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Abstract
The customer order scheduling problem has garnered considerable attention in the recent scheduling literature. It is assumed
that each of several customer orders consists of several jobs, and each customer order is completed only if each job of the
order is completed. In this paper, we consider the customer order scheduling problem in a machine environment where each
customer places exactly one job on each machine. The objective is to minimize the earliness–tardiness, where tardiness is
defined as the time an order is finished past its due date, and earliness is the time a job is finished before its due date or the
completion time of the corresponding order, whichever is later. Even though the earliness–tardiness criterion is an important
objective for just-in-time production, this problem has not been studied in the context of the customer order scheduling
problem. We provide a mixed-integer linear programming (MILP) formulation for this problem and derive multiple problem
properties. Furthermore, we develop six different heuristics for this problem configuration. They follow the structure of the
iterated greedy algorithm and additionally use a refinement function in which they differ. In a computational experiment, the
algorithms were compared with each other and outperformed a solver solution of the MILP, which proves their ability to
efficiently solve the problem configuration.

Keywords Machine scheduling ·Customer order scheduling · Iterated greedy algorithm ·Metaheuristics ·Earliness–tardiness ·
Dedicated machines

1 Introduction

Classical scheduling problems involve scheduling a set of
jobs that are considered as single entities to optimize a job-
related objective. Therefore, it is assumed that the resulting
products are shipped individually after processing. However,
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inmany real-world scenarios, customers ordermultiple prod-
ucts. Shipping the products of a customer order separately
results in higher transportation costs and distribution execu-
tion time. In addition, storage costs for the customer increase
when parts of an order are delivered at different times but
are all needed together for further processing (Framinan &
Perez-Gonzalez, 2017).

This issue is addressed by the customer order scheduling
problem (COSP). In contrast to classical scheduling prob-
lems, the COSP assumes that each order consists of multiple
jobs and is finished when all jobs of the order have been
processed. Consequently, the completion time of an order
corresponds to the completion time of the last finished job
of the order. The COSP has been investigated for differ-
ent objectives and machine environments (see Sect. 2 for
examples). We consider the so-called dedicated machine
environment, where each order has exactly one job on each
machine. This is equivalent to the assumption that customers
can order different product types, and each product type can
only be processed on a dedicated machine.
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A well-known objective of scheduling problems is the
minimization of earliness–tardiness. On the one hand, mini-
mizing tardiness leads to higher customer satisfaction and
prevents penalty costs. On the other hand, minimizing
premature completion of products decreases warehousing
costs (Kedad-Sidhoum & Sourd, 2010). Moreover, the time
between the completion of a product and its shipment
becomes critical when handling perishable goods, which can
be found in the food and pharmaceutical industries.

In classical scheduling problems, the earliness of a job is
defined as the time that a job is finished before its due date
(or zero if the job is finished after the due date), and the tar-
diness as the time a job is finished past its due date (or zero if
the job is finished before the due date) (Kramer & Subrama-
nian, 2019). Both assume that the job is shipped at the due
date or the completion time of the job, whichever is later. To
take into account the specifics of the COSP, the definition of
earliness–tardiness must be adjusted to the COSP in order to
continue to minimize storage costs and maximize customer
satisfaction at the same time. Therefore, the tardiness of an
order is defined as the time an order is finished past the due
date of the order (or zero if the order is finished before the
due date), and the earliness of a job as the time that a job
is finished before the due date or the completion time of the
order, whichever is later. The definition of earliness is based
on the assumption that a finished product must be stored until
its shipment date.

To the best of our knowledge, the earliness–tardiness
objective has not yet been studied in the context of the COSP.
In this work, we investigate this objective in the dedicated
machine environment. The contributions of this paper are as
follows:

• We derive multiple properties of the problem configu-
ration which are necessary for our problem formulation
and are used in the design of solution algorithms.

• We present a mixed-integer linear programming (MILP)
formulation for the problem.

• We develop six heuristics which are proved to efficiently
solve large instances in a computational experiment.

For this purpose, the remainder of this article is struc-
tured as follows. In Sect. 2, we present an overview of
the literature related to the COSP and minimization of the
earliness–tardiness. Section 3 presents a formal description
of the problem as well as a MILP formulation and problem
properties. Based on these properties, we describe developed
metaheuristics in Sect. 4, which are tested in a computational
experiment in Sect. 5. In Sect. 6, we present conclusions
based on the results of this study and provide an outlook for
future research possibilities.

2 Literature review

In this section, we discuss the relevant literature regarding
the COSP and respective solution approaches, the dedi-
cated machine environment, and the objective of minimizing
earliness–tardiness.

The COSP is a well-known scheduling problem and has
been studied for various problem settings. For example,
objectives such as minimizing the total weighted completion
time (Leung et al., 2007; Shi et al., 2018) and the number
of tardy orders (Wu et al., 2018) have been addressed. In
addition, different machine environments have been consid-
ered, such as the identicalmachine environment (Leung et al.,
2008a, b), the batch machine environment (Shi et al., 2018),
and the job shop environment (Liu, 2009). The more recent
literature about the COSP includes Li et al. (2022) and Wu
et al. (2022), who focus on robust solution approaches for
the COSP with scenario-dependent problem parameters, as
well as Li et al. (2023), who investigate a tri-criteria COSP in
the single-machine environment with job classes by study-
ing multiple heuristics and a branch-and-bound algorithm.
A brief overview of variants of the COSP is presented in
Framinan et al. (2019). The authors also point out that the
COSP is a special case of the assembly scheduling problem
and introduce a notation for configurations of the assembly
scheduling problem, which we adopt in the following.

Multiple problem configurations of the COSP have been
shown to be NP-hard. For example, Roemer (2006) proved
that

(
DPm → 0||∑Ci

)
is NP-hard, even for the two-

machine case. Consequently, various heuristics have been
established to solve variants of the COSP. Simulated anneal-
ing algorithms were applied by Xu et al. (2016) and Kung et
al. (2018) and tabu search algorithms by Leung et al. (2005)
and Li and Yoon (2015) to solve different types of COSPs.
Furthermore, Hazür et al. (2008) performed a comparative
study of the performance of four different metaheuristics
applied to the COSP in a single-machine environment. A
metaheuristic that has been used inmore recent COSP studies
is the iterated greedy algorithm (IGA); see Wu et al. (2019),
Wu et al. (2021), and Hoffmann et al. (2022) for examples.

One of the most widely investigated machine environ-
ments of the COSP is the dedicated machine environment.
Much attention has recently been focused on minimizing the
total tardiness in this machine setting. Braga-Santos et al.
(2022) presented a size reduction algorithm for the standard
configuration

(
DPm → 0||∑ Ti

)
, while in de Abreu et al.

(2022), a biased random key genetic algorithm is developed
andmissing operations of single orders are taken into account(
DPm → 0|missing|∑ Ti

)
. Furthermore, in Antonioli et

al. (2022), the problem configuration is extended with
sequence-dependent setup times

(
DPm → 0|STsd | ∑ Ti

)
.

To the best of our knowledge, the problem of minimizing
total tardiness in the dedicatedmachine environmentwas first
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addressed by Lee (2013). Important properties of the prob-
lem configuration were presented in that paper. It was noted
that DPm → 0||∑ Ti is NP-hard, even for the two-machine
case. It was further shown that there always exists an opti-
mal schedule without idle times and where each machine
processes the orders in the same sequence. The latter prop-
erty is a specification of a lemma from Leung et al. (2005)
and applies to different objective functions in the dedicated
machine environment. The lemma from that paper states that
for the problem configuration DPm → 0||∑ fi (Ci ), where
fi (Ci ) increases in Ci for each i , there exists an optimal
schedule for each problem instance in which each machine
processes the orders in the same sequence.

The objective of minimizing the earliness–tardiness has
been addressed in various studies for different problem set-
tings. In Polyakovskiy andM’Hallah (2014), minimizing the
weighted earliness–tardiness was studied in a nonidentical
parallel-machine environment. The weights for the earli-
ness and tardiness costs are job-dependent and can differ
between earliness and tardiness. The same objective was
studied by Yousefi and Yusuff (2013) for the single-machine
environment, where all jobs share a common due date. The
common due date property was also considered for min-
imizing the weighted earliness–tardiness in the unrelated
parallel-machine environment in Bank and Werner (2001).
An interesting property of job schedulingwith a common due
date for minimizing earliness–tardiness in specific machine
environments is that there exists an optimal schedule without
idle times inserted between the scheduled jobs. This applies,
for example, in the single-machine environment, but also in
the parallel-machine environment with unrelated machines
when there are no further restrictions beyond the common
due date (Bank &Werner, 2001). Note that in the COSP, the
jobs of the same order also have a common due date. A recent
bibliography of earliness–tardiness problems in general was
given in Kramer and Subramanian (2019).

Even though earliness–tardiness has not yet been studied
for the COSP in the way it is defined here, there are papers
that address problems with similar intentions. Minimizing
the sum of the longest waiting durations, which is defined
as the difference between the completion times of the first
and last finished job of an order, was studied in Li and Yoon
(2015), Dauod et al. (2018), Li et al. (2018), and Li et al.
(2023). In Liu (2009), the sum of the absolute lateness val-
ues, which are defined as the deviation of the completion
time of an order from its due date, was minimized in the con-
text of the COSP. Meanwhile, Gerstl and Mosheiov (2012)
addressed minimizing earliness–tardiness in the parallel uni-
formmachine environment, where jobs belong to classes and
the jobs of a class have the same due date.However, this study
was not within the scope of the COSP.

Table 1 Notation

I Set of orders

J Set of jobs

I T Set of idle times

n Number of customer orders

m Number of machines

pi j Processing time of job j in order i

di Due date of order i

xi jh Assignment of job j of order i to
position h

zi jh Completion time of job j of order i ,
when it is assigned to position h

Ci Completion time of order i

Ci j Completion time of job j in order i

Ti Tardiness of order i

Ei j Earliness of job j in order i

M Large number

ng Number of jobs in group g

vg Number of jobs in group g with an
earliness of 0

i ti j Idle time before job j from order i

ds Destruction size

dsmin Minimum destruction size

dsmax Maximum destruction size

y, z Algorithm parameters

πor Sequence of orders

πma Set of sequences

πma,a Sequence of jobs on machine a

� Feasible schedule

�∗ Best found feasible schedule

F(·) Objective function value

T F Tardiness factor

RDD Range of due dates

3 Problem description

3.1 Problem definition

Next, we define the configuration of the studied prob-
lem. The notations for variables and parameters used in this
paper are shown in Table 1. There are n customers who place
exactly one job on each of m dedicated machines. The num-
bering of a job of an order corresponds to the number of the
machine. Therefore, job j of order i is processed on machine
j and has a processing time pi j and, based on the (partial)
schedule, a completion time Ci j . We denote this job with
(i, j), or with the order number if the considered machine is
obvious. It is possible to insert an idle time i ti j before the job
(i, j). An order is completed the moment all jobs have fin-
ished, and hence, the completion time of an order i is defined
as Ci = max1≤ j≤m{Ci j }. Each order has a due date di . The
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Fig. 1 Gantt chart of an
exemplary schedule
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tardiness of an order is defined by Ti = max{0,Ci − di}.
We define the earliness of a job as Ei j = max{di ,Ci } −
Ci j . Note that Ei j ≥ 0, since Ci ≥ Ci j . The objective
is to minimize the earliness–tardiness that we define as∑n

i=1
∑m

j=1

(
Ei j + Ti

) = ∑n
i=1

(∑m
j=1

(
Ei j

) + m · Ti
)
.

The problem configuration has the notation DPm →
0|| ∑(∑

Ei j + mTi
)
when preemption is not allowed, and

DPm → 0|prmp|∑(∑
Ei j + mTi

)
for the preemptive

case.
For the purpose of clarity, an exemplary schedule for the

non-preemptive case with five orders on two machines is
presented in Fig. 1. The number in each box represents the
order number. Each order places one job on each machine
and is completed when all jobs have finished, as can be seen
by C1. Before each job, an idle time can be inserted, as is
depicted for job 2 of order 3 (see i t32). The earliness of two
jobs is given in the Gantt chart. The earliness E12 is the
difference between the completion time of the job C12 and
the due date of the order d1 because the due date is past the
completion time of the order. In contrast, the completion time
is later than the due date for order 2. Therefore, E22 is the
difference between C22 and C2. Moreover, if the completion
time is past the due date, the tardiness will be larger than 0,
as it is for order 4.

3.2 Problem properties andmixed-integer
programming formulation

We consider the preemptive case first. Here, we are allowed
to interrupt the processing of a job a at any time, continue
with processing a job b or leave the machine idle, and then
resume the processing of job a at any given time. By Propo-
sition 2, we indicate that we can neglect the earliness for this
problem configuration. To prove the proposition, we need the
following lemma.

Lemma 1 There always exists an optimal solution for the
problem of minimizing the total tardiness in the dedicated
machine environment without preemptions; i.e., DPm →
0|prmp| ∑ Ti and DPm → 0||∑ Ti have a common opti-
mal solution.

Proof Assume two jobs of orders a and b onmachine j which
cannot start before time tstart . Since we consider the dedi-

cated machine environment, we can observe the machines
separately. If we include a preemption, i.e., interrupting the
processing of job (a, j) after time tx in order to process job
(b, j), and resuming the processing of (a, j) afterward, we
obtain the schedule (p) with the completion times

C (p)
aj = tstart + paj + pbj

C (p)
bj = tstart + tx + pbj .

However, we can create the non-preemptive schedule
(np), where (b, j) is scheduled directly before (a, j), and
obtain the completion times

C (np)
aj = tstart + paj + pbj

C (np)
bj = tstart + pbj .

The completion times of the other jobs on the machine
are not affected by this. It can be seen that in schedule (np),
neither completion time is greater than the corresponding
completion times in (p), i.e., C (np)

aj = C (p)
aj and C (np)

bj ≤
C (p)
bj . Consequently, the tardiness of the corresponding orders

cannot be decreased by preemptive schedules since Ti =
max{0,max1≤ j≤m{Ci j } − di }, and di is a given parameter.
The proof for the case in which job (b, j) is also interrupted
is analogous. ��

Proposition 2 The optimal objective function value of an
instance for theproblem DPm → 0|prmp|∑(∑

Ei j + mTi
)

is equivalent to the optimal objective function value of the
same instance for the problem DPm → 0||∑mTi .

Proof If preemption is allowed, it is possible to stop the pro-
cessing of any job a and leave an infinitesimally small portion
of the processing time. The processing of a can be resumed
at any given time without interfering with the completion
time of the other jobs on the machine because the process-
ing of the other jobs can be stopped for an infinitesimally
small time to finish a and resume afterward. Consequently,
the following strategy can be applied: First, the problem
DPm → 0|prmp|∑mTi , which is equivalent to DPm →
0|| ∑mTi (see Lemma 1), is solved. Subsequently, setCi j =
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max{Ci , di } for each job j of order i , by stopping the produc-
tion of the job an infinitesimally small time before finishing
it and placing the remaining portion of the processing time
to max{Ci , di }. Since Ti = max{0,Ci − di }, this does not
increase the tardiness of the orders, and the earliness of each
job equals zero. ��
Remark 1 The solution for DPm → 0||∑mTi is equivalent
to DPm → 0||∑ Ti , becausem is just a constant,multiplied
by the complete objective function

∑
Ti .

Studies in the literature regarding solution methods for
DPm → 0||∑ Ti are presented in Sect. 2. Clearly,
DPm → 0|prmp|∑(∑

Ei j + mTi
)
is mainly interesting

from a theoretical perspective because leaving an infinites-
imally small portion of the processing time of a job is not
possible in a real-world scenario. Furthermore, semi-finished
goods whose processing is paused still have to be stored and
hence also entail inventory costs, which would be counter to
the goal of minimizing the earliness of the goods. Therefore,
we limit the remainder of this paper to the problem configu-
ration DPm → 0||∑(∑

Ei j + mTi
)
.

This problem configuration has the following two prop-
erties which can be shown by counterexamples that are
presented in Appendix A. They stand in contrast to prob-
lem properties of related problems, which were pointed out
in Sect. 2.

Lemma 3 There are instances of this problem configuration
where it is not possible to schedule all orders in the same
sequence on each machine to obtain an optimal solution.

Lemma 4 There are instances of this problem configuration
where it is not possible to schedule the jobs without inserting
idle times between the jobs to obtain an optimal solution,
even if all orders have the same due date.

Because of these properties, idle timesmust be considered,
and each machine can have its own order sequence for job
processing. The followingMILP formulation considers these
two properties.

minimize:
n∑

i=1

⎛

⎝
m∑

j=1

(
Ei j

) + m · Ti
⎞

⎠ (1)

subject to:
n∑

h=1

xi jh = 1∀ i ∈ I ; j ∈ J (2)

n∑

i=1

xi jh = 1∀ h ∈ I ; j ∈ J (3)

n∑

i=1

zi j(h−1) ≤
n∑

i=1

(
zi jh − xi jh · pi j

)

∀ h ∈ I : h 
= 1; j ∈ J (4)

0 ≤
n∑

i=1

(
zi j1 − xi j1 · pi j

) ∀ j ∈ J (5)

Ci j − M · (
1 − xi jh

) ≤ zi jh ∀ i ∈ I ;
h ∈ I ; j ∈ J (6)
n∑

h=1

zi jh ≤ Ci j ∀ i ∈ I ; j ∈ J (7)

Ci j ≤ Ci ∀ i ∈ I ; j ∈ J (8)

Ci − di ≤ Ti ∀ i ∈ I (9)

di − Ci j ≤ Ei j ∀ i ∈ I ; j ∈ J (10)

Ci − Ci j ≤ Ei j ∀ i ∈ I ; j ∈ J (11)

0 ≤ Ei j ∀ i ∈ I ; j ∈ J (12)

0 ≤ Ti ∀ i ∈ I (13)

0 ≤ zi jh ∀ i ∈ I ; h ∈ I ; j ∈ J (14)

xi jh ∈ {0; 1} ∀ i ∈ I ; h ∈ I ; j ∈ J (15)

zi jh =
{
Ci j if job j of order i is at position h

0 otherwise.
(16)

xi jh =
{
1 if job j of order i is at position h

0 otherwise.
(17)

The variables and parameters Ci j , Ci , Ei j , Ti , pi j , and di
have already been introduced. In addition, we use the binary
decision variable xi jh that indicates whether the job j of
order i is placed in position h on machine j , the continuous
decision variable zi jh that becomes Ci j when job j of order
i is at position h or zero otherwise, and the parameter M
which is a large number. Equation (1) defines the objective
function. By Eqs. (2) and (3) it is defined that each order has
exactly one position on each machine, and vice versa. On
each machine, the job at position h cannot be processed until
the job at position (h − 1) is finished or before time 0 when
h = 1. This is defined by Eqs. (4) and (5). Equations (6) and
(7) determine the relationship between Ci j and zi jh , i.e., that
zi jh = Ci j if xi jh = 1, and zi jh = 0 if xi jh = 0. On the one
hand, zi jh must be equal to or larger than Ci j when job j of
order i is scheduled at position h, since (1 − xi jh) = 0 in
this case. If job j of order i is not scheduled at position h,
the left-hand side of the equation will be equal to or less than
0 because of M , and hence zi jh ≥ 0 in this case due to Eq.
(14). On the other hand, the sum of zi jh over all h ∈ I has to
be equal to or smaller than Ci j by Eq. (7), so if zi jk = Ci j ,
then zi jh = 0 ∀ h ∈ I : h 
= k. Equations (8)–(11) define
Ci , Ti , and Ei j ; Eqs. (12)–(14), that Ei j , Ti , and zi jh must be
nonnegative; and Eq. (15), the binarity of xi jh . An additional
description for zi jh and xi jh is given by Eqs. (16) and (17).

The definition of M is important for the solvability of the
model. The purpose of the large number is to guarantee that
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Fig. 2 Schedule with max1≤i≤n{Ci } = M

Eq. (6) still holds when job j of order i is not at position h,
i.e., when xi jh = 0, and thus, zi jh = 0. Rearranging Eq. (6)
for this case, we obtain

Ci j ≤ M ∀ i ∈ I ; j ∈ J . (18)

Consequently, M must be equal to or larger than each
of the completion times of the jobs, i.e., the makespan of
the schedule. In order to determine M , we present an upper
bound for the completion times.

Lemma 5 In an optimal solution, the completion time of
each job does not exceed M = ∑n

i=1 max1≤ j≤m{pi j } +
max1≤i≤n{di } for each problem instance.

Proof The proposed upper bound M can be achieved by
scheduling all jobs past the last due date in such a way that
the earliness of each job becomes zero; see Fig. 2. Conse-
quently, it is to show that

∑n
i=1 Ti cannot be decreased by

increasing the completion time of any job past M . Switching
jobs on a machine without changing the sum of idle times on
the machine does not increase the makespan of the schedule,
and hence, the sum of idle timesmust be increased in order to
let the makespan exceed M , which does not reduce

∑n
i=1 Ti .

��
Because of Lemma 4, idle times must be considered to

obtain an optimal solution. Lemma 6 gives an important
property for inserting idle times before placed jobs. In this
lemma, we consider a job-group g of consecutively sched-
uled jobs. In g, the jobs are not separated by idle times, i.e.,
i tk j = 0 ∀ (k, j) ∈ g : k 
= a, i ta j ≥ 0, with (a, j) being the
first scheduled job in g. However, the last scheduled job of
g is separated from the following job by an idle time larger
zero. For the group g, ng denotes the number of jobs in this
group and vg the number of jobs in g with an earliness of
zero. Figure 3 shows an exemplary Gantt chart for a machine
j on which several of the described job-groups can be found,
e.g., {2, 1, 3}, {1, 3}, {3}, {5, 4}, and {4}.
Lemma 6 Increasing the idle time before the first scheduled
job in g decreases the earliness–tardiness of the schedule as
long as vg <

ng
2m holds.

T ime

Machine

0 2 4 6 8 10 12 14 16

2 1 3 5 4j

Fig. 3 Gantt chart showing exemplary job-groups

Proof Assume there is a job-group g on machine j , and
the first scheduled job in g is (a, j). Increasing i ta j by
δ ≤ min{i t f j , Ekj }, where ( f , j) is the job that is scheduled
after the job-group and Ekj is the minimum earliness of the
jobs in the job-group that is not zero, the earliness–tardiness
decreases if

δ(ng − vg) > δ · m · vg + δ(m − 1)vg. (19)

We denote the earliness and tardiness before the idle time
insertion by Ei j and Ti , and after the idle time insertion by
E

′
i j and T

′
i , respectively. The left-hand side of Eq. 19 gives

the term that decreases the earliness–tardiness. The num-
ber of jobs with an earliness larger than zero before the idle
time insertion is ng − vg . For each job (k, j) with Ekj > 0,
the earliness is decreased by δ since E

′
k j = max{Ck, dk} −

(
Ckj + δ

) = Ekj − δ. The term max{Ck, dk} remains the
same for these jobs because δ ≤ Ekj = max{dk,Ck} −
Ckj ⇔ Ckj + δ ≤ max{dk,Ck}, and consequently, the tardi-
ness and further earlinesses of k do not change. For the other
jobs in g, the earliness remains zero. The term that increases
the earliness–tardiness is represented by the right-hand side
of Eq. 19. For each job (l, j) with El j = 0, Tl increases by
δ, since Cl j = Cl ≥ dl (otherwise El j would not be zero),
and hence, T

′
l = (Cl + δ) − dl = Tl + δ. Furthermore, the

earliness of the others jobs of order l is increased by δ as well,
because E

′
lh = (Cl + δ) − Clh = Elh + δ ∀ h ∈ J : h 
= j .

Rearranging Eq. 19, we obtain

vg <
ng
2m

. (20)

��

Remark 2 As can be seen, Eq. 20 does not contain i ta j and
δ. This means that the decision of whether an idle time
should be increased before a job-group, i.e., the proposition
of Lemma 6, does not directly depend on the value of δ. How-
ever, there is a limitation to the value of δ that is described
in the corresponding proof. This limitation results from the
requirement that vg and ng must remain the same for Eq. 19
to hold. Nevertheless, a change in vg or ng does not necessar-
ily mean that a further increase in i ta j increases the objective
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value. It only indicates that Eq. 20 must be checked again for
the new vg and ng .

Remark 3 As mentioned in the proof, for a job (i, j) with
Ei j ≥ δ, it follows that Ti = T

′
i and Eik = E

′
ik ∀ k ∈

J : k 
= j . Consequently, these values do not have to be
recalculated when increasing an idle time by δ, which saves
computation time for algorithms.

4 Heuristic approaches

We present six heuristics to approximately solve the problem
DPm → 0||∑(∑

Ei j + mTi
)
. For the purpose of clarity,

we first define some notation. Because of Lemma 4 and 3,
the algorithms we develop consider idle times, and the orders
are not necessarily processed in the same sequence on each
machine. A sequence of jobs on machine j is denoted by
πma, j , e.g., in Fig. 1 πma,2 = {1, 2, 5, 4, 3}. Since it is clear
which job of an order is considered on a given machine,
the job is represented by its corresponding order. A set of
these job sequences is denoted by πma . For the case in
which all orders are processed in the same sequence on each
machine,we introduce the order sequenceπor . Consequently,
the sequences for the single machines can be derived from
πor by πma, j := πor ∀ j ∈ J . The set of idle times is des-
ignated as I T , i.e., I T = {i t11, i t12, ..., i t1m, i t21, ..., i tnm}.
A complete schedule, and thus a solution to the problem, is
described by itsπma and I T . It is denoted by� and, if it is the
best schedule found, by �∗. The objective function value of
� and �∗ is represented by F(�) and F(�∗), respectively.
Furthermore, we use F(πor ) for the objective function value
of a schedule in which all idle times are zero and each order is
processed in the same sequence on each machine according
to πor .

Because of the good performance in Hoffmann et al.
(2022), the six IGAs that we develop follow the concept of
an IGA from that paper, which is called an IGN. For a gen-
eral overview of the IGA, the reader is referred to Zhao et
al. (2022). The heuristics developed herein have the typical
IGA structure, with initialization, local search, destruction,
construction, and acceptance. For further improvement, each
IGA contains a different additional function which we label
Refinement. The general procedure for the six IGAs is given
in Algorithm 1. The determination of the four necessary
parameters dsmin , dsmax , y, and z is described in Sect. 5.2.

A first solution is generated by the Initialization function;
see Algorithm 2 for the pseudocode. Here, all orders are
sorted in descending sequence of their due date. The first
order of the resulting list is placed in an empty string πor .
Subsequently, the next order of the sorted list is inserted in
every possible position of that string and is finally placed

Algorithm 1 General procedure for the IGAs
1: procedure IGA(dsmin, dsmax , y, z)
2: πor ← I ni tiali zation()

3: ds ← dsmin
4: πor ← LocalSearch(πor , z, ds, dsmin)

5: � ← Ref inement(πor )

6: �∗ ← �

7: while time limit not reached do
8: πor :ds , πor :n−ds ← Destruction(πor , ds)
9: π

′
or ← Construction(πor :ds , πor :n−ds)

10: π
′
or ← LocalSearch(π

′
or , z, ds, dsmin)

11: �
′ ← Ref inement(π

′
or )

12: �∗,�, πor , ds ← Acceptance(�∗,�,�
′
, πor , π

′
or , ds,

dsmin, dsmax , y)
13: end while
14: return �∗, F(�∗)
15: end procedure

Algorithm 2 Initialization function
1: procedure Initialization( )
2: Sort orders in descending order of di in list
3: πor ← {}
4: Insert the order at position 1 of list in πor
5: for a ← 2 to n do
6: for b ← length(πor ) + 1 to 1 do
7: πor ,b ← insert the order at position a of list in πor

at position b
8: end for
9: πor ← πor ,b with min. F(πor ,b)

10: end for
11: return πor
12: end procedure

in the position that leads to the minimum F(πor ). This is
repeated until all orders are placed in πor .

Next, the destruction size ds is set to dsmin . During the

Local Search function,
⌊
z · ds

dsmin

⌋
different orders from πor

are chosen randomly and stored in a list without changing
πor . One after another, the orders from the list are taken out
of πor and are reinserted at the best possible position in πor

with respect to F(πor ). Algorithm3 shows the corresponding
pseudocode. Based on πor , a schedule � is generated by
the Refinement function. This function varies between the
proposed IGAs and will therefore be explained later. The
solution obtained from this function is saved as �∗.

The following loop starts with the Destruction function.
Asgiven inAlgorithm4,ds orders are takenout ofπor and are
stored in πor :ds . The rest of the orders are stored in the partial
scheduleπor :n−ds in the same sequence as they appear inπor .
In the following Construction function (see Algorithm 5 for
the pseudocode), the orders in πor :ds are sorted in descend-
ing order by their due date. Subsequently, these orders are
reinserted one after another at the best possible position in
πor :n−ds with respect to F(πor :n−ds). At the end of the Con-
struction function, π

′
or is assigned the final πor :n−ds . Again,
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Algorithm 3 Local Search function
1: procedure LocalSearch(πor , z, ds, dsmin)
2: πor ,copy ← πor

3: for a ← 1 to
⌊
z · ds

dsmin

⌋
do

4: take a random order out of πor ,copy and insert it in list
5: end for
6: for a ← 1 to

⌊
z · ds

dsmin

⌋
do

7: o ← order at position a of list
8: πor ,interim ← πor \ o
9: for b ← n to 1 do
10: πor ,b ← insert o in πor ,interim at position b
11: end for
12: πor ← πor ,b with min. F(πor ,b)

13: end for
14: return πor
15: end procedure

Algorithm 4 Destruction function
1: procedure Destruction(πor , ds)
2: πor :n−ds , πor :ds ← πor , {}
3: for a ← 1 to ds do
4: take a random order out of πor :n−ds and append it to πor :ds
5: end for
6: return πor :ds , πor :n−ds
7: end procedure

Algorithm 5 Construction function
1: procedure Construction(πor :ds , πor :n−ds )
2: Sort the orders of πor :ds in descending order of their di
3: while 0 < length(πor :ds) do
4: o ← order at position 1 of πor :ds
5: for a ← length(πor :n−ds) + 1 to 1 do
6: πor ,a ← insert o in πor :n−ds at position a
7: end for
8: remove o from πor :ds
9: πor :n−ds ← πor ,a with min. F(πor ,a)

10: end while
11: π

′
or ← πor :n−ds

12: return π
′
or

13: end procedure

after applying the Local Search function, a feasible solution
�

′
is generated by the Refinement function based on π

′
or .

The obtained �
′
is evaluated by the Acceptance function.

The pseudocode of this function is given in Algorithm 6. �
′

is accepted as new � if F(�
′
) ≤ F(�). Consequently, πor

becomes π
′
or in this case, and hence, a new order string is

used in the next iteration. Furthermore, �∗ is assigned �
′
if

F(�
′
) < F(�∗). A solution �

′
can also be accepted as �

if F(�
′
) > F(�), provided q ≤ e−y

dsmin
ds

F(�
′
)−F(�)

F(�) holds,
where q is a random number between 0 and 1, drawn in
each iteration from a uniform distribution. In this case, πor

is assigned π
′
or . In addition, for the case F(�

′
) < F(�),

ds becomes dsmin ; otherwise, ds is increased by 1 if ds <

�dsmax�. The loop terminates when a given time limit is
reached.

Algorithm 6 Acceptance function

1: procedureAcceptance(�∗,�,�
′
, πor , π

′
or , ds, dsmin, dsmax , y)

2: if F(�
′
) < F(�) then

3: ds,�, πor ← dsmin,�
′
, π

′
or

4: if F(�
′
) < F(�∗) then

5: �∗ ← �
′

6: end if
7: else if F(�

′
) = F(�) then

8: �,πor ← �
′
, π

′
or

9: if ds < �dsmax� then
10: ds ← ds + 1
11: end if
12: else

13: if q ≤ e−y
dsmin
ds

F(�
′
)−F(�)

F(�) then
14: �,πor ← �

′
, π

′
or

15: end if
16: if ds < �dsmax� then
17: ds ← ds + 1
18: end if
19: end if
20: return �∗,�, πor , ds
21: end procedure

In the following, the six Refinement functions are pre-
sented. An exemplary schedule before applying the Refine-
ment function, based on πor = {3, 1, 2}, is shown in Fig. 4.
In general, the Refinement has three optional steps. First, in
five of the six functions, offsets (i.e., idle times before the first
jobs placed on the machines) are inserted. Subsequently, in
four of the functions, swapping of jobs on single machines
is checked, so it is possible that not all orders are processed
in the same sequence on each machine afterward. In the last
optional step, the idle times before each job are reviewed and
increased if necessary. Algorithm 7 shows the structure of the
general Refinement function. Note that not all steps are used
in every proposed Refinement function.

Algorithm 7 General Refinement function
1: procedure Refinement(πor )
2: I T ← {0, 0, ..., 0}
3: πor , I T ← O f f set(πor , I T )

4: πma ← πor
5: � ← {πma, I T }
6: �,πma, I T ← JobSwi tching(�, πma, I T )

7: πma, I T ← I dleT imeInsertion(πma, I T )

8: � ← {πma, I T }
9: return �

10: end procedure
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Fig. 4 Exemplary schedule before applying the Refinement function

Two different ways of defining the offsets were consid-
ered. The pseudocode for the corresponding functions is
given in Algorithms 8 and 9. By using the Minimum Off-
set function, the minimum earliness of all jobs on a machine
is identified. On each machine, the idle time before the first
scheduled job is set to the corresponding minimum earliness
on this machine, and the respective earliness and completion
times are updated. Note that when applying this function,
no tardiness is changed, and when an idle time is increased
on a machine, the earliness on the other machines remains
constant because of Remark 3.

Algorithm 8 Minimum Offset function
1: procedure MinimumOffset(πor , I T )
2: o ← order at position 1 of πor
3: for a ← 1 to m do
4: Ea ← lowest Eia on machine a
5: i toa ← Ea
6: Update Cia and Eia for all jobs on a
7: Update Ci for applicable orders
8: end for
9: return πor , I T
10: end procedure

Algorithm 9 Calculated Offset function
1: procedure CalculatedOffset(πor , I T )
2: for a ← 1 to m do
3: Ea ← ⌊ n

2·m + 1
⌋
lowest Eia on a

4: end for
5: Sort the machines in ascending order of Ea in a list
6: o ← order at position 1 of πor
7: for c ← 1 to m do
8: b ← machine in position c of the list
9: Eb ← ⌊ n

2·m + 1
⌋
lowest Eib on b

10: i tob ← Eb
11: Update Cib and Eib for all jobs on b
12: Update Ci and Ti if applicable
13: Update Ei j for all applicable jobs on each machine
14: end for
15: return πor , I T
16: end procedure

The other function for setting an offset is called the Cal-
culated Offset function. This function uses the property of

T ime

Machine
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3

3

2

2

1

1

it31

it32

1

2

Fig. 5 Exemplary schedule after setting the offsets

Lemma 6. As mentioned in Remark 2, Eq. 20 only indicates
whether a further increase in an idle time before a job-group
decreases the objective function. However, the amount of the
increase δ is not stated. Instead, δ is chosen in such a way that
vg or ng is just changing. Subsequently, Eq. 20 must again
be checked for a further increase in the idle time. To avoid
the need to check Eq. 20 each time when vg changes, the fol-
lowing strategy can be used as long as ng remains the same:
Increase the idle time before the first job of a job-group g,
with the amount of the x th smallest earliness of the jobs in g,
where x = ⌊ ng

2·m + 1
⌋
. It must be mentioned that if ng

2·m + 1
results in an integer, this strategy increases the idle time even
if vg = ng

2·m . In this case, the earliness–tardiness remains the
same, because the decreasing part of Eq. 19 is equal to the
increasing part of Eq. 19.

The Calculated Offset function uses this strategy in the
following way. For each machine, the

⌊ n
2·m + 1

⌋
lowest ear-

liness of the jobs on the machine is selected and saved as
the factor for this machine. Next, the machines are sorted in
ascending order by this factor in a list. The idle time before
the first scheduled job on the first machine of the list is set to
the corresponding factor of the machine. The corresponding
earliness, tardiness, and completion times are updated after-
ward. One at a time, a machine is taken from the list and the
corresponding factor of the machine is determined by select-
ing the

⌊ n
2·m + 1

⌋
lowest updated earliness of the machine.

This factor is inserted as idle time before the first scheduled
job on the machine and the relevant values of the schedule
are updated again. This is repeated until all first idle times
are set.

The result of both offset functions is a schedulewhere each
order is processed in the same sequence on eachmachine, and
only the idle times before the first scheduled jobs might be
different from zero. Figure 5 illustrates this based on πor =
{3, 1, 2} and I T = {0, 0, 0, 0, 2, 4}. In the next optional step,
the Job Switching function is applied, whose pseudocode is
given in Algorithm 10. Here, we check whether swapping
adjacent jobs on single machines leads to a better solution.
Consequently, the orders do not have to be processed in the
same sequence on each machine afterward, and thus, πor no
longer describes the sequence of the jobs. Therefore, πor is
first transformed to a corresponding πma . The string πma,a
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Fig. 6 Exemplary schedule after applying the Job Switching function

in πma represents the job sequence on machine a. Without
prior sorting of the machines, one at a time, πma,a is exam-
ined. Starting with the first scheduled job in πma,a , a job is
swapped with its subsequent scheduled job and it is checked
whether the determined schedule, with the previously deter-
mined offset, results in lower earliness–tardiness. Note that
when the first scheduled job on a machine is swapped, the
idle time before the new first scheduled job becomes the off-
set, and the idle time before the new second scheduled job
becomes zero. If an improvement occurs, the jobs remain
in this sequence; otherwise, the former sequence is retained.
This is repeated until all but the last position of πma,a have
been tested by this swapping strategy. Therefore, n−1 swaps
are checked for each πma,a . An exemplary resulting schedule
� = {πma, I T } = {{{1, 3, 2}, {3, 1, 2}}, {2, 0, 0, 0, 0, 4}} is
depicted in Fig. 6.

Algorithm 10 Job Switching function
1: procedure JobSwitching(�,πma, I T )
2: for a ← 1 to m do
3: for b ← 1 to n − 1 do
4: oe ← job at position b of πma,a
5: ol ← job at position (b + 1) of πma,a
6: πtest ← πma where oe and ol are swapped in πma,a
7: I Ttest ← I T
8: if b = 1 then
9: values of i toe and i tol exchange in I Ttest
10: end if
11: �test ← {πtest , I Ttest }
12: if F(�test ) < F(�) then
13: �,πma, I T ← �test , πtest , I Ttest
14: end if
15: end for
16: end for
17: return �,πma, I T
18: end procedure

The Idle Time Insertion function is performed as a last
optional step and is presented in Algorithm 11. First, the
machines are sorted in ascending order according to the sum
of the earliness of the jobs on the respective machines. Sub-
sequently, one after another, the machines are examined with
their corresponding offsets and job sequences. Each time a
machine q is examined, the earliness of the last scheduled
job in πma,q is determined. The idle time before the job is

Algorithm 11 Idle Time Insertion function
1: procedure IdleTimeInsertion(πma, I T )
2: for a ← 1 to m do
3: Ea ← ∑n

i=1 Eia
4: end for
5: Sort machines in ascending order of Ea in a list
6: for a ← 1 to m do
7: q ← machine in position a of the list
8: l ← order of last scheduled job in πma,q
9: i tlq ← i tlq + Elq
10: Update Clq and Elq
11: Update Cl if applicable
12: for b ← n − 1 to 1 do
13: (o, q) ← job at position b in πma,q
14: κ ← 1
15: while κ = 1 do
16: κ ← 0
17: Identify job-group g with (o, q) as first scheduled job
18: i t f q ← idle time before the job that follows g
19: if vg <

ng
2·m then

20: f actor ← ⌊ ng
2·m + 1

⌋
lowest earliness in g

21: δ ← min{i t f q , f actor}
22: i toq ← i toq + δ

23: if i t f q < f actor then
24: κ ← 1
25: end if
26: i t f q ← i t f q − δ

27: Update Ciq and Eiq in g
28: Update Ci and Ti for all applicable orders
29: Update Ei j for all applicable jobs on each machine
30: end if
31: end while
32: end for
33: end for
34: return πma, I T
35: end procedure

increased by the value of this earliness. Subsequently, the
completion times of the job and, if applicable, the order are
updated and the earliness is set to zero. The next steps are
repeated for each of the other jobs in πma,q , starting with
the second-to-last job, until the first scheduled job on q is
examined. First, the job-group g of consecutively scheduled
jobs, which is defined in the course of Lemma 6 and where
the examined job (o, q) is scheduled first, is determined.
Next, we follow a similar strategy as we did in the Calcu-
lated Offset function. If vg <

ng
2·m , the

⌊ ng
2·m + 1

⌋
lowest

earliness of the jobs in g is selected. We denote the value of
this earliness as f actor in the following. Subsequently, the
minimum of f actor and the idle time separating g from the
next scheduled group, i t f q , is determined. If the last sched-
uled job in g is also the last scheduled job in πma,q , i t f q is
assumed to be infinity. The idle time before (o, q) is increased
by this minimum and i t f q is decreased by this minimum.
All affected earliness, tardiness, and completion times are
updated. If i t f q was smaller than f actor before its adjust-
ment, the strategy is repeated for the newly formed job-group
until i t f q ≥ f actor before the adjustment of i t f q . For the
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Fig. 7 Exemplary schedule after applying the Idle Time Insertion func-
tion

Table 2 Functions used for the Refinement function

Step IGA1 IGA2 IGA3 IGA4 IGA5 IGA6

Offset CO MO CO No MO CO

JS No Yes Yes No Yes Yes

ITI No No No Yes Yes Yes

case in which vg ≥ ng
2·m , the idle time before the examined

job remains the same, and the preceding job in the sequence
πma,q is examined. Figure 7 illustrates an exemplary sched-
ule after applying the Idle Time Insertion function, with
� = {πma, I T } = {{{1, 3, 2}, {3, 1, 2}}, {2, 1, 1, 0, 0, 4}}.

Using the functions described inAlgorithms 8 - 11, six dif-
ferent Refinement functions, and hence six different IGAs,
were created. In Table 2, the functions used for each IGA
are given. Here, MO represents the Minimum Offset func-
tion,CO the CalculatedOffset function, JS the Job Switching
function, and ITI the Idle Time Insertion function. Note that
in IGA4, no offset is determined, and the Refinement func-
tion begins directly with the Idle Time Insertion function.

5 Computational experiment

5.1 Experimental setting

In this section, we evaluate the IGAs that we developed
in a computational experiment. Since the problem has not
yet been studied in the literature, there are no comparable
state-of-the-art algorithms. Consequently, the six IGAs are
compared with each other and the MILP formulation from
Sect. 3.2 solved by the Gurobi solver.

The test bed for the algorithm comparison is adopted
from Framinan and Perez-Gonzalez (2018) and contains val-
ues for the processing times and due dates. The processing
times of the jobs were randomly drawn from a uniform
distribution U[1, 100], and the due dates from a uniform
distribution U[P (

1 − T F − RDD
2

)
, P

(
1 − T F + RDD

2

)],
where P = ∑n

i=1
∑m

j=1
pi j
m , and the range of due dates

RDD and the tardiness factor T F are two given parame-
ters for this instance. For easier understanding, we divide

the original test bed into three parts and denote them as
Little, Medium, and Big. The Little data set contains prob-
lem instances with n ∈ {10, 20} and m ∈ {2, 5, 8}, the
Medium data set problem instances with n ∈ {30, 40, 50}
and m ∈ {2, 5, 8}, and the Big data set problem instances
with n ∈ {100, 150, 200, 300} and m ∈ {5, 10}. For each
problem size studied, RDD ∈ {0.2, 0.5, 0.8} and T F ∈
{0.2, 0.5, 0.8}. In each data set, there are 20 different problem
instances for each possible combination of n, m, RDD, and
T F . By the combination RDD ∈ {0.5, 0.8} and T F ∈ {0.8},
it is possible that negative due dates are drawn. In this case, a
new due date was drawn during the instance generation until
the due date was nonnegative.

The comparison criterion for the solution methods is the
best earliness–tardiness value found after given run times.We
set the time limit for the IGAs to n m

2 t sec and the correspond-
ing time factor t to t = 0.12. Since the IGAs contain random
elements, each instance was solved five times by each IGA
during the parameter setting and the algorithm comparison.
We set the time limit to 3600 sec for the solver to solve the
MILP from Sect. 3.2 for the algorithm comparison. In con-
trast to the IGAs, each instance was solved only once by the
solver.

For each run x , the relative percentage deviation (RPD)
was calculated by

RPDx = F(�x ) − F(�best )

F(�best )
· 100%, (21)

where F(�x ) is the earliness–tardiness of the best solution
found in run x , and F(�best ) the earliness–tardiness of the
best solution found by any run of any tested solution method
for the respective problem instance.

All solution methods were implemented in Python. The
calculations were run on an Intel Xeon CPUE5-2630 v2 2.60
GHz processor with 384 GB memory. To solve the MILP
from Sect. 3.2 for the algorithm comparison, Gurobi 9 was
usedwith amaximumof four threads in parallel. Thegraphics
for the results of the computational experiment were created
with IBM SPSS Statistics version 29 software.

5.2 Parameter setting

Each of the six IGAs uses four parameters: y, z, dmin , and
dmax . As in Hoffmann et al. (2022), dmin and dmax were set
to dmin = 1 and dmax = n

2 . The other two parameters were
determined experimentally. We limited the parameter setting
to the problemsizes of theLittle and theMediumdata sets due
to computational capacities. Since we used the original test
bed later for the algorithm comparison, we generated 10 new
instances per problem setting exclusively for the parameter
setting.
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Table 3 Average RPDs in % of the tested parameter values

Value IGA1 IGA2 IGA3 IGA4 IGA5 IGA6

y 100 15.22 14.71 10.30 7.67 8.36 6.12

500 14.70 14.80 10.36 7.74 8.45 6.17

1000 15.00 15.00 10.50 8.01 7.37 6.31

5000 15.83 15.02 9.50 7.22 7.74 6.55

z 1 15.56 15.16 10.53 8.07 8.36 6.60

1.25 15.30 14.99 10.22 7.81 8.11 6.38

1.5 15.05 14.79 10.06 7.57 7.88 6.18

1.75 14.98 14.72 10.00 7.43 7.78 6.13

2 15.03 14.74 10.01 7.42 7.76 6.15

The lowest average RPD per algorithm and parameter are shown in bold

Table 4 Chosen parameter values for the IGAs

Parameter IGA1 IGA2 IGA3 IGA4 IGA5 IGA6

y 500 100 5000 5000 1000 100

z 1.75 1.75 1.75 2 2 1.75

For similar reasons as in Hoffmann et al. (2022), z is
limited to [1, 2] and y must be greater than zero. After
some pre-experiments, z ∈ {1, 1.25, 1.5, 1.75, 2} and y ∈
{100, 500, 1000, 5000} were considered for further investi-
gation. Each IGA solved each generated problem instance
five times with each parameter combination. Consequently,
6 · 5 · 3 · 3 · 3 · 10 · 5 · 5 · 4 = 810, 000 runs were performed
for the parameter setting.

For each IGA, the average RPD was calculated separately
for the different y-values and z-values across all runs. These
averages are given in Table 3. The lowest average RPD per
algorithm and parameter is shown in bold. For each algo-
rithm and parameter, the parameter value is chosen that led
to the lowest average RPD. The parameter selection is given
in Table 4.

5.3 Algorithm evaluation

Despite the higher time limit of 3600 sec, the Gurobi solver
could only confirm optimal solutions for instanceswith prob-
lem size {n,m} = {10, 2}. For this problem size, 120 of 180
problem instances were solved to optimality. The time for
confirming the optimal solution by the Gurobi solver ranged
from 7.42 sec to 3592.79 sec.

For the instances with problem size {n,m} = {20, 5},
the smallest gap determined by Gurobi was 17.51%, and
for instances with problem size {n,m} = {20, 8}, it was
39.55%. Therefore, the solver solution was only considered
for the instances in the Little data set. Consequently, there
were 1080 runswith theMILP formulation, and for the IGAs,
there were 32,400 runs for the Little data set, 48,600 runs for

the Medium data set, and 43,200 runs for the Big data set in
total.

The averageRPDsof the solutionmethods for the different
problem sizes are given in Table 5. To evaluate the overall
performance of the IGAs, Fig. 8 shows the average RPDs of
the IGAs across all problem instances of the Little, Medium,
and Big data sets with 95% confidence intervals. Note that
the calculation of the RPDs for the Little data set includes
the solver solution.

The problem size has a notable influence on the perfor-
mance of the solver solution. Regarding the number of orders
n, this is indicated by Table 5. While the solver solution had
a lower average RPD than the IGAs for n = 10, the reverse
was found for the problem instances with n = 20. Further-
more, each of the IGAs had a lower average RPD than the
solver solution for the complete Little data set.

As depicted in Fig. 8, IGA6 had the best performance
amongall IGAs across all examinedproblem instances.How-
ever, as for the solver, the performance of the IGAs depended
on the problem size. Table 5 shows that IGA6 had the best
performance for the Little and the Medium data sets but
was outperformed by IGA3 and IGA4 for the Big data set.
To be more precise, IGA6 outperformed the other IGAs for
n ≤ 100, while the best-performing algorithm for n = 150
was IGA4, and for n ≥ 200 it was IGA3. Furthermore,
the average RPD of IGA1 decreased for a higher number
of orders.

We assume by this that both the Idle Time Insertion
function and the Job Switching function occupy too much
computation time to explore the solution space properly in
the given time limit for larger values of n. We furthermore
conclude that the general structure of the IGA itself works
properly for the studied problem configuration of the COSP
since it becomes more prominent as n increases.

In Figs. 9 and 10, the average RPDs with 95% confidence
interval for the solution methods per number of machines
are illustrated for the Little data set and the Medium data set,
respectively. The illustration for the Big data set is given in
the appendix (Fig. 15).

As shown in Fig. 9, the solver solution had a lower average
RPD than the IGAs for the problem instances from the Little
data set with m = 2. However, for the problem instances of
the Little data set with m ≥ 5, each IGA outperformed the
solver solution.

Figure 10 shows that the performance of the algorithms
with the Idle Time Insertion function increases with the num-
ber of machines. This can be seen by the expanding gaps
between IGA2 and IGA5 and between IGA3 and IGA6, since
the structures of IGA2 and IGA5 and the those of IGA3
and IGA6 differ only in the additional Idle Time Insertion
function. Furthermore, Fig. 10 shows that the performance
of algorithms with a lower offset setting function increases
with higher m because the gap between algorithms with the
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Table 5 Average RPDs in % of
the solution methods for
different problem sizes

n m MILP IGA1 IGA2 IGA3 IGA4 IGA5 IGA6

10 2 0.14 23.50 25.13 16.78 15.67 15.00 10.70

5 5.61 25.49 21.31 19.34 11.63 10.49 9.50

8 14.04 24.48 18.42 18.46 6.28 6.70 6.37

Avg. 6.60 24.49 21.62 18.19 11.19 10.73 8.86

20 2 3.37 28.65 33.22 21.92 24.44 24.84 18.65

5 42.21 15.42 14.16 10.16 7.02 7.21 4.46

8 72.12 15.02 12.14 9.93 4.13 5.21 3.82

Avg. 39.23 19.70 19.84 14.00 11.86 12.42 8.98

Avg. Little 22.91 22.09 20.73 16.10 11.53 11.58 8.92

30 2 – 9.92 11.63 6.13 6.59 6.69 4.03

5 – 11.85 11.26 7.50 5.50 6.23 3.46

8 – 12.81 10.44 8.52 4.07 5.22 3.76

Avg. – 11.53 11.11 7.38 5.39 6.05 3.75

40 2 – 9.35 11.19 6.27 7.23 7.13 4.20

5 – 10.38 10.56 6.90 5.23 6.36 3.69

8 – 11.09 10.20 7.55 4.43 5.96 3.74

Avg. – 10.27 10.65 6.91 5.63 6.48 3.88

50 2 – 9.11 10.09 6.08 7.27 6.84 4.37

5 – 9.34 9.67 6.45 5.40 6.19 3.44

8 – 9.75 9.82 6.94 4.23 6.21 3.88

Avg. – 9.40 9.86 6.49 5.63 6.41 3.90

Avg. Med. – 10.40 10.54 6.93 5.55 6.31 3.84

100 5 – 6.92 8.35 4.70 4.22 5.63 3.83

10 – 6.47 7.46 4.44 3.50 5.09 3.46

Avg. – 6.69 7.90 4.57 3.86 5.36 3.65

150 5 – 6.47 8.04 5.19 5.66 6.31 5.51

10 – 5.58 7.16 4.05 3.44 5.41 4.37

Avg. – 6.03 7.60 4.62 4.55 5.86 4.94

200 5 – 5.71 7.64 4.50 5.66 6.44 5.83

10 – 5.38 7.44 3.91 3.58 5.75 4.51

Avg. – 5.55 7.54 4.20 4.62 6.10 5.17

300 5 – 4.94 5.86 4.39 5.37 5.55 5.72

10 – 4.59 6.32 4.35 4.92 6.21 6.10

Avg. – 4.76 6.09 4.37 5.14 5.88 5.91

Avg. Big – 5.76 7.28 4.44 4.54 5.80 4.92

Total avg. – 11.84 12.07 8.45 6.76 7.51 5.54

Minimum Offset function, i.e., IGA2 and IGA5, and the cor-
responding algorithms with the Calculated Offset function,
i.e., IGA3 and IGA6, narrows for larger values of m. Both
statements are supported by the observation that IGA4,which
has no offset setting function but the Idle Time Insertion func-
tion, performs better for a larger number of machines, and for
m = 8 in the Medium data set it has nearly the same average
RPD as IGA6.

Given these observations, we conclude that a precise idle
time insertion for each single job becomes more important
for a higher number of jobs per order. It remains openwhether
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Fig. 8 Average RPDs of the IGAs for all problem instances
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Fig. 9 Average RPDs per number of machines for the Little data set
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Fig. 10 Average RPDs per number of machines for the Medium data
set
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Fig. 11 Average RPDs per T F value for the Little data set

IGA4 outperforms the other IGAs for m > 8 when the other
problem-defining parameters, i.e. n, T F , and RDD, remain
the same as in the Medium data set.

Figures 11 and 12 present the average RPDs with 95%
confidence intervals for the solution methods in terms of dif-
ferent values of the tardiness factor T F for the Little data
set and the Medium data set, respectively. For the sake of
completeness, the diagram for the Big data set is provided
in the appendix (Fig. 16). In addition, the average RPDs of
the solution methods for the different due date-generating
parameters T F and RDD are presented in Tables 8, 9, and
10 for each data set.

Comparing the solver solution with the IGAs, Fig. 11 and
Table 8 show that the averageRPDsof the IGAs are higher for
lower T F values. However, each of the IGAs outperformed
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Fig. 12 Average RPDs per T F value for the Medium data set

the solver solution for the Little data set when the T F value
was 0.5 or greater.

Figure 12 shows that IGA3 performs better than IGA1 and
IGA2, and IGA6 performs better than IGA5 for T F = 0.2
in the Medium data set. However, the gap between IGA1
and IGA3, the gap between IGA2 and IGA3, and the gap
between IGA5 and IGA6 narrow for higher T F values, and
for T F = 0.8, IGA2 even performs better than IGA3, and
IGA5 performs better than IGA6. Furthermore, the average
RPD of IGA4 is 6.37 percentage points higher than the aver-
age RPD of IGA6 for T F = 0.2 in the Medium data set,
while it is 1.42 percentage points lower for T F = 0.8; see
Table 9 for the average RPD values. For T F = 0.8, IGA4 is
also the best-performing IGA in the Little, Medium, and Big
data sets.

On the basis of these findings, we conclude that a high
offset and the Job Switching function improve the algorithm
quality for low T F values, while omitting offset setting and
the Job Switching function is advisable for high T F values.
We assume that the reason for the good performance of lower
offsets for higher T F values is that higher T F values on aver-
age lead to smaller due dates in the data set. Consequently,
the due dates of the orders are reachedwith lower offsets, and
hence, higher offsets lead to higher tardiness of the orders.
Instead, a more precise idle time setting with the Idle Time
Insertion function is preferable for data sets with a high T F
value.

The average RPDs with 95% confidence intervals for the
solution methods per RDD value are illustrated in Fig. 13
for the Little data set, in Fig. 14 for the Medium data set, and
in Fig. 17 for the Big data set.

Comparing the solution methods for the Little data set
regarding the RDD values, Fig. 13 shows that for each solu-
tion method, the average RPD increases for higher RDD
values. We conclude from this that for a higher RDD value,
the solution quality of the solution methods becomes more
volatile. This can also be seen by the larger confidence inter-
vals for greater RDD values in Fig. 13.

As in the Little data set, the average RPD increases for
higher RDD values for each IGA in the Medium data set.
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Fig. 13 Average RPDs per RDD value for the Little data set
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Fig. 14 Average RPDs per RDD value for the Medium data set

Furthermore, the gap between IGA2 and IGA3 and the gap
between IGA5 and IGA6 increase for higher RDD values.
This might lead to the assumption that higher offsets are
advisable for data sets with a high RDD value. However,
the gap between IGA4, which uses no offset setting func-
tion, and IGA6 remains nearly the same for increasing RDD
values, or even narrows. It is left for future research to exam-
ine this finding in greater detail. According to the results of
the experiment, we limit ourselves to the conclusion that the
Calculated Offset function should be applied before using
the Job Switching function, especially if the due dates in the
data set have a high range.

6 Conclusion

In this paper,we studied the earliness–tardinessminimization
of the COSP in the dedicated machine environment. Proper-
ties of this problem configuration were derived, and based on
these, a MILP was formulated and six IGAs were developed
to solve the problem. The IGAs differ in their Refinement
function, which may consist of an offset setting function, the
Job Switching function, and the Idle Time Insertion function.

In a computational experiment, we compared the devel-
oped heuristics with each other and the MILP solution from
theGurobi solver. For the smallest problem size studied, with
two machines and 10 orders, the solver was able to find and
confirm optimal solutions for 66.67% of the instances.

Although solving theMILPwith the solver provided good
solutions in reasonable time for a small number of orders,
each of the IGAs outperformed the solver solution for a num-
ber of orders of 20. Furthermore, solving the MILP with
Gurobi led to better solutions when the tardiness factor of
the data was low, i.e., the due dates were high. However, the
IGAs outperformed the solver for a tardiness factor of 0.5 or
higher.

Comparing the IGAs with each other, IGA6, which uses
the Idle Time Insertion function, the Calculated Offset func-
tion, and the Job Switching function, had the best overall
performance. However, for a high tardiness factor value,
IGA4, which uses only the Idle Time Insertion function, is
preferable to the other IGAs, while for a large number of
orders, IGA3 performed better, by using the Calculated Off-
set function and the Job Switching function.

Further studies may investigate Refinement functions that
are more suitable for the case of low tardiness factor values.
Furthermore, other metaheuristic approaches or problem-
specific heuristics could be developed for this problem
configuration of the COSP and tested against the proposed
IGAs. In addition, since the earliness–tardiness is not broadly
studied for the COSP, future research could consider the
earliness–tardiness in other machine environments, such as
the identical machine environment.

Appendix A Proofs

A.1 Proof of Lemma 3

Lemma 3 can be shown by counterexamples. One is pre-
sented in detail below.

Proof If Lemma 3 is not true, there exists an optimal solution
for each problem instance where the orders are processed
in the same sequence on each machine. However, for the
example given in Table 6, this is not true.

The given instance can be solved by the Gurobi Opti-
mizer for two different formulations. The first formulation is
presented in Sect. 3.2 and allows one to schedule orders in
different sequences on the machines. The other formulation
can be found below. By this formulation, all orders must be
in the same sequence on eachmachine. The decision variable
xih indicates whether the order i is placed in position h on all
machines, whileChj is the completion time of the job j from
the order that is placed in position h. The tardiness of the

Table 6 Problem instance of the
counterexample for Lemma 3

pi j pi1 pi2 di

O1 2 1 7

O2 1 1 8

O3 1 6 9
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order in position h is denoted by Th and the earliness of that
order on machine j by Ehj . In Eq. A1, the objective func-
tion is defined. In contrast to the formulation from Sect. 3.2,
Eqs. A2 and A3 assign one position for all machines to each
order, and vice versa. Also, Eqs. A4 and A5 were adjusted
to the new decision variables, in which the job of an order
in position h − 1 must be finished before the next job can be
processed on that machine, and the jobs of the order in the
first position must be processed after time 0. By Eqs. A6 -
A10, the tardiness and the earliness are defined, and Eq. A11
guarantees the binarity of xih .

minimize:
n∑

h=1

⎛

⎝
m∑

j=1

(
Ehj

) + m · Th
⎞

⎠ (A1)

subject to:
n∑

h=1

xih = 1∀ i ∈ I (A2)

n∑

i=1

xih = 1∀ h ∈ I (A3)

C(h−1) j ≤ Chj −
n∑

i=1

xih · pi j ∀ h ∈ I :

h 
= 1; j ∈ J (A4)

0 ≤ C1 j −
n∑

i=1

xi1 · pi j ∀ j ∈ J (A5)

Chj −
n∑

i=1

xih · di ≤ Th ∀ h ∈ I ; j ∈ J (A6)

n∑

i=1

(xih · di ) − Chj ≤ Ehj ∀ h ∈ I ; j ∈ J (A7)

Chk − Chj ≤ Ehj ∀ h ∈ I ; j ∈ J ; k ∈ J (A8)

0 ≤ Th ∀ h ∈ I (A9)

0 ≤ Ehj ∀ h ∈ I ; j ∈ J (A10)

xih ∈ {0; 1} ∀ i ∈ I ; h ∈ I (A11)

xih =
{
1 if order i is at position h

0 otherwise.
(A12)

The Gurobi Optimizer finds an optimal solution for
both formulations. For the formulation from Sect. 3.2, the
objective function value is 3 and the schedule is �1 =
{πma, I T } = {{{1, 2, 3}, {3, 1, 2}}, {5, 0, 0, 0, 0, 0}}, and
for the formulation from this section, the objective func-
tion value is 7 and the schedule is �2 = {πma, I T } =
{{{3, 1, 2}, {3, 1, 2}}, {0, 0, 0, 0, 4, 0}}.

Consequently, there are instances in which the optimal
solution is not a schedule in which all orders are processed
in the same sequence on each machine, and Lemma 3 holds.

��

Table 7 Problem instance of the
counterexample for Lemma 4

pi j pi1 pi2 di

O1 8 7 10

O2 6 2 10

TheMILP formulation in this section can be used for solv-
ing the problem configuration when it is required to process
the orders in the same sequence on each machine, which
might be necessary in real-world production environments.

A.2 Proof of Lemma 4

Lemma 4 can also be shown by counterexamples. One is
presented in detail below.

Proof If Lemma 4 is not true, there exists an optimal solution
for each problem instance with common due dates where no
idle times between two jobs are inserted. However, for the
example given in Table 7, this is not true.

The given instance can be solved by the Gurobi Opti-
mizer for two different formulations. The first formulation
is presented in Sect. 3.2 and allows one to insert idle time
between two jobs. By the other formulation, no idle time can
be inserted between two jobs on a machine. However, it is
still possible to insert an idle time before the first scheduled
job on each machine. The formulation differs from the for-
mulation from Sect. 3.2 by adding the following constraint:
n∑

i=1

zi j(h−1) ≥
n∑

i=1

(
zi jh − xi jh · pi j

)

∀ h ∈ I : h 
= 1; j ∈ J . (13)

The Gurobi Optimizer finds an optimal solution for
both formulations. For the formulation from Sect. 3.2,
the objective function value is 10 and the schedule is
�1 = {πma, I T } = {{{1, 2}, {1, 2}}, {0, 3, 0, 2}}, and for
the formulation from this section, the objective function
value is 12 and the schedule is �2 = {πma, I T } =
{{{1, 2}, {1, 2}}, {0, 3, 0, 0}}.

Consequently, there are instances in which it is not possi-
ble to schedule the jobs without inserting idle times between
two jobs to obtain the optimal solution, even if all orders have
the same due date, and hence, Lemma 4 holds. ��

The MILP formulation in this section can still be used
for solving the problem configuration when machine idle
times are not allowed, which might be the case in real-world
production environments.

Appendix B Tables and graphs

See Figs. 15, 16, and 17 and Tables8, 9, and 10.
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Fig. 15 Average RPDs per number of machines for the Big data set
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Fig. 16 Average RPDs per T F value for the Big data set
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Fig. 17 Average RPDs per RDD value for the Big data set

Table 8 Average RPDs in % for different T F and RDD values for the
Little data set

T F RDD MILP IGA1 IGA2 IGA3 IGA4 IGA5 IGA6

0.2 0.2 11.74 20.81 16.95 13.04 17.32 11.17 8.68

0.5 15.36 32.74 30.36 21.62 28.03 22.04 15.75

0.8 11.13 61.20 66.54 43.16 45.68 46.41 31.97

12.74 38.25 37.95 25.94 30.34 26.54 18.80

0.5 0.2 23.42 14.48 11.37 10.23 4.26 3.80 3.55

0.5 32.07 17.03 14.08 12.65 3.83 4.90 4.42

0.8 40.15 22.31 19.69 17.50 2.79 6.98 6.57

31.88 17.94 15.05 13.46 3.62 5.23 4.85

0.8 0.2 20.15 8.73 7.97 7.72 0.60 2.42 2.61

0.5 23.10 9.67 8.91 8.63 0.43 2.85 2.98

0.8 29.10 11.87 10.70 10.35 0.81 3.61 3.71

24.12 10.09 9.19 8.90 0.61 2.96 3.10

22.91 22.09 20.73 16.10 11.53 11.58 8.92

Table 9 Average RPDs in % for different T F and RDD values for the
Medium data set

T F RDD IGA1 IGA2 IGA3 IGA4 IGA5 IGA6

0.2 0.2 7.61 7.23 3.28 7.10 4.28 2.06

0.5 11.55 13.57 5.60 10.46 9.35 3.60

0.8 19.60 27.64 10.39 13.12 16.46 5.91

12.92 16.15 6.42 10.23 10.03 3.86

0.5 0.2 8.43 6.52 5.64 4.44 3.49 3.34

0.5 11.28 8.62 8.08 5.41 5.27 4.03

0.8 17.52 15.54 13.27 4.77 9.60 6.73

12.41 10.23 9.00 4.87 6.12 4.70

0.8 0.2 4.93 4.35 4.34 1.43 2.31 2.49

0.5 5.42 4.87 5.04 1.32 2.55 2.74

0.8 7.27 6.52 6.70 1.91 3.51 3.67

5.87 5.25 5.36 1.55 2.79 2.97

10.40 10.54 6.93 5.55 6.31 3.84
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Table 10 Average RPDs in % for different T F and RDD values for
the Big data set

T F RDD IGA1 IGA2 IGA3 IGA4 IGA5 IGA6

0.2 0.2 3.46 4.48 1.64 3.17 3.01 2.10

0.5 5.69 10.22 3.19 5.47 6.84 3.93

0.8 8.03 16.09 5.57 6.09 8.91 4.46

5.73 10.26 3.47 4.91 6.25 3.50

0.5 0.2 4.30 3.83 3.33 3.57 3.74 3.52

0.5 7.50 7.54 6.12 6.42 7.34 7.63

0.8 12.84 13.82 10.52 9.10 13.34 13.21

8.22 8.40 6.66 6.36 8.14 8.12

0.8 0.2 2.96 2.72 2.70 2.10 2.59 2.51

0.5 3.01 2.81 2.97 2.14 2.84 2.85

0.8 4.02 4.05 3.92 2.84 3.60 4.03

3.33 3.20 3.20 2.36 3.01 3.13

5.76 7.28 4.44 4.54 5.80 4.92
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