
Fischer, Andreas; Litvinchev, Igor; Romanova, Tetyana; Stetsyuk, Petro; Yaskov,
Georgiy

Article — Published Version

Packing spheres with quasi-containment conditions

Journal of Global Optimization

Provided in Cooperation with:
Springer Nature

Suggested Citation: Fischer, Andreas; Litvinchev, Igor; Romanova, Tetyana; Stetsyuk, Petro; Yaskov,
Georgiy (2024) : Packing spheres with quasi-containment conditions, Journal of Global Optimization,
ISSN 1573-2916, Springer US, New York, NY, Vol. 90, Iss. 3, pp. 671-689,
https://doi.org/10.1007/s10898-024-01412-1

This Version is available at:
https://hdl.handle.net/10419/315320

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 http://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s10898-024-01412-1%0A
https://hdl.handle.net/10419/315320
http://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Journal of Global Optimization (2024) 90:671–689
https://doi.org/10.1007/s10898-024-01412-1

Packing spheres with quasi-containment conditions

Andreas Fischer1 · Igor Litvinchev2 · Tetyana Romanova3,4 ·
Petro Stetsyuk5 · Georgiy Yaskov3

Received: 4 December 2022 / Accepted: 29 May 2024 / Published online: 21 June 2024
© The Author(s) 2024

Abstract
A novel sphere packing problem is introduced. A maximum number of spheres of different
radii should be placed such that the spheres do not overlap and their centers fulfill a quasi-
containment condition. The latter allows the spheres to lie partially outside the given cuboidal
container. Moreover, specified ratios between the placed spheres of different radii must be
satisfied. A corresponding mixed-integer nonlinear programming model is formulated. It
enables the exact solution of small instances. For larger instances, a heuristic strategy is pro-
posed, which relies on techniques for the generation of feasible points and the decomposition
of open dimension problems. Numerical results are presented to demonstrate the viability of
the approach.

Keywords Packing spheres · Nonstandard packing · Quasi-containment · Ratio condition ·
Mixed-integer nonlinear programming · Heuristic · Open dimension problem ·
Decomposition technique · Nonlinear programming

B Andreas Fischer
andreas.fischer@tu-dresden.de

Igor Litvinchev
igorlitvinchev@gmail.com

Tetyana Romanova
tetiana.romanova@nure.ua

Petro Stetsyuk
stetsyukp@gmail.com

Georgiy Yaskov
yaskov@ukr.net

1 Institute of Numerical Mathematics, Technische Universität Dresden, Dresden, Germany

2 Faculty of Mechanical and Electrical Engineering, Autonomous University of Nuevo León, San
Nicolás de los Garza, Mexico

3 Department of Mathematical Modeling and Optimal Design, A. Pidhornyi Institute for Mechanical
Engineering Problems, National Academy of Sciences of Ukraine, Kharkiv, Ukraine

4 Department of Applied Mathematics and Department of Systems Engineering, Kharkiv National
University of Radio Electronics, Kharkiv, Ukraine

5 Department of Nonsmooth Optimization Methods, V. M. Glushkov Institute of Cybernetics, National
Academy of Sciences of Ukraine, Kyiv, Ukraine

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-024-01412-1&domain=pdf
http://orcid.org/0000-0001-7703-1655
http://orcid.org/0000-0002-1850-4755
http://orcid.org/0000-0002-8618-4917
http://orcid.org/0000-0003-4036-2543
https://orcid.org/0000-0002-1476-1818

672 Journal of Global Optimization (2024) 90:671–689

1 Introduction

Astandard sphere packingproblemconsists in allocatingnon-overlapping spheres completely
inside a container [2]. Typical objectives are minimizing container size for a given number
of spheres or maximizing the total number (or the total volume) of spheres packed in a
fixed container. In this paper, we are interested in non-standard sphere packing problems,
mainly for large-scale instances. Before detailing our contributions, we briefly review related
applications and numerical techniques.

In biology and medicine, sphere packing problems arise in fields like spatial distributions
in cell neurons and nucleus [28], filling the retinal surface by ganglion cell fields [18], or
programming radio-surgical medication of tumors and retinal laser coagulation [38].

Engineering applications range from cable bundling problems and topology optimization
in additive manufacturing to arranging fuel units in heat exchangers and nuclear reactors
(see [1, 10, 30, 32] and references therein). In physics, sphere packing is used for analyzing
structures of crystals, of nano and granular materials [5]. Packing catalysts in columns for
gas absorption and distillation in chemical reactors are studied in [7]. For a good overview on
circle packing in a square, with particular emphasis on algorithmic and optimization details,
see [36]. Note that some further relevant references for research on circle packing are given
below.

Numerical techniques for sphere packing problems rely on different approaches. Exact
solution methods based on principles like branch-and-bound are of particular importance
for small problem instances [15–17, 35]. For larger instances, combinations of heuristic
and deterministic techniques are applied frequently [2, 29]. Some approaches use nonlinear
optimization models and then apply exact or approximation techniques [24, 34, 35] to obtain
local solutions. Other methods are based on tessellation or approximation of the container
by a grid [21, 27]. Correspondingly, the sphere packing problem is approximated by a binary
optimization problem to select grid nodes for the centers of the spheres [21, 22]. Many
approaches like [3, 5, 9, 11–13, 19] combine several techniques. Eckard Specht’s website
[33] provides instances of benchmark problems with known (approximate) solutions and
their objective values, see also [23].

In many applications, the condition that all spheres belong completely to a given container
is too strong. Our interest in relaxed containment conditions is motivated by modeling struc-
tural properties of porous media composed of different spherical particles [4, 26]. To study
properties of thesemedia, a volumetric sample (cuboidal or cylindrical container) is extracted
for further investigation. However, in many cases, obtaining such a physical sample is too
expensive and thus mathematical models should be used instead. Nevertheless, extracting a
real sample results in cutting some spheres such that only parts of them remain in the sample.
Correspondingly, our mathematical model allows spheres that are not entirely placed in the
container or even have their center outside the container.

In what follows, these relaxed containment requirements are referred to as quasi-
containment conditions. More specifically, for any sphere of a fixed radius, we assume that
the maximum allowable distance between the center of such a sphere and the boundary of
the container is given. In addition, modeling structural, physical, or chemical properties of
porous media relies on the ratio of spheres with a specified radius to all spheres. Therefore,
we assume that upper and lower bounds for these ratios are known.

This paper introduces a non-standard sphere packing problem. A maximum number of
spheres (with different radii) should be placed in a fixed cuboidal container subject to non-
overlapping, quasi-containment, and ratio conditions.

123

Journal of Global Optimization (2024) 90:671–689 673

Our main contributions are:

1. Anovel sphere packing problem, particularlywith quasi-containment and ratio conditions.
2. A mixed-integer nonlinear program (MINLP) for the novel sphere packing problem.
3. A heuristic strategy for large instances of this problem to obtain good feasible solutions.

This includes the development of a procedure for finding feasible points and of an open
dimension optimization problem with only continuous variables.

4. A decomposition technique for the large-scale open dimension problem to reduce it to a
sequence of easier problems.

5. Numerical experiments applied to

– small instances, where exact solutions are obtained by applying the global solver
BARON,

– larger instances, where good feasible solutions are obtained by the heuristic strat-
egy, which involves the local solver IPOPT in the decomposition approach for open
dimension problems.

The paper is organized as follows. Section 2 formulates the new sphere packing problem
and provides a mixed-integer nonlinear programming formulation. Then, Sect. 3 presents
our heuristic strategy for the approximate solution of the sphere packing problem. Numerical
results are given in Sect. 4, while Sect. 5 provides conclusions and an outlook.

2 Problem formulation

We first provide necessary preliminaries and notation in Sect. 2.1. Based on this, an abstract
nonstandard packingmodel is given in Sect. 2.2, and a correspondingmixed-integer nonlinear
program is developed in Sect. 2.3.

2.1 Preliminaries and notation

For given L > 0, W > 0, and H > 0, the set

C := {(x, y, z) ∈ R
3 | 0 ≤ x ≤ L, 0 ≤ y ≤ W , 0 ≤ z ≤ H}

defines a cuboidal container. Furthermore, a sphere

{(x, y, z) ∈ R
3 | (x − x̄)2 + (y − ȳ)2 + (z − z̄)2 ≤ r2}

is given by its center (x̄, ȳ, z̄) ∈ R
3 and its radius r > 0. We are dealing with N spheres

indexed by i ∈ I := {1, . . . , N }. Each of these spheres has a positive radius that belongs to
the set

{rk | k ∈ T } with T := {1, . . . , K },
where K ∈ N, r1, . . . , rK are known with r1 < r2 < · · · < rK . We say that a sphere with
radius rk is of type k ∈ T . Thus, each given sphere belongs to exactly one of K types.
Moreover, the number of spheres in I that belong to type k is denoted by Nk ∈ N so that

K∑

k=1

Nk = N

123

674 Journal of Global Optimization (2024) 90:671–689

holds. Without loss of generality, we assume that Nk > 0 for all k ∈ T . In order to place
sphere i ∈ I, its center ui = (xi , yi , zi) ∈ R

3 is variable and we use

Si (ui)

for denoting this sphere. Since each sphere i ∈ I has a unique type k ∈ T , there is a function
r : I → T so that r(i) yields the type k of sphere i . A condition on the intersection of a
sphere of type k with the container C will later be described by the predefined parameters

εk ∈ [−rk, rk] for k ∈ T (1)

and by means of the set

C(εk) := {(x, y, z) ∈ R
3 | −εk ≤ x ≤ L + εk,

−εk ≤ y ≤ W + εk,−εk ≤ z ≤ H + εk}.
Note that C(εk1) might be different from C(εk2) for k1, k2 ∈ T with k1 �= k2. Finally,
throughout the paper, |A| denotes the cardinality for any finite set A.

2.2 Abstract model

Let I denote a subset of spheres belonging to the set I of all spheres. Then, any uI :=
(ui)i∈I ∈ R

3|I | is called placement, and feasible placement, if the placement conditions (2)–
(4) below are satisfied. These conditions are formulated for I �= ∅. However, by definition,
we say that I = ∅ satisfies the placement conditions as well.

Non-overlapping conditions

int Si (ui) ∩ int S j (u j) = ∅ for i, j ∈ I with i < j, (2)

where int is used to denote the interior of a set. Clearly, for each pair (i, j) with i < j , this
condition provides a restriction on the centers ui and u j of the corresponding spheres.

Quasi-containment conditions

ui ∈ C(εr(i)) for i ∈ I . (3)

This condition means that the center of sphere i ∈ I lies in the set C(εr(i)). If, for all k ∈ T ,
εk is replaced by −rk , (3) are just called containment conditions, which then require that all
spheres with i ∈ I completely belong to the container C .

Before giving the final set of placement conditions, let τk ∈ Q∩ (0, 1] for k ∈ T be given
so that

∑

k∈T
τk = 1.

The value τk describes the desired proportion of spheres of type k ∈ T that shall appear in a
feasible placement of spheres. The predefined parameters τ k and τ k with

0 < τ k ≤ τk ≤ τ k for k ∈ T

serve us to allow a certain deviation from the proportion τk . Now, we are able to provide the

Ratio conditions

τ k ≤ |{i ∈ I | r(i) = k}|
|I | ≤ τ k for k ∈ T . (4)

123

Journal of Global Optimization (2024) 90:671–689 675

For a set I arising from a feasible placement uI , the latter means that the ratio between the
number of spheres of type k in I and the number of all spheres in I belongs to the interval
[τ k, τ k]. We implicitly assume that there are enough spheres of each type k ∈ T so that the
ratio conditions (4) can be satisfied for some index set I . In applications, we are often faced
with many more spheres of all types so that this assumption is not a problem.

The optimization goal is to find a feasible placement uI with as many as possible spheres,
i.e., where I ⊆ I has maximum cardinality.

2.3 Formulation as mixed-integer nonlinear program

To derive a MINLP from the abstract model in the previous section, we use the decision
variables

u := (u1, . . . , uN) ∈ R
3N ,

where ui = (xi , yi , zi) ∈ R
3 specifies the center of sphere i ∈ I. To satisfy the quasi-

containment conditions (3), we introduce the function ϕi : R
3 → R by

ϕi (ui) := min{xi , yi , zi , L − xi ,W − yi , H − zi } + εr(i) (5)

for i ∈ I. Then, it is easy to see that ϕi (ui) ≥ 0 if and only if ui ∈ C(εr(i)). The condition
ϕi (ui) ≥ 0 can be replaced by linear box constraints

−εκ ≤ xi ≤ L + εκ , −εκ ≤ yi ≤ W + εκ , −εκ ≤ zi ≤ H + εκ (6)

with κ := r(i). The non-overlapping conditions (2) are modeled by means of functions
ψi j : R

3 × R
3 → R with

ψi j (u, v) := ‖u − v‖2 − (r(i) + r(j))2 (7)

for (i, j) ∈ I × I. Then, ψi j (u, v) ≥ 0 is an equivalent formulation for non-overlapping of
the spheres Si (u) and S j (v).

In addition to u, we introduce auxiliary binary variables bi ∈ B := {0, 1} for i ∈ I. With
b := (b1, . . . , bN) ∈ B

N , we can now express the packing problem as

max
u,b

N∑

i=1

bi (8)

subject to

biϕi (ui) ≥ 0 for i ∈ I, (9)

bib jψi j (ui , u j) ≥ 0 for (i, j) ∈ I × I with i < j, (10)

τ k

N∑

i=1

bi ≤
Nk∑

i=1

bi ≤ τ k

N∑

i=1

bi for k ∈ T , (11)

u ∈ R
3N , b ∈ B

N . (12)

For a feasible point (u, b) of the model (8)–(12) with b �= 0, the resulting placement uI with
I := {i ∈ I | bi = 1} is feasible, i.e.,
– the non-overlapping conditions (2) hold due to (10),
– the quasi-containment conditions (3) are satisfied because of (9), and
– the ratio conditions (4) are valid thanks to (11).

123

676 Journal of Global Optimization (2024) 90:671–689

Vice versa, a feasible placement uI with I �= ∅ provides a feasible solution (u, b) of problem
(8)–(12) with u = (uI , uI\I), bi = 1 for i ∈ I , and bi = 0 for i ∈ I\I , where uI\I can be
chosen freely.

To maximize the objective function in (8), as many as possible binary variables bi (i ∈ I)

must be equal to 1. Equivalently, this means that the cardinality of I is maximized. Also
note that, due to the constraints (9) and (10), ϕi (ui) < 0 implies bi = 0 for any i ∈ I, and
ψi j (ui , u j) < 0 yields bib j = 0 for any i, j ∈ I with i < j .

The model (8)–(12) is a mixed-integer nonlinear program (MINLP). The nonlinearity of
the model is caused by the N inequalities in (9) and the N (N − 1)/2 inequalities in (10).
The number of the latter grows quadratically with N . Hence, in general MINLP solvers have
no chance for providing an exact solution of the model for large values of N . Therefore, we
present a heuristic approach in the next section.

3 The heuristic

Below, we suggest a heuristic strategy to find a feasible solution of problem (8)–(12) with
the aim of maximizing the objective in (8). To begin with, let us provide a rough description
of the strategy.

A key idea is to replace MINLP (8)–(12) by a sequence of continuous open dimension
(OD) problems. In each of these problems, the fixed height H , formerly used to defineC(εk),
is replaced by the variable h. Moreover, for any OD problem, it is assumed that two feasible
placements uI and uJ are known in advance with

I ⊂ J ⊆ I and uJ = (uI , uJ\I). (13)

The OD problem then aims at minimizing h and at finding a feasible placement v∗
J with

v∗
I = (v∗

i)i∈I = uI , i.e., the centers associated to the set I of spheres are kept, but the
centers of the spheres belonging to J \ I are variable and used to minimize h. Accordingly,
the OD(uI , uJ) problem is shown by (14)–(17) below. If the space occupied by the feasible
placement v∗

J is sufficiently smaller than the space needed for uJ , Algorithm 2 in Sect. 3.2 is
used to place further spheres with indices in I \ J , again achieving a feasible placement. The
two parts (Algorithm 2 and treating anODproblem) are used successively as often as possible
until no further sphere can be placed. Our heuristic strategy (Algorithm 1) is described in
more detail in Sect. 3.1.

The OD(uI , uJ) problem for feasible placements satisfying (13) is the nonlinear
optimization problem

min
v J ,h

h (14)

subject to

ϕ̂i (vi , h) ≥ 0 for i ∈ J \ I , (15)

ψi j (vi , v j) ≥ 0 for i, j ∈ J × J with i < j, (16)

v I = uI , (17)

where ψi j is given by (7) and ϕ̂i : R
3 × R → R by

ϕ̂i (u, h) := min{x, y, z, L − x,W − y, h − z} + εr(i).

The latter is similar to the definition of ϕi in (5), except that the fixed height H is now
replaced by the variable h. Like the replacement of ϕi (u) ≥ 0 by (6), it is possible to write

123

Journal of Global Optimization (2024) 90:671–689 677

Fig. 1 Demonstration of the heuristic strategy (Algorithm 1)

ϕ̂i (u, h) ≥ 0 equivalently as a system of linear inequalities. Note that any feasible point of
the OD problem (14)–(17) satisfies the ratio conditions (4) automatically since the spheres
in J already satisfy (4).

3.1 The heuristic strategy

Algorithm 1 THE HEURISTIC STRATEGY

Input Index set I.
Step A Set I := ∅ and uI := [] (denoting the empty vector).
Step B Employ Algorithm FEASIBLE PLACEMENT (Algorithm 2) with

input uI to construct a feasible placement uJ so that
I ⊆ J ⊆ I and uJ = (uI , uJ\I).

Step C If J = I , set u∗
I := uI and stop.

Step D Employ Algorithm Decomposition Based Optimization
(Algorithm 5) with input uI and uJ to determine a feasible
solution (v∗

J , h∗) of problem OD(uI , uJ).
Set I := J , uI := v∗

J , and go to Step B.
Output Feasible placement u∗

I .

The strategy for finding a good feasible point of problem (8)–(12) involves the main steps
shown in Algorithm 1. Before providing the details for Steps B and D in Sects. 3.2 and 3.3,
we demonstrate the principle idea of the heuristic strategy by means of Fig. 1. Part (a) of this
figure shows a feasible placement of a certain set of spheres obtained by Step B. Then, Step
D tries to reduce the height occupied by the spheres from this set within in the container, see
part (b) of the figure. The free space gained is now filled by further spheres within Step B
so that the resulting placement is again feasible, see part (c). These further spheres are now
compressed in Step D with the aim to obtain some free space in the container, see part (d)
of Fig. 1. Steps B and D are then repeated as long as possible, i.e., as long as the free space
obtained in Step D allows to place at least one additional sphere in a feasible way. Otherwise,
the strategy is stopped in Step C with a final feasible placement u∗

I (cf. part (e) of Fig. 1).

123

678 Journal of Global Optimization (2024) 90:671–689

3.2 Construction of a feasible placement

Step B of the heuristic strategy (Algorithm 1) aims at constructing a feasible placement uJ

of spheres with an index set J , where J is assumed to contain the spheres of an already found
feasible placement uI ; at the beginning, I is empty. To construct the feasible placement uJ ,
we first introduce the set

F(uI , �) := {u ∈ R
3 | ϕ�(u) ≥ 0, ψi�(ui , u) ≥ 0 for all i ∈ I } (18)

for any � ∈ I \ I . Since uI is a feasible placement, it can be seen that u ∈ F(uI , �) means
that the placement uI∪{�} satisfies the non-overlapping conditions (2), the quasi-containment
conditions (3), but not necessarily the ratio conditions (4).

Hence, to determine a feasible placement uJ with I ⊂ J , we first choose ΔJ with
ΔJ ⊆ I\I so that I ∪ ΔJ satisfies the ratio conditions (4) and then try to place the spheres
with indices inΔJ so that I∪ΔJ also satisfies the non-overlapping and the quasi-containment
conditions. As long as possible, the resulting feasible placement is extended to larger feasible
placements by an analogous technique. The overall procedure to generate a (large) feasible
placement uJ is described in Algorithm 2.

Algorithm 2 FEASIBLE PLACEMENT

Input A feasible placement uI .
Step 1 Set J := I , J0 := J , and signal := 1.
Step 2 If signal = 3, stop.
Step 3 Determine an index set ΔJ by Algorithm SELECT INDEX SET

(Algorithm 3) with the input parameters J and signal.
Step 4 If ΔJ = ∅, set signal := signal + 1 and go to Step 2.
Step 5 Choose � ∈ ΔJ randomly.

Compute u� = (x�, y�, z�) by Algorithm TOP-DOWN BISECTION
(Algorithm 4) depending on the input parameters uJ and �.

Step 6 If z� = ∞, set J := J0, signal := signal + 1, and go to Step 2.
Step 7 Set J := J ∪ {�} and ΔJ := ΔJ \ {�}.
Step 8 If ΔJ = ∅, set J0 := J and go to Step 3.

Otherwise, go to Step 5.
Output J so that I ⊆ J ⊆ I and uJ is feasible.

The Algorithm SELECT INDEX SET (Algorithm 3) used in Step 3 of Algorithm 2 is
responsible for fulfilling the ratio conditions (4). More in detail, it generates an index set ΔJ
so that J∪ΔJ satisfies (4) with I := J∪ΔJ . Since the proportions τk (k ∈ T = {1, . . . , K })
are rational numbers in the interval (0, 1], we can easily find the least possible q ∈ N and
pk ∈ N (k ∈ T) so that

τk = pk
q

(k ∈ T)

is valid. Algorithm3 has been developedmainly based on this observation. Another important
question for the design of Algorithm 2 is how the spheres in ΔJ provided by Algorithm 3
can be placed satisfying not only the ratio conditions (4), but also the remaining feasibility
conditions (2) and (3). This is the task of Algorithm TOP-DOWN BISECTION (Algorithm
4). Other (more sophisticated) realizations of Algorithms 2–4 are possible, but will not be
considered here.
Now, we provide a description of Algorithm 4. Let a sphere � ∈ I \ J and a placement uJ

being feasible with respect to the non-overlapping and the quasi-containment conditions (2)

123

Journal of Global Optimization (2024) 90:671–689 679

Algorithm 3 SELECT INDEX SET

Input: Index set J and signal ∈ {1, 2}.
Step 1. Set ΔJ := ∅.
Step 2. If signal = 1, set

Pk := {P ⊆ I \ J | |P| = pk , r(i) = k for i ∈ P} for k ∈ T .
If Pk �= ∅ for k ∈ T , choose Jk ∈ Pk for k ∈ T .
Otherwise, stop.
Set ΔJ := ⋃

k∈T
Jk and stop.

Step 3. If signal = 2, set tk := |{i ∈ J | r(i) = k}| for k ∈ T .
If T �= {k ∈ T | τ k (|J | + 1) ≤ tk , tk + 1 ≤ τ k (|J | + 1)}, stop.
Set T := {k ∈ T | j ∈ I \ J exists with r(j) = k}.
If T = ∅, stop.
For the minimal k∗ ∈ T determine j∗ ∈ I \ J with r(j∗) = k∗.
Set ΔJ := { j∗} and stop.

Output: ΔJ so that the ratio conditions (4) are valid for I := J ∪ ΔJ .

and (3) be given. Then, the purpose of Algorithm 4 is to generate a placement uJ∪{�} that
is again feasible with respect to (2) and (3). To this end, Algorithm 4 intends to place the
sphere � with center u� = (x�, y�, z�) ∈ F(uJ , �) quite low with respect to the z-coordinate.
According to (18), u� ∈ F(uJ , �) means that the sphere � satisfies the quasi-containment
condition and does not overlap any sphere in J . To generate a small z�, we mainly use a
bisection technique for the value of the z-coordinate. Moreover, we do this for M ∈ N

spheres with randomly generated values for the x- and y-coordinates.

Algorithm 4 TOP-DOWN BISECTION

Input A placement uJ satisfying (2), (3) for I := J and � ∈ I \ J .
Step 1 Choose M ∈ N and 0 < δ < 1.

Set z∗ := ∞, m := 1, k := r(�), a := −εk , and b := H + εk .
Step 2 Choose xm ∈ [−εk , L + εk] and ym ∈ [−εk ,W + εk] randomly.

Set u := (xm , ym , ∞).
Step 3 If (xm , ym , a) ∈ F(uJ , �), set u� = (x�, y�, z�) := (xm , ym , a)

and stop.
If (xm , ym , b) ∈ F(uJ , �), set zm := b.
Otherwise, if (xm , ym , b) /∈ F(uJ , �), set u� := u and
go to Step 9.

Step 4 Set z := 1
2 (a + b) and u := (xm , ym , z).

Step 5 If u ∈ F(uJ , �), set b := z and zm := b.
Otherwise, if u /∈ F(uJ , �), set a := z.

Step 6 If b − a ≥ δ, go to Step 4.
Step 7 Set u := (xm , ym , zm).
Step 8 If zm < z∗, set u� := u and z∗ := zm .
Step 9 If m < M , set m := m + 1 and go to Step 2. Otherwise, stop.
Output u� so that uJ∪{�} either satisfies (2) and (3) or z� = ∞.

3.3 A decomposition algorithm for the OD problem

Let us consider a fixed feasible placement uI and some other feasible placement uJ with
I ⊂ J ⊆ I. Our aim is to optimize the variables ui with i ∈ J \ I so that the height h of
the feasible placement J is reduced. The best for this aim would be to solve the OD problem

123

680 Journal of Global Optimization (2024) 90:671–689

Algorithm 5 Decomposition Based Optimization

Input Feasible placements uI , uJ with I ⊂ J ⊆ I.
Step 1 Set wJ := uJ and ρ := max{rk | k ∈ T }.
Step 2 Determine (v∗

J , h∗) by applying a local minimization algorithm
to problem DOD(uI ,wJ , ρ).

Step 3 If v∗
J\I is an interior point of B(uI ,wJ , ρ), stop.

Step 4 Set ρ := ‖wJ\I − v∗
J\I ‖∞, wJ := v∗

J , and go to Step 2.
Output Feasible solution (v∗

J , h∗) of problem OD(uI , uJ).

(14)–(17). Since this problem is of high complexity, a global or even a local solution cannot
be determined in a reasonable time if the sets I and J are not particularly small. Therefore,
we suggest a decomposition technique to at least find a good feasible solution of the OD
problem (14)–(17). This technique replaces the OD problem by a sequence of decomposed
OD problems. The latter problems are denoted by DOD(uI ,w J , ρ) and read as follows.

min
v J ,h

h (19)

subject to

ϕ̂i (vi , h) ≥ 0 for i ∈ J \ I , (20)

ψi j (vi , v j) ≥ 0 for (i, j) ∈ Σ(uI ,w J , ρ), (21)

v I = uI (22)

v J\I ∈ B(uI ,w J , ρ), (23)

where ρ > 0 and the feasible placements uI ∈ R
3|I |,w J ∈ R

3|J | with I ⊂ J ⊆ I are given.
Moreover, B(uI ,w J , ρ) and Σ(uI ,w J , ρ) are defined by

B(uI ,wJ , ρ) :=
{
v J\I ∈ R

3|J\I | | ‖v J\I − wJ\I ‖∞ ≤ ρ
}

,

Σ(uI ,w J , ρ) := Σ1(uI ,wJ , ρ) ∪ Σ2(uI ,w J , ρ)

with

Σ1(uI ,w J , ρ) :=
{
(i, j) ∈ I × (J \ I) | ‖ui − w j‖ − (r(i) + r(j)) ≤ √

3ρ
}

,

Σ2(uI ,w J , ρ) :=
{
(i, j) ∈ (J \ I) × (J \ I) | i < j,

‖wi − w j‖ − (r(i) + r(j)) ≤ √
3ρ

}
.

If compared to the problemOD(uI ,w J) in (14)–(17), problemDOD(uI ,wJ , ρ) in (19)–(23)
reduces the number of non-overlapping conditions, often drastically. In (21), non-overlapping
is required only for pairs (i, j) of spheres with (i, j) ∈ Σ(uI ,wJ , ρ), i.e., for spheres i, j
that are quite close to each other. This indeed decomposes the constraints of OD(uI ,w J).
Nevertheless, to guarantee that all existing non-overlapping constraints (16) in the original
ODproblemare satisfied for any v∗

J constructed in Step 2 ofAlgorithm5, each variable vi with
i ∈ J \ I has to stay in a box centered at the vectorwi (see the definition of B(uI ,wJ , ρ)). In
this way, overlapping is excluded not only for a local minimizer v∗

J , but for any feasible point
of DOD(uI ,wJ , ρ). This is important for cases, when Step 2 of Algorithm 5 does not provide
a local minimizer of problem DOD(uI ,w J , ρ). The stopping rule in Step 3 can be replaced
by other criteria that indicate that the expected improvement of using a further iteration of
Algorithm 5 is small; for example one may stop if the difference of two subsequent objective

123

Journal of Global Optimization (2024) 90:671–689 681

Table 1 Data for Examples
1(a)–1(c)

L W H K N n1 n2 r1 r2 ε1 ε2
8 4 10 2 25 10 15 2 1 0 0

1(a) τ1 τ1 τ2 τ2

0.19 0.21 0.79 0.81

N∗ n∗
1 n∗

2 τ∗
1 τ∗

2 t∗
15 3 12 0.2 0.8 17 s

1(b) τ1 τ1 τ2 τ2

0.39 0.41 0.59 0.61

N∗ n∗
1 n∗

2 τ∗
1 τ∗

2 t∗
25 10 15 0.4 0.6 1 s

1(c) τ1 τ1 τ2 τ2

0.49 0.51 0.49 0.51

N∗ n∗
1 n∗

2 τ∗
1 τ∗

2 t∗
20 10 10 0.5 0.5 9 s

function values h∗ generated in Step 2 is less than a predefined parameter. Regardless of this,
in our experiments, where IPOPTwas applied to the DOD problems, always an interior point
of B(uI ,w J , ρ) was generated.

4 Computational results

Two groups of instances are considered. The first contains smaller instances. Almost all of
them could be solved exactly based on the MINLP (8)–(12) and the solver BARON. For
the second group of larger instances, good feasible solutions were obtained by our heuristic
strategy (Algorithm 1), see Sect. 4.2.

4.1 Results for small instances

For several small instances given below, we have applied BARON [20, 31, 37] to determine
a global solution of the corresponding model (8)–(12). This has been done by means of the
NEOS server [25] together with AMPL [8]. The input data of the instances are described in
Tables 1, 2, 3, 4, 5 and 6. Moreover, these tables also provide the following data associated
with the solution (u∗, b∗) found:

– N∗ denotes the optimal value of the objective (8), i.e., N∗ :=
N∑
i=1

b∗
i ,

– n∗
k with k ∈ {1, . . . , K } is the number of spheres of type k used in the solution, i.e.,
K∑

k=1
n∗
k = N∗,

– τ ∗
k := n∗

k
N∗ for k ∈ {1, . . . , K } satisfies τ k ≤ τ ∗

k ≤ τ k , i.e., shows in which way the ratio
conditions (4) are satisfied.

– t∗ is the run time. Note that these times may be affected by unknown influences within
the NEOS system (like other jobs running in parallel). Therefore, the run time shown are
rounded up to full seconds and should only be used as a rough orientation.

123

682 Journal of Global Optimization (2024) 90:671–689

Table 2 Data for Examples 2(a) and 2(b)

L W H K N n1 n2 r1 r2 τ1 τ1 τ2 τ2
8 4 4 2 25 10 15 2 1 0.19 0.21 0.79 0.81

2(a) ε1 ε2

−1 0

N∗ n∗
1 n∗

2 τ∗
1 τ∗

2 t∗
15 3 12 0.2 0.8 14 s

2(b) ε1 ε2

0 0

N∗ n∗
1 n∗

2 τ∗
1 τ∗

2 t∗
15 3 12 0.2 0.8 5 s

Table 3 Data for Examples 3(a) and 3(b)

L W H K N n1 n2 n3 r1 r2 r3 ε1 ε2 ε3
11 12 6 3 62 9 17 36 2 1.5 1 −1.5 −0.5 0

3(a) τ1 τ1 τ2 τ2 τ3 τ3
93
700

107
700

193
700

207
700

397
700

407
700

N∗ n∗
1 n∗

2 n∗
3 τ∗

1 τ∗
2 τ∗

3 t∗
61 9 17 35 0.14754... 0.27868... 0.57377... 182 s

3(b) τ1 τ1 τ2 τ2 τ3 τ3
1
7

1
7

2
7

2
7

4
7

4
7

N∗ n∗
1 n∗

2 n∗
3 τ∗

1 τ∗
2 τ∗

3 t∗
56 8 16 32 0.14285... 0.28571... 0.57142... 72 s

Table 4 Data for Example 4

L W H K N n1 n2 n3 n4 r1 r2 r3 r4
10 10 6 4 54 6 11 16 21 2 1.5 1 0.5

ε1 ε2 ε3 ε4 τ1 τ1 τ2 τ2 τ3 τ3 τ4 τ4

−1.5 −1 0 0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4

N∗ n∗
1 n∗

2 n∗
3 n∗

4 τ∗
1 τ∗

2 τ∗
3 τ∗

4 t∗
50 5 10 15 20 0.1 0.2 0.3 0.4 1.822 s

Table 5 Data for Example 5

L W H K N n1 n2 n3 r1 r2 r3 ε1 ε2 ε3

11 12 12 3 125 17 34 74 2 1.5 1 −1.5 −0.5 0

τ1 τ1 τ2 τ2 τ3 τ3
1
7

1
7

2
7

2
7

4
7

4
7

N ′ n′
1 n′

2 n′
3 τ ′

1 τ ′
2 τ ′

3 t ′

112 16 32 64 1
7

2
7

3
7 8h

123

Journal of Global Optimization (2024) 90:671–689 683

Table 6 Data for Example 6

L W H K N n1 n2 n3 n4 r1 r2 r3 r4
10 10 8 4 54 6 11 16 21 2 1.5 1 0.5

ε1 ε2 ε3 ε4 τ1 τ1 τ2 τ2 τ3 τ3 τ4 τ4

-2 −1.5 −1 −0.5 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4

N∗ n∗
1 n∗

2 n∗
3 n∗

4 τ∗
1 τ∗

2 τ∗
3 τ∗

4 t∗
50 5 10 15 20 0.1 0.2 0.3 0.4 58 s

Fig. 2 Optimal placement of spheres for Examples 1(a)–1(c)

Fig. 3 Optimal placements for
Examples 2(a) and 2(b)

Example 1 Interestingly, if we use ε1 = −1.0 and ε2 = 0.0 instead of the values ε1 = ε2 = 0
in Table 1, BARON found global solutions for cases (a) and (b) of Example 1. However, for
case (c), no solution could be found within 8h, which is the maximal time NEOS allows for
running a single instance. The optimal solutions for Examples 1 (a)–(c) provided by BARON
are shown in Fig. 2.

Example 2 The input data for Example 2(a) provided in Table 2 use a negative value for ε1
so that the centers of the spheres of type k = 1 with radius r1 = 2 lie in the interior of the
container. In contrast to this, the centers of all spheres of Example 2(b) are allowed to lie in
the container including its boundary. Nevertheless, the optimal values of both examples do
not differ. For the corresponding pictures see Fig. 3.

Example 3 The input data for Examples 3(a) and 3(b) only differ with respect to the given
ratios for τ i and τ i , see Table 3. For Example 3(b), τ i = τ i is required for all i . This results
in a smaller optimal number of spheres that could be placed in contrast to Example 3(a). For
the pictures, see Fig. 4.

123

684 Journal of Global Optimization (2024) 90:671–689

Fig. 4 Optimal placements for Example 3(a) and Example 3(b)

Fig. 5 a An optimal placement for Example 4, b a feasible placement for Example 5, c an optimal placement
for Example 6

Example 4 In this example, we have four types of spheres (K = 4). Moreover, the lower and
upper bounds for the ratios of each sphere type are equal, i.e., τ i = τ i for i = 1, 2, 3, 4. For
the input data and the results of this example, see Table 4 and Fig. 5a.

Example 5 In this example, BARON (via the NEOS server) computed a feasible placement
and the time limit of 8h was exhausted. It remains unclear whether this placement is already
optimal. The obtained upper bound for the objective is 119, whereas the feasible placement
contains N ′ = 112 spheres. Instead of indicating several values of an optimal placement
with ∗ (as we did in the Tables 1, 2, 3, 4), we now use the symbol ′ for those values of the
feasible placement of Example 5, see Table 5. Moreover, a picture of the feasible placement
is given in part (b) of Fig. 5.

Example 6 This example uses εi = −ri for all sphere types i ∈ T so that all spheres of any
feasible placement must be completely contained in the container. We refer to Table 6 for the
input data and the optimal solution obtained by BARON. In addition, see part (c) of Fig. 5
for a picture of an optimal placement.

We observe from part (c) of Example 1 that a modification of the input parameters may cause
problems in solving the instance by BARON under the time restriction in the NEOS server,
see also Example 5.

123

Journal of Global Optimization (2024) 90:671–689 685

Fig. 6 Feasible placements obtained by the heuristic for Example 7 in (a), for Example 8 in (b), for Example
9 in (c), for Example 10 in (d), and for Example 11 in (e)

4.2 Results obtained by the heuristic

Below, some larger instances are provided to test our heuristic described in Sect. 3. A
corresponding implementation is run on an Intel® Core™ i3-6100T processor.

For obtaining a localminimizer (or a good feasible solution) of the nonlinear programming
subproblem in Step 2 of Algorithm Decomposition Based Optimization (Algo-
rithm 5), the solver IPOPT [14] was employed. For the description of the results, we use the
notation N ′, n′

k, τ
′
k for the final feasible point obtained by the heuristic strategy (Algorithm

1) in analogy to N∗, n∗
k , τ

∗
k as introduced in Sect. 4.1 above for the exact solution found by

BARON. Moreover, we also report about the number N0 of spheres that were placed by the
first run of Algorithm FEASIBILE PLACEMENT (Algorithm 2) in Step B of Algorithm 1,
i.e., before IPOPT is called the first time. Finally, the time needed for computing the first
feasible solution with N0 spheres, the total run time and the total number of IPOPT runs are
reported in the examples below. A picture for the final feasible solution is given in Fig. 6 for
all larger examples.

Example 7 Here, we use a container with L × W × H = 7 × 7 × 30. Our aim is to place
as many as possible of the given N = 600 spheres. We have K = 6 sphere types with
n1 = · · · = n6 = 100,

r1 = 1, r2 = 0.95, r3 = 0.85, r4 = 0.8, r5 = 0.7, r6 = 0.6,

123

686 Journal of Global Optimization (2024) 90:671–689

and

εk = 0, τ k = τ k = 1

6
for k = 1, . . . , 6.

Within about 11min including 17 runs of IPOPT, the heuristic found a feasible solution with
N ′ = 564 spheres and n′

k = 94 for k = 1, . . . , 6. The very first feasible solution consists of
N0 = 414 spheres and was obtained after 6 s.

Example 8 In this example, the container is larger with L × W × H = 9 × 9 × 81. We are
given N = 3.000 spheres with K = 6 types and n1 = · · · = n6 = 500. The remaining
data on rk, εk, τ k, τ k are as in Example 7. A feasible point with N ′ = 2.172 spheres and
n′
k = 372 for k = 1, . . . , 6 was found after about 74min with 67 IPOPT runs. Moreover, we

got N0 = 1.734 spheres for the first feasible placement within 19s.

Example 9 For a container with L ×W × H = 15× 15× 110, N = 12.000 spheres, K = 6
sphere types with nk = 2.000 for k = 1, . . . , 6, and rk, εk, τ k, τ k as in Example 7, the
heuristic obtained a feasible point with N ′ = 7.266 spheres divided into n′

k = 1.211 spheres
of each type k. The total run time was about 1h and 47min with 405 IPOPT runs, the first
feasible solution with N0 = 5.754 spheres was found after about 7min.

Example 10 In this example, we use different values for τ k and τ k for different k, namely

τ 1 = 1
7 − 10−2, τ 1 = 1

7 + 10−2,

τ 2 = 2
7 − 10−2, τ 2 = 2

7 + 10−2,

τ 3 = 4
7 − 10−2, τ 3 = 4

7 + 10−2.

The container is given by L × W × H = 18 × 12 × 35. Moreover, N = 700 spheres of
K = 3 types are available with n1 = 100, n2 = 200, n3 = 400 and radii r1 = 2, r2 = 1.5,
and r3 = 1. Further, we set εk = − 1

2rk for k = 1, 2, 3. The first feasible placement was
found after 25 s with N0 = 428 spheres. The final feasible placement contains N ′ = 477
spheres with n′

1 = 65, n′
2 = 135, n′

3 = 277 and τ ′
1 = 0.13626 . . ., τ ′

2 = 0.28301 . . ., and
τ ′
3 = 0.58071 . . . To get these results, the heuristic needed about 30min with 23 IPOPT runs.

Example 11 This last examples uses a container with L×W ×H = 15×18×47, N = 5.000
spheres of K = 5 types such that nk = 1.000 for k = 1, . . . , 5,

r1 = 1.5, r2 = 1.25, r3 = 0.85, r4 = 0.8, r5 = 0.7,

ε1 = −1, ε2 = −0.8, ε3 = −0.7, ε4 = −0.6, ε = −0.5,

and

τ k = k

15
− 10−2, τ k = k

15
+ 10−2 for k = 1, . . . , 5.

The first feasible solution with N0 = 2.095 spheres was found by Algorithm 2 within 28s.
After about 85min, a better feasible solution with N ′ = 2.172 spheres was determined using
93 IPOPT runs. This solution contains n′

1 = 133, n′
2 = 266, n′

3 = 400, n′
4 = 577, and

n′
5 = 719 spheres of the different types. The final ratios of this solution are τ ′

1 = 0.06348 . . .,
τ ′
2 = 0.12696 . . ., τ ′

3 = 0.19093 . . ., τ ′
4 = 0.27541 . . ., and τ ′

5 = 0.34319 . . .

123

Journal of Global Optimization (2024) 90:671–689 687

5 Concluding remarks and outlook

We developed a novel sphere packing model with nonstandard containment and ratio condi-
tions, a corresponding MINLP formulation, and a heuristic strategy for obtaining a good
feasible solution. Exact solutions of the MINLP formulation were obtained for smaller
instances by applying the global solver BARON at the NEOS server. For larger instances,
the proposed heuristic strategy was successfully implemented and tested.

Future research is directed on improvements of the heuristic strategy. In particular, we
think of modifying Algorithm Top-Down Bisection (Algorithm 4). By an inexpensive
local optimization, certain spheres shall be placed in a lower position. This may reduce the
number of IPOPT runs and, due to this, the overall run time. In addition, more sophisticated
ways to satisfy and exploit the ratio conditions may increase the number of spheres placed in
Algorithm SELECT INDEX SET (Algorithm 3). In this respect, one may think of placing
single spheres in a different way or of using a random choice of spheres. Other potential
research questions arise if the model is changed. For example, the volume of all placed
spheres can be maximized instead of the number of spheres. This also requires adaptations in
the heuristic. Moreover, packing spheres into other types of containers (spheres, cylinders) or
in containerswith prohibited zones [6] is of practical interest. The quasi-containment and non-
overlapping constraints (9) and (10) are nonlinear. Therefore, alternative formulations like
the use of linearization techniques may have the potential to decrease the run time of global
solvers applied to small instances. Along with the global solver BARON used here, other
solvers, e.g., COUENNE or SCIP can be employed. The comparison of different problem
formulations and of several global solvers requires extensive computational experimentation
and is an interesting area for future research.

Acknowledgements The work of all authors except the second was supported by the Volkswagen Foundation
under Grant No. 97 775 and, in addition, under Grant No. 9C086 for the first and third author. We would like
to thank anonymous reviewers for their valuable and constructive comments.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data availibility The data supporting the findings of this study are included in the article.

Declarations

Conflict of interest The authors declare that they have no Conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Araújo, L.J.P., Özcan, E., Atkin, J.A.D., Baumers, M.: Analysis of irregular three-dimensional packing
problems in additive manufacturing: a new taxonomy and dataset. Int. J. Prod. Res. 57(18), 5920–5934
(2019)

123

http://creativecommons.org/licenses/by/4.0/

688 Journal of Global Optimization (2024) 90:671–689

2. Chen, D.: Sphere packing problem. In: Kao, M.-Y. (ed.) Encyclopedia of Algorithms, pp. 871–874.
Springer, Boston (2008)

3. Cuba Lajo, R.A., Loaiza Fernandez, M.E.: Parallel sphere packing for arbitrary domains. In: Bebis, G.,
et al. (eds.) Advances in Visual Computing, Lecture Notes in Computer Science, vol. 13018, pp. 447–460.
Springer, Berlin (2021)

4. Duriagina, Z.A., Lemishka, I.A., Trostianchyn, A.M., Kulyk, V.V., Svachko, S.G., Tepla, T.L., Pleshakov,
E.I., Kovbasyuk, T.M.: The effect of morphology and particle-size distribution of VT20 titanium alloy
powders on the mechanical properties of deposited coatings. Powder Metall. Met. Ceram. 57(11–12),
697–702 (2019)

5. Duriagina, Z., Lemishka, I., Litvinchev, I., Marmolejo, J.A., Pankratov, A., Romanova, T., Yaskov, G.:
Optimized filling of a given cuboid with spherical powders for additive manufacturing. J. Oper. Res. Soc.
China 9, 853–868 (2021)

6. Fischer, A, Scheithauer, G.: Cutting and packing problems with placement constraints. In: Fasano, G.,
Pintér, J. (eds.) Optimized packings with applications, Springer optimization and applications, vol. 105,
pp. 119–156. Springer, Berlin (2015)

7. Flaischlen, S., Wehinger, G.D.: Synthetic packed-bed generation for CFD simulations: blender vs. STAR-
CCM+. ChemEngineering 3(2), 52 (2019)

8. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: AModeling Language for Mathematical Programming,
2nd edn. Duxbury Press/Brooks/Cole Publishing Company (2002)

9. Grosso, A., Jamali, A.R.M.J.U., Locatelli, M., Schoen, F.: Solving the problem of packing equal and
unequal circles in a circular container. J. Global Optim. 47, 63–81 (2010)

10. Halkarni, S.S., Sridharan, A., Prabhu, S.V.: Experimental investigation on effect of random packing with
uniform sized spheres inside concentric tube heat exchangers on heat transfer coefficient and using water
as working medium. Int. J. Therm. Sci. 133, 341–356 (2018)

11. He, Y., Wu, Y.: Packing non-identical circles within a rectangle with open length. J. Global Optim. 56,
1187–1215 (2013)

12. Hifi, M., M’Hallah, R.: A literature review on circle and sphere packing problems: models and
methodologies. Adv. Oper. Res. 2009, 150624 (2009)

13. Hifi, M., Yousef, L.: A local search-based method for sphere packing problems. Eur. J. Oper. Res. 274(2),
482–500 (2019)

14. IPOPT: Documentation. https://coin-or.github.io/Ipopt/
15. Kallrath, J., Frey, M.M.: Packing circles into perimeter-minimizing convex hulls. J. Global Optim. 73,

723–759 (2019)
16. Kampas, F.J., Castillo, I., Pintér, J.D.: Optimized ellipse packings in regular polygons. Optim. Lett. 13,

1583–1613 (2019)
17. Kampas, F.J., Pintér, J.D., Castillo, I.: Packing ovals in optimized regular polygons. J. Global Optim. 77,

175–196 (2020)
18. Karklin, Y., Simoncelli, E.P.: Efficient coding of natural images with a population of noisy Linear-

Nonlinear neurons. Adv. Neural. Inf. Process. Syst. 24, 999–1007 (2011)
19. Kazakov, A., Lempert, A., Ta, T.T.: On the algorithm for equal balls packing into a multi-connected

set. In: Massel, L., et al. (eds.) Proceedings of the VIth International Workshop ’Critical Infrastructures:
Contingency Management, Intelligent, Agent-Based, Cloud Computing and Cyber Security’, pp. 216–
222. Atlantis Press, Amsterdam (2019)

20. Kilinç, M.R., Sahinidis, N.V.: Exploiting integrality in the global optimization of mixed-integer nonlinear
programming problems with BARON. Optim. Methods Softw. 33(3), 540–562 (2018)

21. Litvinchev, I., Infante, L., Ozuna Espinosa, E.L.: Approximate Circle Packing in a Rectangular Container:
Integer Programming Formulations and Valid Inequalities. In: González-Ramírez, R.G., Schulte, F., Voß,
S., Ceroni Díaz, J.A. (eds.) Computational Logistics, vol. 8760 of Lecture Notes in Computer Science,
pp. 47–60. Springer, Cham (2014)

22. Litvinchev, I., Ozuna Espinosa, E.L.: Integer programming formulations for approximate packing circles
in a rectangular container. Math. Probl. Eng. 2014, 317697 (2014)

23. Markót, M.C.: Improved interval methods for solving circle packing problems in the unit square. J. Global
Optim. 81, 773–803 (2021)

24. Martinez, L., Andrade, R., Birgin, E.G., Martinez, J.M.: Packmol: A package for building initial
configurations for molecular dynamics simulations. J. Comput. Chem. 30(13), 2157–2164 (2009)

25. NEOS Server: State-of-the-Art Solvers for Numerical Optimization. https://neos-server.org/neos/
26. Ning, J., Wang, W., Zamorano, B., Liang, S.Y.: Analytical modeling of lack-of-fusion porosity in metal

additive manufacturing. Appl. Phys. A 125, 797 (2019)
27. Pankratov, A., Romanova, T., Litvinchev, I.: Packing ellipses in an optimized rectangular container.Wirel.

Netw. 26, 4869–4879 (2020)

123

https://coin-or.github.io/Ipopt/
https://neos-server.org/neos/

Journal of Global Optimization (2024) 90:671–689 689

28. Rivera-Alba, M., Vitaladevuni, S.N., Mishchenko, Y., Lu, Z., Takemura, S.-Y., Scheffer, L., Meinertzha-
gen, I.A., Chklovskii,D.B., de Polavieja,G.G.:Wiring economyand volume exclusion determine neuronal
placement in the Drosophila brain. Curr. Biol. 21(23), 2000–2005 (2011)

29. Romanova, T., Stoyan, Y., Pankratov, A., Litvinchev, I., Marmolejo, J.A.: Decomposition algorithm for
irregular placement problems. In: Vasant, P., Zelinka, I., Weber, G.W. (eds.) Intelligent Computing and
Optimization, vol. 1072 of Advances in Intelligent Systems and Computing, pp. 214–221. Springer, Cham
(2020)

30. Romanova, T., Stoyan, Y., Pankratov, A., Litvinchev, I., Avramov, K., Chernobryvko, M., Yanchevskyi,
I.: Optimal layout of ellipses and its application for additive manufacturing. Int. J. Prod. Res. 59(2), 1–16
(2021)

31. Sahinidis N.: BARON user manual v. 2022.11.3 (2022). http://www.minlp.com/downloads/docs/
baronmanual.pdf

32. Scheithauer,U.,Romanova,T., Pankratov,O., Schwarzer-Fischer, E., Schwentenwein,M., Ertl, F., Fischer,
A.: Potentials of numerical methods for increasing the productivity of additive manufacturing processes.
Ceramics 6(1), 630–650 (2023)

33. Specht, E.: http://www.packomania.com/
34. Stoyan, Yu., Yaskov, G., Romanova, T., Litvinchev, I., Yakovlev, S., Cantu, J.M.V.: Optimized packing

multidimensional hyperspheres: A unified approach. Math. Biosci. Eng. 17(6), 6601–6630 (2020)
35. Stoyan, Yu., Yaskov,G.: Optimized packing unequal spheres into amulticonnected domain:mixed-integer

non-linear programming approach. Int. J. Comput. Math. Comput. Syst. Theory 6(1), 94–111 (2021)
36. Szabó, P.G., Markót, M.Cs., Csendes, T., Specht, E., Casado, L.G., García, I.: New Approaches to Circle

Packing in a Square. With Program Codes. Springer, New York (2007)
37. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math.

Program. 103(2), 225–249 (2005)
38. Wang, J.: Packing of unequal spheres and automated radiosurgical treatment planning. J. Combin. Optim.

3, 453–463 (1999)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://www.minlp.com/downloads/docs/baron manual.pdf
http://www.minlp.com/downloads/docs/baron manual.pdf
http://www.packomania.com/

	Packing spheres with quasi-containment conditions
	Abstract
	1 Introduction
	2 Problem formulation
	2.1 Preliminaries and notation
	2.2 Abstract model
	2.3 Formulation as mixed-integer nonlinear program

	3 The heuristic
	3.1 The heuristic strategy
	3.2 Construction of a feasible placement
	3.3 A decomposition algorithm for the OD problem

	4 Computational results
	4.1 Results for small instances
	4.2 Results obtained by the heuristic

	5 Concluding remarks and outlook
	Acknowledgements
	References

