
Bérczi, Kristóf; Király, Tamás; Omlor, Simon

Article — Published Version

Scheduling with non-renewable resources: minimizing the
sum of completion times

Journal of Scheduling

Provided in Cooperation with:
Springer Nature

Suggested Citation: Bérczi, Kristóf; Király, Tamás; Omlor, Simon (2024) : Scheduling with non-
renewable resources: minimizing the sum of completion times, Journal of Scheduling, ISSN
1099-1425, Springer US, New York, NY, Vol. 27, Iss. 2, pp. 151-164,
https://doi.org/10.1007/s10951-024-00807-y

This Version is available at:
https://hdl.handle.net/10419/315300

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 http://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s10951-024-00807-y%0A
https://hdl.handle.net/10419/315300
http://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Journal of Scheduling (2024) 27:151–164
https://doi.org/10.1007/s10951-024-00807-y

Scheduling with non-renewable resources: minimizing the sum of
completion times

Kristóf Bérczi1 · Tamás Király2 · Simon Omlor3

Accepted: 5 February 2024 / Published online: 24 March 2024
© The Author(s) 2024

Abstract
We consider single-machine scheduling with a non-renewable resource. In this setting, we are given a set of jobs, each
characterized by a processing time, a weight, and a resource requirement. At fixed points in time, certain amounts of the
resource are made available to be consumed by the jobs. The goal is to assign the jobs non-preemptively to time slots on
the machine, so that each job has enough resource available at the start of its processing. The objective that we consider is
the minimization of the sum of weighted completion times. The main contribution of the paper is a PTAS for the case of
0 processing times (1|rm = 1, p j = 0| ∑w jC j). In addition, we show strong NP-hardness of the case of unit resource
requirements and weights (1|rm = 1, a j = 1| ∑C j), thus answering an open question of Györgyi and Kis. We also prove
that the schedule corresponding to the Shortest Processing Time First ordering provides a 3/2-approximation for the latter
problem. Finally, we investigate a variant of the problem where processing times are 0 and the resource arrival times are
unknown. We present a (4 + ε)-approximation algorithm, together with a (4 − ε)-inapproximability result, for any ε > 0.

Keywords Approximation algorithm · Non-renewable resources · Polynomial-time approximation scheme · Strong
NP-hardness · Scheduling · Weighted sum of completion times

An extended abstract of this work appeared in the 6th International
Symposium on Combinatorial Optimization (ISCO 2020). This
research has been implemented with the support provided by the
Lendület Programme of the Hungarian Academy of Sciences—Grant
Number LP2021-1/2021, by the Ministry of Innovation and
Technology of Hungary from the National Research, Development
and Innovation Fund, financed under the ELTE TKP 2021-NKTA-62
funding scheme, and by Dynasnet European Research Council
Synergy project (ERC-2018-SYG 810115).

B Kristóf Bérczi
kristof.berczi@ttk.elte.hu

Tamás Király
tamas.kiraly@ttk.elte.hu

Simon Omlor
simon.omlor@tu-dortmund.de

1 MTA-ELTE Matroid Optimization Research Group,
HUN-REN-ELTE Egerváry Research Group, Department of
Operations Research, Eötvös Loránd University, Budapest,
Hungary

2 HUN-REN-ELTE Egerváry Research Group, Department of
Operations Research, Eötvös Loránd University, Budapest,
Hungary

3 Faculty of Statistics, TU Dortmund University, Dortmund,
Germany

1 Introduction

Scheduling problems with non-renewable resource con-
straints arise naturally in various areas where resources like
raw materials, energy, or financial funding arrive at predeter-
mined dates. In the general setting, we are given a set of jobs
and a set of machines. Each job is equipped with a require-
ment vector that encodes the needs of the given job for the
different types of resources. There is an initial stock for each
resource, and some additional resource arrival times in the
future are known together with the arriving quantities. The
aim is to find a schedule of the jobs on the machines such
that the necessary resources are available for each job when
their processing begins.

We will use the standard α|β|γ notation of Graham et
al. (1979). Grigoriev et al. (2005) extended this notation
by adding the restriction rm = r to the β field, meaning
that there are r resources (rm stands for ‘raw materials’).
In the present paper, we concentrate on problem with a sin-
gle machine and a single resource, where the objective is
to minimize the weighted sum of completion times, i.e.,
1|rm = 1|∑ w jC j . While there is an abundance of results
on the approximability of the makespan objective, much less

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-024-00807-y&domain=pdf
http://orcid.org/0000-0003-0457-4573

152 Journal of Scheduling (2024) 27:151–164

is known about the complexity and approximability of the
total weighted completion time objective.

Related work Scheduling problems with resource restric-
tions (also called financial constraints, or raw material
requirements) were introduced by Carlier and Kan (1982)
and by Slowiński (1984). Carlier (1984) settled the computa-
tional complexity of several variants for the single machine
case. In particular, he showed that 1|rm = 1|∑ w jC j is
NP-hard in the strong sense. This was also proved indepen-
dently by Gafarov et al. (2011). Kis (2015) showed that the
problem remains weakly NP-hard even when the number of
resource arrival times is 2. On the positive side, he gave an
FPTAS for 1|rm = 1, q = 2|∑w jC j . A variant of the prob-
lem where each job has processing time 1, there are q = n
resource arrival times such that ti = iM and bi = M for
i = 1, . . . , n, and M = ∑

j∈J a j/n is an integer, was con-
sidered inGafarov et al. (2011). Györgyi andKis (2019) gave
polynomial time algorithms for several special cases, and also
showed that the problem remainsweaklyNP-hard even under
the very strong assumption that for each individual job, the
processing time, the resource requirement and the weight are
equal. They also provided a 2-approximation algorithm for
this variant, and a polynomial-time approximation scheme
(PTAS) for the variant where the number of resource arrival
times is a constant and the processing time equals the weight
for each job, while the resource requirements are arbitrary.

Independently of the present paper, Györgyi and Kis
(2020) recently published an analysis of simple greedy algo-
rithms for several variants of the problem. They also showed
thatminimizing the sumof completion times is NP-hard even
for two resource arrival times and unit resource requirements,
and provided a FPTAS for a variant in which the jobs have
arbitrary weights, but the number of resource arrival times is
bounded by a constant. None of our results are implied by
their paper.

In comparison to total weighted completion time, much
more is known about the maximummakespan andmaximum
lateness objectives. Slowiński (1984) studied the preemp-
tive scheduling of independent jobs on parallel unrelated
machines with the use of additional renewable and non-
renewable resources under financial constraints. Toker et al.
(1991) examined a single-machine schedulingproblemunder
non-renewable resource constraint, using the makespan as
a performance criterion. Xie (1997) generalized this result
to the problem with multiple financial resource constraints.
Grigoriev et al. (2005) presentedpolynomial timealgorithms,
approximations and complexity results for single-machine
scheduling problems with unit or all-equal processing times
and maximum lateness and makespan objectives. In a series
of papers (Györgyi & Kis, 2014, 2015a, 2015b, 2017,
Györgyi, 2017), Györgyi and Kis presented approximation
schemes and inapproximability results both for single and

parallel machine problems with the makespan and the maxi-
mum lateness objectives. In Györgyi and Kis (2018), they
proposed a branch-and-cut algorithm for minimizing the
maximum lateness.

Our results We first consider the problem 1|rm = 1, a j =
1| ∑C j . The complexity of this problem was posed as an
open question in Györgyi and Kis (2018). We show that the
problem is NP-hard in the strong sense.

Theorem 1 1|rm = 1, a j = 1| ∑C j is strongly NP-hard.

In the light of Theorem 1, one might be interested in
finding an approximation algorithm for the problem. Given
any scheduling problem on a single machine, the Shortest
Processing Time First (SPT) schedule orders the jobs by
increasing order of processing times. We prove that spt pro-
vides a 3/2-approximation. Although the algorithm is very
simple as it is merely scheduling according to the SPT order,
the analysis of the approximation factor is rather involved.

Theorem 2 The SPT schedule gives a 3
2 -approximation for

1|rm = 1, a j = 1| ∑C j , and the approximation guarantee
is tight.

The second problem considered is the special case when
the processing time is 0 for every job. This setting is relevant
to situations where processing times are negligible compared
to the gaps between resource arrival times, and the bottleneck
is resource availability. Examples include financial schedul-
ing problems where the jobs are not time consuming but the
availability of funding varies in time, or production problems
where products are shipped at fixed time intervals and pro-
duction time is negligible compared to these intervals. Note
that the number of machines is irrelevant if processing times
are 0. First we describe a fast and simple greedy approxima-
tion algorithm for the problem.

Theorem 3 For 1|rm = 1, p j = 0| ∑C jw j , there exists a
6-approximation algorithm with running time O(n log n).

After the proof of Theorem 3, we give a slightly more
complicated (4+ε)-approximation that illustrates one of the
important ideas of the general PTAS.

As a next step toward the main result, we present a PTAS
for the case of a constant number of resource arrival times.
This procedure will be used as a subroutine in our algorithm
for the general case.

Theorem 4 Consider the number of arrival times q to be
constant. For any fixed positive integer k, there is a (1+ q

k)-
approximation algorithm for 1|rm = 1, p j = 0| ∑C jw j

with running time O(nqk+1).

The main contribution of the paper is a PTAS for the same
problem with an arbitrary number of resource arrival times.

123

Journal of Scheduling (2024) 27:151–164 153

Theorem 5 There exists a PTAS for 1|rm = 1, p j =
0| ∑C jw j .

Finally, we consider a variant of 1|rm = 1, p j =
0| ∑C jw j where the number of resource arrival times and
the arriving quantities (in the order of the arrivals) are known,
but the arrival times are unknown.We denote this problem by
1|rm = 1, p j = 0, ti unknown|∑C jw j . We observe that
the greedy 6-approximation algorithm of Theorem 3 is actu-
ally a 6-approximation for this problem, too.We can improve
the approximation factor to get the following tight result.

Theorem 6 For 1|rm = 1, p j = 0, ti unknown|∑C jw j ,
there exists a (4+ ε)-approximation with running time poly-
nomial in 1/ε and the input length. Moreover, there is no
(4 − ε)-approximation algorithm for the problem for any
ε > 0.

Organization The rest of the paper is organized as follows.
Basic notation and terminology are introduced in Sect. 2. A
strong NP-hardness proof and a 3/2-approximation algo-
rithm for problem 1|rm = 1, a j = 1| ∑C j are given in
Sect. 3. Results on problem1|rm = 1, p j = 0| ∑C j are dis-
cussed in Sect. 4, where a greedy 6-approximation, a PTAS
for the case of constant resource arrival times, and a PTAS for
the general case are presented. We close the paper in Sect. 5
by analyzing the variant where the resource arrival times are
unknown.

2 Preliminaries

Throughout the paper, wewill use the following notation.We
are given a set J of n jobs. Each job j ∈ J has a non-negative
integer processing time p j , a non-negative weight w j , and
a resource requirement a j . The resources arrive at time
points t1, . . . , tq , and the amount of resource that arrives
at ti is denoted by bi . We might assume that

∑q
i=1 bi =

∑n
j=1 a j holds. We will always assume that t1 = 0, as this

does not affect the approximation ratio of our algorithms.
We will use the notation Bk = ∑

i≥k bi for the amount of
resource that arrives no earlier than tk .

The jobs should be processed non-preemptively on a sin-
gle machine. A schedule is an ordering of the jobs, that is,
a mapping σ : J → [n], where σ(j) = i means that job
j is the i th job scheduled on the machine. The completion
time of job j in schedule σ is denoted by Cσ

j . We will drop
the index σ if the schedule is clear from the context. In any
reasonable schedule, there is an idle time before a job j only
if there is not enough resource left to start j after finishing the
last job before the idle period. Hence, the completion time
of job j is determined by the ordering and by the resource
arrival times, as j will be scheduled at the first moment when

the preceding jobs are already finished and the amount of
available resource is at least a j .

A different representation of schedules will be used in
Sect. 4, where the processing times are assumed to be 0. In
this case, every job is processed at one of the resource arrival
times in any reasonable schedule. Hence, a schedule can be
represented by a mapping π : J → [q], where π(j) denotes
the index of the resource arrival timewhen job j is processed.

3 The problem 1|rm = 1,aj = 1|∑Cj

3.1 Strong NP-completeness

The aim of this section is to prove Theorem 1.

Theorem 1 1|rm = 1, a j = 1| ∑C j is strongly NP-hard.

Proof Recall that all a j and w j values are 1, and each job
has an integer processing time p j . The number of resource
arrival times is part of the input.

We prove NP-completeness by reduction from the 3-
Partition problem. The input contains numbers B ∈ N,
n ∈ N, and x j ∈ N (j = 1, . . . , 3n) such that B/4 < x j <

B/2 and
∑3n

j=1 x j = nB (note that we will not use the upper
bound x j < B/2 in the proof). A feasible solution is a parti-
tion J1, . . . , Jn of [3n] such that |Ji | = 3 and

∑
j∈Ji x j = B

for every i ∈ [n]. In contrast to the Partition problem, the
3- partition problem remains NP-complete even when the
integers x j are bounded above by a polynomial in n. That
is, the problem remains NP-complete even when the num-
bers in the input are represented as unary numbers (Garey &
Johnson, 1979, Pages 96–105 and 224).

We assume without loss of generality that B is divisible
by 4, so x j ≥ B/4 + 1 ≥ 2 for every j . Let K = 4nB. The
reduction to 1|rm = 1, a j = 1| ∑C j involves three types
of jobs.

Normal jobs These correspond to the numbers x j in the
3- Partition instance, so there are 3n of them and the pro-
cessing time p j of the j th normal job is x j .

Small jobs Their processing time is 1 and there are nK of
them.

Large jobs Their processing time is K and there are nK of
them.

There are also three types of resource arrivals (see Fig. 1):

Type 1 Three resources arrive at times i(B + K) (i =
0, . . . , n − 1).

Type2One resource arrives at i(B+K)+ j (i = 0, . . . , n−1,
j = B, . . . , B + K − 1).

Type 3 One resource arrives at n(B + K) + i K (i =
0, . . . , nK − 1).

123

154 Journal of Scheduling (2024) 27:151–164

Fig. 1 Resource arrivals in the
reduction of 3- Partition

Suppose that the 3- Partition instance has a feasible
solution J1, . . . , Jn . We consider the following schedule σ :
resources of Type 1 are used by normal jobs, such that jobs in
Ji are scheduled between (i −1)(B+ K) and i B+ (i −1)K
(in spt order). Type 2 resources are used by small jobs that
start immediately. Type 3 resources are used by the large jobs
that also start immediately at the resource arrival times (see
Fig. 2).

Instead of
∑

C j , we consider the equivalent shifted objec-
tive function

∑
(C j − t(j) − p j), where t(j) is the arrival

time of the resource used by job j and p j is the process-
ing time of j—we assume without loss of generality that
resources are used by jobs in order of arrival. Note that all
terms of

∑
(C j − t(j) − p j) are nonnegative. As small jobs

and large jobs start immediately at the arrival of the corre-
sponding resource in schedule σ , their contribution to the
shifted objective function is 0. The jobs in Ji have total pro-
cessing time B, and their contribution to the shifted objective
function is twice the processing time of the shortest job, plus
the processing time of the second shortest job, which is at
most B. Hence the schedule σ has objective value at most
nB.

We claim that if the 3- Partition instance has no feasible
solution, then the objective value of any schedule is strictly
larger than nB. First, notice that if a large job is scheduled to
start before time n(B + K), then

∑
(C j − t(j) − p j) has a

term strictly larger than nB as there is a resource that arrives
while the large job is processed and is not used for more
than nB time units. Similarly, if the first large job starts at
n(B + K) but uses a resource that arrived earlier, then the
resource that arrives at n(B + K) is not used for more than
nB time units. We can conclude that the first large job uses
the resource arriving at n(B + K).

If the first large job does not start at n(B + K), then all
large jobs have positive contribution to the objective value, so
again, the objective value is larger than nB. We can therefore
assume that the large jobs start exactly at n(B + K) + i K
(i = 0, . . . , nK − 1) and that there is no idle time before
(B + K)n. In particular, this means that all other jobs are
already completed at time (B + K)n.

Consider Type 2 resources arriving at i(B + K) + j
(j = B, . . . , B + K − 1) for some fixed i ≤ n − 1. If
the first resource or the second resource in this interval is not
used immediately, then none of the subsequent ones are, so
the objective value is at least K − 1 > nB. Hence, we may
assume that both the first and the second resources are used
immediately. This means that first resource is used immedi-

ately by a small job, since normal jobs have processing time
at least 2. Thus, the resource arriving at i(B + K) + B is
immediately used by a small job, for every i ≤ n − 1.

Suppose that some other resource in the interval i(B +
K) + j (j = B + 1, . . . , B + K − 1) is used by a normal
job. If it is followed by a small job, then we may improve
the objective value by exchanging the two. Thus, in this case,
we can assume that the last resource of the interval is used
by a normal job (this already implies i ≤ n − 2, because a
large job starts at n(B + K)), and also the Type 1 resources
arriving at (i + 1)(B + K) are used by normal jobs. But this
is impossible, because normal jobs have processing time at
least B/4+1, and a small job starts at time (i+1)(B+K)+B
by.

To sum up, we can assume that all resources of Type 2
are used immediately by small jobs. This means that normal
jobs have to use resources of Type 1, and must exactly fill the
gaps of length B between the arrival of resources of Type 2.
This is only possible if the 3-partition instance has a feasible
solution, concluding the proof of Theorem 1. ��

3.2 Shortest processing time first for unit resource
requirements

In the previous section, we have seen that scheduling with a
non-renewable resource is strongly NP-hard already for unit
resource requirements.Nowwe show that scheduling the jobs
according to an spt ordering provides a 3/2-approximation
for the problem with unit weight and unit resource require-
ments, thus proving Theorem 2.

Theorem 2 The SPT schedule gives a 3
2 -approximation for

1|rm = 1, a j = 1| ∑C j , and the approximation guarantee
is tight.

Proof Consider an instance I of the problem. Let σspt and
σopt denote the SPT and the optimal schedule, and let spt
and opt denote the sum of the completion times in these
two schedules, respectively. We will use the notation jspt(i),
pspt(i), Sspt(i), and Cspt(i) for the i th job in the SPT sched-
ule, its processing time, its starting time, and its completion
time, respectively.We also use similar notationwith subscript
opt for the optimal schedule.

Our strategy is to simplify the instance by revealing its
structural properties while not decreasing spt

opt . This way we
get an upper bound for the approximation factor. We first
consider the resource arrival times.

Claim 1 We may assume that the i th resource arrives at
Sopt(i) for i = 1, . . . , n.

123

Journal of Scheduling (2024) 27:151–164 155

Fig. 2 The schedule
corresponding to a feasible
solution of 3- Partition

Proof As the i th resource is used by job jopt(i), the arrival
time of that resource is at most Sopt(i). If wemove the arrival
time of the resource to exactly Sopt(i), then opt does not
change and spt cannot decrease. ��

The next claim shows that we can get rid of the idle times
in the optimal schedule.

Claim 2 Wemay assume that there is no idle time in schedule
opt, that is, Sopt(i) = Copt(i − 1) for i = 2, . . . , n.

Proof Suppose that there is some i such that ti > Copt(i−1).
We reduce ti ′ by Δ = ti − Copt(i − 1) for all i ′ ≥ i . Then
for each i ′ ≥ i , the completion time Copt(i ′) decreases by
Δ. For each i ′ ≥ i , the completion time Cspt(i ′) decreases
by at most Δ. This follows from the fact that the resource
arrival times decrease by Δ and the completion time of the
previous job can decrease by at mostΔ (which can be shown
by induction). Hence opt decreases by at least as much as
spt. Since spt ≥ opt, the ratio spt

opt will not decrease by this
change. ��

Next, we modify the processing times.

Claim 3 We may assume that popt(1) > pspt(1) and that
pspt(1) = 0.

Proof If both schedules start with the same job, then we can
remove the job from the instance and decrease b1 by 1. Then
opt decreases by the same amount as spt. We can repeat
this until the schedules start with jobs of different process-
ing times. Now popt(1) > pspt(1), since spt starts with the
shortest job. Decreasing the processing time of job jspt(1)
to 0 (without changing any arrival time) decreases spt by
pspt(1) and opt by at least pspt(1). We can eliminate idle
times in the new optimal schedule as in the proof of Claim
2. ��
Claim 4 We may assume that p j ∈ {0, 1} for all j ∈ J .

Proof Let pmax = max j∈J p j be the maximum processing
time. Scaling the processing times by dividing all processing
and arrival times by pmax has no effect on

spt
opt , hence we may

assume that pmax = 1. Now assume that there is a job j ′ with
p = p j ′ ∈ (0, 1). Let p = min{p j | j ∈ J , p j > p} and
p = max{p j | j ∈ J , p j < p}. Let Jp = { j ∈ J | p j = p}
be the set of jobs with processing time p. We will show that
we can either increase the processing time of all jobs in Jp

to p or decrease the processing time of all jobs in Jp to p

without decreasing spt
opt .

For j ∈ J , let h j denote the number of jobs processed
after j in σopt plus 1, i.e. h j = n−σopt(j)+ 1. We consider
the effect of increasing the processing times of all jobs in Jp
by someΔ ∈ [p− p, p− p] and appropriatelymodifying the
arrival times of the resources to match the new starting times
(note that Δ may be negative, in which case we decrease the
processing times and starting times). This will increase opt
byΔ

∑
j∈Jp h j . Indeed, every timewe change the processing

time of one job j , the completion time of j and of all jobs
after j will be increased by Δ.

Notice that the order of the jobs in the SPT schedule does
not change.Consider theSPTschedule before the change.Let
job j ∈ J be any job, let j0 be the the first job that is processed
after the last idle time before the starting time of j , and let
i = σ spt(j0) (if there is no idle time before j , let i = 1). Let
f j be the number of jobs j ′ ∈ Jp with σopt(j ′) < i ; notice
that these are exactly the jobs whose modification affects ti .
Thus, the arrival time ti is changed by Δ for each of those
jobs, so the new arrival time is ti + Δ f j . This means that the
starting time of job j0 in the changed SPT schedule is at least
Ssptj0

+ Δ f j . Now let g j be the number of jobs j ′ ∈ Jp that

are processed in the time interval [ti ,Cspt
j) before the change.

For each of those jobs, the processing time is changed by Δ

and the job is started at or after ti +Δ f j , since the SPT order
does not change. Thus, the new completion time of j is at
least Cspt

j + Δ f j + Δg j . Consequently, spt will increase by
at least

∑
j∈J (f j + g j)Δ if Δ > 0, and decrease by at most

∑
j∈J (f j + g j)|Δ| if Δ < 0.

If
∑

j∈J (f j+g j)∑
j∈Jp h j

≥ spt
opt , then increasing the processing times

in Jp to p will not decrease spt
opt . Otherwise, decreasing the

processing times in Jp to p will not decrease spt
opt . Each time

we apply this operation, the number of distinct processing
times decreases by 1. Finally, we get an instance where the
only processing times are pmin = 0 and pmax = 1. ��

Finally, we modify the order of the jobs in the optimal
solution. If σopt and σspt process a job of length 0 at the
same time, then we can remove the job from the instance and
reduce the number of resources that arrive at this time by 1.
This will reduce opt and spt by the same amount.

Let t be the time at which schedule σspt first starts to
process a job of length 1. On one hand, σopt does not process
jobs of length 0 before t by the above argument. On the other

123

156 Journal of Scheduling (2024) 27:151–164

hand, there is no idle time after t in σspt, because that would
mean idle time in σopt. Thus, if we move all jobs of length
0 and their corresponding resource arrivals in σopt to time
t , then spt does not change but opt decreases. We may thus
assume that schedule σopt processes every job of length 0 at
t .

Let k1 be the number of jobs of length 0 after the transfor-
mations. These are processed at time t in σopt, and these are
exactly the jobs processed before time t in σspt. Thus, there
are k1 arrival times before t , where σopt processes jobs of
length 1. Let k1+k2 be the total number of jobs of length 1.

We conclude that σopt first processes k1 jobs of length 1,
then k1 jobs of length 0 and then k2 jobs of length 1, while
σspt starts with the jobs of length 0 having a lot of idle time
in the beginning and then consecutively processes all jobs of
length 1 (see Fig. 3). The weighted sums of completion times
are then given by

opt = k1(k1 + 1)

2
+ k21 + k2k1 + k2(k2 + 1)

2

and

spt = k1(k1 − 1)

2
+ k2k1 + k1(k1 + 1)

2

+(k1 + k2)k1 + k2(k2 + 1)

2
.

We get

3

2
opt − spt = k21

4
+ k22

4
− k1k2

2
+ 3k1 + k2

4

≥ (k1 − k2)2

4
≥ 0,

showing that the approximation factor is at most 3
2 .

Setting k2 = k1 and letting k1 go to infinity gives us a
sequence of instances such that spt

opt converges to 3
2 as we

have spt = 9
2k

2
1 + O(k1) and opt = 3k21 + O(k1). This

concludes the proof of Theorem 2. ��

4 The problem 1|rm = 1,pj = 0|∑Cjwj

In this section we consider the problem 1|rm = 1, p j =
0| ∑C jw j , another special case of 1|rm = 1|∑C jw j .
The problem clearly is NP-hard even for q = 2 as the knap-
sack problem can be reduced to it. Indeed, maximizing the
weight of the items in the knapsack is equivalent to the task of
maximizing the weight of jobs that are scheduled at the first
resource arrival time. Recall that Kis (2015) gave a FPTAS
for 1|rm = 1|∑C jw j when there are two resource arrival
times.

First we give a 6-approximation for the problem based
on a greedy approach. We also describe a more complicated
(4 + ε)-approximation that illustrates one of the important
ideas of the more general PTAS. Then we provide a PTAS
for the case when q, the number of resource arrival times is
a constant. This algorithm will be used as a subroutine in the
PTAS for the general case. Finally, we prove the main result
of the paper which is a PTAS for the case of an arbitrary
number of resource arrival times.

Since the processing times are 0, every job is processed
at one of the arrival times in any optimal schedule. Thus, a
schedule can be represented by a mapping π : J → [q],
where π(j) denotes the index of the resource arrival time
when job j is processed. A schedule is feasible if the resource
requirements are met, that is, if

∑

j :π(j)≤k

a j ≤
∑

i≤k

bi (1)

for all 1 ≤ k ≤ q. As we assume that
∑

i bi = ∑
j a j holds,

this is equivalent to

∑

j :π(j)≥k

a j ≥ Bk (2)

for all 1 ≤ k ≤ q, where Bk = ∑
i≥k bi . Consider the set of

jobs that are not processed before a given time point tk . Then
(2) says that if the resource requirements of these jobs add up
to at least Bk , then our schedule is feasible. We will mostly
use this latter characterization of feasibility, as our algorithms
assign the jobs to later time points first. The intuition is that
we can bound the approximation ratio by giving sufficiently
good upper bounds for every k on the total weight W≥k of
jobs that are processed at time point tk or later. We present
here one such upper bound, that will be used in the first result
of the next section, as well as in Sect. 5. For 1 ≤ k ≤ q, let

mk = min{w(J ′) : J ′ ⊆ J ,
∑

j∈J ′
a j ≥ Bk},

and let Mk be the set of jobs where the minimum is achieved.

Lemma 1 Let π be a feasible schedule, and let W≥k =
∑

j :π(j)≥k w j . If W≥k ≤ α ·mk for every 1 ≤ k ≤ q, then π

is an α-approximation.

Proof Let πopt be the optimal schedule, and let W opt
≥k =∑

j :πopt(j)≥k w j . We can bound the objective value of π by

∑

j∈J

w jC j = ∑q
k=1(tk − tk−1)W≥k ≤ α

∑q
k=1(tk − tk−1)mk

≤ α
∑q

k=1(tk − tk−1)W
opt
≥k = α

∑
j∈J w jC

opt
j ,

which is α times the objective value of πopt. ��

123

Journal of Scheduling (2024) 27:151–164 157

Fig. 3 Schedules σopt and σspt
after the reductions. The jobs of
length 0 are scheduled in σopt at
the first resource arrival time
when multiple resources arrive

4.1 A greedy 6-approximation for arbitrary q

The idea of our first algorithm is to have a balance between
adding jobs that have small weights and jobs that have high
resource requirements.More precisely, wewill assign jobs to
the time points in reverse order. When we add a job to the set
of jobs scheduled after a given time point, we will choose the
most inefficient job, i.e. the job minimizingw j/a j among all
jobs that have weight at most the weight W of all jobs that
have already been chosen up to this point. If there is no job
with weight at most W , then we simply choose a job with
minimal weight. Intuitively, this rule guarantees that the jobs
we choose are not too efficient but their total weight is not
too large either.

Algorithm 1 Greedy algorithm for 1|rm = 1, p j =
0| ∑C jw j .

Input: Jobs J with |J | = n, resource requirements a j , weights
w j , resource arrival times t1 ≤ . . . ≤ tq and resource quantities
b1, . . . bq .
Output: A feasible schedule π .

1: Set A = 0.
2: Set W = 0.
3: for i from 0 to q − 1 do
4: while A < Bq−i do
5: if there is an unassigned job j with w j ≤ W then
6: Let j be an unassigned job with w j ≤ W minimizing

w j/a j .
7: else
8: Let j be an unassigned job minimizing w j .

9: W ← W + w j
10: A ← A + a j
11: Set π(j) = q − i .
12: return π

Theorem 3 For 1|rm = 1, p j = 0| ∑C jw j , there exists a
6-approximation algorithm with running time O(n log n).

Proof It is clear that the schedule π returned by Algorithm 1
satisfies (2), so it is feasible. We claim that π satisfies the
requirements of Lemma 1 with α = 6, i.e., W≥k ≤ 6mk for

every k. Let Mk denote the set of jobs where the minimum
mk is achieved.

To bound W≥k for a given k, we consider the algorithm
up until the last step where q − i ≥ k, and divide it into 3
phases (some of these may be empty):

– Phase 1: until the first iteration whereW becomes at least
mk

– Phase 2: until the last iteration where A < Bk

– Phase 3: the last step, where A becomes at least Bk .

At the end of phase 1, we have W ≤ 2mk , because at the
beginning of the last step of phase 1, we either add a job of
weight at most W (which is less than mk at that point), or
we add a job of minimum weight, which is again at most mk

because some job in Mk is still unassigned.
In phase 2, the total weight added is at most mk . Indeed,

throughout phase 2, some job in Mk is still unassigned, but
W ≥ mk , so we always pick an unassigned job j with w j ≤
W minimizing w j/a j . Thus, the job selected is at least as
inefficient as any unassigned job in Mk , so the total weight
of the selected jobs cannot be larger than mk .

At the beginning of phase 3, we have A < Bk and mk ≤
W ≤ 3mk . At this point, there is still an unassigned job in
Mk , so the selected job has weight at most W ≤ 3mk . Thus,
the total weight is at most 6mk .

The running time bound follows by ordering the jobs
according to their weight and by using AVL trees for picking
j in the while loop. ��

The following example shows that the bound is tight. We
have 5 jobs with weights w1 = w2 = 1 − 2ε, w3 = 1 − ε,
w4 = 1 and w5 = 3. The resource requirements are a1 =
a2 = ε/5, a3 = 1 − ε/2, a4 = 1 and a5 = 4. The resource
arrival times are t1 = 0 and t2 = 1, with resource quantities
b1 = 5 − ε/10 and b2 = 1. Here the optimum solution is
to schedule the job with weight 1 to time point t2 and all the
remaining jobs to time point t1. However, our algorithm will
schedule the job with weight 1 to time point t1 and all the
remaining jobs to t2.

123

158 Journal of Scheduling (2024) 27:151–164

4.2 A (4+ ")-approximation for arbitrary q

Now we give a slightly better approximation for the prob-
lem. The algorithm is a bit more complicated than the one
presented in Sect. 4.1, but the proof illustrates one of the
important ideas of the general PTAS.

The idea of the algorithm is as follows. We may assume
without loss of generality that resource arrival times are inte-
ger, because multiplying all arrival times by a large integer
does not change the problem.Firstwe shift all resource arrival
times to powers of 2. For each arrival time ti in the shifted
instance, we apply the FPTAS by Kis (2015) to the instance
which has only two resource arrival times t1 and ti , and the
resource quantity for ti is Bi . Denote the set of jobs assigned
to ti this way by Li . Then, we schedule each job j at the latest
time point ti where j ∈ Li , i.e. π(j) = max{i : j ∈ Li }.

More formally, let I be an instance of 1|rm = 1, p j =
0| ∑ j C jw j . We assume t1 = 0 and t2 = 1 (the latter
assumption is without loss of generality because we can add
an arrival time with 0 resource arrival). We define a new
instance I ′ of 1|rm = 1, p j = 0| ∑ j C jw j with shifted
resource arrival times as follows. Set

t ′i =
{
0 if i = 1,

2i−2 for i = 2, . . . , �log2(tq)� + 2,

and

b′
i =

{
bi if i = 1, 2,
∑[b
 : t
 ∈ (2i−3, 2i−2]] for i = 3, . . . , �log2(tq)� + 2.

Claim 5 A solution to I with weighted sum of completion
times W can be transformed into a solution of I ′ with
weighted sum of completion times at most 2W. Furthermore,
any feasible schedule for I ′ is also feasible for I.

Proof Let us define t∗i = min{t ′
 : ti ≤ t ′
} for i = 1, . . . , q.
Let π be the solution for I. Then assigning all jobs that are
assigned to time point ti to t∗i gives us a feasible solution
to I ′. By this change, the completion of any job is at most
doubled (recall that each ti is assumed to be integer).

Since the available amount of resources at each time in I ′
is at most as much as in I, a feasible schedule for I ′ is also
a feasible schedule for I. ��
Claim 6 There exists a polynomial time (2+ε)-approximation
algorithm for constant ε for all instances I where the
resource arrival times are integer powers of 2.

Proof We use the procedure that we described above, i.e., for
each i > 1 we solve the instance with Bi resource arriving at
ti and the rest at t1, using the FPTAS provided by Kis (2015).

As defined above, Li is the set of jobs assigned to ti by the
FPTAS, and π(j) = max{i : j ∈ Li }.

Let α = 1 + ε. Let πopt be an optimum solution and let
Joptk be the set of jobs j with πopt(j) = k. We have

w(Li) ≤ α

q∑

k=i

w(Joptk)

for i = 1, . . . , q. Then we get

2α
∑

j∈J

w jC
πopt

j =
q∑

i=2

(2α) · 2i−2w(Jopti)

=
q∑

i=2

α · 2i−2w(Jopti)

⎛

⎝1 +
∞∑

j=1

2− j

⎞

⎠

≥
q∑

i=2

α2i−2
q∑

k=i

w(Joptk)

≥
q∑

i=2

2i−2w(Li),

thus the approximation ratio follows. ��
The two claims show that this approach leads to a (4+ε)-

approximation with running time polynomial in 1/ε and the
input length.

4.3 PTAS for constant q

The aim of this section is to give a PTAS for the casewhen the
number of resource arrival times is a constant. The algorithm
is a generalization of a well known PTAS for the knapsack
problem, and will be used later as a subroutine in the PTAS
for an arbitrary number of resource arrival times. The idea
is to choose a number k ∈ Z+, guess the k heaviest jobs
that are processed at each resource arrival time ti , and then
determine the remaining jobs that are scheduled at ti in a
greedy manner. Since we go over all possible sets containing
at most k jobs for each resource arrival time, there is an
exponential dependence on the number q of resource arrival
times in the running time.

Theorem 4 Consider the number of arrival times q to be
constant. For any fixed positive integer k, there is a (1+ q

k)-
approximation algorithm for 1|rm = 1, p j = 0| ∑C jw j

with running time O(nqk+1).

Proof We claim that Algorithm 2 satisfies the requirements
of the theorem. Let πopt be an optimal schedule and define
Jopti = { j ∈ J : πopt(j) = i}. Let Hopt

i be the set of the

k heaviest jobs in Jopti if |Jopti | ≥ k, otherwise let Hopt
i =

Jopti . Let Ji = { j ∈ J : π(j) = i} denote the set of jobs

123

Journal of Scheduling (2024) 27:151–164 159

Algorithm 2 PTAS for 1|rm = 1, p j = 0| ∑C jw j when q
is a constant.

Input: Jobs J with |J | = n, resource requirements a j , weights
w j , resource arrival times t1 ≤ . . . ≤ tq and resource quantities
b1, . . . bq .
Output: A feasible schedule π .

1: for all subpartitions H1 ∪ · · · ∪ Hq ⊆ J with |Hi | ≤ k for i > 1 do
2: Set A = 0.
3: Set W = 0.
4: for i from 0 to q − 2 do
5: for j ∈ Hq−i do
6: π(j) = q − i
7: A ← A + a j

8: if |Hq−i | = k then
9: W ← max{W ,min{w j : j ∈ Hq−i }}
10: while A < Bq−i do
11: if there exists an unassigned job j with w j ≤ W then
12: Let j be an unassigned jobwithw j ≤ W minimizing

w j/a j .
13: π(j) = q − i
14: A ← A + a j
15: else
16: break
17: For all remaining jobs set π(j) = 1.
18: Let π be the best schedule found.
19: return π

assigned to time ti in our solution. In each iteration of the for
loop of Step 4, let ji be the last job added to Ji if such a job
exists.

Assume that we are at the iteration of the algorithm when
the subpartition Hopt

1 ∪ · · · ∪ Hopt
q is considered in Step 1.

Let Wq−
 denote the value of W at the end of the iteration
of the for loop corresponding to i =
 in Step 4. To show
feasibility of π , observe that any job j /∈ Hopt

1 ∪ · · · ∪ Hopt
q

for which πopt(j) ≥ q −
 always satisfies w j ≤ Wq−
, so
we can pick jobs in line 11 until A ≥ Bq−
.

Now we prove the approximation factor. By Steps 3 and
9, we have

Wq−
 ≤ 1

k

q∑

i=

∑

j∈Jopti

w j .

As our algorithm always picks the most inefficient job, we
also have

q∑

i=

∑

j∈Ji\{ ji }
w j ≤

q∑

i=

∑

j∈Jopti

w j ,

where Ji \ { ji } = Ji if ji is not defined for i .
Combining these two observations, for
 = 1, . . . , q we

get

q∑

i=

∑

j∈Ji

w j =
q∑

i=

∑

j∈Ji\{ ji }
w j +

q∑

i=

w ji

≤
q∑

i=

∑

j∈Jopti

w j + (q −
 + 1) · W

≤ (1 + q

k
)

q∑

i=

∑

j∈Jopti

w j ,

where the first inequality follows from the fact that w ji ≤
Wi ≤ W
 whenever i ≥
. This proves that the schedule that
we get is a (1 + q

k)-approximation.
We get a factor of nqk in the running time for guessing the

sets Hk . Assigning the remaining jobs can be done in linear
time by ordering the jobs and usingAVL-trees, thuswe get an
additional factor of n. In order to get a PTAS, we set k = ε

q ,
concluding the proof of the theorem. ��

4.4 PTAS for arbitrary q

We turn to the proof of the main result of the paper. As in
Sect. 4.2, we shift resource arrival times; here we use powers
of 1 + ε, for a suitably small ε.

Let I be an instance of 1|rm = 1, p j = 0| ∑ j C jw j .
We assume that resource arrival times are integer, and that
t1 = 0, t2 = 1. We define a new instance I ′ of 1|rm =
1, p j = 0| ∑ j C jw j with shifted resource arrival times as
follows. Set

t ′i =
{
0 if i = 1,

(1 + ε)i−2 for i = 2, . . . , �log1+ε(tq)� + 2,

and

b′
i =

⎧
⎪⎨

⎪⎩

bi if i = 1, 2,
∑[b
 : t
 ∈ ((1 + ε)i−3, for i = 3, . . . ,

(1 + ε)i−2]] �log1+ε(tq)� + 2.

The proof of the following claim is the same as that of
Claim 5.

Claim 7 A solution to I with weighted sum of completion
times W can be transformed into a solution of I ′ with
weighted sum of completion times at most (1+ε)W. Further-
more, any feasible schedule for I ′ also is a feasible schedule
for I.

Due to the claim, we may assume that the positive arrival
times are powers of 1 + ε. For convenience of notation, in
this section we will assume that the largest arrival time is
1, and arrival times are indexed in decreasing order, starting
with t0 = 1. That is, ti = (1 + ε)−i (i = 0, . . . , q − 2), and
tq−1 = 0. We will also assume that for a given constant r ,
bq−r−1 = · · · = bq−2 = 0. This can be achieved by adding
r dummy arrival times.

123

160 Journal of Scheduling (2024) 27:151–164

Theorem 5 There exists a PTAS for 1|rm = 1, p j =
0| ∑C jw j .

Proof Let us fix an even integer r and ε > 0; we will later
assume that r is very large compared to ε−1. We assume that
resource arrival times are as described above, and are indexed
in decreasing order.

In the algorithm, we fix jobs at progressively decreasing
arrival times, by using the PTAS of the previous section for
r + 1 arrival times on different instances except for the first
step, when we may use the PTAS for less than r + 1 arrival
times. We will run our algorithm r/2 times with slight mod-
ifications, and pick the best result. Each run is characterized
by a parameter
 ∈ {1, . . . , r/2}. See Algorithm 3.

Algorithm 3 PTAS for 1|rm = 1, p j = 0| ∑C jw j

Input: Jobs J with |J | = n, resource requirements a j , weights
w j ; an even integer r ; resource quantities b0, . . . bq−1 such that
bq−r−1 = · · · = bq−2 = 0 and

∑
a j = ∑

bi . We assume resource
arrival times are ti = (1 + ε)−i (i = 0, . . . , q − 2), tq−1 = 0.
Output: A feasible schedule π .

1: for
 from 1 to r/2 do
2: Obtain instance I ′ with r/2 +
 + 1 arrival times by moving

arrivals before tr/2+
−1 to 0
3: Run Algorithm 2 on I ′ to get schedule π ′.
4: Let A = B = 0
5: for i from 0 to
 − 1 do
6: For every j for which π ′(j) = i , fix π
(j) = i
7: A ← A + ∑{a j : π ′(j) = i}
8: B ← B + bi
9: for j from 2 to �2(q − 1 −
)/r� do
10: Let s = (j − 2)r/2 +

11: Obtain instance I ′ with arrival times ts , ts+1, . . . , ts+r−1, 0:
remove arrivals after ts , remove max{A − B, 0} latest remaining
resources, and move all arrivals before ts+r−1 to 0

12: Let A = B = 0
13: Run Algorithm 2 on I ′ to get schedule π ′.
14: for i from s to s + r/2 − 1 do
15: For every j for which π ′(j) = i , fix π
(j) = i
16: A ← A + ∑{a j : π ′(j) = i}
17: B ← B + bi
18: For all unscheduled jobs j , set π
(j) = q − 1.
19: Let π be the best schedule among π1, . . . , πr/2
20: return π

In the first step, we consider arrival times t0, t1, . . . ,
tr/2+
−1, 0. We move the resources arriving before tr/2+
−1

to 0, and use the PTAS for r/2 +
 + 1 arrival times on this
instance. We fix the jobs that are scheduled at arrival times
t0, t1, . . . , t
−1.

Consider now the j th step for some j ≥ 2.Define s = (j−
2)r/2 +
 and consider arrival times ts, ts+1, . . . , ts+r−1, 0.
Move the resources arriving before ts+r−1 to 0, and decrease
bs, bs+1, . . . in this order as needed, so that the total require-
ment of unfixed jobs equals the total resource. Use the PTAS
for r + 1 arrival times on this instance. Fix the jobs that are
scheduled at arrival times ts, ts+1, . . . , ts+r/2−1.

The algorithm runswhile s+r−1 ≤ q−2, i.e., jr/2+
 ≤
q − 1. Since the smallest r arrival times (except for 0) are
dummy arrival times, the algorithm considers all resource
arrivals.

The schedule given by the algorithm is clearly feasible,
because when jobs at ti are fixed, the total resource require-
ment of jobs starting no earlier than ti is at least the total
amount of resource arriving no earlier than ti . To analyze the
approximation ratio, we introduce the following notation:Wi

is the total weight that the algorithm schedules at ti ;W ′
i is the

weight that the algorithm temporarily schedules at ti when i
is in the interval [ts+r/2, ts+r−1] (or, in the first step, in the
interval [t
, t
+r/2−1]);W ∗

i is the total weight scheduled at ti
in the optimal solution.

Since we use the PTAS for r/2 +
 + 1 arrival times in
the first step, we have

−1∑

i=0

(1 + ε)−iWi +

+r/2−1∑

i=

(1 + ε)−iW ′
i

≤ (1 + ε)

+r/2−1∑

i=0

(1 + ε)−iW ∗
i ,

as the right-hand side is (1 + ε) times the objective value of
the feasible solution obtained from the optimal solution by
moving jobs arriving before t
+r/2−1 to 0.

For s = jr/2 +
, we compare the output of the PTAS
with a different feasible solution: we schedule total weight
W ′

i at ti for i = s, s + 1, . . . , s + r/2 − 1, total weight W ∗
i

at ti for i = s + r/2 + 1, . . . , s + r − 1, and at ts+r/2 we
schedule all jobs that are no earlier than ts+r/2 in the optimal
schedule but are no later than ts+r/2 in the PTAS schedule.
We get the inequality

(j+1)r/2+
−1∑

i= jr/2+

(1 + ε)−iWi +
(j+2)r/2+
−1∑

i=(j+1)r/2+

(1 + ε)−iW ′
i

≤ (1 + ε)

⎛

⎝
(j+1)r/2+
−1∑

i= jr/2+

(1 + ε)−iW ′
i +

(j+2)r/2+
−1∑

i=(j+1)r/2+

×(1 + ε)−iW ∗
i + (1 + ε)−(j+1)r/2−

(j+1)r/2+
−1∑

i=0

W ∗
i

⎞

⎠ .

The sum of these inequalities gives

q−2∑

i=0

(1 + ε)−iWi ≤ ε

q−2∑

i=

(1 + ε)−iW ′
i + (1 + ε)

q−2∑

i=0

× (1 + ε)−iW ∗
i x + (1 + ε)

q−2∑

i=0

123

Journal of Scheduling (2024) 27:151–164 161

×
⎛

⎝
∑

j : jr/2+
>i

(1 − ε)−(jr/2+
)

⎞

⎠W ∗
i .

(3)

To bound the first term on the right hand side of (3), first we
observe that

r/2+
−1∑

i=

(1 + ε)−iW ′
i ≤ (1 + ε)

r/2+
−1∑

i=0

(1 + ε)−iW ∗
i ,

because the left side is at most the value of the PTAS in the
first step, while the right side is (1 + ε) times the value of a
feasible solution. Similarly,

(j+2)r/2+
−1∑

i=(j+1)r/2+

(1 + ε)−iW ′
i

≤ (1 + ε)

⎛

⎝
(j+2)r/2+
−1∑

i= jr/2+

(1 + ε)−iW ∗
i

+(1 + ε)− jr/2−

jr/2+
−1∑

i=0

W ∗
i

⎞

⎠ ,

because the left side is at most the value of the PTAS in the
(j + 1)th step, and the right side is (1 + ε) times the value
of the following feasible solution: take the optimal solution,
move jobs scheduled before t(j+2)r/2+
−1 to 0, andmove jobs
scheduled after t jr/2+
 to t jr/2+
. Adding these inequalities,
we get

ε

q−2∑

i=

(1 + ε)−iW ′
i ≤ ε(1 + ε)

⎛

⎝2
q−2∑

i=0

(1 + ε)−iW ∗
i

+
q−2∑

i=0

⎛

⎝
∑

j : jr/2+
>i

(1 + ε)− jr/2−

⎞

⎠W ∗
i

⎞

⎠

≤ ε(1 + ε)

⎛

⎝2
q−2∑

i=0

(1 + ε)−iW ∗
i

+
q−2∑

i=0

⎛

⎝
∞∑

j=0

(1 + ε)− jr/2−1

⎞

⎠ (1 + ε)−iW ∗
i

⎞

⎠

= ε(1 + ε)

⎛

⎝2
q−2∑

i=0

(1 + ε)−iW ∗
i + (1 + ε)r/2−1

(1 + ε)r/2 − 1

q−2∑

i=0

(1 + ε)−iW ∗
i

⎞

⎠

= ε

(

2(1 + ε) + (1 + ε)r/2

(1 + ε)r/2 − 1

) q−2∑

i=0

(1 + ε)−iW ∗
i .

The last expression is at most 4ε times the optimum value if
r is large enough.

The last term of the right side of (3) is too large to get
a bound that proves a PTAS. However, we can bound the
average of these terms for different values of
. The average
is

(1 + ε)
2

r

r/2∑

=1

q−2∑

i=0

⎛

⎝
∑

j : jr/2+
>i

(1 − ε)−(jr/2+
)

⎞

⎠W ∗
i

≤ (1 + ε)
2

r

q−2∑

i=0

⎛

⎝
∞∑

j=1

(1 + ε)− j

⎞

⎠ (1 − ε)−iW ∗
i

= (1 + ε)
2

rε

q−2∑

i=0

(1 − ε)−iW ∗
i ,

which is at most ε times the optimum if r is large enough. To
summarize, we obtained that for large enough r , the average
objective value of our algorithm for
 = 1, 2, . . . , r/2 is
upper bounded by

4ε
q−2∑

i=0

(1 + ε)−iW ∗
i + (1 + ε)

q−2∑

i=0

(1 + ε)−iW ∗
i

+ε

q−2∑

i=0

(1 + ε)−iW ∗
i = (1 + 6ε)

q−2∑

i=0

(1 + ε)−iW ∗
i ,

which is (1 + 6ε) times the objective value of the optimal
solution. This proves that the algorithm that chooses the best
of the r/2 runs is a PTAS. ��

5 Undetermined resource arrival times

In this section,we consider a variant of the problemwhere it is
known that the arriving resource quantities will be b1, . . . , bq
in this order, but the resource arrival times t j are unknown. A
solution (schedule) consists of an ordering of the jobs, which
determines the completion times for any fixed sequence of
resource arrival times; this is then compared to the optimum
for those arrival times. The problem is denoted by 1|rm =
1, p j = 0, ti unknown|∑C jw j .

Consider an instance of the problem. Recall that Bk =
∑

i≥k bi , Mk denotes the minimum weight job set consum-
ing at least Bk resources, and mk = w(Mk). Let π be a
feasible schedule, and let W≥k = ∑

j :π(j)≥k w j . Lemma 1
stated that if W≥k ≤ α · mk for every 1 ≤ k ≤ q, then π

is an α-approximation for given arrival times. However, the
condition does not depend on the arrival times, so a schedule
π satisfying the condition is actually an α-approximation for
this instance of 1|rm = 1, p j = 0, ti unknown|∑C jw j .

123

162 Journal of Scheduling (2024) 27:151–164

Conversely, the smallest α for which a feasible schedule
satisfying the condition of Lemma 1 exists is the best approx-
imation ratio possible; this can be seen by choosing the k for
whichW≥k is theworst approximation, and setting the arrival
time ti to 0 if i < k and to 1 if i ≥ k.

The proof of Theorem 3 implies that Algorithm 1
is a 6-approximation algorithm for 1|rm = 1, p j =
0, ti unknown|∑C jw j . In the following, we show that
for any instance, there is a schedule which gives a 4-
approximation, while for α < 4 there are instances where
no such schedule exists. We also show that a (4 + ε)-
approximation can be found efficiently for any ε; it remains
open whether 4-approximation is possible in polynomial
time.

Theorem 6 For 1|rm = 1, p j = 0, ti unknown|∑C jw j ,
there exists a (4+ ε)-approximation with running time poly-
nomial in 1/ε and the input length. Moreover, there is no
(4 − ε)-approximation algorithm for the problem for any
ε > 0.

Proof Our approximation algorithm is based on the follow-
ing claim.

Claim 8 For any instance of 1|rm = 1, p j = 0, ti unknown|∑
C jw j , there exists a schedule π such that W≥k ≤ 4mk for

every 1 ≤ k ≤ q.

Proof Define f (i) = min{k : w(Mk) ≤ 2w(Mi)} for
i = 2, . . . , q and let us consider the following procedure
(Algorithm 4).

Algorithm4Subroutine for (4+ε)-approximation to 1|rm =
1, p j = 0, ti unkown|∑C jw j .

Input: Jobs J with |J | = n, resource requirements a j , weights w j ,
resource quantities b1, . . . bq .
Output: A feasible schedule π .

1: Set i = q.
2: while i ≥ 1 do
3: Set Li+1 = { j : π(j) > i}.
4: Set π(j) = i for j ∈ M f (i) \ Mi+1.
5: i ← f (i) − 1
6: return π

It is not difficult to see that π is a feasible schedule.
We prove by induction that W≥i = w(Li) ≤ 4w(Mi)

holds for i = 1, . . . , q. As Lq = M f (q), the inequality
w(Lq) ≤ 4w(Mq) clearly holds. Assume now that i ≤ q−1.
If no jobs are assigned to ti , then w(Li) = w(Li+1) ≤
4w(Mi+1) ≤ 4w(Mi). Otherwise i = f (i ′) − 1, where i ′
is the index considered in the previous iteration of the while
loop in Step 2. Observe that no jobs are assigned to time
points between the i th and the i ′th ones. By induction, we get

w(Li) = w(M f (i) ∪ Li ′) ≤ w(M f (i)) + w(Li ′) ≤ 2w(Mi)

+4w(Mi ′) ≤ 4w(Mi).

Here the second inequality holds by induction and by the
definition of f , while the last inequality follows from the
fact that i < f (i ′) which implies w(Mi) > 2w(Mi ′). ��

Now we show how Algorithm 4 provides a (4 + ε)-
approximation for the problem 1|rm = 1, p j = 0, ti
unkown|∑C jw j which has running time polynomial in
the input size and 1

ε
. Using either an FPTAS for the knap-

sack problem or the FPTAS of Kis (2015), we determine an
approximation of the sets Mi . Then we apply Algorithm 4
with these approximations in place of the sets Mi to sched-
ule the jobs. This concludes the proof of the first part of the
theorem.

The following set of instances shows that α is at least 4.
We are given (n − 1)m jobs denoted by 1, 2, . . . , (n − 1)m
with weights wi = n − i

m and ai = 2−i . Furthermore, we
have (n − 1)m resource arrival times that are unknown. The
resource quantities are given by bq = 2−q and bi = 2−i −
Bi+1 = 2−i−1 for 1 < i < q; b1 equals the remaining
resource requirement.

In order to fulfill the resource requirements, the set of jobs
scheduled at or after time ti has to contain at least one of the
jobs j ≤ i . Observe that the optimal solution of finding a
minimum weight job set Mi consuming at least Bi resources
consists of the single job i .

Let j1 be a job processed at time tq . We may assume that
w j1 ≤ 4wq = 4, because otherwise this schedule is not a
4-approximation if tq = 1 and all other arrival times are set
to 0.

We create a sequence starting with j1. Since the jobs with
indices greater or equal to j1 have total resource requirement
less than Bj1−1, we have to schedule at least one job j2 < j1
at or after t j1−1. This argument can be iterated to find a job
j3 < j2 which is scheduled at or after t j2−1, and so on, until
jN = 1 for some N .
The following claim shows that for n,m large enough,

there must be an index i such that the jobs in this sequence
that are scheduled at or after t ji−1 have large total weight
compared to w ji−1 = w(J ji−1).

Claim 9 For any β < 4, there exist n and m such that for any
feasible schedule, there is some i with

βw ji−1 <

i+1∑

k=1

w jk

for the sequence j1, j2, . . . constructed as above.

Proof Suppose to the contrary that there is no triple n,m, i
satisfying the requirements of the claim. Then for all n,m,
there is a feasible schedule such that βw ji−1 ≥ ∑i+1

k=1 w jk
for all i .

By setting m large enough, w ji−1 − w ji = 1/m is very
small; wewill see thatm > 12/(4−β) is enough. By increas-
ing n, the length N of our sequence increases as well. Indeed,

123

Journal of Scheduling (2024) 27:151–164 163

by the indirect assumption, we have

w ji+1 ≤
i+1∑

k=1

w jk ≤ βw ji−1 < 4w ji−1 = 4w ji + 4/m.

Since we also have w j1 ≤ 4, w j ≥ 1 for all jobs j , and
w1 = n, this implies that N ≥ log5 n. Let us define zi = w ji

and z′i = ∑i−1
k=1 zk . By the indirect assumption, β(zi + 1

m) ≥
zi+1 + zi + z′i , thus we have

(β − 1)zi − z′i + 4/m > zi+1. (4)

We claim that

z′i+1

zi+1
>

3

β − 1

z′i
zi

(5)

for every i , or equivalently,

(β − 1)(z2i + zi z
′
i) − 3z′i zi+1 > 0.

By (4), the left hand side is at least

(β − 1)(z2i + zi z
′
i) − 3z′i ((β − 1)zi − z′i + 4/m)

= (β − 1)z2i − 2(β − 1)zi z
′
i + 3z′i (z′i − 4/m).

This is positive if 3(z′i − 4/m) > (β − 1)z′i , which holds if
m is large enough (e.g. m > 12/(4 − β)), since z′i ≥ 1 and
β − 1 < 3.

Since 3/(β − 1) > 1, it follows from (5) that
z′N
zN

> 3 for
large enough N , and thus we get

βw jN−1−1 ≤ βzN < 4zN ≤ zN + z′N ,

contradicting the indirect assumption. ��
ByClaim9, there exists a timepoint ti with

∑
j :π(j)≥i w j >

βw(Ji). By setting ti ′ = 0 (or very close to 0) for i ′ < i and
ti ′ = 1 (or very close to 1) for i ′ ≥ i , the schedule can only
be a (β − ε)-approximation if we do not know the resource
arrival times in advance. ��
Funding Open access funding provided by Eötvös Loránd University.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material

in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Carlier, J. (1984). Problèmes d’ordonnancement à contraintes de
ressources: algorithmes et complexité. Institut de programmation:
Université Paris VI-Pierre et Marie Curie.

Carlier, J., & Kan, A. R. (1982). Scheduling subject to nonrenewable-
resource constraints. Operations Research Letters, 1(2), 52–55.

Gafarov, E. R., Lazarev, A. A., & Werner, F. (2011). Single machine
scheduling problems with financial resource constraints: Some
complexity results and properties. Mathematical Social Sciences,
62(1), 7–13.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability. A
guide to the theory of NP-completeness.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979).
Optimization and approximation in deterministic sequencing and
scheduling: A survey. Annals of Discrete Mathematics, 5, 287–
326.

Grigoriev, A., Holthuijsen, M., & Van De Klundert, J. (2005).
Basic scheduling problems with raw material constraints. Naval
Research Logistics (NRL), 52(6), 527–535.

Györgyi, P. (2017). A PTAS for a resource scheduling problem with
arbitrary number of parallel machines. Operations Research Let-
ters, 45(6), 604–609.

Györgyi, P., & Kis, T. (2014). Approximation schemes for single
machine scheduling with non-renewable resource constraints.
Journal of Scheduling, 17(2), 135–144.

Györgyi, P., &Kis, T. (2015a). Approximability of scheduling problems
with resource consuming jobs. Annals of Operations Research,
235(1), 319–336.

Györgyi, P., & Kis, T. (2015b). Reductions between scheduling prob-
lems with non-renewable resources and knapsack problems. The-
oretical Computer Science, 565, 63–76.

Györgyi, P., & Kis, T. (2017). Approximation schemes for paral-
lel machine scheduling with non-renewable resources. European
Journal of Operational Research, 258(1), 113–123.

Györgyi, P., & Kis, T. (2018). Minimizing the maximum lateness on a
single machine with raw material constraints by branch-and-cut.
Computers & Industrial Engineering, 115, 220–225.

Györgyi, P., & Kis, T. (2019). Minimizing total weighted completion
time on a single machine subject to non-renewable resource con-
straints. Journal of Scheduling, 22(6), 623–634.

Györgyi, P., & Kis, T. (2020). New complexity and approximability
results for minimizing the total weighted completion time on a sin-
gle machine subject to non-renewable resource constraints. arXiv
preprint arXiv:2004.00972.

Kis, T. (2015). Approximability of total weighted completion time
with resource consuming jobs.OperationsResearchLetters, 43(6),
595–598.

Slowiński, R. (1984). Preemptive scheduling of independent jobs on
parallel machines subject to financial constraints. European Jour-
nal of Operational Research, 15(3), 366–373.

Toker, A., Kondakci, S., & Erkip, N. (1991). Scheduling under a
non-renewable resource constraint. Journal of the Operational
Research Society, 42(9), 811–814.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2004.00972

164 Journal of Scheduling (2024) 27:151–164

Xie, J. (1997). Polynomial algorithms for single machine scheduling
problems with financial constraints. Operations Research Letters,
21(1), 39-42.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Scheduling with non-renewable resources: minimizing the sum of completion times
	Abstract
	1 Introduction
	2 Preliminaries
	3 The problem 1|rm=1,aj=1|sum Cj
	3.1 Strong NP-completeness
	3.2 Shortest processing time first for unit resource requirements

	4 The problem 1|rm=1,pj=0|sum Cjwj
	4.1 A greedy 6-approximation for arbitrary q
	4.2 A 4+epsilon-approximation for arbitrary q
	4.3 PTAS for constant q
	4.4 PTAS for arbitrary q

	5 Undetermined resource arrival times
	References

