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Abstract
Delivery times represent a key factor influencing the competitive advantage, as manufacturing companies strive for timely
and reliable deliveries. As companies face multiple challenges involved with meeting established delivery dates, research on
the accurate estimation of delivery dates has been source of interest for decades. In recent years, the use of machine learning
techniques in the field of production planning and control has unlocked new opportunities, in both academia and industry
practice. In fact, with the increased availability of data across various levels of manufacturing companies, machine learning
techniques offer the opportunity to gain valuable and accurate insights about production processes.However,machine learning-
based approaches for the prediction of delivery dates have not received sufficient attention. Thus, this study aims to investigate
the ability of machine learning to predict delivery dates early in the ordering process, and what type of information is required
to obtain accurate predictions. Based on the data provided by two separate manufacturing companies, this paper presents a
machine learning-based approach for predicting delivery times as soon as a request for an offer is received considering the
desired customer delivery date as a feature.

Keywords Delivery time · Machine learning · Production planning and control · Artificial intelligence · Case study

Introduction

Customer expectations regarding logistic performance have
strongly increased in the last decades. Nowadays, customers
expect not only high quality and individual products for low
prices but also short and especially reliable delivery times
(Paprocka & Cyba, 2015). This results in major challenges
for manufacturing companies. On one hand, althoughMake-
to-Stock (MTS) approaches allow fast delivery times, they
might not be beneficial for all types of manufacturing com-
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panies due to a large number of products or product variants.
On the other hand, Make-to-Order (MTO) manufacturers
are able to address more customized needs but they often
tend to use standard delivery times (Rao et al., 2005). The
latter approach leads to a strong fluctuation of capacity uti-
lization and requires high effort in continuously adjusting
the manufacturing capacity. In addition to that, customers’
requirements can vary greatly.While in some cases the deliv-
ery should just be as fast as possible, others demand a specific
time window for the delivery or even a just-in-time deliv-
ery. The resulting pressure on manufacturing companies to
meet communicated delivery dates while offering competi-
tive delivery times pushes them tofind reliable approaches for
accurate predictions. Often, a reliable delivery date can only
be determined by converting a customer order into internal
manufacturing orders that are scheduled within the manu-
facturing execution system. However, since converting and
planning manufacturing processes is time-consuming, com-
panies face the choice of delaying the confirmation of the
customer order or adding significant buffers to ensure on-
time delivery for the communicated delivery date.
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For these reasons, the estimation of delivery dates has been
addressed by the literature for decades. However, the major-
ity of contributions are based on numerous assumptions and
strongly condense the underlying information from various
orders. In recent years, research has been increasingly focus-
ing on the application of machine learning approaches for
production planning and control tasks (Panzer & Gronau,
2023; Waubert de Puiseau et al., 2022). Nevertheless, the
estimation of delivery dates often only appears as a sidenote
while the main objective of such contributions is to opti-
mize a system regarding tasks like order acceptance (Zhang
et al., 2021), order release planning (Schneckenreither et al.,
2021), or sequencing (Liang et al., 2012). Existing research
in manufacturing analytics has shown a notable gap in its
coverage, particularly regarding the application of Quantita-
tive Logistic Models (QLM) in extracting valuable insights
from raw manufacturing data. To address this shortcom-
ing, our study explores the use of QLM to improve feature
extraction from manufacturing data and then validates the
improvements achieved through practical applications in two
different cases. In addition, current research inmanufacturing
analytics focuses mainly on the prediction of manufactur-
ing lead times, while neglecting the consideration of desired
delivery dates, which may be a crucial aspect. Our results
prove the importance of this integration, showing thatwithout
considering desired delivery dates, the accuracy of delivery
date forecasts is no better than that achieved by conventional
methods such as moving averages or mean delivery times.
The central role of desired delivery dates in improving fore-
cast accuracy is carefully assessed through the application of
Shapley values, shedding light on their profound impact in
this area. Through the strategic use of established QLM, we
strive to extract valuable features based on domain knowl-
edge. This approach enables domain specialists to understand
the underlying factors of predictions. As a result, it has
the potential to enhance both the trust and clarity of AI,
which addresses a significant challenge in its integration into
decision-making processes (Adadi & Berrada, 2018; Gol-
payegani et al., 2023).

Therefore, the object of this study is to evaluate the use
of machine learning in predicting delivery dates through a
combined case study from two job shop manufacturers. For
the case studies, we use two German companies that oper-
ate as contract manufacturers producing small batches from
1 to 10,000 pieces. One manufacturer produces precision
mechanics utilizing 17 different machines. The other case
deals with a manufacturer of rubber sealings utilizing 52
machines covering 15 different manufacturing technologies.

The contribution of this study can be summarized as fol-
lows:

– We prove that machine learning is capable of assisting in
predicting delivery times at various stages of the order

processing workflow, which leads to sustainable com-
petitive advantage for companies. We especially use the
desired delivery date as a feature. This has not been taken
into account in predicting the delivery date yet.

– We evaluate how sets of input parameters available at dif-
ferent stages of the process contribute to the prediction
accuracy.

– We adapt the CRISP-DM methodology in this paper to
focus on the intricate task of delivery time forecasting.
In doing so, we extend the scope of the conventional
CRISP-DM framework, introducing elements such as the
utilization of QLM.

– We demonstrate that machine learning is able to estimate
delivery dates before confirming incoming orders, which
reduces manual efforts throughout the process.

– Fromapractical perspective,we show thatQLMcombined
with machine learning can significantly improve the pre-
diction of the time of order confirmation. Compared to the
previous method in one Use Case, it shows that the fore-
cast error, measured by the Normalised RootMean Square
Error (NRMSE), can be reduced by about two-thirds.

– We show that the selection of the best features and their
quantitative importance (measured by SHAP Values) is
central to forecast quality. It is not only about finding the
best algorithm but also about identifying and quantifying
those features that give the best results. Based on the use
cases we present, we are able to highlight the essential role
of considering the desired delivery date for the accurate
prediction of delivery dates. This finding is useful for all
companieswith small batch production, as it can be applied
to their forecasting processes.

Our study is structured as follows. After a literature review
that places our contribution in the context of current research,
we outline the methodology used to utilize domain knowl-
edge in the feature extraction process. Then, the case studies
are described and the application of the steps of the method-
ology are documented in the main case. The results are
compared with the findings of the secondary case before
the most relevant input factors are discussed within the con-
text of existing domain knowledge. Results indicate that the
extraction of features using domain-specific knowledge sig-
nificantly improves the quality of the prediction and the
explainability of the overall results. In the presented main
case, the proposed machine learning-based approach esti-
mates delivery dates with an additional error of 2 business
days compared to the estimation of the process planning
department. The machine learning approach does not use
data that can only be used after process planning has been
conducted on the customer order. Therefore, the machine
learning-based approach can be used significantly earlier in
the process, for example within the offer process or before
confirmation of the customer order.

123



Journal of Intelligent Manufacturing (2024) 35:3937–3958 3939

Literature review

The scientific community provides different definitions for
delivery times depending on the domain. Within the indus-
trial context, Wiendahl (1997) defines the ’delivery time’ as
the period of time between the placing of the order by the cus-
tomer and the receipt of the goods, the ’delivery date’. This
definition stems from a logistics-related context in multi-link
supply chains. Accordingly, Chapman et al. (2017) define
delivery times as the sum of transport time, picking, provi-
sion, and order processing. Looking at the delivery time from
the production point of view, the definition slightly differs.
Following the Hanoverian Supply Chain Model (Schmidt &
Schäfers, 2017), delivery times are the result of through-
put times of the orders through the customer-order specific
processes plus possible transport times. This implies, that
the delivery time depends on the stocking strategy (Löd-
ding, 2013). Thus, the delivery time in Engineer-To-Order
(ETO) includes different time components than in Make-To-
Stock (MTS) approaches. In addition, the delivery time is
influenced by various variables. Among other factors, are
the sequence-dependent setup times, the share of different
product groups in the product mix, the batch size, the order
lead time, and thus also the delivery time of a product in
discrete manufacturing (Schuh et al., 2019). In ETO environ-
ments, the time components for the design and engineering
are dominant, other components are procurement or supplier
lead times, and lead times for production, including manu-
facturing, assembly, and testing (Alfnes et al., 2021).

The prediction of delivery times in the highly variable
and complex production environment is necessary (Bhalla
et al., 2023). Accurate prediction of delivery times is a good
foundation for negotiations (Rau et al., 2006), as it allows
companies to better plan and allocate resources, and make
informed decisions based on a high number of influencing
variables and gives, therefore, an advantage in the market
(Amaro et al., 1999; Bhalla et al., 2023; Cannas et al., 2020;
Grabenstetter & Usher, 2014; Hicks & Braiden, 2000). In
the literature, delivery time estimation has been more of
a byproduct of models to improve logistics performance,
including order release planning or sequencing. Next to esti-
mating delivery dates prior to order confirmation, assessing
the feasibility of meeting requested delivery dates is highly
important (Bhalla et al., 2023). As we move towards data-
drivendecision-making, variousmodels havebeendeveloped
for determining delivery time as well as different individ-
ual components such as due dates or lead times in different
domains (Bezirgiannidis et al., 2013; Choetkiertikul et al.,
2017; Jodlbauer & Tripathi, 2023). The literature describes
deterministic, stochastic, and combined methods. In the
industrial environment, mathematical calculations, heuris-
tics, and meta-heuristics were first described decades ago
(Adam et al., 1993; Ragatz et al., 1984). Thürer et al. (2012)

and Moses et al. (2004) propose simulation-based heuristics
for estimating delivery dates, known as simulation-based due
date setting and incremental forward simulation based on an
approach of Roman and Del Vallei (1996). Even today, these
approaches are still being used and further research is being
carried out on them (Bhalla et al., 2023).

In recent years, the use of machine learning methods to
support decision-making inmanufacturinghas beengrowing,
as they provide the opportunity to make accurate predic-
tions based on large amounts of data. In particular, the use of
suchmethods to solve production planning and control (PPC)
tasks is gaining increasing interest. More recently, there has
been a sharp increase in the number of publications on the use
of machine learning in the estimation of components of the
delivery times as well, especially throughput times (Maier
et al., 2022). This can be explained by the fact that there are
various variables influencing the total delivery time. Espe-
cially in this environment with different data and influencing
factors, the use of machine learning helps to identify corre-
lations in the data (Shet et al., 2022). This can be particularly
valuable in the manufacturing environment to analyze the
dependencies of delivery time components in detail.

The majority of existing methodologies do not utilize
QLM for feature extraction in delivery time forecasting.
Much of the existing literature mainly focuses on modeling
techniques and neglects the crucial step of feature extraction.
A more in-depth discussion of the primary influencing fac-
tors with the aim of generalization is notably observed in the
works of Öztürk et al. (2006) and Bender and Ovtcharova
(2021). The authors employ distinct (simulation) models to
assess the impacts of various manifestations of influencing
factors on forecasting accuracy.

A review of the literature in this field reveals that various
authors have examined delivery times or some of their key
components. In our research, we considered references that
deal directlywith the assignment of time components, aswell
as literature in which a prediction of any time components
is implied as part of the optimization of a system. Table 1
classifies methods for determining delivery times as well as
the type of input data. Based on this, it is possible to draw
several conclusions regarding the use of machine learning
for predicting delivery times in a practical setting. Firstly,
many of the existing publications only utilize simulation
data, which may not accurately reflect real-world scenarios
(Alenezi et al., 2008; Bender & Ovtcharova, 2021; Murphy
et al., 2019; Öztürk et al., 2006). Using simulation-based
approaches, Adam et al. (1993) and Thürer et al. (2012) nev-
ertheless demonstrated that it is possible to predict production
lead times in complex systemswithmulti-level product struc-
tures, but only a few exceptions specifically focus on delivery
time rather than just the order lead time (Alnahhal et al.,
2021; Khiari & Olaverri-Monreal, 2020). Second, most con-
tributions continue to use, at least for comparison, classical
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Table 1 Overview of data-based
determination of delivery time
and its components in complex
production systems, based on
Rokoss et al. (2021) and Bhalla
et al. (2023)

data-driven methods such as linear regression, heuristics,
or other mathematical models (Nguyen, 2016; Polim et al.,
2017). Thirdly, publications that use more complex algo-
rithms such asNeuralNetworks also typically use simulation,
which may lack practical validation (Schneckenreither et al.,
2021; Yang & Zhang, 2018; Yang et al., 2017). The consid-
ered research, applying Neural Networks on real data, deals
with the delivery of packages and is therefore assigned to
a rather foreign domain (Araujo & Etemad, 2021). Finally,
many publications with real-data validation use or com-
pare tree-based models, whose use is often based on easier
comprehensibility (Alnahhal et al., 2021; Khiari & Olaverri-
Monreal, 2020; Mohsen et al., 2023).

Overall, existing literaturemaintains a narrow focus on the
determination of specific time components such as through-
put time, instead of looking at the prediction of the delivery
time. A holistic approach to determining delivery times
requires understanding the relevance of production man-
agement theory-related features, as well as increasing the
interpretability of the results with existing domain knowl-
edge. A structured approach to applying the supervised
learning models to real production data is needed. This
involves several steps, including the need for clear business
understanding to include the relevant features on the deliv-
ery time, detailed data pre-processing using specific models
for feature extraction, as well as suitable modeling to select

the best supervised learning models should be aimed for.
This paper intends to consider these aspects from the liter-
ature review while shedding light on the development and
application of machine learning techniques for delivery time
prediction.

Methodology

This paper uses a deductive approach to contribute to the
explanatory research on delivery time determination. The
methodology used to predict delivery times follows an
applied research approach and is based on real world primary
data. Using exemplary use cases is an established approach in
the field ofmachine learning, as it allows to gain insightswith
practical relevance (McCutcheon & Meredith, 1993; Stein-
berg et al., 2022). Thus, a machine learning-based approach
for predicting delivery times has been developed using data
and information from two separatemanufacturing companies
producing in small batches. In contrast to mass producers,
small-batch producers have an earlier decoupling point from
customer orders. The earlier decoupling point allows for
more customization of products to meet the product variabil-
ity needs of the market, but at the same time missing finished
goods buffers lead to longer delivery times (Olhager, 2003).
Small batch manufacturers generally have high production
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uncertainty due to various complexity and dynamic charac-
teristics like production volumes, product mix, and design
changes (Birkie & Trucco, 2016; Braglia et al., 2019; Pow-
ell et al., 2014). These characteristics cause variability in
the individual components of the delivery time, compared
to a mass producer that stores finished goods in stock. It
increases the difficulty of the prediction. Analyzing those
dynamics is a main challenge to manage their impact on the
companies’ targets (Richter et al., 2023). External factors
like unstable incoming purchases or customer request dates
act as a catalyst for internal fluctuations because they lead to
rush orders and non-linear scheduling, resulting for example
in sub-optimal capacity utilization. As these aspects affect
delivery times, the approach presented in this study consid-
ers the characteristics of small batch production.

The overall aim is to answer the following research ques-
tions:

1. Can delivery times be predicted earlier in the process in
the same quality the process planning department pro-
vides?

2. Which domain knowledge-specific features do improve
the quality of the prediction?

3. What are the different quantitative effects of the different
features on the training model?

4. Do the domain knowledge-specific features help a
domain expert to follow up on the decisions made?

The methodology used for the development of the
approach follows the widespread, industry-independent
Cross Industry Standard Process for Data Mining (CRISP-
DM) (Chapman et al., 2000). We use domain knowledge
by applying QLM described in the Hanovarian Supply
Chain Model (Schmidt & Schäfers, 2017) on manufacturing
systems to identify relevant input factors regarding themanu-
facturing process. The underlying funnel model for capacity
utilization (Bechte, 1988) and the throughput diagram (Wien-
dahl & Tönshoff, 1988) represent the main influence on the
feature extraction process. Overall, the methodology of this
paper aims to specify the very broad CRISP-DM for the task
of delivery time forecasting, by taking into consideration
desired delivery dates and QLM.

CRISP-DM follows six key phases using a cyclic
approach, including business understanding, data under-
standing, data preparation,modeling, evaluation, and deploy-
ment (Chapman et al., 2000). The deployment phase is
strongly company-dependent and therefore not part of this
paper. Although CRISP-DM itself is well documented, it
only provides a very broad structure to a wide variety of
data mining projects. To address the requirements of deliv-
ery time prediction, the specific methods utilized to adapt
the CRISP-DM for forecasting delivery times are discussed

below. Figure 1 gives a schematic overview of the specific
methods that are used in the respective CRISP-DM phase.

Business and data understanding

The initial phase, business understanding, requires gaining
knowledge about requirements and needs from a business
perspective. From a value stream perspective, it is possi-
ble to identify the key stages of the ordering process, from
the first customer inquiry to the product delivery. From an
operational perspective, it is possible to understand the man-
ufacturing process and the sequence of operations required
to manufacture the goods, both automated and manually.
Finally, interviews with stakeholders allow to unveil domain
knowledge and in particular what are the key factors influ-
encing delivery times according to the stakeholders’ business
experience, thus providing guidance for future modelling.
To address the specific characteristics of small batch manu-
facturers, the relevance of external manufacturing processes
needs to be examined using value stream mapping and/or
interviews.

Key factors of the data understanding phase for deliv-
ery time prediction include data on products, customers, and
suppliers. Process-wise data on ordering processes,manufac-
turing processes, and overallmarket data need to be analyzed.
In terms of products, it is possible to identify the structure
of the product portfolio, the volume, complexity, manufac-
turing steps, and whether products follow a Make-to-Stock
(MTS) or a Make-to-Order (MTO) approach. Customer data
shows the number of orders, order frequency, pricing, and
relevant customer groups. Similarly, supplier data highlights
the presence of possible stable partnerships, as well as how
semi-finished goods and components are delivered (i.e. based
on the customer order or in stock), and in what time frame.
In general, exploring the available data needs to be split into
data that is available prior to the processing by the process
planning department and data that is available after process-
ing. To apply QLM during feature engineering it is crucial to
extract relevant timestamps from the ERP systems. Times-
tamps marking the start and finish of every machining step
internally are necessary, as well as timestamps on external
machining and procurement. The overall focus of the data
collection must be to reconstruct the full internal and exter-
nal processing of a customer order, covering every step from
the first offer to the handover of the finished goods to the
shipping company.

Data preparation and feature extraction

The data preparation phase involves all activities required
to prepare the final dataset before it is fed into any model.
In workshop environments, the key manufacturing activities
are measured manually by operators, who observe processes
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Fig. 1 CRISP-DM scheme (Chapman et al., 2000) enlarged with application-specific methods for delivery time prediction

and record timestamps. This manual process ultimately often
leads to gaps in the collected data. The use of Multivariate
Imputation by Chain Equations (MICE) approach for han-
dling missing values is an appropriate approach to improve
the overall data quality before proceeding to feature engineer-
ing. Feature engineering is supported by domain knowledge
regarding production planning in extracting features from
raw data that best describe the manufacturing, procure-
ment, and shipping processes. The Hanovarian Supply Chain
Model offers different approaches to describe the logistic
performance of a manufacturing system. Due to the lack of
finished goods stock inventory in MTO workshop manufac-
turing, stock inventorymodels aswell as service levelmodels
are not applied to the datasets. Instead, the feature extraction
focuses on internal and external manufacturing processes as

well as customer and supplier ratings. Internal manufactur-
ing processes are analyzed by applying the funnel model
for capacity utilization (Bechte, 1988) and the throughput
diagram (Wiendahl & Tönshoff, 1988) on the existing data.
The combination ofWork-in-Process (WIP) and the resulting
range of the systems, allows to identify internal manufac-
turing bottlenecks for every order. WIP is defined as the
workload that is waiting to be processed by a system. WIP
can be measured using a time scale (e.g. manufacturing min-
utes) or using a quantitative scale (e.g. number of orders).
For further analysis, the average output of a system needs to
be calculated. The average output of a system is measured
by the sum of the output over all orders divided by the time it
took the system to finish the orders. The range of the system x
is calculated by dividing WIP by the average output over the
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past n manufacturing orders. The range measures the time a
system needs to finish all waiting orders (Kettner & Bechte,
1981).

range(n, x) = W I P(x)
1
n

∑n
i=1 output (x)i

(1)

The range can also be applied to the whole factory to
get an idea of the overall waiting time for new orders. The
range of the production system is calculated by dividing the
WIP of waiting customer orders by the average quantity of
dispatched orders. With the range for every system available,
every order can be checked for their respective bottleneck
system by finding the maximum value of the ranges for the
systems k the specific order needs to pass.

rangebottleneck (n, k) = max
x∈k

{
range(n, x)

}
(2)

External manufacturing processes are covered in the fea-
ture set with the average delivery time DT and the average
desired delivery time deviation �DT over the past m orders
placed.

DTm = 1

m

m∑

i=1

DT (3)

�DTm = 1

m

m∑

i=1

(DT − desiredDT ) (4)

The presented features can be combined with an ABC
classification or ranking of the suppliers. The same proce-
dure is applicable to the customer side, offering information
on key account customers that might result in prioritization
of their orders to maintain a high long term delivery time
reliability. An approach towards a ranking system is to gen-
erate rank by applying a sortation to customers and suppliers
by the relative quantity Q of orders that have been placed
by customer/supplier within a certain time frame in the past
(e.g. three years) compared to all placed orders m.

Q(z) = 1

m

∑
ordercustomer/supplier (5)

It is important to note that the presented approaches fol-
low the basic steps of feature engineering, and they should
be considered as a baseline for further development. Every
production system has its unique mechanisms and resulting
data, which needs to be processed accordingly.

Modeling

After the data has been adequately prepared, modeling tech-
niques within the field of machine learning can be applied

to predict delivery times and extract relevant input factors.
This requires selecting the most performant model out of
various proven supervised learning algorithms. In this study,
we utilize Support Vector Machine (SVM), Artificial Neural
Networks (ANN), Gradient Boosting Tree (XGB), Decision
Tree (DT), Random Forests (RF), and Linear Regression
(LR). To determine the influence of domain-specific knowl-
edge on feature generation, models are trained with different
feature sets. The modeling involves tuning relevant param-
eters of the models by applying grid search, reducing the
number of features by backward feature elimination, and
cross-validating the model. Since the second case only con-
sists of 2632orders, for consistencyboth cases utilize a 90–10
train-test split to improve the overall prediction quality com-
pared to the more common 80–20 split. This is achieved by
increasing the size of the training and validation data set
(Xu & Goodacre, 2018) to 90%. The increased risk of over-
fitting that could be caused by the smaller test data set is
reduced by cross validating the prediction results (Hawkins
et al., 2003; Vabalas et al., 2019). When validating predicted
delivery times, it is important to take into consideration the
chronological sequence of the orders. Performing a k-fold
cross validation, often used in classification problems, would
expose the dataset to the “look-ahead bias”. This bias occurs
when future data is used during training, thus leading to bet-
ter results in the training process than later in a production
environment. To avoid introducing future knowledge for pre-
dictions, a Time Series Split Cross Validation approach is
applied. This method allows to avoid the look-ahead bias
while using enough data to perform effective cross valida-
tion (see Fig. 2). While the training set increases in size, the
test set maintains a consistent size and includes observations
that happen after the ones in the training set.

Evaluation

The evaluation phase allows to assess the results provided
by each model and compare the results. After the data is
trained on 90% of the dataset in the modeling phase, the
model is tested on the remaining 10%of the data. The process
is repeated for various algorithms and feature sets, and the
performance is evaluated accordingly. The quality of the pre-
dicted delivery times is measured as the deviation between
the actual delivery date and the predicted delivery date in
business days. To put the measurements into context, the
results are compared to the prediction deviation of a) the
delivery dates estimated by the process planning department
and b) estimated delivery dates if the average delivery time is
used. To analyze the performance of the different approaches,
various metrics are used. One of the most widely adopted
metrics is R2, which is used in regression problems to eval-
uate the quality of the model on a scale from − ∞ to 1.
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Fig. 2 Time series cross validation vs. K-fold cross validation (adapted from Hyndman and Athanasopoulos (2021))

R2(y, ŷ) = 1 −
∑

(yi − ŷi )2
∑

(yi − y)2
(6)

Due to its intuitive interpretability, another popular metric
is using the mean average error (MAE), which returns the
absolute distance of the prediction from the real value. When
predicting delivery time, MAE is measured in business days.

MAE(y, ŷ) =
n∑

i=1

|yi − ŷi |
n

(7)

However,MAE is robust to outlierswhen there are enough
observations close to the real value. For the prediction of
delivery times for small batch manufacturers, outliers are
extremely important as small deviations can be addressed
by adjustments such as rescheduling or increased capacity
(e.g. extra shifts), while large differences between the pre-
diction and the real delivery time represent a big issue for the
manufacturing company. Therefore, because of its ability to
weight outliers more heavily, the Root Mean Squared Error
(RMSE) is selected as the preferred metric for the prediction
of delivery times.

RMSE(y, ŷ) =
√

∑n
i=1(yi − ŷi )2

n
(8)

In addition to the metrics previously mentioned, the nor-
malized RMSE and the normalized MAE are used to allow
to comparison of results between different manufacturing
systems, as normalization allows to compare datasets with
different scales.

N RMSE(y, ŷ) = RMSE(y, ŷ)
1
n

∑|yi |
(9)

NMAE(y, ŷ) = RMSE(y, ŷ)
1
n

∑|yi |
(10)

However, the proposed approach aims to provide an auto-
matedmethod for predicting the delivery date eitherwhen the
first offer is made or shortly before the incoming customer
order gets confirmed. The proposed methodology aims to
adapt the broadly applicable CRISP-DM to the task of deliv-
ery time forecasting by utilizing desired delivery dates and
QLM.

Case studies

The methodology presented above is validated through its
application to two case studies from two real world manu-
facturing companies. Both companies behind the following
case studies use workshop production, despite operating in
different industries. After a short introduction of both cases,
the first case study is described in detail. As the second case
study follows the key steps of the main one, only the results
are presented. Since the study aims to compare predictions
made at different points in time, both case studies follow
the experimental design shown in Fig. 3. In the first step
(I), manufacturing as well as procurement, article, and cus-
tomer order data is fetched from different systems within the
company. Then, all relevant features are extracted from the
existing data (II). The features are split into three groups (A,
B,C). Feature groupAconsists of features that can be directly
extracted from the customer order, such as ordered articles
or the date of order confirmation. Feature group B consists of
features that can be extracted from the underlying data utiliz-
ing domain knowledge. The features in group B are extracted
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Fig. 3 Experimental design for both examined case studies
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from the data by applying QLM as described in the method-
ology section. Feature group C consists of features that can
only be extracted late in the order process when the process
planning department has finished processing the order. The
features of group C contain the planned start of manufactur-
ing, planned throughput time, and the planned delivery date.
In the third step (III), the feature sets for the modeling phase
are combined. All three feature sets contain features directly
from the dataset (group A). Feature sets 2 and 3 also contain
features that derive from domain knowledge (group B). Fea-
ture set 3 also contains features that are only available later
in the process (group C). The fourth step of the experimen-
tal design is the modeling and evaluation phase as described
in the methodology section (IV). For both cases, the same
model parameters are applied as described. The modeling
phase consists of three phases—the model selection, the fea-
ture reduction, and the model refinement phase. In the final
step, the results of the application of the feature sets are dis-
cussed in the context of manufacturing management domain
knowledge (V).

Comparison: case study business characteristics

Both examined companies are make-to-order (MTO) manu-
facturers based in Germany. The manufacturer behind case
1 produces order-specific rubber sealings. The manufacturer
behind case 2 produces metallic parts for mechanical use
cases. Both companies produce in batches between 1 and
10,000 pieces for a global market. Since the global shipping
times vary widely depending on the level of urgency of the
shipping and the shipping provider, all delivery dates in both
cases are communicated ex works. The two cases were cho-
sen for this study because of the similarity in the underlying
business process from the initial offer to the final delivery
of the goods. The manufacturing process of the goods usu-
ally requires between three to ten machining steps in case
1 and three to seven machining steps in case 2. Although
the two examined cases share several similar process pat-
terns, there are some differences. The company behind case
1 does not send unfinished goods out to other manufactur-
ers for external processing such as painting. In case 2, those
external processes are part of the manufacturing process and
can impact the manufacturing throughput time of the orders.
Additionally, the desired delivery date was not specified in
the dataset for case 2.

During the offer process, the sales department estimates
delivery times based on experience, taking a large buffer
time into the calculation. After receiving the customer order,
along with CAD (Computer Aided Design) files describing
the object details, the order gets confirmed and the details are
forwarded to the process planning department. On average,
the process planning department is able to estimate a delivery

date using manufacturing execution systems and communi-
cate it to the customer within 7 business days for case 1 and
four business days for case 2. During this time, the process
planning department verifies the CAD files sent by the cus-
tomer, checks the availability of raw materials, and defines
process details related to manufacturing. Decisions on uti-
lized manufacturing methods and machines are finalized and
then migrated into software files for production. Finally, the
order is placed into the Enterprise Resource Planning (ERP)
system and the theoretical delivery date is calculated. Over-
all, this planning process results in a high risk of the delivery
date initially communicated in the order confirmation not
being matched by the manufacturing capacities. This Mis-
match will first be visible days after the confirmation of the
customer order, as shown in Fig. 4. Therefore, the key objec-
tive in the given case studies is predicting the delivery date
of a customer order based on the information available at
the time of the first offer, although a machine learning-based
approach can be applied also later in the order processing (i.e.
order confirmation andmanufacturing order released into the
ERP system) (see Fig. 4).

Case study 1

Business and data understanding

Data was fetched from the company’s Enterprise Resource
Planning (ERP) system including the time frame from
07/23/2019 to 03/31/2022. Table 2 gives a short description
of the raw data that has been processed.

The main data set on manufacturing orders contained
16,361 single orders involving 58,344 manufacturing steps.
The manufacturer finalizes approximately 300 customer
orders on a weekly basis. Orders from 1,630 different cus-
tomers covered 7,620 different articles to be produced. The
full data set contains ten tables counting 73 columns and
2,393,353 rows.

Data preparation and feature extraction

To gain valuable insights, the data collected needs to be
cleaned and processed. The main goal of this phase is to
identify relevant features and avoid data inconsistencies that
might lead to inaccurate results during the modeling phase.

Firstly, the analysis focuses on the entire dataset and the
label attribute. Across the entire dataset, duplicate data has
been removed, and missing data points were omitted from
the dataset using Multiple Imputation by Chained Equa-
tions (MICE) and k-nearest-neighbor regression. The label
attribute contains the delivery time. For this, the original
timestamps have been converted into integers represent-
ing the number of business days since the customer order.
Removing non-business days allows to eliminate the effect of
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Fig. 4 Customer order processing (both cases)

Table 2 Description of raw data
Category Data Included data/description

Customer order Descriptive data Quantity ordered, customer ID, timestamps on
order, desired delivery date, real delivery date

Order positions Article ID, quantity, material, throughput time

Articles Descriptive data Name, revision, bill of material ID

Measurements Information on shape and measurements (74
different attributes)

Bill of materials Quantity of parts needed per article

Procurement Replenishment lead
times

Replenishment lead time per article (overall
average, not time specific)

Historical stock
inventory

Stock inventory of every material on a daily basis

Production process Timestamps operations operation start, operation end, set up start, set up
end

Descriptive data
operations

Sequence of operations, machine number, operator

Machining areas Connects machines to machining areas, based on
manufacturing technology

Working time
documentation

Registered times of operators being assigned to a
machine by opening a manufacturing step on
machines operating computer

public holidays (e.g. Christmas) on themanufacturing capac-
ity and delivery times (see Fig. 5). This enables the extraction
of clear statistics of the prediction variable. Thus, the average
delivery time is around 18 days, and over 99% of deliveries
are completed within 50 business days, with only a few out-
liers over 50 business days (see Fig. 6).

Secondly, features have been examined and processed
independently to address their individual characteristics. As
a result, ad-hoc steps for data preparation have been followed
for customer order-related features, features representing

production planning and control information (domain knowl-
edge), and features representing the planned times available
after the order has been processed by the process planning
department.

Attributes related to customer orders (feature group A)
contain various information including order date, desired
delivery date, products, and other customer details. These
features are converted to numerical or categorical typeswhile
ensuring consistency across the dataset. Among these fea-
tures, there is also the predicted number of machines to be
used in themanufacturing process. The company behind case
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Fig. 6 Distribution of the label attribute (case 1)

Fig. 5 Daily utilization of available work hours (case 1)

1 is organized in job shops, with 13 different departments
that group machines of the same type (e.g. milling, drilling,
gluing). When the customer first requests an offer, the sales
department estimates how often these departments need to
be utilized to complete the order.

Additional attributes have been extracted to represent the
domain knowledge in productionmanagement (feature group
B), with the features deriving fromQLM. These features aim
to provide statistics related to the performance of the man-
ufacturing system, based on historical data. This is due to
the influence of the performance of manufacturing systems
on delivery times. For example, the presence of bottlenecks,
which vary depending on specific product routings, limit the
amount of output a manufacturing system can deliver (Gol-
dratt & Cox, 1984).

Finally, after the order has been processed by the process
planning department, it is possible to extract the attributes
representing the planned times (feature group C), namely
the planned throughput time, the plannedmanufacturing start
date (expressed in number of business days since receiving

the customer order), the planned machine set up times and
cycle times.Other historical information represents the status
of themanufacturing system. This includes the level of work-
in-progress (WIP) in the factory and in specific departments,
aswell as the average number of processed orders in a specific
month for both the whole factory and specific departments.

The three feature groups collected represent different
inputs to the modeling phase (see Table 3).

Modeling

Modeling and evaluation for the case study are iterated three
times with different feature sets. The initial predictive model
is developed using two of the three main data groups iden-
tified in the previous phase, namely customer order-related
data, and domain knowledge (feature set 2). These two types
of information are available as soon as an offer is created or
a customer order is received, while planned times features
become available only later in the process once the process
planning department has processed the order. Thus, together
these two groups are the input of the baseline scenario. After
a model is developed using feature set 2 as input, themodel is
re-trained changing the input to feature set 1 and feature set
3, thus allowing to compare the contribution of each feature
group. The modeling phase consists of the three steps model
selection, feature selection, and model refinement.

1. Model selection The dataset is trained using a 90–10
ratio. Various established machine learning algorithms have
been evaluated using the metrics previously mentioned. The
table below lists the models used in the training phase along
with their parameters for the grid search. Training has been
conducted using between 18 and 20 different combinations
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Table 3 Main data groups and availability in time

Feature group Features Availability

Customer order Desired delivery time in business days,
quantity of products ordered, customer
class, customer sales rank, product class,
product sales rank, novelty of product (has it
been ordered/manufactured before),
frequency of the product being
manufactured in the past, number of
materials in the bill of materials (BOM) of
the product, maximum replenishment time
of the materials in the BOM

Available when the purchase offer is made

Domain knowledge (production planning
and control information)

Work in progress of the whole factory, range
of the whole factory, average of processed
orders per month in the whole factory, work
in process of machining areas, average of
processed orders machining areas month
before, range of machining areas

Historical, always available

Planned times Planned throughput time (numeric), planned
manufacturing start date in business days
from customer order, planned machine
preparation times, planned machining times

Available after the order has been processed
by the process planning department

Table 4 Models and parameter
sets for initial grid search Model Parameter Values

Decision tree max depth 3, 5, 7, 9, 11, 13

min_samples_leaf 3, 5, 7

Random forrest n_estimators 50, 100, 250, 500

max_depth 3, 5, 7, 9

max_features log2

XGBoost objective reg:squarederror

colsample_bytree 0.3

learning_rate 0.1, 0.01

max_depth 2, 4, 6, 8, 10

n_estimators 250

Support vector
machine

kernel Rbf

gamma 10, 1, 0.1, 0.01, 0.001

C 10, 100, 1000, 10,000

Artificial neural
network

activation relu, tanh

solver Adam

batch_size Auto

learning_rate Adaptive

max_iterations 200

hidden_layer_sizes (1), (20), (100), (150), (200), (50,10), (100,10),
(100,50), (200,50), (100,50,20)
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Table 5 Results of initial modeling (case 1, feature set 2)

Model RMSE (days) MAE (days) R2

XGB 7.95 6.09 0.45

ANN 8.19 6.29 0.42

SVM 8.31 6.35 0.44

RF 8.47 6.60 0.46

DT 8.67 6.63 0.38

LR 9.16 6.74 0.37

of parameters (see Table 4) within a separated grid search
process for each model. Models have been fitted using Time
Series Split Cross Validation.

The results of the initial modeling process are presented
in Table 5. As shown by the results in the table, all models
perform better than the baseline prediction using the deliv-
ery time average (RMSE = 12.1 business days). However,
because XGB demonstrates the best performance in RMSE
and MAE, further development is conducted using this algo-
rithm.

2. Feature reduction During the data preparation phase,
the data is extracted and aggregated from different systems,
resulting in 46 features. To reduce the risk of overfitting the
model, as well as the amount of data preparation needed
in production, only the most relevant features are selected.
Thus, features are ordered by importance using Shapley
Additive Explanation (SHAP) values. In this specific case,
while the number of features for a local optimum would be
41, it is possible to score a close-to-optimal RMSE within
0.1 business days with 13 features (see Fig. 7).

3. Model refinement Once the best model is selected, along
with a reduced number of features, the model parameters
are tuned again to identify the values leading to the best
performance. The final grid search identified the following
optimal parameters of the XGB model:

• colsample_bytree: 0.9
• learning_rate: 0.1
• max_depth: 4
• n_estimators: 250

Then, themodel is re-trained over the training dataset with
13 features, and prediction values are saved from the applica-
tion of the model to the test set. In the final step, the metrics
are being calculated.

Finally, the whole modeling process is re-tested to com-
pare the relative contribution of the feature groups identified
in the data preparation phase.

Evaluation and results

The value of the delivery times prediction can be best dis-
cussed by comparing the various applications represented by
feature sets. Table 6 shows the performance of the machine
learning approach using different feature sets. The baseline
application is the simple calculationof themeandelivery time
based on historical data. This results in a mean of 12 days
RMSE and a negative R2, indicating a very poor correlation.
Additionally, the results are compared to the best-performing
approach usingmoving averages.Moving averages were cal-
culated using different numbers of finished orders (n = 5,
10, 25, 50, 100, 200, 500, 1000, 2000). The prediction using
the best-performing moving average (200 orders) does result
in comparable results to using the mean delivery time as the

Fig. 7 Feature reduction process by threshold definition
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Table 6 Final results for XGB model (case 1)

Approach RMSE (days) MAE (days) R2 NRMSE NMAE

Mean delivery time 12.15 10.42 − 0.01 65% 55%

Moving average delivery time (200 orders) 11.81 9.04 − 0.05 63% 53%

Process Planning Department 5.87 3.83 0.76 31% 20%

ML with planned times (C) 5.56 3.98 0.79 30% 21%

ML without planned times (B) 7.73 6.03 0.59 41% 32%

ML without planned times, without domain knowledge features (A) 9.47 7.48 0.39 50% 40%

Fig. 8 Distribution of the label attribute (case 2)

prediction.Training adatasetwithout domainknowledge fea-
tures improves the prediction by almost 3 business days in
RMSE (9.5). This shows that the use of machine learning can
help with predicting delivery times, even without utilizing
domain knowledge. In this scenario, the prediction error is
reduced by almost 50% compared to the estimates produced
by the process planning department. However, by training a
dataset that includes productionmanagement domain knowl-
edge features, the RMSE can be further reduced by 1.8
business days (7.7), reducing the remaining error almost by
a further 50%. In other words, including information about
the current state of the performance of the manufacturing
system allows considerable knowledge gain. Finally, when
the planned dates defined during process planning are also
included in the dataset, the results are more accurate but only
by a small margin. This shows that the planned dates orig-
inate mostly from the information derived from the status
of the manufacturing system. It is important to note that this
last step can be performed only late into the process when the
process planning department calculated the planned delivery
date.

Case study 2

Business and data understanding

To validate the method presented in the previous section,
a second case study was examined. Since the majority of
the steps applied from the methodology, this section only
addresses differences in the processing of Case 2 compared
to Case 1, described in the section above. Figure 8 visualizes
the delivery times of the second case, showing overall longer
delivery times compared to case 1.

In case 2, the mean delivery time is 27 business days,
resulting in an RMSE of 10.18 business days if used as pre-
diction. After applying the methodology, the initial results
proved to be significantly less performant compared to case
1 (see Table 7). The results show that machine learning does
not allow significant improvements in the prediction, com-
pared to using the mean delivery time.
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Table 7 Initial results for XGB model (case 2) without constructed desired delivery time

Approach RMSE (days) MAE (days) R2 NRMSE NMAE

Mean delivery time 10.18 8.34 0.00 37% 31%

With domain knowledge features (B) 9.90 7.99 0.05 36% 29%

Without domain knowledge features (A) 10.11 8.05 0.01 37% 30%

Table 8 Results of initial modeling (case 2, feature set 2)

Model RMSE (days) MAE (days) R2

XGB 7.38 5.52 0.56

ANN 7.73 5.82 0.50

SVM 7.79 5.75 0.50

RF 7.81 6.27 0.54

DT 7.83 6.07 0.51

LR 8.08 6.23 0.49

Data preparation and feature extraction

Although the dataset structure is similar to the one presented
in case study 1, the desired delivery date was not specified in
the dataset for case 2. This results in higher uncertainty, as it
is unclearwhether the order should be completed by a desired
date in the future or as soon as possible. To address this issue,
a new feature was engineered and added to the dataset. The
algorithm checks whether the orders in the dataset have been
completed within the longest range of the used machines and
calculates the throughput time of the whole order. Combined
with a normalized buffer (+ 3/-3 business days), the algo-
rithm decides if the order was produced as fast as possible
depending on the capacity at the time, or if there was an addi-
tional delay. If there was an additional delay, the algorithm
establishes that there was a desired delivery date causing the
delay.

Modeling, evaluation and results

To ensure the comparability of both case studies, Case Study
2 went through the same modeling phase as described above
for Case Study 1.With the new feature included in the dataset
(see Table 8), the results improve by 2 business days with-
out including the domain knowledge as input. Again XGB
showed the best results.

Table 9 shows that compared to case study 1, adding
the manufacturing domain knowledge does not improve the
RMSE and MAE significantly (0.4 business days), while the
R2 score is enhanced by 0.13. As opposed to the first case,
addingplanned times information (feature groupC) improves
the RMSE results by 4 business days, with predictions being
2 business days more accurate than the dates planned by the
process planning department. This is due to the fact that the
planned dates defined by the process planning department
tend to be 2 days late on average (see Fig. 9).

Discussion of results over both cases

Table 10 summarizes the key results of the two case studies
presented in the previous sections. The R2 score shows that
with the mean delivery time being used as the delivery time
prediction, there is no relationship between the real values
and the prediction.

The same effect can also be observed in the compar-
ison between the RMSE of the machine learning-based

Table 9 Final results for XGB model (case 2)

Approach RMSE (days) MAE (days) R2 NRMSE NMAE

Mean delivery time 10.18 8.34 0.00 37% 31%

Moving average delivery time (1000 orders) 10.41 8.53 − 0.04 38% 31%

Process planning department 5.80 5.00 0.67 21% 18%

ML with planned times (C) 3.81 2.65 0.86 14% 10%

ML without planned times (B) 7.90 6.37 0.48 29% 23%

ML without planned times, without domain knowledge features (A) 8.46 6.71 0.40 31% 25%
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Fig. 9 MLmodel compensates mean delivery time deviation of process
planning department

approaches to the RMSE of the prediction from the pro-
cess planning department (see Fig. 10). The diagram also
shows an increasing added RMSE correlatingwith a decreas-
ing amount of information given to the ML approach.

As mentioned earlier, using the baseline prediction of the
mean delivery time calculated on historical data results in
significant error, leading to a R2 score of 0, which means
that there is no correlation between prediction and reality.
The same applies to the usage of the best approach utiliz-
ing the moving average of the delivery time. In both cases,
the NRSME highlights the gain in prediction accuracy when
different groups of information are included in the datasets.
In both cases, the NRSME decreases when all available
information is given as input to the machine learning model
(feature set 3). However, the decrease in case 2 derives from
a global delay of all orders. After the correction of this delay,
the additional decrease in prediction error for both cases is
below 10%. This indicates that after scheduling all process-
ing steps, unforeseeable changes result in an error that can
neither be corrected by the ML model, nor by the process
planning department. If the prediction is made earlier in the

Fig. 10 Added error of approaches compared to prediction results of
process planning department

process—before the customer order is confirmed or the offer
sent out—using only customer order-related data (feature set
1), the prediction error increases compared to the delivery
date determinedby the process planning department.Without
planned delivery times from the process planning department
and domain knowledge-specific features (feature set 1), the
ML model scores a RMSE that adds around 50% relative
error. If domain knowledge-specific features are added (fea-
ture set 2), the additional error is reduced to around 35%.
However, as the domain knowledge is based on historical
data, and therefore it is known prior to the order, the delivery
date prediction can be done before the order gets processed
by the process planning department. Although this results in
less risk of late delivery when confirming the customer order,
the added uncertainty results in a higher prediction error. This
demonstrates the importance of the knowledge about the per-
formance of the production system. Knowing details about
production system dynamics allows the early prediction of
the delivery date. From a manufacturing management per-
spective, the early prediction of the delivery time before the
customer order is confirmed has several positive impacts on

Table 10 Comparison of both cases (NRMSE, NMAE, R2)

Approach NRMSE NMAE R2

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

Mean delivery time 65% 37% 55% 31% − 0.01 0.00

Moving average delivery time (best) 63% 38% 53% 31% − 0.05 − 0.04

Process planning department 31% 21% 20% 18% 0.76 0.67

ML with planned times 30% 14% 21% 10% 0.79 0.86

ML without planned times 41% 29% 32% 23% 0.59 0.48

ML without planned times, without domain knowledge features 50% 31% 40% 25% 0.39 0.40
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Table 11 Most important feature groups

Feature group Directly from
dataset

Generated using
domain
knowledge

Desired delivery time x

Quantity ordered
(customer order)

x

Quantity of
processes/elements in
BOM

x

WIP calculations x

Range calculations x

Bottleneck system
identification

x

Summary of external
processing

x

Customer rank by
quantity of orders

x

the overall production performance. Early knowledge about
realistic delivery dates helps avoiding rush orders. Fewer
rush orders improve the reliability of the planned schedule
which improves the stability of the overall production pro-
cess. Assuming amore stable production process leads to less
unpredictable delays. Fewer delays will eventually result in
an even more precise delivery time prediction.

The contribution of different feature groups can be further
explained by analyzing the respective top 10 SHAP values.
The tables below list the most important features of the two
case studies except for the planned times defined by the pro-
cess planning department (feature set 2). The features are
split into two groups: features extracted directly from the
dataset (group A) and features that utilize QLM (group B) to
be calculated (Table 11).

In both cases, with a SHAP value above 4, the most
valuable feature is the desired delivery time. Fromamanufac-
turing management perspective, this information highlights
the difference between manufacturing lead time and deliv-
ery time prediction. Orders may be received with a desired
delivery date in the far future. The resulting desired delivery
time is the only feature in the examined cases, that provides
information to the model, whether the manufacturing pro-
cesses need to start as soon as possible or at some point in the
future, generating a buffer that can help meeting the desired
delivery time. The desired delivery time is directly fetched
from the input dataset. So are the quantity of items ordered
by the customer and the resulting quantity of processes and

elements of the BOM. From the manufacturing management
perspective, both features enable the model to estimate the
quantity of operations needed to fulfill the order. In the group
of features generated using domain knowledge WIP, range,
and bottleneck calculations are important features describing
the internal manufacturing process. WIP calculations gen-
erate information for the model on how many orders are
currently in the system. The range calculations add infor-
mation on the existing capacity of machines and employees
to the WIP and condense this information to an estimation
of the time needed for a specific system to finish all existing
orders. Range calculations allow the identification of bottle-
neck systems for an individual order, therefore giving the
model insight into the earliest possible start for the manu-
facturing processes. The last two domain knowledge-related
feature groups are the processing of external orders and the
customer rank based on the quantity of orders placed. From
a manufacturing management perspective, the analysis of
external manufacturing processes is as important as the anal-
ysis of internal manufacturing processes, although most of
the underlying information on the suppliers’ manufacturing
process is expectedly not available. However, information
on the suppliers’ on-time delivery reliability in the past and
the quantity and value of the external order condense into
useful information for the model. The high impact of the
customer rank based on the quantity of placed orders can be
explained by domain knowledge. A high number of orders
indicates a higher chance of recurring processes and there-
fore shorter and less spreading processing times. All of the
above-mentioned feature groups improved the prediction of
the actual delivery time and are therefore considered manda-
tory for implementation in practice. Another observation that
matches domain knowledge is that the estimated machining
times of the single manufacturing steps do not show in the
top 10most important features in both cases. Research shows
that for manufacturing lead time determination the transition
times (not available in the observed cases) are more impor-
tant than the actual machining times (Schuh et al., 2019). For
both cases, the replenishment times and overall procurement
processes did not have a significant impact on the quality
of the predicted delivery time. Since procurement processes
can significantly delay a production process, if raw materials
are not in stock, further research needs to be undertaken to
investigate the impact of procurement delays on the delivery
time in real world scenarios.

The top 10most important features for both cases are listed
in Table 12 and Table 13.
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Table 12 Top ten most important features (case 1)

Feature SHAP value (%)

Desired delivery time 4.12 36

WIP bottleneck system Cutter 1.60 14

Quantity of elements in BOM 0.75 7

Quantity ordered (customer order) 0.73 6

Range bottleneck system ‘cutter’ 0.67 6

WIP bottleneck system ‘manual work’ 0.63 6

Quantity of utilizations of system ‘cutter’ 0.51 5

Customer rank by quantity of orders 0.50 4

Max. bottleneck system range 0.49 4

WIP factory (min) 0.40 4

Table 13 Top ten most important features (case 2)

Feature SHAP value (%)

Desired delivery time 4.82 34

Price of external machining processes 0.94 7

Quantity of external machining processes 0.93 7

Customer rank by quantity of orders 0.84 6

Range bottleneck system 0.62 4

WIP factory [orders] 0.54 4

Quantity of utilizations of system ’A’ 0.53 4

Value of ordered goods 0.47 3

Number of processes needed 0.47 3

Quantity ordered (customer order) 0.35 2

Conclusion

The proposed study aims to provide a machine learning-
based approach for delivery date prediction. For the develop-
ment and testing of such approach, a case studymethodology
has been used. Case studies are suitable for investigating
the evidence of an approach—in this case using machine
learning—in a real-world application and evaluating the
transferability of the research idea (Yin, 2018). Based on
the data collected from the two case studies, three groups of
information were identified, namely customer order-related
data, production planning and control information or domain
knowledge, and information about planned times. Only the
first two of these three groups are available for a first offer or
as the customer order is received, and as this study aims at the
early prediction of delivery dates, these two categories have
been used to build the machine learning model. Referring to
the four research questions formulated in the methodology,
the case studies revealed the following results:

1. Can delivery times be predicted earlier in the process in
the same quality the process planning department pro-
vides?

Applying ML approaches in the initial offering process or
just before confirming the customer order results in less risk
of late delivery. However, the added uncertainty results in
a higher prediction error of + 35%. Using ML approaches
in process planning just before releasing the manufacturing
order can help to further reduce the prediction error of the
delivery time.

2. Which domain knowledge-specific features do improve
the quality of the prediction?

For the machine learning prediction, domain knowledge is
extremely valuable, as it helps reducing the model error sig-
nificantly. In other words, historical knowledge about the
performance of the manufacturing system increases the pre-
diction accuracy. The SHAP values showed a high relevance
for all features extracted according to the Hanovarian Sup-
ply Chain Model. The identification of the current range of
the bottleneck system as well as external manufacturing pro-
cesses and customer rank by quantity of orders showed a high
impact on the prediction in both examined cases. However,
results across both case studies also show that the specifica-
tion of the desired delivery date is the most valuable feature
for the prediction of delivery times, as it allows the model to
distinguish whether to aim for the fastest possible delivery
or the delivery in a certain time frame.

3. What are the different quantitative effects of the different
features on the training model?

All generated features utilizing QLM showed a high impact
on the predicted output in the single-digit percentage range.
However, the results showed a significant importance of the
desired delivery date. In both cases, one third of the average
quantitative change of the prediction value of a customer
order relied on the desired delivery date.

4. Do the domain knowledge-specific features help a
domain expert to follow up on the decisions made?

The extracted SHAP values show that similar features are
used by the ML models in both cases. The trained models
utilize input factors as features that enable comprehensible
decision-making for a domain expert. The key reason for this
lies in the fact that the underlying theory on QLM, that were
used for feature generation, has been subject of research for
decades and is popular within the domain of manufacturing
management.
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Overall, this research provides contribution to both
academia and industry practice by addressing existing
research gaps and providing a practical solution for deliv-
ery time prediction at the same time. The ability of machine
learning to make predictions earlier in the process allows
to define a delivery date at the time of the first offer. This
can result in increased efficiency, lower costs for the process
planning department, and ultimately it can represent a com-
petitive advantage for manufacturing companies using this
approach.

Future research on machine learning methods for delivery
time prediction should aim in two directions. First, existing
cases should be extended by including external input fac-
tors such as stock market indexes. Second, the application of
new ML approaches to the field under investigation should
be considered. A detailed examination of the impact of the
desired delivery date on the prediction results seems reason-
able. As this research is based on two cases, more examples
are required to strengthen the observed results.
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