).
8 We would like to thank the Editor Christopher Parmeter for the
motivation to endogenize the categorization of farmers.
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5 Results

5.1 Frontier estimates

Table 2 reports the estimated posterior means of the model’s
parameters, along with the standard deviations. These are
estimated with Markov Chain Monte Carlo (MCMC)
techniques that used 60,000 iterations and a burn-in of
30,000 in order to reduce the influence of the initial values.
Prior to estimation the data for inputs and outputs are nor-
malized by their geometric mean and the sample average of
the innovation index is subtracted from the farm-specific Iis.
These transformations allow interpretation of the parameters
associated with the first-order terms directly as distance
elasticities at the mean of the data (sample mean for I and
geometric mean of inputs and outputs).

The estimated distance elasticity of other output indicates
that if the farmer produces 1% more of this output category
(for given amounts of inputs and milk output) then the value
of the distance function is increased by 0.34%, moving the
farmer closer to the production technology. The negative
sign of each of the input variables implies that increases in
inputs push the farmer away from the production technol-
ogy. Materials were estimated to have the highest elasticity,
where an 1% increase is expected to lead, ceteris paribus, to
a decrease in the value of the distance function by 0.54%.
The negative sign of the coefficient associated with the

interaction between L and I, indicates that, at higher levels
of innovativeness, an increase in the amount of labor moves
the farmer even further away from the frontier, i.e. I has a
labor-saving effect at the farm level, on average (e.g.
Gallardo and Sauer 2018). In contrast, the positive sign of
the parameter associated with the interaction term between
M and I implies that innovations assist farmers in applying
materials such as feed, fertilizers, etc., more efficiently (e.g.
DeLay et al. 2022; Finger et al. 2019).

The returns to scale (RTS) is close to unity (0.95) at the
geometric mean of the data, indicating almost constant RTS.
This is very close to Newman and Matthews (2006), who
estimated a stochastic frontier model of specialist Irish dairy
farmers using NFS data between 1984 and 2000. Parikoglou
et al. (2022a) found specialist Irish dairy farmers to operate
under decreasing RTS between 2008-2017, accounting for
unobserved technological heterogeneity and the dynamic
evolution of efficiency.

The positive sign of the parameter on I indicates that
switching to a more innovative group leads to a decrease in
the distance function by 0.014%. In the efficiency specifi-
cation, the positive effect of I suggests that switching to the
adjacent innovation group increases efficiency (or decreases
inefficiency). The calculated marginal effect of innovation
on efficiency is 1.7%. Therefore, this result implies that
farmers at higher innovation states are utilizing their inputs
more efficiently.

The calculated average efficiency score is 0.90. This is
much higher compared to the Irish dairy cross-sectional
efficiency analysis of Kelly et al. (2012) and Kelly et al.
(2013), using Data Envelopment Analysis (DEA) on NFS
data of Irish dairy farms from 2008. The former study
estimated average efficiency at 0.757 under constant returns
to scale (CRS) and at 0.799 under variable returns to scale
(VRS). The latter study found average efficiency to be
0.785 under CRS and 0.833 under VRS. Of course, DEA
does not distinguish between efficiency and statistical noise.
This, along with the fact that input-oriented technical effi-
ciency (which is a very reasonable assumption given that
the data are from 2008 in the analysis), as employed in both
studies, will potentially lead to different efficiency estimates
compared to SFA. In panel-data analyses, the average
efficiency of specialist dairy farmers between 1984-2000
was found to be approximately 0.7 (Newman and Matthews
2006); and 0.85 between 2008 and 2017 (Parikoglou et al.
2022a). The differences in the estimated average efficiency
can be explained by the different methodological approa-
ches and time periods of the data employed.

Finally, the results in eq. (7) show that farmers who
completed a formal agricultural training are more innovative.
This suggests that more educated farmers are more aware of
the benefits of the use of the available innovations and more
likely to adopt them; and also more educated farmers are

Table 2 Posterior means (and standard deviation)

Stochastic frontier (eq. (6)) Innovation equation (eq. (7))

Variable Mean (St. dev.) Variable Mean (St. dev.)

constant −0.156 (0.023) constant −1.714 (0.327)

logK −0.198 (0.036) married −0.284 (0.237)

log L −0.067 (0.037) higher education 0.852 (0.208)

logA −0.139 (0.046) off-farm income −1.145 (0.515)

logM −0.549 (0.040) size 0.015 (0.003)

log y2 0.345 (0.024)

I −0.043 (0.029)

I � logK 0.013 (0.024)

I � log L −0.097 (0.023)

I � logA 0.061 (0.027)

I � logM −0.025 (0.025)

I � log log y2 −0.007 (0.017)

log y2 � log y2 0.118 (0.026)

Inefficiency effects

constant 2.237 (0.206)

I 0.193 (0.087)

Average TE 0.90 (0.01) ν2 1.82 (8.9)

νIi 0.02 (0.01) νIiν2 −0.70 (0.66)

RTS 0.95
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more able to process faster and more effectively new infor-
mation (El-Osta and Morehart 1999; Läpple et al. 2015; Lin
1991). Furthermore, larger farms are found to be more
innovative, which is consistent to the wider innovation
adoption literature (e.g. Sauer and Zilberman 2012). We also
find that Irish dairy farmers who have off-farm income are
less innovative. This indicates that farmers with off-farm
income may allocate less time in information acquisition
regarding the availability of relevant innovations and in turn,
they are less likely to adopt them (Läpple et al. 2015).
Finally, we find that married farmers tend to be less inno-
vative. This is possibly because married farmers, tend to be
older and at their later stages of the farm life cycle, innovating
less and dis-investing (Zhengfei and Oude-Lansink 2006).

5.2 TFP differences

Table 3 presents the means of the differences in TFP and its
components across the 3 innovation groups of Irish dairy
farmers. The results can be interpreted as the impact on the
TFP components and, hence, to aggregate TFP, if farmers
were to switch from one innovation group to the one right
above the one they currently belong.

The technology effect column reports the differences in
TFP between groups due to differences in the technology
caused by a different state of innovativeness. For example,
the estimated TFP of farmers in group 2 due to the effect on
the technology is 5.204% higher when compared to group
1. On average, farmers at higher state of innovativeness
have 4.744% higher TFP due to the effect on the technol-
ogy. Likewise, the efficiency column indicates the differ-
ences in TFP due to the efficiency effect. For example,
group 2 is almost 0.02% more efficient than group 1. The
average difference in TFP among groups due to the effi-
ciency effect is 0.02%.

The average difference in TFP due to the scale effect is
−0.069%. Parikoglou et al. (2022a, b) found that, despite
the fast technical progress, negative scale effects were
slowing down the TFP growth of specialist dairy farms
between 2008 and 2017. This result indicates that, likely
due to the importance of the grass-based feed system and
low land mobility in the sector, Irish dairy farmers cannot
operate close to the optimal scale of production. In this
study, we are able to examine the scale effect in more detail,
with the use of an innovation index that takes into account
multiple innovations from the Irish AIS, instead of the

contribution of FAS specifically. In particular, we observe
mixed effects when differences between specific innovation
groups are considered. The interpretation of the scale effect
in this estimation is as follows: if a farm moves from group
1 to group 2, TFP will be reduced by −1.087% due to
moving away from the optimal scale of operation, given the
technology under the level of innovativeness in group 2.
This suggests that farms in groups 1 and 2 would not have
the necessary investments/scale to operate close to the
optimal scale, had they switched to the next group. In the
same way, if a farm moves from group 2 to group 3, it will
experience a positive scale effect that will result in a growth
in TFP by 0.949%.

The aggregate net effects of each component on TFP dif-
ferences between groups are reported in the last column of
Table 3. On average, the estimated TFP difference with respect
to innovation is 4.69%. The highest contributors to TFP are
the effect on the technology and scale, followed by the effi-
ciency effect. Overall, a positive TFP change is observed for
both changes to a groups of higher innovativeness.

In Appendix B, we present the results in Table 4 and 5
when potential endogeneity is not accounted (i.e. eq. (7) is

Table 3 Differences in TFP and
its components (%)

Groups Technology Efficiency Scale TFP difference

Group 1 - Group 2 5.204 0.021 −1.087 4.139

Group 2 - Group 3 4.272 0.020 0.949 5.241

Average 4.744 0.020 −0.069 4.690

Table 4 Posterior means and standard deviations

Variable Mean Std. dev.

Constant −0.153 0.017

logK −0.203 0.027

log L −0.068 0.029

logA −0.157 0.031

logM −0.548 0.030

log y2 0.347 0.018

I −0.014 0.007

log y2 � log y2 0.118 0.019

I � logK 0.017 0.017

I � log L −0.093 0.017

I � logM 0.053 0.019

I � logA −0.027 0.018

I � log y2 −0.004 0.012

Inefficiency effects

Constant 2.241 0.154

I 0.187 0.061

Average TE 0.90 0.040

σ2
νI

0.020 0.002

RTS 0.97
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not estimated). Furthermore, in Appendix B we report and
discuss the results of a few robustness checks.

5.3 Discussing policy implications

In summary, out results suggest that farmers improve their
production technology by employing more innovations,
while also all farmers become more efficient with increasing
levels of innovativeness. This finding is similar to previous
studies (e.g. DeLay et al. 2022; Dinar et al. 2007; McFadden
et al. 2022), who also found innovation to affect productivity
through technology and efficiency effects. The effect of
innovation on farmers’ scale effect, which are mixed at dif-
ferent levels of innovativeness, is a result not shown before in
SFA using cross-sectional data. In particular, if farmers
switch from group one to group two, the positive technology
effect will be partly offset by the negative scale effect. Farms
experience a positive scale effect when they switch from
group two to three. This effect indicates that the effect of
innovation to farm-level productivity is non-linear, favouring
larger farms, through the scale effect.

Hence, policies should target to reduce the unequal gains
of innovation to productivity among farmers, securing the
economic viability of small farms. For instance, future
regulations may target to mitigate methane emissions,
which may entail limiting herd sizes (Bradfield et al. 2020).
However, such a policy policy may put further pressure on
the Irish dairy sector. Alternatively, the promotion of
innovations to less innovative, smaller farmers (i.e. Group
1), should be coupled with policies that will assist them to
operate closer to the optimal scale of production. This can
be achieved with better allocation of resources across
farmers. For instance, if smaller farmers face financial
constraints that prevent them from investing in capital, then
institutional arrangements such as capital outsourcing or the
introduction of machinery rings could secure better access
for those farmers to capital services (Möhring and Finger
2022; Sheng and Chancellor 2019).

6 Conclusions

The recent EU Common Agricultural Policy (CAP) and
Farm to Fork Strategy (FFS) aim to foster a more compe-
titive and sustainable way of farming. For this aim, these
policy documents (among others) aim to promote the role of

the AIS for fostering innovation at the farm level in a
demand-driven fashion. In this way, innovations will be
tailored at the farm level, enabling producers to expand
production volume without necessarily increasing the use of
environmentally harmful (fertilisers, pesticides etc.) or
scarce inputs (e.g. labour or land). This is particularly
important for ensuring that the EU dairy sector will be more
competitive and sustainable in a post quota era, given the
particular constraints it faces (i.e. most farms are family
farms, operating in constrained land) and its arising envir-
onmental pressures (e.g. GHG emissions, nutrient run-off).

This paper proposes a methodology for assessing whe-
ther the impact of innovation on productivity is in line the
Sustainable Intensification (SI) vision, using stochastic
frontier analysis (SFA). Specifically, we extend Karafillis
and Papanagiotou (2011) to assess the contribution of
innovation (as measured by an innovation index in order to
capture various components of the AIS) on the production
technology, efficiency and scale and to aggregate these into
a single total factor productivity (TFP) index. In contrast to
all previous SFA cross-sectional studies, this paper models
directly the dependence of the productivity components on
the level of innovativeness at the farm level. The main
advantage of our approach is that it builds a simple fra-
mework that takes into account the scale effect on cross-
sectional productivity differences. Moreover, the proposed
method avoids splitting the sample and allows capturing the
simultaneous impact of several innovation variables. The
latter is useful given that most innovation variables may be
measured in binary form, which could possibly result in
collinearity.

Therefore, our study extends the previous literature in
two ways. First, from a policy perspective it focuses on
multiple specific AIS actors, in line with the vision of CAP
and FFS, instead of focusing on a single one such as FAS
(Parikoglou et al. 2022b). Therefore, our study can be
considered as complementary to Parikoglou et al. (2022b),
who examined the impact of FAS on TFP growth. In this
paper, (given data limitations that prevent us from
expanding the analysis into a panel analysis) we assess
cross-sectional TFP differences and its components due to
innovations promoted with the overall contribution of Irish
AIS. Second, from a methodological perspective, while TFP
growth decompositions are not informative regarding the
initial level of farmers’ productivity; this study provides a
way to measure productivity differentials due to

Table 5 Differences in TFP and
its components (%)

Groups Technology Efficiency Scale TFP difference

Group 1 - Group 2 1.969 0.021 −0.359 1.631

Group 2 - Group 3 1.082 0.019 0.525 1.626

Average 1.525 0.020 0.082 1.629
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discrepancies in innovativeness across farmers at a specific
point of time. The proposed methodology could be a useful
framework when evaluating the impact of AIS or a single
AIS actor on other indicators related to sustainability (see
for example Elmiger et al. 2023; Kelly et al. 2013).

Future research could focus on examining the contribu-
tion of each input to the scale effect, and in turn to TFP, in
order to provide more tailored policy recommendations.
This framework could be also expanded using panel data (if
data availability allows), accounting for unobserved het-
erogeneity; and building an appropriate framework that
would accommodate the fact that some of the variables used
in the innovation index are not observed over time. In a
panel-data setting, the contribution of materials and of
innovation on TFP growth through scale could be better
accounted for. It would be also interesting to expand the
analysis to account for possible bi-directional causality
between efficiency and innovation. In particular, farmers
may innovate and become more efficient, but the opposite
could be true, in which case farmers innovate based on their
inefficiency level. In such a framework, either less inno-
vative farmers innovate more to improve their efficiency, or
they do not innovate, as they expect the new technology to
be a source of higher inefficiency, due to adjustment costs.
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7 Appendix A

We use the K-means algorithm that was proposed by Har-
tigan and Wong (1979). The algorithm allocates N obser-
vations to K clusters, by minimizing their squared Euclidean
distance to the cluster mean. The algorithm is an iterative
process of two steps:

1. for each cluster, the total within cluster variance is
minimized, obtaining the means of the cluster assign-
ment.

2. given the estimated means of the clusters, the distance
of each of the observation is minimized by allocating
each unit to the nearest cluster mean.

We employ the K-means algorithm to build four K-
means models, assuming three, four, five and six innovation
groups in each one. Then, we need to choose whether the K-
means with three, four, five or six groups explain the data
better. The simplest method that can be used to choose the
number of clusters is with a scree plot. This is presented in
Fig. 1: on the y-axis is the within clusters sum of squares
(WCSS) is of each of the four k-means models, and the
number of clusters on the x-axis. The scree plot indicates
that the WCSS decreases when more clusters are con-
sidered. The point that the WCSS starts decreasing in a
linear fashion (i.e. when additional clusters are not asso-
ciated with lower WCSS) indicates the number of clusters
that fit our data better (Woods and Edwards 2007). In our
case this is three clusters, although already the decrease in
WCSS when switching from two clusters to three is quite
smaller, compared to increasing from one to two clusters. In
general, the scree plot is quite often criticised for being
subjective and restrictive in its interpretation, because the
primary objective is to guide the choice of clusters between
two or three options (Woods and Edwards 2007).

To corroborate then the choice of three clusters we use
further the “jump method” proposed by Sugar and Gareth
(2003). According to this method, the choice of the
clusters can be motivated by finding the maximumbd�Y

K � bd�Y

K�1, where d is the “distortion”, i.e. the distance
between each observation and cluster centroid. Sugar and
Gareth (2003) proposes Y= 1 or Y= 2/3. In the former
case we found the jump from one to two clusters to be
0.1425, and from two to three clusters to be 0.2042. In the
latter case, the jump from one to two clusters was cal-
culated to be 0.199, and 0.206 from two to three clusters.
Hence, the results suggest that we should choose three
clusters.

Fig. 1 Within-cluster sum of squares vs number of clusters)
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8 Appendix B

We first consider a model that does not take into account the
potential endogeneity of innovation. Thus, we ignore eq. (7)
and we estimate only the parameters in eq. (6) and
decompose TFP differences with respect to I. We present
the results in Tables 4 and 5. The results show that when
accounting for possible endogeneity, then the effect of I on
the technology becomes much larger. As it follows, the TFP
differences between innovation groups become larger,
which are explained by technology effects. The overall
picture of the results remains the same as in the main part of
the manuscript: farmers experience a negative scale effect,
when switch from group 1 to group 2.

We also analyze the data using a binary variable as an
indicator of innovativeness, instead of the innovation index.
This variable assumes the value of one if a farmer contacted
FAS during the year for which the data are available. We
note that contact with FAS is the main component of the
Irish AIS. Below we present the stochastic frontier results
(Table 6) and the TFP differences (Table 7) between
farmers who contacted FAS and those who did not.

Apparently, the key difference between using the FAS
and the innovation index is evident in the role of the scale
effect in TFP differences. Now, we find that if farmers
switched from not contacting FAS to contacting FAS, they
would experience an increase in TFP due to the scale effect.
One explanation for this difference is that the innovation
index can capture more accurately any differences regarding
the employed level of technologies at the farm level, i.e. the
effect of using more complementary innovations. Therefore,
taking into account additional innovations that can be
considered complementary to FAS innovations is not only

important from a methodological perspective, but also from
a policy context: European Common Agricultural Policy
and Farm to Form strategy also suggest the development of
well functioning AIS in each EU member state that will
result in promoting a more innovative and in turn more
productive and sustainable way of farming.

Lastly, we estimate a model that captures the effect of
innovation on the technology via the inclusion of sets of a
dummy variables. Specifically, there are two binary vari-
ables I2,I3, that indicate whether a farmer is assigned to the
second and third innovation group, and the interaction

Table 6 Posterior means (and
standard deviations)

Parameter Mean (St. dev.) Parameter Mean (St. dev.)

Constant −0.155 (0.258) I � log y2 −0.032 (0.056)

logK −0.258 (0.035) I � logK 0.221 (0.081)

log L 0.062 (0.040) I � logL −0.272 (0.085)

logA −0.155 (0.042) I � logA −0.181 (0.083)

logM −0.531 (0.042) I � logM 0.025 (0.191)

log y2 −0.527 (0.042) constant (ineff effect) 2.120 (0.204)

log y2 � log y2 −0.527 (0.042) I (ineff effect) 0.726 (0.371)

I −0.016 (0.040)

Table 7 Differences in TFP and its components (%) with respect to
FAS

Groups Technology Efficiency Scale TFP
difference

FAS group vs non-
FAS group

2.059 0.052 0.904 3.017

Table 8 Posterior means of parameters and Z-scores for each chain

Variable Mean Z-score
(Chain 1)

Z-score
(Chain 2)

Z-score
(Chain 3)

Constant −0.120* 1.61 0.36 −0.55

logK −0.274* −0.18 −0.84 0.84

log L 0.146* −2.26 −0.29 −0.88

logA −0.016* 1.26 1.60 0.12

logM −0.746* −0.39 −1.41 −0.67

log y2 0.319* −1.13 −1.48 −0.51

log y2 � log y2 0.119* −1.05 0.51 1.43

I2 −0.014 −1.48 −0.41 0.83

I3 0.004 -0.83 0.95 5.45

I2 � logK −0.014 0.97 0.89 −0.15

I2 � log L −0.045 3.01 0.09 0.48

I2 � logA −0.096* −1.68 −2.05 −0.62

I2 � logM 0.122* 0.18 1.11 −0.09

I2 � log y2 0.036* 0.69 0.13 0.97

I3 � logK 0.036 -0.30 1.60 -1.18

I3 � log L -0.105* 2.67 0.60 1.56

I3 � logA −0.051* −1.38 −2.12 0.32

I3 � logM −0.076* 0.70 1.50 −0.08

I2 � log y2 0.004 0.97 0.66 −0.48

Inefficiency effects

Constant 1.907* 1.35 0.30 −0.79

I2 0.020 −1.50 −0.40 1.01

I3 1.024* -0.40 0.54 3.45

*The corresponding 95% credible interval does not contain zero
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effects with inputs and other output. Group one is the
reference group. Farmers were assigned to the three inno-
vation groups, based on the K-means clustering method.

We encountered convergence issues when running the
MCMC procedure described in the main body of text.
Hence, we altered out sampling scheme as follows: we ran
three Markov chains, with each one contributing 12,000
sample to the pool of draws from the posterior distribution
and used a thinning of 10 (120,000 were produced by each
chain but only one in 10 were kept) to reduce the effects of
autocorrelation in the draws. Furthermore, in each chain,
there was a burn-in phase of 120,000 iterations. Never-
theless, the convergence issues persisted. Specifically, we
use the Z-statistic as a convergence diagnostic for each
parameter and each chain (Geweke 1991). The Z-statistic is
the difference between the first 10% of the draws and the
last 50%, divided by the asymptotic standard error. When
the Z-statistic is smaller in absolute value than 1.96, then we
cannot reject the hypothesis of convergence. The results are
reported in Table 8 and the TFP differences in Table 9. In
each chain, there is at least one parameter for which the
Z-statistic is larger than 1.96, which indicates that con-
vergence was not successful.
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