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Abstract
We propose a multi-swarm approach to approximate the Pareto front of general multi-
objective optimization problems that is based on the consensus-based optimization method
(CBO). The algorithm is motivated step by step beginning with a simple extension of CBO
based on fixed scalarization weights. To overcome the issue of choosing the weights we
propose an adaptive weight strategy in the second modeling step. The modeling process is
concluded with the incorporation of a penalty strategy that avoids clusters along the Pareto
front and a diffusion term that prevents collapsing swarms. Altogether the proposed K -swarm
CBO algorithm is tailored for a diverse approximation of the Pareto front and, simultane-
ously, the efficient set of general non-convex multi-objective problems. The feasibility of
the approach is justified by analytic results, including convergence proofs, and a perfor-
mance comparison to the well-known non-dominated sorting genetic algorithms NSGA2
and NSGA3 as well as the recently proposed one-swarm approach for multi-objective prob-
lems involving consensus-based optimization.

Keywords Multiobjective optimization · Consensus-based methods · Global optimization

1 Introduction

Multiple conflicting objective functions occur in a variety of applications ranging from engi-
neering design to economic and financial decisions. Economical goals are often in conflict
with ecological criteria, we have to trade-off between expected return and risk, and we aim
at affordable yet high quality products. We refer to the textbooks [14, 22] for a general intro-
duction to the topic of multi-objective optimization. In this paper, we focus on continuous
multi-objective optimization problems (MOP)
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min
x∈X f (x) = ( f1(x), . . . , f p(x)), (MOP)

with a non-empty feasible setX ⊂ R
d , d ∈ N, andwith p ≥ 2 continuous objective functions

fi : X → R+, each of which has a unique global minimum onX . We consider unconstrained
problems, i.e., X = R

d , as well as box-constrained problems where X = [�, u] with lower
and upper bounds �, u ∈ R

d with � j ≤ u j , j = 1, . . . , d .
We refer to R

d as the decision space and to R
p as the objective space of (MOP). For a

multiobjective optimization problem, the set Y:= f (X ) ⊂ R
p is denoted as feasible outcome

set. Two feasible solutions x1, x2 ∈ X are compared based on their respective outcome
vectors z1 = f (x1) and z2 = f (x2): We say that z1 dominates z2 (and x1 dominates x2)
denoted by z1 ≤ z2 if and only if

z1i ≤ z2i for all i = 1, . . . , p and z1 �= z2.

A feasible solution x ∈ X is called Pareto optimal or efficient if there is no other solution
x̄ ∈ X such that f (x̄) ≤ f (x). The corresponding image in the objective space is called non-
dominated in this case. The set of all Pareto optimal solutions is denoted by XP and referred
to as the efficient set, and the set of all non-dominated outcome vectors, i.e., YP = f (XP ),
is called the non-dominated set or the Pareto front of (MOP). Note that since we assume that
each objective function has a unique global minimum on X , the Pareto front of (MOP) is
non-empty since it contains these individual minima.

An important approach to generate or to approximate Pareto optimal solutions are
scalarizations that transform the multi-objective problem (MOP) into a series of associ-
ated single-objective problems. Maybe the most prominent scalarization approach is the
weighted-sum scalarization [16]: Given non-negative weights λi ≥ 0, i = 1, . . . , p (that
correspond to the relative importance of the respective criteria), the weighted sum-objective
is given by

fλ(x):=
p∑

i=1

λi fi (x). (1)

Let Λ:={λ ∈ R
p : ∑p

i=1 λi = 1 and λi > 0, i = 1, . . . , p} and let Λ0:={λ ∈
R

p : ∑p
i=1 λi = 1 and λi ≥ 0, i = 1, . . . , p}. Further, we define R

p
+:={z ∈ R

p : zi ≥
0, i = 1, . . . , p}. The following theorem is a well-known result from the field of multi-
objective optimization.

Theorem 1 (see, e.g., [14]) If λ ∈ Λ, then an optimal solution x̄(λ) ∈ X of (1) is efficient for
(MOP). Moreover, if Y + R

p
+ is convex and x̄ ∈ X is efficient, then there exists a weighting

vector λ̄ ∈ Λ0 such that x̄ = x̄(λ̄) is optimal for (1).

For later reference we phrase the following observations as remark.

Remark 1 (see, e.g., [14]) When λ ∈ Λ0, then an optimal solution x̄(λ) ∈ X of (1) is at
least weakly efficient for (MOP), i.e., there is no x̂ ∈ X such that fi (x̂) < fi (x̄(λ)) for all
i = 1, . . . , p. Note also that when Y + R

p
+ is non-convex, then it can not be guaranteed in

general that all efficient solutions can be obtained as an optimal solution of a weighted-sum
scalarization.

The goal of this paper is to develop a provably convergent, yet efficient algorithm for high-
quality representations of Pareto fronts of multi-objective optimization problems. We choose
the Consensus-based Optimization method (CBO) as basis for the algorithm as it is a particle
method for single-objective global optimization problems which is easy to implement and
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allows for analytical studies. Its dynamics is governed by an interacting particle system that
allows to propagate information of the individuals through a weighted mean. The weighted
mean has two advantages: (a) there is no need to label individuals as current best, and
(b) there is no need for pairwise interactions as the dynamic of one particle depends only
on the weighted mean of the whole swarm. Advantage (a) allows for the derivation of a
corresponding mean-field equation [18] which can be employed for analytical studies such
as the long time behavior and the convergence to the global minimizer. Indeed, in [7, 8]
it is shown that the invariant solution of the mean-field dynamics is a Dirac-delta located
arbitrarily close to the global minimizer of the objective function. Before we recall the
details of CBO, we want to emphasize that our focus lies on the convergence analysis of the
proposed multi-objective optimization algorithm. Hence, we tailor each modeling step of the
algorithm such that it is feasible for a convergence analysis. This is in contrast to many other
algorithms for multi-objective optimization which are often of heuristic nature.

We recall the CBO dynamics for N particles in the single-objective case, i.e., for p = 1.
Hence, let f : Rd → R+ denote the objective function. For α, σ > 0 the dynamics of the
j-th particle X j : [0, T ] → R

d , j = 1, . . . , N , at time t ∈ [0, T ] is given by
dX j

t = −(X j
t − vt ) dt + σ diag(X j

t − vt ) dB
j
t , (2a)

law(X j
0 ) = ρ0, j = 1, . . . , N , (2b)

where law(X) refers to the probability law of the random variable X and the weighted mean
vt is given by

vt =
∑N

j=1 X
j
t e

−α f (X j
t )

∑N
j=1 e

−α f (X j
t )

, (2c)

ρ0 is a probability distribution on the state space, B j : [0, T ] → R
d , j = 1, . . . , N are

independent Brownian motions and α > 0 allows to scale the difference of the local and
global minima in the objective function (Laplace principle). Here and in the following we
use the anisotropic noise term σ diag(X j

t − vt ) dB
j
t as proposed in [7] as it is shown to be

more robust in settings with high-dimensional state space.
The idea of the multi-swarm CBO algorithm we propose in Sect. 3.1 and further develop

in Sect. 3.2 is based on Theorem 1. Indeed, each swarm is associated with a weight vector that
yields a scalarization of the cost function. Following the CBO dynamic the swarms globally
minimize their respective scalarized problems giving us an approximation of the Pareto front.
For a diverse approximation we introduce interactions between the swarms in Sect. 3.2. The
multi-swarm CBO algorithm with adaptive swarms is analyzed in Sect. 3.3, where we show
under appropriate assumptions that each swarm clusters at a point along the Pareto front
and the approximation obtained by the points of all swarms is diverse in the sense that the
clustering points admit a distance greater than a minimal distance.

As mentioned above, weighted sum scalarizations can have issues in case of non-convex
problems. In particular, efficient solutions do not necessarily correspond to global minima
of the weighted sum scalarization. By introducing a penalization strategy (in Sect. 4) that
avoids clustering along the Pareto front we allow swarms to also converge towards efficient
unsupported solutions, i.e., solutions which are not located on the convex hull of Y . In the
modeling processwe focus on theweightedmeans of the swarms and tailor the dynamics such
that the means form a high quality, i.e., representative and well-distributed approximation
of the Pareto front. In Consensus-based Optimization the swarms are forced to collapse in
the large time limit [8, 24]. This is disadvantageous in our setting, as we would lose local
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information about the Pareto front. Hence, we prevent collapsing swarms by implementing
the diffusion term from Consensus-based sampling [6].

Each modeling step is illustrated by simulation results. To not interrupt the flow, we
present the details of the simulations in Sect. 5.2, where all parameters and implementation
details are reported. We conduct a qualitative study comparing the proposed multi-swarm
CBO with the recently proposed single-swarm CBO for multi-objective problems [4] and
the well-known NSGA2 [11] and NSGA3 [10, 19] algorithms implemented in [1] in Sect. 6,
before we conclude the article and give an outlook to future work.

2 Overview of known results for CBO

The CBO algorithmwas tailored in order to be simple enough to allow for a rigorous analysis
in terms of its mean-field approximation, and on the other hand contains the main ingredients
of particle-based global optimization algorithms such as exploration and consensus dynamics.

For later reference we recall the main results from the review [28] of the convergence
analysis for CBO in the following. For more details we refer to [8]. The convergence analysis
is based on the mean-field approximation of the particle dynamics (2). Let us denote ρ0 =
law(X j

0 ) for j = 1, . . . , N as above, then the corresponding mean-field equation (which
corresponds formally to the limit N → ∞) is given by

∂tρt = σ 2

2

d∑

i=1

∂i i
(
(x − v[ρt ]) ρt

) + ∇ · (
(x − v[ρt ]) ρt

)
, lim

t→0
ρt = ρ0 (3)

with the weighted mean given by

v[ρt ] = 1∫
e−α f (x) dρt (x)

∫
x e−α f (x) dρt (x)

and σ > 0, ρ0 ∈ P2(R
d). Under the following assumption, this mean-field equation admits

a unique solution.

Assumption 1 To obtain the well-posedness results of the mean-field equation we assume
that it holds:

1. The cost function f : Rd → R is bounded from below with f := inf f . (Note that this
is satisfied with f = 0 in our setting.)

2. There exist constants L f > 0 and cu > 0 such that
{ | f (x) − f (y)| ≤ L f (|x | + |y|)|x − y| for all x, y ∈ R

d ,

f (x) − f ≤ cu(1 + |x |2) for all x ∈ R
d .

(A1)

Definition 1 We say that a function has quadratic growth if there exist constants M > 0 and
cl > 0 such that

f (x) − f ≥ cl |x |2 for |x | ≥ M . (A2)

Similar to the above, we denote by B : [0, T ] → R
d a d-dimensional Brownian motion.

Theorem 2 Let f be bounded or have quadratic growth, let Assumption 1 hold and ρ0 ∈
P4(R

d). Then there exists a unique nonlinear process X̄ ∈ C([0, T ],Rd), T > 0, satisfying

d X̄t = − (X̄t − v f [ρt ]) dt + σ |X̄t − v f [ρt ]| dBt , ρt = law(X̄t ),
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in the strong sense, and ρ ∈ C([0, T ],P2(R
d)) satisfies the Fokker–Planck equation (which,

in our case, corresponds to (3)) in the weak sense with limt→0 ρt = ρ0 ∈ P2(R
d).

To understand the steps of the convergence proof it is helpful to recall that vanishing
variance of a crowd indicates that the crowd collapses to one point, and moreover, that the
center of mass of the crowd coincides with the point where this collapse happens. Having
this in mind, it is simple to understand that the convergence proof of CBO is split into two
steps. The first result is concerned with the long-time behavior of the variance, in fact, it is
shown that the variance vanishes in the limit t → ∞ and the second result shows that the
point where the crowd collapses is arbitrary close to the global minimum of the objective
function f .

The result on the long-time behavior of the variance is based on the following assumption:

Assumption 2 We assume that f ∈ C2(Rd) satisfies additionally

1. inf f > 0.
2. ‖∇2 f ‖∞ ≤ c f and there exist constants c0, c1 > 0, such that

Δ f ≤ c0 + c1|∇ f |2 in R
d .

In [8] the following concentration result is proven. We emphasize that we set the drift
parameter to one here. The expectation and variance of the density are defined by E(ρt ) =∫
X x dρt and V (ρt ) = 1

2

∫
X |x − E(ρt )|2 dρt .

Theorem 3 Let f satisfy Assumption 2 and let the parameters α and σ satisfy

2α e−2α f (c0σ
2 + 2c f ) <

3

4
, 2b20 − K − 2 dσ 2b0 e

−α f ≥ 0,

with K = V (ρ0) and b0 = ‖ωα
f ‖L1(ρ0)

. Then V (ρt ) ≤ V (ρ0) e−qt with

q = 2
(
1 − ( dσ 2/b0) e

−α f ) ≥ K/b20.

Furthermore, there exists a point x̃ ∈ R
d for which E(ρt ) → x̃ and v f [ρt ] → x̃ as t → ∞.

This shows the concentration of the crowd at x̃ . The following result exploits the Laplace
principle to show that the above concentration point is located arbitrarily close to the global
minimizer of f .

Theorem 4 Let f satisfy Assumption 2. For any given 0 < ε0 � 1 arbitrarily small, there
exist some α0 � 1 and appropriate σ such that uniform consensus is obtained at a point
x̃ ∈ Bε0(x∗) = {x ∈ R

d : |x− x∗| ≤ ε0}. More precisely, we have that ρt → δx̃ for t → ∞,
with x̃ ∈ Bε0(x∗) and δx̃ the Dirac distribution positioned at x̃ .

This ends the section on known results for the standard CBO method for global optimiza-
tion problems. We now proceed with the step-by-step modeling of the provably convergent
CBO algorithms for multiobjective optimization.

3 CBO for convexmulti-objective problems

We begin with the presentation of a multi-swarm approach for multi-objective optimization
based on CBO (MSCBO) with fixed scalarization weights and provide analytical results.
Fixed weights come with the burden of choosing appropriate weights a priori, which may
result in highly unbalanced Pareto front approximations [9]. To overcome this problem, we
propose an adaptive weight strategy in the second part of this section.
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3.1 MSCBOwith fixed scalarization weights

We begin with a simple CBOmethod for multi-objective problems that is gradually extended
in the following: Let K ∈ N be the number of swarms involved and let (λk)k=1,...,K ⊂ Λ be
their respective fixed scalarization weights. For each k we introduce the swarm size Nk ∈ N

and the positions of the individuals are denoted by Xk = (Xk,1, . . . , Xk,Nk ) : [0, T ] →
R

Nk ·d . The evolution of the swarms is given by the dynamics

dXk, j
t = −(Xk, j

t − vkt ) dt + σ diag(Xk, j
t − vkt ) dB

k, j
t , (4a)

law(Xk, j
0 ) = ρ0, j = 1, . . . , Nk, k = 1, . . . , K , (4b)

where the weighted mean vkt is given by

vkt =
∑Nk

j=1 X
k, j
t e−α f

λk (Xk, j
t )

∑Nk
j=1 e

−α f
λk (Xk, j

t )
, (4c)

σ > 0 is a diffusive strength parameter, ρ0 ∈ P2(R
d) is a probability measure with finite

second moment, Bk, j are independent Brownian motions and α > 0 allows to scale the
difference of the local and global minima in the objective function (Laplace principle). For
notational convenience we define N = ∑K

k=1 Nk and the vector XN
t = (X1

t , . . . , X
K
t ) ∈

R
N ·d . A pseudo code for the dynamics is given in Algorithm 1 in Sect. 5.

Remark 2 (Initialization of the weights) In order to obtain admissible initial conditions for
the weight vectors λk, k = 1, . . . , K , we draw uniformly distributed random samples from
the standard simplex S p = Λ0. Thus, each weight vector has p − 1 degrees of freedom
and we can write λk = (λk,1, . . . , λk,p−1, 1 − ∑p−1

i=1 λk,i ). For the numerical tests we use
Algorithm 2 from [23] to sample the initial weights λk for k = 1, . . . , K .

Remark 3 In contrast to the dynamics proposed in [3, 4], where the interacting particles in the
swarm converge towards different efficient solutions, here each swarm (namely its weighted
mean) represents one solution. That means each swarm is supposed to find one point along
the Pareto front and the swarms act independently. In Sect. 3.2 we implement interactions
between the swarms through adaptive scalarization weights.

3.1.1 Analysis of the independent swarms

Note that in the dynamics proposed above the K swarms are independent and each is globally
minimizing its weighted sum (1) given by λk . Hence, we may employ the result in [29] to
prove the well-posedness of the dynamics.

Theorem 5 (Well-posedness [29]) Let K ∈ N, (λk)k=1,...,K ⊂ Λ0, Nk ∈ N fixed and fλk
locally Lipschitz continuous for every λk , then system (4) admits a unique strong solution
{XN

t : t ≥ 0} for each initial condition XN
0 with E[|XN

0 |2] < ∞.

Proof By the independence of the swarms, we first apply Theorem 1 in [29] to every subsys-
tem describing the evolution of each swarm and collect the corresponding solutions in XN

for the full system. ��
As the convergence analysis on the particle level is highly nontrivial, we follow the steps

in [7, 8] and derive statistical representations of the swarms in form of mean-field equations.
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Under the standard assumption of propagation of chaos, i.e. that the particles decouple as
Nk → ∞, we denote the probability of finding a member of the k-th swarm in position x
at time t by ρk

t (x). Following the lines of [7, 8] we compute the evolution equation of these
probabilities with the help of Itô-calculus. Towards this end, let for simplicity Nk = N̄ for
all k = 1, . . . , K . For N̄ → ∞ the PDE system corresponding to (4) reads

∂tρ
k
t = σ 2

2

d∑

i=1

∂i i
(
(x − v[ρk

t ]) ρk
t

) + ∇ · (
(x − v[ρk

t ]) ρk
t

)
,

lim
t→0

ρk
t = ρ0, k = 1, . . . , K ,

with the weighted mean given by

v[ρk
t ] = 1

∫
e−α f

λk (x) dρk
t (x)

∫
x e−α f

λk (x) dρk
t (x)

and σ > 0, ρ0 ∈ P2(R
d) as above.

Again, using the independence of the K swarms we can directly apply the result in [8] to
prove the convergence of each swarm towards a limit point arbitrarily close to the efficient
set. To state the result properly we define

Ek(t):=
∫

Rd
x dρk

t (x),

V k(t):=
∫

Rd
|x − Ek(t)| dρk

t (x),

Mk(t):=
∫

Rd
e−α f

λk (x) dρk
t (x).

The convergence theory for CBO [8] is based on the (strong) assumption that theminimizer of
the objective function is unique. This can be guaranteed under a similarly strong uniqueness
assumption for the minimizer of the scalarized objective functions, i.e.,

x̄ k := argmin
x∈X

fλk (x) is unique, and Fk := fλk (x̄
k) > 0 for all λk . (A1)

In addition, we inherit the following technical assumption from the convergence theory of
CBO [8]

ckf :=max
{‖max

i
|∂i i fλk |‖∞, ‖r(∇2 fλk )‖∞

}
< ∞, (A2)

where ∇2 fλk represents the Hessian of fλk , r(∇2 fλk ) is the spectral radius and ∂i i fλk is the
i-th element of the diagonal of ∇2 fλk .

Remark 4 Since we assumed that all objective functions fi , i = 1, . . . , p, are bounded from
below, all weighted sums fλk are bounded from below for λk ∈ Λ0. Hence, Fk > 0 in
Assumption (A1) can always be guaranteed after applying an appropriate linear transforma-
tion to the objective functions values. The uniqueness of the global minimizers of weighted
sum scalarizations fλk , however, does in general not follow from the uniqueness of the global
minimizers of the individual objective functions fi , i = 1, . . . , p, even if p = 2. As an exam-
ple, suppose that X = [0, 1] ⊂ R, f1(x) = x and f2(x) = 1 − x . Then, Y = YP is the line
segment connecting the two points (0, 1) and (1, 0) in R

2, and while the global minimizers
of f1 and of f2 are unique, the complete feasible set X is optimal for fλ with λ = ( 12 ,

1
2 ).
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Theorem 6 (Convergence towards the efficient set [7]) Let (A1) and (A2) hold. Further, let
α and the initial condition ρ0 be chosen such that for each k ∈ {1, . . . , K } it holds

μk :=2 − σ 2 − 2 σ 2 e−αFk

Mk(0)
> 0,

νk := 2 V k(0)

μk · (Mk(0))2
α e−2αFk

ckf (2 + σ 2) ≤ 3

4
.

Then for each k ∈ {1, . . . , K } it holds that V k(t) → 0 exponentially fast and there exist
x̃k such that v[ρk

t ] → x̃ k , Ek(t) → x̃ k exponentially fast. Moreover, for α → ∞ the limit
points x̃k are arbitrarily close to the efficient set. In particular, for every ε > 0 there exists
α � 1 such that x̃k ∈ Bε(x̄ k).

Proof As the K swarms are independent the result is a direct consequence of Theorem 3.1 in
[7]. ��
Corollary 1 Let fi be strictly convex functions for all i ∈ {1, . . . , p} and let Assumption (A2)
be satisfied. Then for each point of the efficient set there exists λk ∈ Λ0 such that the swarm
corresponding to λk and following the dynamics (4) concentrates arbitrarily close to a point
in the efficient set.

Proof The result follows from Theorem 1 in combination with Theorem 6. ��
The previous results are based on the fact that the weights are fixed. It therefore remains

open to choose the weights appropriately. This is not a trivial task, as it is for example
well-known that an equidistant choice of weights does not necessarily lead to an equidistant
resolution of the Pareto front, even in the case of convex problems [9]. In order to circumvent
the problem of choosing appropriate weights, we propose an adaptive procedure including
dynamic weights in the next section.

3.2 MSCBOwith dynamic weight adaption

Already in the biobjective case the choice of scalarization weights is nontrivial. In fact,
assuming that f1 and f2 are continuously differentiable, the optimal choice of the weights
depends on the ratio ∂ f2

∂ f1
[9], which is in general unknown.

This observation motivates to incorporate adaptive weights in the multi-objective CBO
method. The adaption dynamics are written as an ODE. In order to circumvent the restriction
λkj ∈ [0, 1], we use the bijective transformation

for λk ∈ Λ set μk = ln(λk) elementwise

and formulate the dynamic weight adaption in terms of μk . The scalarized cost function then
reads

fμk (x) =
∑p

i=1 e
μk
i fi (x)

∑p
i=1 e

μk
i

.

Remark 5 Note that λk ∈ Λ instead of Λ0 implies that only efficient solutions with bounded
trade-off can be determined. Since efficient solutions with unbounded trade-off usually cor-
respond to extreme cases that are not very interesting from a practical point of view, this does
not impose a strong restriction.
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The dynamic of adaptive weights is based on a pairwise interaction of swarms k and �

if their respective weight vectors μk and μ� are close to each other, or the distance of their
weighted means, vkt and v�

t , in the objective space is small, i.e., if the swarms map to similar
points f (vkt ) and f (v�

t ) in the objective space. Let

dk,�:=|μk − μ�|, d f
k,�:=| f (vkt ) − f (v�

t )| < crep ≤ ∞.

Then the repulsion is modeled bymeans of interaction potentials, where in the case crep < ∞
these potentials are assumed to have compact support.

For the numerical tests we use Morse potentials [12] which are given by

P(dk,�) = R e−dk,�/r − A e−dk,�/a, R, A ≥ 0, r , a > 0. (5)

The parameters R, A denote the strength of the repulsion and attraction, respectively, while
r , a allow to adjust the range of the attractive and repulsive force, respectively.

Remark 6 Wechoose to have strong repulsive forces on a very short range and attractive forces
on a medium range. Hence on larger ranges interactions can be neglected and we consider
only interactions with direct neighbors in our main theorem analyzing the approximation of
the Pareto front (Theorem 8).

For interacting particle systems, see for example [5], the force on μk that results from the
interaction with μ� �= μk is given by the corresponding gradient

∇μk P(dk,�) =
(
A

a
e−dk,�/a − R

r
e−dk,�/r

)
μk − μ�

|μk − μ�| . (6)

The main goal we are pursuing with the adaptive weights is to obtain a diverse approximation
of the Pareto front. We therefore add another interaction strategy that depends on the distance
of the weighted means in the objective space. Following the spirit of (6) we replace the
distances dk,� in the prefactor by the distance of the objective function values d f

k,�, leading
to the second force given by

(
A f

a f
e−d f

k,�/a f − R f

r f
e−d f

k,�/r f

)
μk − μ�

|μk − μ�| , R f , A f ≥ 0, r f , a f > 0. (7)

Altogether, this leads to the following forces for the adaptive weight adjustment

K(Xk
t , X

�
t , μ

k, μ�) =
(
A

a
e−dk,�/a − R

r
e−dk,�/r

+ A f

a f
e−d f

k,�/a f − R f

r f
e−d f

k,�/r f

)
μk − μ�

|μk − μ�| .

More generally, one can use any force with similar properties to define an adaptive weight
adjustment given by

d

dt
μk = − 1

τ

K∑

�=1,��=k

K(Xk
t , X

�
t , μ

k, μ�),

μk(0) = ln(λk0), k = 1, . . . , K . (8)

Here τ > 0 is a parameter that allows us to control the time scale of the interaction dynamics.
In fact, it will become important in Sect. 3.3, where we assume that the adaption of the
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scalarization weights happens much faster than the interaction dynamics and concentration
process of the swarms.

We recover the original weights

λk = eμk

∑
k e

μk .

Combining (4) and (8) yields a CBO dynamic for multi-objective problems with self-
adaptive scalarization weights. We want to emphasize that this combination introduces
interdependencies between swarms. Moreover, the dynamics of the weights lead to dynamic
scalarized cost functions.A pseudo code of thismethod can be found inAlgorithm2 in Sect. 5,
note that we do not make use of the penalization yet, hence β = 0 and funi is irrelevant.

3.2.1 Numerical comparison of static and dynamic weights

To illustrate the effect of the dynamic weight adaption, we solve the test problem Schaffer1,
see Sect. 5 for more details. The weight vectors are initialized equidistantly in (0, 1) as
illustrated with the blue points in Fig. 1a. The corresponding front found by solving (4) is
shown in Fig. 1b. The distribution of the adaptive λk is given by the orange points in Fig. 1a
and the corresponding front in Fig. 1c. We note that equally distributed weights stress the
left part of the front. The adaptive weighting counteracts this effect by shifting the weights
to the right, which results in a better resolution of the front. All other details regarding the
numerical results are given in Sect. 5.

The results indicate that the proposed method works fine for convex problems. How-
ever, we note that we may run into problems in non-convex settings. Indeed, as discussed in
Remark 1, we can only find convex parts of the front by globally minimizing weighted sum
scalarizations. For general and possible non-convex problems we propose another exten-
sion in the next section. Before we enter the part of the general problems we analyse the
method with adaptive weights in terms of well-posedness, mean-field approximation and
convergence.

3.2.2 Well-posedness of the SDE systemwith adaptive weights

To analyze the SDE system with adaptive weights we introduce the notation Yt = [Xt , μt ]
where XN

t = (Xk
t )k=1,...,K and μN

t = (μk
t )k=1,...,K . Moreover, we write the SDE system in

vectorized form using the notation

dY N
t = −G(Y N

t ) dt + σD(Y N
t ) dBN

t , (9a)

G(Y N
t ) = [

GX (Y N
t ),Gμ(Y N

t )
]
, D(Y N

t ) = diag(GX (Y N
t ), 0), (9b)

Y N
0 = [XN

0 , μN
0 ]. (9c)

where
(
GX (Y N

t )
)
k = (

(Xk,i
t − vkt )

)
i=1,...,Nk

, and

(
Gμ(Y N

t )
)
k = 1

τ

⎛

⎝
K∑

�=1,��=k

K(Xk
t , X

�
t , μ

k, μ�)

⎞

⎠ .

Toobtain awell-posedness result for the systemwith adaptiveweights,wemake the following
assumptions:
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Fig. 1 Illustration of adaptive weights. The orange points in a show the adaptive weights at time t = 2.5.
The corresponding front given by f (vkt )k=1,...,10 is shown in c. b The approximation obtained with equally
distributed weights is shown

The interaction force K is locally Lipschitz and grows at most linearly in x, y, μ or ν. In
particular, it holds

∣∣K(x, y, μ, ν) − K(x̄, ȳ, μ̄, ν̄)
∣∣ ≤ CL

(|x − x̄ | + |y − ȳ| + |μ − μ̄| + |ν − ν̄|) (A3)

and
∣∣K(x, y, μ, ν)

∣∣ ≤ Cb
(|x | + |y| + |μ| + |ν|) (A4)

for some constants CL ,Cb > 0 and |(x, y, μ, ν) − (x̄, ȳ, μ̄, ν̄)| < M .

Remark 7 As usual in particle interaction dynamics the forces resulting from physical poten-
tials such as the Morse potential proposed above, do not satisfy the regularity assumption
of ODE theory. In order to comply with these assumptions we have to consider a smoothed
version, as for example,

P̂(d) = R−d2/r − A e−d2/a, R, A ≥ 0, r , a > 0.

Similar to the single objective case, the proof of the well-posedness of the SDE system
with adaptive weights is based on the following technical lemma.

123



756 Journal of Global Optimization (2024) 89:745–776

Lemma 1 Let K ∈ N, Nk ∈ N for all k = 1, . . . , K, N = ∑K
k=1 Nk, further α, M > 0 and

(A3), (A4) hold. Then there exist constants C1,C2 > 0 depending only on M such that for
any Yt = [Xt , μt ], Ŷt = [X̂t , μ̂t ] ∈ R

dN × R
pK with |Yt |, |Ŷt | ≤ M it holds

∣∣(GX (Yt ) − GX (Ŷt )
)
k, j

∣∣+∣∣(Gμ(Yt ) − Gμ(Ŷt )
)
k

∣∣ ≤ C1|Y k
t − Ŷ k

t |,
|GX (Yt )| + |Gμ(Yt )| ≤ C2|Y k

t |.

Proof Let N = ∑K
k=1 Nk, Yt = [Xt , μt ], Ŷt = [X̂t , μ̂t ] ∈ R

dN × R
pK . We begin with

(
GX (Yt ) − GX (Ŷt )

)
k, j =

=
∑Nk

m=1(X
k, j
t − Xk,m

t ) e−α f
μk (Xk,m

t )

∑Nk
m=1 e

−α f
μk (Xk,m

t )
−

∑Nk
m=1(X̂

k, j
t − X̂ k,m

t ) e−α f
μk (X̂ k,m

t )

∑Nk
m=1 e

−α f
μk (X̂ k,m

t )

+
∑Nk

m=1(X̂
k, j
t − X̂ k,m

t ) e−α f
μk (X̂ k,m

t )

∑Nk
m=1 e

−α f
μk (X̂ k,m

t )
−

∑Nk
m=1(X̂

k, j
t − X̂ k,m

t ) e−α f
μ̂k (X̂ k,m

t )

∑Nk
m=1 e

−α f
μ̂k (X̂ k,m

t )

=: I1 + I2 + I3 + I4 + I5

where

I1 =
∑Nk

m=1

(
Xk, j
t − X̂ k, j

t − (Xk,m
t − X̂ k,m

t )
)
e−α f

μk (Xk,m
t )

∑Nk
m=1 e

−α f
μk (Xk,m

t )
,

I2 =
∑Nk

m=1(X̂
k, j
t − X̂ k,m

t )(e−α f
μk (Xk,m

t ) − e−α f
μk (X̂ k,m

t )
)

∑Nk
m=1 e

−α f
μk (Xk,m

t )
,

I3 =
Nk∑

m=1

(X̂ k, j
t − X̂ k,m

t )e−α f
μk (X̂ k,m

t )

∑Nk
m=1(e

−α f
μk (X̂ k,m

t ) − e−α f
μk (Xk,m

t )
)

∑Nk
m=1 e

−α f
μk (Xk,m

t ) ∑Nk
m=1 e

−α f
μk (X̂ k,m

t )
,

I4 =
∑Nk

m=1(X̂
k, j
t − X̂ k,m

t )(e−α f
μk (X̂ k,m

t ) − e−α f
μ̂k (X̂ k,m

t )
)

∑Nk
m=1 e

−α f
μk (X̂ k,m

t )
,

I5 =
Nk∑

m=1

(X̂ k, j
t − X̂ k,m

t ) e−α f
μ̂k (X̂ k,m

t )

∑Nk
m=1(e

−α f
μk (X̂ k,m

t ) − e−α f
μ̂k (X̂ k,m

t )
)

∑Nk
m=1 e

−α f
μk (X̂ k,m

t ) ∑Nk
m=1 e

−α f
μ̂k (X̂ k,m

t )
.

Similar to [8] the terms can be bounded as follows:

|I1| ≤ |Xk, j
t − X̂ k, j

t | + |Xk
t − X̂ k

t |,

|I2| ≤
√

2

Nk
ckX |Xk

t − X̂ k
t |

√
Nk |X̂ k, j

t |2 + |X̂ k
t |2,

|I3| ≤
√
2 ckX
Nk

|Xk
t − X̂ k

t |
√

|X̂ k, j
t |2 + |X̂ k

t |2,
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where ckX :=α‖∇ fμk‖L∞(BX ) e
(α‖ f

μk − f
μk ‖L∞(BX )) for BX = {x ∈ R

d : |x | ≤ M} and
fμk := min

x∈BX
fμk (x). To bound I4 and I5 we first note that

fμk (x) − fμ̂k (x) =
∑p

i=1(e
μk
i − eμ̂k

i ) fi (x)
∑p

i=1 e
μk
i

+
p∑

i=1

eμ̂k
i fi (x)

∑p
i=1(e

μ̂k
i − eμk

i )
∑p

i=1 e
μ̂k
i

∑p
i=1 e

μk
i

which leads to the estimate

| fμk (x) − fμ̂k (x)| ≤
(
1 + 1

p

)
‖ f ‖L∞(BX ) e

2M |μk − μ̂k |

for |μk |, |μ̂k | ≤ M . Using this we obtain

|I4| ≤
√

2

Nk
dkM

√
Nk |X̂ k, j

t |2 + |X̂ k
t |2 ‖ f ‖L∞(BX )

(
1 + 1

p

)
e2M |μk − μ̂k |,

|I5| ≤
√
2

Nk
dkM

√
|X̂ k, j

t |2 + |X̂ k
t |2 ‖ f ‖L∞(BX )

(
1 + 1

p

)
e2M |μk − μ̂k |,

where dkM :=α e(2α‖ f ‖L∞(Bx )). As these estimates are independent of j = 1, . . . , Nk and
k = 1, . . . , K , this proves that GX is locally Lipschitz. Note that Gμ is locally Lipschitz by
Assumption (A3).

Moreover, it is easy to see that |(GX (Yt ))k, j | ≤ |Xk, j
t | + |Xk

t | ≤ 2|Y k
t | holds which leads

to the linear growth of GX . Further, the linear growth of Gμ is ensured by Assumption (A3).
��

Based on this Lemma we establish the following well-posedness and existence result.

Theorem 7 Let the assumptions of Lemma 1 be satisfied. For each K ∈ N and Nk ∈ N

for k = 1, . . . , K , system (9) admits a unique strong solution {Yt : t ≥ 0} for any initial
condition Y0 satisfying E[|Y0|2] < ∞.

Proof The proof is based on [13, Chapter 5.3, Theorem 3.1]. Note that due to Lemma 1 we
only have to show that there exists b > 0 such that it holds

− 2 Yt · G(Yt ) + σ 2 trace
(
D(Yt )D(Yt )

�) ≤ b |Yt |2.
For the first term we obtain, using (A3) and (A4),

− 2 Yt · G(Yt ) ≤ 2C1 |Yt |2

for some constant C1 > 0. Moreover, by the diagonal structure of D(Yt ) we get

trace
(
D(Yt ) D(Yt )

�) ≤ 2C2 |Yt |2

for some constant C2 > 0. Altogether, this proves the desired estimate and Theorem 3.1 in
[13, Chapter 5.3] yields the result. ��

Remark 8 Note that the regularized potential proposed in Remark 7 satisfies the regularity
assumptions of Theorem 7.
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3.2.3 Mean-field limit with adaptive weights

Formally passing to the mean-field limit yields a coupled PDE/ODE system given by

∂tρ
k
t = σ 2

2

d∑

i=1

∂i i
(
(x − v[ρk

t ])ρt
) + ∇ · (

(x − v[ρk
t ]

)
ρk
t ),

lim
t→0

ρk
t = ρ0, k = 1, . . . , K ,

d

dt
μk = − 1

τ

K∑

�=1,��=k

K(ρk
t , ρ

�
t , μ

k, μ�), μk(0) = ln(λk0)

with the weighted mean given by

v[ρk
t ] = 1

∫
e−α f

λk (x)dρk
t (x)

∫
x e−α f

λk (x) dρk
t (x), λk = eμk

and τ, σ > 0, ρ0 ∈ P2(R
d) as above. Note that the coupling through the weights makes

the proof of convergence towards the efficient set considerably more difficult as there is a
trade-off between the concentration of the swarms and the balancing of the weight vectors.
This is addressed in the next section.

3.3 Diverse approximation of the Pareto front

The aim of this section is to prove that the proposed scheme leads to a diverse approximation
of the Pareto front in the case of strictly convex biobjective problems, i.e. f : Rd → R

2.

In fact, we prove that each swarm concentrates at one point along the Pareto front in the
long-time limit, t → ∞. The proof builds on results of the single-objective CBO scheme in
[8, 15]. Certainly, we require additional assumptions that we motivate and formulate in the
following.

For the sake of a simple presentation of the idea, we consider the smoothed version of
the Morse interaction potential discussed in Remark 7. Moreover, we assume that the initial
condition of the scalarization weights and the parameters of the interaction potentials are
chosen such that the scalarization weights do not leave the domain (ελ, 1−ελ)× (ελ, 1−ελ)

for fixed 0 < ελ � 1. This can be ensured by choosing A f , R f , a f and r f such that we have
short-range repulsion and mid-range attraction and negligible interaction in the long-range.
Note that this assumption allows us to work directly with normalized scalarization weights
λk = (λk1, λ

k
2), λk1+λk2 = 1 for all k = 1, . . . , K . In fact we do not require the reformulation

in terms of μ that is used for the numerics.
To be more precise, we consider the dynamics

d

dt
λk = −1

τ

K∑

�=1

(
A f

a f
e−(d f

k,�)
2/a f − R f

r f
e−(d f

k,�)
2/r f

)
(λk − λ�) for k = 1, . . . , K .

Note that

λk − λ� =
(

λk1 − λ�
1

λ�
1 − λk1

)
=

(
λ�
2 − λk2

λk2 − λ�
2

)
for all k, �.

As all other quantities on the right-hand side are scalar, the λk stay on the constraint λk1+λk2 =
1 for all times t > 0 once they are normalized.
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As a consequence, the dynamics of the vectors λk are uniquely defined by the dynamics
of one of their components. Without loss of generality we chose the first component here and
obtain

d

dt
λk1 = −

K∑

�=1

u(d f
k,�)(λ

k
1 − λ�

1),
d

dt
λk2 = −

K∑

�=1

u(d f
k,�)(λ

�
1 − λk1) = 1 − d

dt
λk1,

where we use the notation

u(d f
k,�) =

(
2A f

a f
e−(d f

k,�)
2/a f − 2R f

r f
e−(d f

k,�)
2/r f

)
.

Note that the unique representation by the first component allows us to sort the scalarization
weights of the swarms.Without loss of generality, we assume in the following that λ11 < λ21 <

· · · < λK
1 . Moreover, due to negligible long-range interaction we only consider interactions

with direct neighbors.
The strategy of the proof is as follows: first, we exploit the relationship of the non-

dominated points f (x̄(λ)) corresponding to a given λ ∈ Λ (i.e., x̄(λ) is the unique optimum
of (1) with weight λ) and the scalarization weight λ itself. In fact, we assume that

(
λk1 − λ�

1
λ�
1 − λk1

)
= S(λk, λ�) f (x̄(λk)) − f (x̄(λ�)) for all k, �

for some problem dependent matrix S(λk, λ�). Second, using the chain rule, we notice that

d

dt
f (x̄(λk)) = d

dx
f (x̄(λk))

d

dλk1
x̄(λk)

d

dt
λk1.

Now, we employ a Lyapunov argument for all swarms at once, which will show that the
non-dominated points f (x̄(λk)) spread along the Pareto front with ‖ · ‖2-distance dmin in the
long time limit, where dmin is the unique root of u(d).

Let us state the assumptions and the theorem:

(A5) The Pareto front of the biobjective problem f : Rd → R
2 is strictly convex and

connected.
(A6) The parameters of the interaction potential satisfy A, R = 0 and A f , R f , a f and r f

are such that the interaction potential U models short-range repulsion and mid-range
attractions; long-range interactions are negligible. In particular, we assume that there is
a unique rootdmin ofu(d) such that all K non-dominated points f (x̄(λk)), k = 1, . . . K
can spread along the front with Euclidean distance greater than dmin. Moreover, we
assume that each swarm is only interacting with its direct neighbors (in the sense of
the sorted weight vectors).

(A7) The initial values of the scalarization weights λk satisfy λk1 + λk2 = 1 and (λk1, λ
k
2) ∈

[ελ, 1 − ελ]2 for each k = 1, . . . , K and fixed 0 < ελ � 1. Moreover, λ11 < λ21 <

· · · < λK
1 and the corresponding non-dominated points f (x̄(λk)) are distributed such

that ελ ≤ λ11 and λK
1 ≤ 1 − ελ.

(A8) For each pair λk, λ� with k, � ∈ {1, . . . , K }, k �= �, there exists a negative definite
matrix S(λk, λ�) ∈ R

2×2 such that
(

λk1 − λ�
1

λ�
1 − λk1

)
= S(λk, λ�)( f (x̄(λk)) − f (x̄(λ�))) and S(λk, λ�) = S(λ�, λk).
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(A9) For each λ ∈ [ελ, 1 − ελ] there exists a negative definite matrix T (λ) such that

d

dt
f (x̄(λ)) = T (λ)

d

dt
λ = T (λ)

d

dt

(
λ1

1 − λ1

)
.

(A10) The product T (λ)S(λ) with

T (λ) =

T (λ1) + T (λ2) −T (λ2)

−T (λ2) T (λ2) + T (λ3) −T (λ3)

−T (λ3)

−T (λK−1)

−T (λK−1) T (λK−1) + T (λK )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

and

S(λ) =
⎛

⎜⎝
S(λ1, λ2)

. . .

S(λK−1, λK )

⎞

⎟⎠ (10)

is symmetric. Here T (λk) are as defined in (A9) and S(λk, λ�) as defined in (A8) for
each k, � = 1, . . . , K , k �= �.

(A11) The dynamics of the scalarization weights and the dynamics of the swarms have
different time scales. In fact, the adaption of the scalarization weights is much faster
than the dynamics of the swarms.

We first state the result for the limiting case α = ∞ as this ensures that f (v[ρk
t ]) = f (x̄(λ))

by the Laplace principle [15].

Theorem 8 Let (A1)–(A11) hold and α = ∞. For K ∈ N the dynamics

∂tρ
k
t = σ 2

2

d∑

i=1

∂i i
(
(x − v[ρk

t ])ρt
) + ∇ · (

(x − v[ρk
t ]

)
ρk
t ), lim

t→0
ρk
t = ρ0,

d

dt
λk = − 1

τ

K∑

�=1

(
A f

a f
e−(d f

k,�)
2/a f − R f

r f
e−(d f

k,�)
2/r f

)
(λk − λ�),

v[ρk
t ] = 1

∫
e−α f

λk (x)dρk
t (x)

∫
x e−α f

λk (x) dρk
t (x), k = 1, . . . , K ,

yields a diverse approximation of the Pareto front of f in the long time limit. In particular,
each swarm concentrates at x̄(λk) with pairwise distance

‖ f (x̄(λk)) − f (x̄(λ�))‖2 ≥ dmin for all k �= � as t → ∞.

In other words, the stationary solution of the dynamics consists of K Dirac-measures located
at the points x̄(λk) for k = 1, . . . , K which have a pairwise Euclidean distance greater or
equal dmin.

Proof First note that due to α = ∞, we have v f [ρk
t ] = x̄(λk) for t > 0 [15]. This allows us

to focus only on the dynamics of the scalarization weights in the following. Indeed, we follow
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the steps motivated above and begin with some observations on the pairwise interactions.
Using (A6), (A8) and (A9) we obtain

d

dt
f (x̄(λk)) = d

dx
f (x̄(λk))

d

dλk
x̄(λk)

d

dt
λk = T (λk)

d

dt
λk

= − T (λk)

k+1∑

�=k−1

u(d f
k,�)(λ

k − λ�)

= − T (λk)

k+1∑

�=k−1

S(λk, λ�)u(d f
k,�)( f (x̄(λ

k)) − f (x̄(λ�)))

for k = 1, . . . , K . For simplicity we set the summand to zero whenever � < 1 or � > K .

In our strictly convex setting, the sorting of the weights λk induces a sorting of the points
f (x̄(λ1)), . . . , f (x̄(λK ) in descending order along the f1-axis. To reconstruct the vectors
f (x̄(λk)), k = 1, . . . , K at t > 0, it is sufficient to know their initial values and the relative
positions from k to k + 1. This will be exploited in the following.

For k = 1, . . . K − 1 we define qk,k+1 = f (x̄(λk)) − f (x̄(λk+1)). Clearly, it holds

d

dt
qk,k+1 = d

dt
f (x̄(λk)) − d

dt
f (x̄(λk+1))

= − T (λk)

k+1∑

�=k−1

S(λk, λ�)u(d f
k,�)( f (x̄(λ

k)) − f (x̄(λ�)))

+ T (λk+1)

k+2∑

�=k

S(λk+1, λ�)u(d f
k+1,�)( f (x̄(λ

k+1)) − f (x̄(λ�))).

Replacing the differences yields

d

dt
q1,2 = − (

T (λ1) + T (λ2)
)
S(λ1, λ2)u(d f

1,2)q1,2

+ T (λ2)S(λ2, λ3)u(d f
2,3)q2,3

d

dt
qK−1,K = T (λK−1)S(λK−2, λK−1)u(d f

K−2,K−1)qK−2,K−1

− (
T (λK−1) + T (λK )

)
S(λK−1, λK )u(d f

K−1,K )qK−1,K

and for all k = 2, . . . , K − 2 it holds

d

dt
qk,k+1 = T (λk)S(λk−1, λk)u(d f

k−1,k)qk−1,k

− (
T (λk) + T (λk+1)

)
S(λk, λk+1)u(d f

k,k+1)qk,k+1

+ T (λk+1)S(λk+1, λk+2)u(d f
k+1,k+2)qk+1,k+2

Now, let us consider the vector q = (q1,2, . . . , qK−1,K ) and the potential

V(q) =
K−1∑

k=1

(
R f e

−|qk,k+1|2/r f − A f e
−|qk,k+1|2/a f

)

with gradient

∇V(q) =
(
u(d f

1,2)q1,2, . . . , u(dK−1,K f )qK−1,K

)�
.
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The vectorized dynamics reads

d

dt
q = − T (λ)S(λ)∇V(q),

with T (λ) and S(λ) as in (A10).
It is easy to check using the binomial formulas and (A9) that T (λ) is negative definite.

By (A10) T (λ)S(λ) is symmetric and therefore positive definite. By (A7) we can bound
the smallest eigenvalue of the product, σ0(λ) > 0 by some constant depending on ελ, i.e.,
σ0(λ) > cελ > 0 for all λ.

The positive definiteness of T (λ)S(λ) allows us to define a norm ‖ · ‖T S induced by the
scalar product 〈·, T (λ)S(λ)·〉. The time evolution of V(q) can now be computed as

d

dt
V(q) = −‖∇V(q)‖2T S ≤ −cελ‖∇V (q)‖2 < 0. (11)

Hence V is a Lyapunov functional for q and hence in the long-time limit the dynamics
stabilizes such that ∇V = 0. In particular, by (A6) that means the Euclidean distances of the
non-dominated points is greater than dmin.

Now, τ in (A11) allows us to balance the times of the stabilization of the scalarization
weights and the time to collapse the swarms. For τ → 0 the scalarization weights converge
very fast to a diverse approximation of the Pareto front. The scalarization weights are then
stationary and the swarms concentrate at their weighted average as discussed in Theorem 6.
This concludes the proof. ��

We want to emphasize that in this setting each of the swarms admits a stationary solution
which is the efficient point along the Pareto front where the swarm concentrates. In contrast,
the particles of the dynamic proposed in [4] may move along the front for all times as
Theorem 4.1 in [4] shows that the density of the particles move towards the Pareto front, but
no stationarity is shown. Before presenting an example satisfying (A5)-(A10) we comment
on the case α < ∞.

Remark 9 We expect to obtain a similar result for α < ∞ using the quantitative Laplace
principle [15]. Clearly, the points f (v[ρk

t ]), k = 1, . . . , K will only be in an ε-neighborhood
of the Pareto front, where 0 < ε � 1 depends on α. The details of the proof are beyond the
scope of this article.

3.3.1 Example for (A5)–(A10)

In the followingwe present an example with two swarms satisfying the technical assumptions
(A5)-(A10). Let us consider two swarms represented by the weighting vectors λ1, λ2 ∈ Λ

in the following. Note that biobjective convex quadratic optimization problems have been
extensively studied in the literature, therefore parts of the following analysis, including opti-
mality conditions and the subsequent sensitivity analysis, can also be found, e.g., in [2, 17,
30].

Let us consider the biobjective stricly convex quadratic problem

f : R → R
2, f (x) =

(
x2 + 1

1
2 (x − 1)2 + 1

)
.

Let λ ∈ [0, 1] and consider the scalarized objective

fλ(x) = λ(x2 + 1) + (1 − λ)
(1
2
(x − 1)2 + 1

)
.
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Note that this is equivalent to a weighted sum scalarization (1) with (λ1, λ2) = (λ, 1 − λ).
The efficient solutions parameterized by λ ∈ [0, 1] can be computed using the first order
optimality condition for fλ w.r.t. the variable x ∈ R:

d

dx
fλ(x) = (1 + λ)x − (1 − λ)

!= 0

�⇒ x̄(λ) = 1 − λ

1 + λ
and f (x̄(λ)) =

⎛

⎜⎝

(
1−λ
1+λ

)2 + 1

2
(

λ
1+λ

)2 + 1

⎞

⎟⎠ .

The function P : [0, 1] → R
2 given by P(λ) = f (x̄(λ)) is continuous, therefore (A5) holds.

Moreover, we obtain for the difference of the non-dominated points of the two swarms as

f (x̄(λ11)) − f (x̄(λ21)) =

⎛

⎜⎜⎝

(
1−λ11
1+λ11

)2

−
(

1−λ21
1+λ21

)2

2

(
λ11

1+λ11

)2

− 2

(
λ21

1+λ21

)2

⎞

⎟⎟⎠

= −2

(1 + λ11)(1 + λ21)

⎛

⎜⎝
1−λ11
1+λ11

+ 1−λ21
1+λ21

0

0
λ11

1+λ11
+ λ21

1+λ21

⎞

⎟⎠ (λ1 − λ2).

As we assume that there exists ελ > 0 sufficiently small such that all entries of λ1, λ2 lie in
[ελ, 1 − ελ] ⊂ (0, 1), the matrix is invertible. This allows us to define S(λ1, λ2) through its
inverse

S(λ1, λ2)−1 = −2

(1 + λ11)(1 + λ21)

⎛

⎜⎝
1−λ11
1+λ11

+ 1−λ21
1+λ21

0

0
λ11

1+λ11
+ λ21

1+λ21

⎞

⎟⎠ .

Concerning (A9) we compute

d

dt
f (x̄(λ1)) = −2

(1 + λ11)
3

(
0 2

−2 0

) (
λ11

1 − λ11

)
d

dt
λ11

= −2 u(d f
1,2)

(1 + λ11)
3

(
2(1 − λ11) 0

0 2λ11

)
(λ1 − λ2).

Hence, we find

T (λ1) = −2

(1 + λ11)
3

(
2(1 − λ11) 0

0 2λ11

)

is negative definite and analogous for k = 2.As T (λ1), T (λ2) and S(λ1, λ2) are all diagonal,
it is easy to check that (A10) holds.

Up to here, we mainly focused on convex objective functions since only convex parts
of the efficient set can be obtained by global minimization of weighted sum scalarizations,
see [9] for more details. In Sect. 4 we introduce a penalization of clusters in the objective
space in order to obtain well-dispersed representations of the Pareto front and, as an intended
side-effect, reach into non-convex parts of the Pareto front.
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Fig. 2 Illustration of the clustering of the weighted averages in non-convex settings. For an idea of the shape
of the true front see Fig. 3

4 MSCBO for general multi-objective problems

As discussed in the previous section, we cannot expect the present dynamics to work well in
non-convex settings.We therefore propose a penalization strategy in order to obtain dynamics
that lead to reasonable approximations for general multi-objective problems.

4.1 Penalization of clusters in the objective space

Tomotivate the penalization strategyweanalyze the approximation obtainedwith the adaptive
weight algorithm applied to the dent test problem, see Sect. 5.2 for more details.

Figure 2 shows the approximation of the Pareto front (b) and of the efficient set (a) that
is obtained when using the algorithm with adaptive weights. We observe that the weighted
means form clusters along the convex part of the Pareto front while the non-convex part is
not recovered.

To overcome this issue, we propose a penalization strategy that avoids clusters along the
Pareto front and tends to a uniform distribution of points along the Pareto front. Towards this
end, we consider the potential leading to the interaction forces above, which is given by (5).
As we want to penalize clusters in the objective space, we use the distance in the objective
space leading to the penalization term

funi(X
k, j
t , v) =

K∑

�=1,��=k

Rc e
−| f (Xk, j

t )− f (v�
t )|/rc , Rc, rc > 0. (12)

By construction, the penalty term is smaller the farther away the objective of a particle is from
the objective of the weighted means of the other swarms. The penalization term is added to
the scalarization leading to a new cost given by

fμk ,p(X
k, j
t ) = fμk (X

k, j
t ) + β

α
funi(X

k, j
t , v), α > 0, β ≥ 0.
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Fig. 3 Illustration of the effect of penalization. aWe see the approximation of the efficient set by the weighted
means of the swarms obtained with Algorithm 2. b The corresponding approximation of the Pareto front is
shown

Here β allows us to balance the objective and the penalization. Using the properties of the
exponential function, we can rewrite the weighted average from (4c) as

vkt =
∑Nk

j=1 X
k, j
t e−α f

μk (Xk, j
t )e−β funi(X

k, j
t ,v)

∑Nk
j=1 e

−α f
μk (Xk, j

t )e−β funi(X
k, j
t ,v)

. (13)

Clearly, for β = 0 we are in the previous case without penalization of clustering in the
objective space. With increasing values of β > 0 the impact of this penalization in the
optimization process is increased. A pseudo code can be found in Algorithm 3 in Sect. 5.

4.2 Numerical results for adaptive weights and penalization

The following results are obtained with the adaptive weight dynamics with additional penal-
ization given in (13). We observe that the penalization prevents the clustering and the swarms
are able to approximate also the non-convex part of the Pareto front. Moreover, the swarms
spread along the convex parts leading to a better result in both the decision- and the objective
space, as is illustrated in Fig. 3. The improvement compared to Fig. 2 is obvious.

The influence of the penalization on the convex example of Sect. 3.2.1 is illustrated in
Fig. 4. The approximation of the Pareto front obtained with penalization nicely covers the
whole efficient set. In particular, the tails are better resolved compared to the approximation
without penalization, cf. Fig. 1a.

We emphasize that the penalization only affects the cost function of the problem. There-
fore, all the analytical results obtained in Sect. 3 still apply. The only difference is that the
weighted averages of the swarms approximate the minimizers of the penalized scalarized
cost functions instead of the global minima of the (original) scalarized cost functions.

The theory of CBO provides us with a convergence result showing that the invariant state
of the dynamics is a consensus near the global minimizer of the cost function. We adapted
the dynamics to obtain a scheme that provides a uniform approximation of the Pareto front
all at once. So far, we only considered the weighed means of the swarms. Now, we want to
use the additional information provided by the individuals. In fact, for our purpose it is better
if the swarms do not collapse but cluster around the weighted mean, in order to obtain a local
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Fig. 4 Influence of penalization on the convex toy problem discussed in Sect. 3.2.1

Fig. 5 Approximation of the Pareto front using the information of weighted means and all individuals. Indi-
viduals of the same swarm are plotted in the same color

approximation of the Pareto front.We achieve this by implementing an idea fromConsensus-
based sampling (CBS) [6]. Technically speaking, we replace the anisotropic diffusion factor
in Algorithm 2 by a factor that counteracts collapse of the swarm, see Algorithm 3.

Instead of the approximation consisting of the weighted means shown in Figs. 2 and 3 we
obtain now an approximation based on the weighted means and additional information of
all individuals as shown in Fig. 5. The different colors of individuals illustrate the allocation
to the respective swarms, plotted in the decision space (Fig. 5a) and in the objective space
(Fig. 5b), respectively.

Remark 10 Let us summarize the main ideas: in contrast to many evolutionary multiobjec-
tive optimization algorithms (EMO), like e.g., NSGA2 [1], the proposed algorithms are not
based on dominance tests of the swarms and/or particles. Moreover, different from com-
mon decomposition-based EMO methods, like, e.g., MOEA/D [32] and the reference point
approach of NSGA3 [10, 19], the adaptive weights automatically adjust the scalarization
while exploring the objective functions. Finally, the diffusion term inspired by the sampling
algorithm yields non-collapsing swarms that provide local information about the Pareto front
near the diversely distributed weighted means.
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5 Algorithms and parameter settings

In the followingwe provide the implementation details such as discretization, handling of box
constraints and the parameter values for the simulations underlying the illustrations above.

5.1 Discretization

The stochastic differential equations modeling the multi-swarm dynamics are solved with
the Euler–Maruyama scheme [20]. In each iteration particles are projected to the feasible set
X (if necessary). Since we study only box-shaped feasible sets, the projection can be applied
component-wise. A pseudo code for the simple multi-swarm CBO with fixed scalarization
weights is given in Algorithm 1.

Algorithm 1:MSCBO with fixed weights

Data: K ∈ N, Nk ∈ N, initial positions {Xk, j
0 } for k = 1, . . . , K and j = 1, . . . , Nk , scalarization

weights λk ∈ Λ0, time step τ > 0, diffusion coefficient σ > 0, terminal time T > τ, initial time
t = 0 and independent standard-normal distributed Wk

t , weight parameter α > 0

Result: approximation of the Pareto front ( fλk (X
k, j
T ))k, j and efficient set (X

k, j
T )k, j

while t < T do
for k ← 1 to K do

vkt ←
∑Nk

j=1 Xk, j
t e

−α f
λk

(X
k, j
t )

∑Nk
j=1 e

−α f
λk

(X
k, j
t )

Wk
t ∼ N (0, I )

Yk
t+τ ← Xk

t − τ (Xk
t − vkt ) + σ

√
τ diag(Xk

t − vkt )Wk
t

Xk
t+τ ← argmin

x∈X
‖x − Yk

t ‖2
t ← t + τ

The dynamic weight adaption proposed in Sect. 3.2 couples the dynamics of the different
swarms. We proceed swarm by swarm and update the scalarization weight in each iteration
explicitly. This leads to the pseudo code in Algorithm 2. The third modeling step implements
the penalization strategy. Note that this affects only the cost function, hence leading to the
adapted weighted mean (c.f. (13) above)

vkt ←
∑Nk

j=1 X
k, j
t e−α f

μk (Xk, j
t ) e−β funi(X

k, j
t ,v)

∑Nk
j=1 e

−α f
μk (Xk, j

t ) e−β funi(X
k, j
t ,v)

.

To avoid collapsing swarms we replace the diffusion term with the sampling noise leading
to

Y k
t+τ ← Xk

t − τ(Xk
t − vkt ) + σ

√
τ |Xk

t − vkt |Wk
t .

The pseudo code with all modeling features is summarized in Algorithm 3.
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Algorithm 2: MSCBO with adaptive weights

Data: K ∈ N, Nk ∈ N, initial positions {Xk, j
0 } for k = 1, . . . , K and j = 1, . . . , Nk , scalarization

weights μk = ln(λk ), time step τ > 0, diffusion coefficient σ > 0, terminal time T > τ, initial
time t = 0 and independent standard-normal distributed Wk

t , weight parameters α > 0, β ≥ 0

Result: approximation of the Pareto front ( fμk (X
k, j
T ))k, j and efficient set (X

k, j
T )k, j

while t < T do
for k ← 1 to K do

vkt ←
∑Nk

j=1 Xk, j
t e

−α f
μk

(X
k, j
t )

∑Nk
j=1 e

−α f
μk

(X
k, j
t )

or

∑Nk
j=1 Xk, j

t e
−α f

μk
(X

k, j
t e−β funi(X

k, j
t ,v)

∑Nk
j=1 e

−α f
μk

(X
k, j
t )

e−β funi(X
k, j
t ,v)

Wk
t ∼ N (0, I )

Yk
t+τ ← Xk

t − τ(Xk
t − vkt ) + σ

√
τ diag(Xk

t − vkt )Wk
t

Xk
t+τ ← argmin

x∈X
‖x − Yk

t ‖2
μk
t+τ ← μk

k − τ
K

∑K
�=1,��=k K(Xk

t , X
�
t , μ

k , μ�)

t ← t + τ

Algorithm 3:MSCBO with adaptive weights, penalization and sampling noise

Data: K ∈ N, Nk ∈ N, initial positions {Xk, j
0 } for k = 1, . . . , K and j = 1, . . . , Nk , scalarization

weights μk = ln(λk ), time step τ > 0, diffusion coefficient σ > 0, terminal time T > τ, initial
time t = 0 and independent standard-normal distributed Wk

t , weight parameters α > 0, β ≥ 0

Result: approximation of the Pareto front ( f
μk (X

k, j
T ))k, j and efficient set (X

k, j
T )k, j

while t < T do
for k ← 1 to K do

vkt ←
∑Nk

j=1 Xk, j
t e

−α f
μk

(X
k, j
t )

e−β funi(X
k, j
t ,v)

∑Nk
j=1 e

−α f
μk

(X
k, j
t )

e−β funi(X
k, j
t ,v)

Wk
t ∼ N (0, I )

Yk
t+τ ← Xk

t − τ(Xk
t − vkt ) + σ

√
τ |Xk

t − vkt |Wk
t

Xk
t+τ ← argmin

x∈X
‖x − Yk

t ‖2
μk
t+τ ← μk

k − τ
K

∑K
�=1,��=k K(Xk

t , X
�
t , μ

k , μ�)

t ← t + τ

5.2 Test problems

The illustrative example and also the numerical comparisons in the following sections use
the following test problems.
Schaffer1 [26] f (x) = (

(x − 2)2, 0.5 x2
)
, biobjective test problem, convex Pareto front,

X = [0, 2],Y ⊂ [0, 4] × [0, 2].
Dent [31] f (x) = ( f1(x1, x2), f2(x1, x2)) with

f1(x1, x2) = 1

2

(√
1 + (x1+x2)2 +

√
1 + (x1−x2)2 + x1−x2

)
+ 0.85 e−(x1−x2)2 ,

f2(x1, x2) = 1

2

(√
1 + (x1+x2)2 +

√
1 + (x1−x2)2 − x1+x2

)
+ 0.85 e−(x1−x2)2 .
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Table 1 Algorithmic parameters
used in the numerical tests τ = 0.1 T = 5 λ = 1 σ = 0.1

R = 0.001 r = 0.01 R f = 0.0001 r f = 1

Rc = 1 rc = 0.1 α = 100 β = 0 or 10

Biobjective test problem with a dent, X = [−2, 2]2,Y ⊂ [0, 5]2.
Schaffer2 f (x) = (

f1(x), f2(x)
)
with

f1(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−x, if x ≤ 1,

x − 2, if 1 ≤ x ≤ 3,

4 − x, if 3 ≤ x ≤ 4,

x − 4, if 4 ≤ x

, f2(x) = (x − 5)2.

Biobjective test problem, discontinuous Pareto front, X = [−5, 10],Y ⊂ [0, 1] × [0, 16].
Three [2] f (x1, x2) = (

f1(x1, x2), f2(x1, x2), f3(x1, x2)
)
with

f1(x1, x2) = 2(x1 − 1)2 + 2(x1 − 1)(x2 − 1) + 4(x2 − 1)2,

f2(x1, x2) = (x1 − 2)2 + 4(x1 − 2)(x2 − 3) + 8(x2 − 3)2,

f3(x1, x2) = 4x21 + 2x1x2 + x22 .

Three objectives, convex Pareto front, X = [−0.5, 3.5],Y ⊂ [0, 25] × [0, 80] × [0, 50].

Parameters for illustrative examples

In the previous sections we illustrated the modeling ideas with the help of a convex optimiza-
tion problem (Schaffer1) in Figs. 1 and 4, and with a non-convex problem (dent) in Figs. 2, 3
and 5. Initial data is sampled independently from the uniform distribution on X . All poten-
tials are chosen to be purely repulsive, therefore A and A f are set to zero, for completeness
we set a and a f to 1. In a post-processing we eliminate dominated individuals, we therefore
use a numerical offset εdom = 10−5. For the test problems with Y ⊂ R

2 we initialize the
scalarization weights equidistantly on [0.001, 0.999]2.

For the three-objective test case, initial scalarization weights are randomly generated with
Algorithm 2 in [23]. For simplicity, we set Nk = N̄ for all k = 1, . . . K for all simulations.
For the illustrations in Figs. 1 and 5 we use K = 20 swarms with N̄ = 50 individuals each.
For all other biobjective test problems we set K = 30 and N̄ = 20. For the test problem with
three objectives we set K = 50 and N̄ = 20. All other parameters are reported in Table 1.

6 Comparison to other population-based algorithms

This section is devoted to a comparison to other multi-objective optimization methods. In
particular, we address the well-known Non-dominated Sorting Genetic Algorithm (NSGA2)
[11], its variant NSGA3 [10, 19] that uses reference points to support diversification, and the
recently introduced single swarmConsensus-basedoptimization approach formulti-objective
problems [4].
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6.1 Computational effort

The computational complexity of population-based multi-objective optimization algorithms
lies on the one hand in the evaluation of the objective functions and on the other hand in
computing the dominance relations between the generations or agents. The improvement from
NSGA [27] to NSGA2 [11] (and similarly to NSGA3 [10]) is mainly obtained by an efficient
computation of the dominance relationship of the best N individuals. Note that we have
refrained from using the explicit multiobjective dominance information in the algorithms
proposed and therefore save the complexity of O(pN 2) which is governed by the non-
dominated sorting algorithms (see e.g. [21]).

The single swarm multi-objective algorithm (SSCBO) proposed in [4] is stabilized by a
greedy approach which ensures that individuals only move if the attempted move leads to a
better position. Computationally this is cheaper then computing the dominance relationship
in NSGA2, still it requires N comparisons in each iteration. Our multi-swarm CBO approach
MSCBO does not require these comparisons and therefore saves O(pN ) as compared to
SSCBO.

6.2 Numerical results

To obtain comparable results, we chose the parameters in the following simulations such that
all algorithms use the same number of function evaluations. The time steps of SSCBO and
MSCBO are chosen equally. We set the diffusion parameter of SSCBO to 10 as reported in
[4] and activate the greedy strategy. Moreover, we consider the well-knownmethods NSGA2
and NSGA3 in order to compare the performance to well-established methods. Moreover,
we make sure that NSGA2 and NSGA3 use the same number of iterations. For the following
tests this will be T /τ = 50. The reference directions for NSGA3 are obtained with the energy
method from pymoo.

The comparison is based on different performance indicators: generational distance (GD),
inverted generational distance (IGD) and hypervolume (HV) from the pymoo package are
used for the comparison (see, e.g., [25, 33] for a detailed description of performance indi-
cators). GD gives us an indication on the precision of the approximation of the Pareto front.
IGD detects clustering or sparse regions along the front and HV gives us a flavor of how good
the algorithms perform compared to the non-dominated reference set. The reference points
for the hypervolume indicator are the upper bounds of the Cartesian intervals containing Y
given in Sect. 5.2. For GD and IGD we need a reference data set. Our reference data set is
based on the NSGA2 algorithm as this gives the largest hypervolume. However, we check
if points of this data set are dominated by points obtained with the other methods. If so we
replace the point in the reference data set by the nondominated point. These choices allow us
to analyze the performancewithout knowledge about the true Pareto front of the problems. As
mentioned above we do not compute dominance relations in each iteration, but we evaluate
the number of non-dominated individuals (NI) at the end of the simulations.

6.2.1 Biobjective tests

We begin our tests with the convex test problem Schaffer1 with the results reported in
Table 2. All individuals of SSCBO, MSCBO and NSGA2 algorithms are non-dominated,
while 10 individuals of NSGA3 are dominated. The dominated hypervolumes of the three
approximations are very similar. The GD values of MSCBO, SSCBO and NSGA3 are very
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Fig. 6 Approximations of the Pareto fronts for Schaffer1: a MSCBO, b SSCBO, c NSGA2 and d NSGA3

Table 2 Simulation results for
Schaffer1

K = 30, N̄ = 20 GD IGD HV (%) NI

MSCBO 0.0026 0.0045 99.95 630

SSCBO 0.0023 0.0107 99.94 630

NSGA2 0.0 0.0 100 630

NSGA3 0.0024 0.0141 99.92 620

close as well, indicating that the approximations are precise. However, we see a difference
in the IGD values. Further simulations and Fig. 6 suggest that the approximation points of
SSCBO andNSGA3 tend to accumulate in the region of the knee of the Pareto front, therefore
the distances of IGD at the tails of the front are higher leading to a higher overall value. The
IGD value of NSGA3 lies in the range of SSCBO.

The second test yields approximations of the Pareto front of the test problem Dent. It
turns out that many of the individuals of MSCBO are dominated, also some individuals of
SSCBO and few individuals of NSGA3 are dominated. The GD values are very small for all
methods. The IGD is best for SSCBO andNSGA3 lies in the middle of SSCBO andMSCBO.
Further investigations suggest that the approximation of the dent region of the Pareto front is
sparser for MSCBO which leads to the higher values of IGD, see Fig. 7. In contrast, we see
that NSGA3 stresses the dent region. Although MSCBO and SSCBO terminate with fewer
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Fig. 7 Approximation of the Pareto fronts for problem Dent: aMSCBO, b SSCBO, c NSGA2 and d NSGA3

Table 3 Simulation results for
problem Dent

K = 30, N̄ = 20 GD IGD HV (%) NI

MSCBO 0.0037 0.0441 99.78 251

SSCBO 0.0027 0.0174 99.81 375

NSGA2 0.0003 0.0002 99.99 630

NSGA3 0.0033 0.0430 99.94 577

non-dominated individuals, the dominated hypervolumes of all four methods are in good
agreement (Table 3).

The third test is concerned with the Schaffer2 problem which has a discontinuous Pareto
front. The precision of the approximation of the front indicated by the GD value is again very
good. The IGD values differ and simulations showed that the upper part of the Pareto front
is not very well-approximated by SSCBO leading to this IGD behavior. This is visualized in
Fig. 8 as well. Also in the values of the hypervolume indicator we see a difference between
the SSCBO approximation. Although many of the MSCBO and NSGA3 individuals are
dominated, the dominated hypervolume and the IGD values are promising. In terms of the
GD, NSGA3 is similar to the other methods, in terms of IGD and HV it is very close to
NSGA2 (Table 4).
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Fig. 8 Approximation of the Pareto fronts for Schaffer2: a MSCBO, b SSCBO, c NSGA2 and d NSGA3

Table 4 Simulation results for
Schaffer2

K = 30, N̄ = 20 GD IGD HV (%) NI

MSCBO 0.0041 0.0253 99.56 218

SSCBO 0.0024 0.2982 95.12 615

NSGA2 0.0 0.0 100 630

NSGA3 0.0049 0.0140 99.83 369

6.2.2 Three-objective test

The results of the benchmark with three objectives are shown in Table 5 and Fig. 9. We only
compare MSCBO, NSGA2 and NSGA3 since the SSCBO implementation used above was
onlywritten for the biobjective case. The results show thatmany of theNSGA3 individuals are
dominated, but the performance with respect to the indicators are in the range of theMSCBO.
The results also reflect the different algorithmic strategies of the three methods: While the
diversification strategy implemented in the NSGA2method leads to a dense representation at
the tails of the Pareto front (Fig. 9b), the central and structured location of the initial reference
points in NSGA3 is reflected by a more structured and more centralized approximation
(Fig. 9c). MSCBO compromises between these two with a slight focus on the central parts
of the Pareto front while still covering all the tails reasonably well (Fig. 9a). Note that we
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Fig. 9 Approximation of the Pareto fronts for three-objectives: a MSCBO, b NSGA2 and c NSGA3 with
colormap wrt f2

Table 5 Simulation results for
three-objective problem

K = 50, N̄ = 20 GD IGD HV (%) NI

MSCBO 0.547 2.191 99.71 1006

NSGA2 0.007 0.005 99.99 1050

NSGA3 0.602 1.474 99.70 525

do expect the magnitude of the GD and IGD indicators to be higher due to the additional
objective function.

7 Conclusion and outlook

We propose a versatile population-based algorithm for the approximation of the Pareto
front and of the efficient set for multi-objective optimization problems that is based on
the Consensus-based optimization or sampling method, respectively. In the case of fixed
scalarization weights, many analytical results of CBO can be easily generalized to this set-
ting. For adaptive weights we proved that the methods yields a diverse approximation of the
front. Moreover, with prevention of collapsing swarms, we retain local information of the
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Pareto front close to the swarm means. The method is computationally cheap as no domi-
nance relations need to be computed. The numerical results are promising and motivate for
further investigations and applications of the method. In fact, the algorithm is competitive
with widely-used NSGA2 and NSGA3 and the recently proposed single-swarm CBO on the
considered set of classical multi-objective test instances.

Future research should be twofold: On one hand, the suggestedmethods can potentially be
improved by incorporating additional criteria and by fine tuning the algorithmic parameters.
On the other hand, the simultaneous evaluation of the decision space and the objective space
can be further exploited, e.g., in order to incorporate decision support tools that analyze the
effects of objective improvements on the properties of the corresponding solutions.
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