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Abstract
The 1|s-batch(∞), r j | ∑w jU j scheduling problem takes as input a batch setup time � and a set of n jobs, each having
a processing time, a release date, a weight, and a due date; the task is to find a sequence of batches that minimizes the
weighted number of tardy jobs. This problem was introduced by Hochbaum and Landy (Oper Res Lett 16(2):79–86, 1994);
as a wide generalization of Knapsack, it is NP-hard. In this work, we provide a multivariate complexity analysis of the
1|s-batch(∞), r j | ∑ w jU j problem with respect to several natural parameters. That is, we establish a classification into
fixed-parameter tractable and W[1]-hard problems, for parameter combinations of (i) #p = number of distinct processing
times, (ii) #w = number of distinct weights, (iii) #d = number of distinct due dates, (iv) #r = number of distinct release
dates. Thereby, we significantly extend the work of Hermelin et al. (Ann Oper Res 298:271–287, 2018) who analyzed the
parameterized complexity of the non-batch variant of this problem without release dates. As one of our key results, we
prove that 1|s-batch(∞), r j | ∑ w jU j is W[1]-hard parameterized by the number of distinct processing times and distinct
due dates. To the best of our knowledge, these are the first parameterized intractability results for scheduling problems with
few distinct processing times. Further, we show that 1|s-batch(∞), r j | ∑w jU j is fixed-parameter tractable parameterized
by #d + #p + #r , and parameterized by #d + #w if there is just a single release date. Both results hold even if the number of
jobs per batch is limited by some integer b.

Keywords Scheduling · Single machine scheduling · Batch scheduling · Weighted number of tardy jobs · Fixed-parameter
tractability

1 Introduction

This paper is concerned with the problem of minimizing the
total weight of tardy jobs in a non-preemptive singlemachine
(serial) batch scheduling environment. Before describing our
results, we first briefly overview the classical non-batch vari-
ant of this problem, denoted as 1||∑ w jU j in Graham’s
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classical three-field notation (Graham et al., 1979). Follow-
ing this, we describe the extension of 1||∑ w jU j to the batch
scheduling environment and discuss how our results fit into
the known state of the art.

1.1 Total weight of tardy jobs on a single machine

Oneof themost fundamental and prominent scheduling crite-
ria on a single machine is that of minimizing the total weight
of tardy jobs in a schedule. Let J be a set of jobs, where each
job j ∈ J has a processing time p j ∈ N, a weight w j ∈ N,
and a due date d j ∈ N. We are given a single machine on
which to process all the jobs in J . A schedule for thismachine
corresponds to assigning a starting time S j to each job j ∈ J ,
so that Si /∈ [S j , S j+p j ) for any job i �= j . The term S j+p j ,
also denotedC j , is called the completion time of job j . A job
j ∈ J is tardy if its completion time exceeds its due date,
i.e., if C j > d j ; otherwise, it is early. The goal is to find a
schedule which minimizes the total weight of all tardy jobs;
formally, this means to minimize

∑
j∈J w jU j where Uj is
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a binary indicator variable which takes value 1 if job j is
tardy and value 0 otherwise. In Graham’s 3-field notation,
this problem is denoted as 1||∑ w jU j .

Karp (1972) proved that this problem is (weakly) NP-
hard even when all jobs have a common due date (i.e.,
the 1|d j = d| ∑ w jU j problem), and in fact this variant
is equivalent to the 0/1 Knapsack problem. The variant
where in addition to a single due date, the weight of each
job is equal to its processing time (that is, the problem
1|d j = d, p j = w j | ∑w jU j ) is known to be equivalent
to the Subset Sum problem.

Lawler and Moore (1969) provided a pseudo-polynomial
time algorithm for 1||∑w jU j , whereas Sahni (1976)
showed that the problemadmits anFPTAS.Thevariantwhere
all jobs have unit weight (and a single release date), known
as the 1||∑Uj problem, is solvable in O(n log n) time due
to an algorithm by Moore (1968). There is also a classical
variant where each job j ∈ J also has a release date r j ∈ N,
and S j ≥ r j is required of any schedule. This variant is
known to be NP-hard even if jobs have unit weight and there
are only two distinct due dates and only two distinct release
dates (Karp, 1972).

We approach the serial batching problems with tools from
parameterized complexity. There, a computational problem
�

takes as input pairs (x, k)where x ∈ �� is a string and k ∈ N

is called a parameter. The parameter provides a secondary
measurement of the structures inherent to the instance which
drive a problem’s complexity. The major goal is to show
a problem to be “fixed-parameter tractable” for parameter
k: We say that problem � is fixed-parameter tractable (or
lies in FPT) for parameter k if it admits an algorithm which
solves all its instances of size n in time f (k) ·nO(1) for some
computable function f ; such an algorithm is called a fixed-
parameter algorithm. A weaker condition is when problem
� lies in XP: this means that its instances of size n can be
solved by an XP-algorithm, which is only required to run in
time n f (k). To show that a problem � is unlikely to be fixed-
parameter tractable for a certain parameter k, one shows it to
beW[1]-hard by a reduction from a knownW[1]-hard prob-
lem �′, where the reduction maps instances (x ′, k′) ∈ �′ to
instances (x, k) ∈ �with k depending on k′ only. The fastest
known algorithms for W[1]-hard problem take time n f (k),
which is considered to be inefficient for large instances, even
if k is small. For background on parameterized complexity,
we refer to the book by Cygan et al. (2015).

Studying the parameterized complexity of scheduling
problems is a field of growing interest. Several works design
fixed-parameter algorithms for scheduling problems (Her-
melin et al., 2019; Knop & Koutecký 2018; Knop et al.,
2020; Mnich & Wiese, 2015; van Bevern et al., 2015, 2016,
2017). For background, we refer to the recent survey on the
topic (Mnich & van Bevern, 2018).

Most relevant to this paper is a recent result by Hermelin
et al. (2018) who studied the parameterized complexity of
1|| ∑w jU j . There, the following three parameters are con-
sidered for the problem:

• the number #d of distinct due dates,
• the number #p of distinct processing times,
• and the number #w of distinct weights.

Their main results are given in the proposition below:

Proposition 1 (Hermelin et al., 2018) Problem 1||∑ w jU j

can be solved in

• time f (#d +#p) ·nO(1), time f (#d +#w) ·nO(1), and in
time f (#p + #w) · nO(1) for some computable function
f : R → R.

• time nO(#p), and in time nO(#w).

A special case of this result was already obtained by Etscheid
et al. (2017) who presented an f (#p) · nO(1)-time algorithm
for the single due date 1|d j = d| ∑w jU j problem.

1.2 Batch scheduling

Batch scheduling has received a considerable amount of
attention in the scheduling community (Potts & Kovalyov,
2000). The motivation for this line of research stems from
the fact that in manufacturing systems items flow between
facilities in boxes, pallets, or carts. A set of items assigned
to the same container is considered as a batch. All items
in the same batch leave the facility together, and thus have
equal completion time. There are two main batch models
that are considered in the literature: In the parallel model,
the completion time of a batch equals the maximum com-
pletion time of any job within it; this model is extensively
surveyed by Fowler and Mönch (2022). In the serial model,
the completion time of a batch equals the starting time plus
the setup time plus the sum of processing times of jobs in
the batch. The focus of this paper is exclusively on the latter
serial model, and thus we will use the terms batch scheduling
and serial batch scheduling synonymously. We refer to Potts
and Kovalyov (2000) and Webster and Baker (1995) for fur-
ther reading on the topic, as well as the classical textbooks
of Brucker (2007) and Pinedo (2016).

Hochbaum and Landy (1994) studied the generalization
of the 1||∑w jU j problem to the (serial) batch setting. In
this problem, which we denote by 1|s-batch(∞)|∑w jU j , a
schedule consists of a partition of the job set J into batches,
and a starting time SB for each batch B such that SB′ /∈
[SB,CB = SB + � + ∑

j∈B p j ) for any batch B ′ �= B,
where � is a given setup time associated with starting any
batch. The completion time of any job j ∈ B is C j = CB ,
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and the starting time is S j = SB , meaning that all the jobs
together in a batch are started and completed at the same time.
The goal is again to minimize the total weight of tardy jobs∑

w jU j . Note that the order of the jobs within each batch
is irrelevant and that when � = 0 this problem becomes the
classical 1||∑ w jU j problem. Our notation “s-batch(∞)”
refers to that there is no bound on the size of each batch.

Hochbaum and Landy (1994) observed that the 1|s-batch
(∞)| ∑ w jU j problem is weakly NP-hard (being a direct
generalization of 1||∑ w jU j ), and provided
pseudopolynomial-time algorithms for the problem that are
linear in the total sum of job processing times (plus n · �),
or the maximum due date. Brucker and Kovalyov provided
an analogous algorithm which is linear in the total sum of
job weights (Brucker & Kovalyov, 1996). Nevertheless, in
this paper we are interested in the case where job weights,
processing times, or due dates can be arbitrarily large, but
the number of different values of each of these parameters
(namely, #w, #p, or #d) is relatively small. In this context,
the following result of Hochbaum and Landy is very relevant.

Proposition 2 (Hochbaum & Landy, 1994) Both 1|s-batch
(∞)| ∑Uj and 1|s-batch(∞), p j = p| ∑ w jU j are
polynomial-time solvable.

Baptiste (2000) generalized the result of Hochbaum and
Landy (1994) to a polynomial-time algorithm for 1|s-batch
(∞), p j = p, r j | ∑w jU j , where jobs have equal process-
ing times but individual release dates.

One can also consider the model of bounded batch sizes.
Cheng and Kovalyov (2001) argued about the importance
of batch sizes bounded by |B| ≤ b in real-life appli-
cations. Note that for b = n we have the unbounded
1|s-batch(∞)|∑ w jU j problem, whereas for b = 1 one
obtains the classical non-batch model 1||∑ w jU j . Cheng
and Kovalyov showed that 1|s-batch(b)|∑Uj is in XPwhen
parameterized by either #p or #d, which means that for
constant parameter values the problem can be solved in poly-
nomial time:

Proposition 3 (Cheng&Kovalyov, 2001) Problem1|s-batch
(b)| ∑Uj can be solved in time nO(#p), and in time nO(#d).

1.3 Our contributions

We provide a multivariate complexity analysis of 1|s-batch
(∞)| ∑ w jU j and related variants: Problem 1|s-batch(∞),

r j | ∑w jU j where jobs also have release dates, problem
1|s-batch(b)|∑ w jU j where there is a bound b on the batch
size.
The standard batch model In the first part of the paper, we
study the 1|s-batch(∞)|∑w jU j problem without release
dates or batch size restrictions.We show that almost all results
of Proposition1 regarding the 1||∑w jU j problem extend to
the batch setting.

Theorem 1 Problem 1|s-batch(∞)|∑ w jU j can be solved
in time nO(#p) · O(#d), in time nO(#w) · O(#d), in time
f (#d + #p) · nO(1), and in time f (#d + #w) · nO(1).

The XP-algorithms alluded to in this theorem are based on
dynamic programming,while thefixed-parameter algorithms
are based on an elegant reduction to the non-batch case. Note
that the first and second item of the theorem generalize the
results by Hochbaum and Landy stated in Proposition2.
Release dates We first extend the result of Baptiste (2000)
to jobs with arbitrary processing times, by showing that
1|s-batch(∞), r j | ∑w jU j canbe solved in timen f (#d+#p+#w)

and in time n f (#p+#r+#w). Next, we show that these run times
are tight, in the sense that the dependence on the parameters
can very likely not be removed from the degree of n. Specifi-
cally, we prove that 1|s-batch(∞), r j | ∑w jU j isW[1]-hard
for either parameter #d+#p or #p+#r , and therefore is not
fixed-parameter tractable under the standard hypothesis that
FPT �= W[1].
Theorem 2 Problem 1|s-batch(∞), r j | ∑ w jU j is W[1]-
hardwhen parameterized by #d+#p, and isW[1]-hardwhen
parameterized by #p+#r . Furthermore, the problem is solv-
able in time n f (#d+#p+#w), and in time n f (#p+#r+#w).

To the best of our knowledge, Theorem2 is the first W[1]-
hardness result for any scheduling problem parameterized
by the number of distinct processing times #p. In particu-
lar, whether or not P||Cmax (makespan minimization on an
unbounded number of parallel machines) is W[1]-hard for
this parameter is a well-known open problem (Goemans &
Rothvoss, 2020; Mnich & van Bevern, 2018), and this ques-
tion is also open for 1||∑w jU j (Hermelin et al., 2018).
Batch restrictions In the final part of the paper, we show that
the f (#d + #w) · nO(1)-time algorithm in the second part of
Proposition1 can be generalized to the setting where each
batch contains at most b jobs; this setting was proposed by
Cheng and Kovalyov (2001).

Theorem 3 The following problems are fixed-parameter
tractable:

• 1|s-batch(b)|∑w jU j for parameter #d + #w.
• 1|s-batch(b), r j | ∑w jU j for parameter #d + #p + #r .

In particular, this improves the result of Cheng and Kova-
lyov (2001), as our algorithm runs in time f (#d) · nO(1) for
the unweighted version 1||s-batch(∞)| ≤ b|∑Uj .

A summary of our results is given in Table1.
As this moment, we do not know what the parameterized

complexity of the problem for parameter #p + #w could
be; we thus leave this question for future research. Note that
our results describing that taking either release dates, or due
dates, as a parameter leads to a similar levels of parame-
terized complexity of the studied problems, which reflects
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Table 1 Summary of results Problem variant Parameters Result Reference

1|s-batch(∞)| ∑ w jU j #p XP Theorem1

#w XP Theorem1

#d + #p FPT Theorem1

#d + #w FPT Theorem1

1|s-batch(∞), r j | ∑ w jU j #p + #r W[1]-hard Theorem2

#d + #p W[1]-hard Theorem2

#d + #p + #w XP Theorem2

#p + #r + #w XP Theorem2

1|s-batch(b)| ∑ w jU j #d + #w FPT Theorem3

1|s-batch(b), r j | ∑Uj #d + #p + #r FPT Theorem3

the intuitive notion of time reversibility (which refers to the
intuition that reversing an optimal schedule for an instance
leads to an optimal schedule for an instance with the roles of
release dates and due dates interchanged).

2 Preliminaries

We are given a set J of n jobs. Each job j ∈ J has an integral
processing time p j , a weight w j , a due date d j and a release
dates r j . Our task is to find a schedule that assigns to each job
a starting time S j ≥ r j , such that for any two jobs j, j ′ we
have S j ′ /∈ [S j , S j + p j ) (i.e., only one job is processed at
each time slot). Jobs that complete in time (before their due
date) are called early; the other jobs (forwhich S j + p j > d j )
are tardy.

Our focus in this paper is to schedule jobs in batches.
Formally, the problem 1|s-batch(∞), r j | ∑w jU j takes as
input an integer batch setup time� and a set J of n jobs each
of which is characterized by an integer due date d j , integer
processing time p j , and integer release date r j and a positive
integerweightw j . Our task is find a schedule for J , which is a
partition the job set J into a set B of batches, and then assign
a starting time SB to each batch B ∈ B such that no two
batches are processed at the same time. The processing time
of a batch B is givenby pB = �+∑

j∈JB p j . The completion
time C j of each job j ∈ JB is determined by the completion
time of the last job in B, that is,C j = SB+ pB . The objective
is to find a schedule which minimizes the weighted number
∑

j∈J w jU j of tardy jobs, where Uj = 1 if C j > d j and
Uj = 0 otherwise.

Fig. 1 An example for batch scheduling with 5 jobs. In Solution 1,
jobs 1 and 5 are tardy. In Solution 2, only job 1 is tardy. Tardy jobs can
be moved to the end of the schedule without increasing the weight of
the tardy jobs

3 The standard batchmodel

In this section, we present algorithms for the basic 1|s-batch
(∞)| ∑w jU j problem, providing a complete proof for The-
orem1. Note that in the setting where all jobs are released
at the same time and the batch sizes are not restricted, we
can schedule the early jobs in order of the due dates. We
use this helpful observation by Hochbaum and Landy (1994)
multiple times: We illustrate it by an example in Fig. 1.

Lemma 1 (Hochbaum & Landy, 1994) Any instance of
1|s-batch(∞)|∑w jU j admits an optimal solution in which
all early jobs are in earliest due date (EDD) order. That is,
for any two jobs j, j ′ scheduled in different batches B(−1)( j)
and B(−1)( j ′) with SB(−1)( j) < SB(−1)( j ′), we have d j < d j ′ .

Our first result uses this observation to yield an elegant
reduction to the non-batch case. We use following notation
to order the due dates: d(1) < d(2) < · · · < d(#d). Further,
we set d(0) to be the smallest release date.

3.1 Fixed-parameter algorithms

We begin by presenting fixed-parameter algorithms for
1|s-batch(∞)|∑w jU j for parameter #d + #p, and for
#d + #w.
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Lemma 2 Problem 1|s-batch(∞)|∑w jU j is solvable in
time f (#d + #p) · nO(1), and in time f (#d + #w) · nO(1).

Proof Let J denote the job set of our 1|s-batch(∞)|∑w jU j

instance. We first observe that there is an optimal schedule
in which at most one batch completes within each inter-
val (d(i−1), d(i)], for each i ∈ {1, . . . , #d}; if two or more
batches end in (d(i−1), d(i)], then these batches can be com-
bined into a single batchwithout creating new tardy jobs. The
second observation is that if no batch ends in (d(i−1), d(i)],
then all jobs with due date d(i) that are completed early must
be in batches ending at d(i−1) or earlier. We next use these
observations to reduce our1|s-batch(∞)|∑w jU j instance J
into 2O(#d) instances of the non-batch 1||∑w jU j problem,
each with the same number of processing times, weights, and
due dates as in J . Combined with the fixed-parameter algo-
rithms for 1||∑w jU j given by Hermelin et al. (2018), this
will provide a proof for the theorem.

For each i ∈ {1, . . . , #d}, we guess whether some
batch ends in (d(i−1), d(i)] in an optimal solution. Let I ⊆
{1, . . . , #d} be the set of indexes i such that some batch ends
in (d(i−1), d(i)] with respect to our guess. For an index � ∈
{1, . . . , #d}, let I≤� = {i ∈ I | i ≤ �} be the set of indices
in I smaller or equal to �, and let i(�) = max{i ∈ I | i ≤ �}
be the largest index in I that is less than or equal to �. We
construct an instance JI of 1||∑w jU j corresponding to I
by replacing the due date d j = d(�) of each job j ∈ J with
an alternative due date d ′

j = d(i(�)) − |I≤�| · �; all other job
parameters remain the same in JI .

Consider some set of indices I ⊆ {1, . . . , #d}, and let JI
be the corresponding 1||∑w jU j instance. We can convert
a schedule of JI as follows: We note that

∑

j is early and d ′
j≤d

p j ≤ d

for all due dates d. We construct |I | + 1 batches. The first
|I | batches are denoted by Bi for i ∈ I and are processed in
increasing order, i.e. if i < i ′ then Bi is processed before Bi ′ .
Let j be an early job (i.e. j ′ is early) with d j = d(�) for some
�. Then we assign j to batch Bi(�). We conclude that j will
be early, as the completion time of Bi(�) is equal to

CBi(�) = |I≤�|� +
∑

j ′ is early
and d j ′≤d j

p j ′ ≤ |I≤�|� + d ′
j

= di(�) ≤ d j .

Conversely, consider any schedule for J that schedules at
most one batch ending in each interval of consecutive due
dates, and let I ⊆ {1, . . . , #d} be the corresponding set of
indices. Then any early job j ∈ J withd j =d(�) hasC j ≤di(�),
and so its completion time in the non-batch setting under the

same ordering of early jobs is at most

C j − |I (≤ �)|� ≤ di(�) − |I (≤ �)|� = d ′
j .

It follows that an optimal schedule for our original
1|s-batch(∞)|∑w jU j instance corresponds to the schedule
with the minimum weight of tardy jobs among all optimal
schedules for instances JI , I ⊆ {1, . . . , #d}. The lemma then
follows, since there are 2#d instances JI , each of which can
be solved in f (#d + #p) · nO(1) or f (#d + #w) · nO(1) time
using the algorithm by Hermelin et al. (2018). 
�

3.2 XP-algorithms

Next, we consider the parameterizations by only #p. Assume
that our input job set {1, . . . , n} is ordered such that d1 ≤
· · · ≤ dn (i.e. ordered according to EDD). Due to Lemma1,
there is an optimal schedule where any job j ∈ J is either
late, or it is scheduled after the early jobs in {1, . . . , j − 1}.
Thus, an optimal schedule for jobs {1, . . . , j} can be found
by appending j to some schedule of jobs {1, . . . , j − 1}.
Lemma 3 Problem 1|s-batch(∞)|∑ w jU j is solvable in
time nO(#p) · O(#d).

Proof Let J = {1, . . . , n} denote our job set ordered accord-
ing to EDD, and let p(1) < · · · < p(#p) denote the different
processing times of all jobs in J . For increasing values of
j ∈ {1, . . . , n}, we compute a table Wj which has nO(#p)

entries and corresponds to jobs in {1, . . . , j}.
The table Wj will be indexed by a #p-dimensional vec-

tor I ∈ {1, . . . , n}#p, and integer b ∈ {0, 1, . . . , n}, and a
due date d ∈ {d1, . . . , dn}. The invariant that our algorithm
will maintain is that Wj [I , b, d] equals the minimum total
weight of tardy jobs in a schedule for jobs {1, . . . , j} with
the following properties:

1. The early jobs are scheduled in EDD fashion as in Lemma1.

2. There are exactly b batches containing exactly I [i] early jobs,

i ∈ {1, . . . , #p}, with processing time p(i), scheduled consecutively

starting from time 0.

3. The earliest due date among all jobs in the last batch is at least d.

Note that there exists a vector I and integers b and d such
that the optimal schedule for J satisfies all properties required
from a schedule corresponding to entry Wn[I , b, d] and all
jobs in the first b batches are early.

In the beginning, we set Wj [I , b, d] = ∑ j
i=1 wi if I = ∅

and Wj [I , b, d] = ∞ otherwise. Fix j ∈ {1, . . . , n}, and
consider an entry Wj [I , b, d] of Wj . Let p(�) = p j be the
processing time of j for � ∈ {1, . . . , #p}. Let I� be the vector
which coincides with I on every coordinate, except for the
�th coordinate for which it is equal to I [�] − 1. If the �th

coordinate of I is 0, then j is tardy by the definition and
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we set Wj [I , b, d] = Wj−1[I , b, d] + w j . If
∑#p

i=1 I [i] ·
p(i) + b� > d, then job j will be late if it is among the jobs
scheduled in the first b batches. Since all of the first j jobs
with processing time p j have a due date less than or equal
to d j , there cannot be a schedule that schedules exactly I [i]
early jobs with processing time p(i) if we consider only the
first j jobs. Thus, we set Wj [I , b, d] = ∞. If

∑#p
i=1 I [i] ·

p(i) + b� ≤ d, then we can schedule job j early.
The first possibility is to schedule job j in an already

existing batch. Then the total weight of tardy jobs is
Wj−1[I�, b, d].

The second possibility is to open a new batch for job j .
Then we look at the entries Wj−1[I�, b − 1, d ′] for d ′ ≤ d.

The third possibility is to schedule j tardy. In this case, the
weight is given by Wj−1[I , b, d] + w j . Then the recursion
for Wj [I , b, d] is given by

Wj [I , b, d] = min{Wj−1[I�, b, d],
min
d ′≤d

{Wj−1[I�, b − 1, d ′]}, Wj−1[I , b, d] + w j }.

Observe that the three cases correspond to the three
options of adding j to a schedule of {1, . . . , j − 1}:
(i) adding j to the last batch of early jobs, (ii) place j in
a new batch on its own, (iii) scheduling j as tardy.

Correctness of our dynamic programming algorithm is
immediate following the discussion above. The optimal
schedule corresponds to the minimum entry Wn[I , b, d]
over all I ∈ {1, . . . , n}#p, b ∈ {1, . . . , n}, and d ∈
{0, d1, . . . , dn}. Note that since table Wj has nO(#p) entries,
and computing each entry requires O(#d) time, comput-
ing the entire table can be done in time nO(#p) · O(#d).
Thus, the algorithm for computing all tables Wj runs in
time nO(#p) · O(#d), and the lemma follows. 
�

Now that we have shown how to solve 1|s-batch(∞)|
∑

w jU j efficiently for all instances with few distinct pro-
cessing times, we next give an efficient algorithm for
instances with few distinct weights.

Lemma 4 Problem 1|s-batch(∞)|∑w jU j is solvable in
time nO(#w) · O(#d).

Proof Let J = {1, . . . , n} denote our job set ordered accord-
ing to EDD, and let w(1) < · · · < w(#w) denote the different
weights of all jobs in J . The algorithm is very similar to
the algorithm in the proof of Lemma3, except here we com-
pute tables Pj that store minimum total processing time of
early jobs, as opposed to minimum total weight of tardy
jobs. Namely, for I ∈ {1, . . . , n}#w, b ∈ {1, . . . , n}, and
d ∈ {0, d1, . . . , dn}, entry Pj [I , b, d] will equal the mini-
mum total processing time of the early jobs in a schedule
for jobs {1, . . . , j} that satisfies all properties required in
the proof of Lemma3, except that the second condition is

rephrased to require exactly I [i] early jobs, i ∈ {1, . . . , #w},
with weight w(i).

Fix j ∈ {1, . . . , n}, and let � ∈ {1, . . . , n} be the index for
which w j = w(�). The base cases for computing Pj [I , b, d]
are very similar to those described in the proof of Lemma3:

If both Pj−1[I�, b, d] + p j > d and

min
d ′≤d

{Pj−1[I�, b − 1, d ′] + p j + �} > d

hold or if d > d j then we cannot schedule exactly I [i] jobs
with weight w(i) early including job j if we consider only
the first j jobs. Thus, we set Pj [I , b, d] = Pj−1[I , b, d].

Otherwise, the main recursive formula is given by

Pj [I , b, d] = min{Pj−1[I�, b, d] + p j ,

min
d ′≤d

{Pj−1[I�, b − 1, d ′] + p j + �}, Pj−1[I , b, d]}.

�

4 Serial batching with release dates

In this section, we show that the problem of minimizing the
weighted number of tardy jobs with release dates on a sin-
gle batch machine isW[1]-hard for parameters #p + #r and
#d + #p. That is, we prove Theorem2. Thereafter, we give
XP-algorithms for 1|s-batch(∞), r j | ∑w jU j parameterized
by #p + #w + #r , and parameterized by #d + #p + #w.
Note that if all jobs j have a common release date r j ≡ r ,
then the problem 1|s-batch(∞), r j | ∑w jU j reduces to
1|s-batch(∞)|∑w jU j by releasing all jobs at time 0 and
subtracting r j from the due date d j of each job; thus, the
fixed-parameter algorithms from the preceding section apply.

We begin with parameter #p+#r ; the hardness for param-
eter #d + #p will follow almost immediately afterwards.
To prove that 1|s-batch(∞), r j | ∑ w jU j is W[1]-hard with
respect to #p + #r , we present a reduction from the k-Sum
problem. In this problem, we are given a set {x1, . . . , xn}
of n positive integers, and a target integer t . The task is
to decide if there exist k (not necessarily distinct) integers
xπ(1), . . . , xπ(k) ∈ {x1, . . . , xn} that sum up to t . Abboud et
al. (2014) showed that k-SUM is W[1]-hard parameterized
by k, even if all integers are in the range {1, . . . , nck} for
some constant c.
The construction Let (x1, . . . , xn; t) be an instance of k-
Sum, with xi ∈ {1, . . . , nck} for each i ∈ {1, . . . n}. Observe
that due to their small range, each input integer xi can
be written in the form xi = ∑ck

h=0 αi,h · nh for integers
αi,0, . . . , αi,ck ∈ {0, . . . , n − 1}, i.e., the base n represen-
tation of xi . We will heavily exploit this property in our
construction.

Write X = ∑
i xi . Furthermore, we will assume through-

out that k − 1 times the largest integer in {x1, . . . , xn} is less
than t . If this is not the case, one can slightly modify the
input by adding knck to each integer, and setting the target
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to t + k2nck . (Note that this way it holds that xi ≤ nc
′k

for c′ = 3c for i = 1, . . . , n, and thus the property of the
base n representation still holds.) We construct an instance
of 1|s-batch(∞), r j | ∑ w jU j with O(k) distinct processing
times and release dates, such that there exists a feasible sched-
ule with

∑
j w jU j ≤ kX − t + (n − 1)k, if and only if there

exist k integers xπ(1), . . . , xπ(k) ∈ {x1, . . . , xn} that sum up
to t :

• We create (k − 1)t identical jobs, called leftover jobs,
each with the following parameters:

– Processing time 1 and weight k(X + n).
– Release date 0 and due date 3kt .

• For each � ∈ {1, . . . , k}, and each input integer xi =∑ck
h=0 αi,h ·nh , we create a set Jx(i),� of normal jobs that

corresponds to xi . This set consists of αi,h many jobs, for
each h ∈ {0, . . . , ck}, with the following parameters:

– Processing time nh and weight nh + nh/xi .
– Release date r� = (�−1)3t and due date (�−1)3t +

t + xi .

• We set the batch setup time to � = t .
• We set the bound on the total weight of tardy jobs to
kX − t + (n − 1)k.

Observe that the total processing time of all jobs in the
set Jx(i),� is precisely xi , and their totalweight is xi+1. These
two properties will be crucial later on. Also note that whereas
the weights above are fractional, one can make them integral
by multiplying them with

∏
xi . Under this multiplication,

the encoding length of the numbers remains polynomial, as
log(

∏
xi ) = ∑

i log(xi ) ≤ nmaxi {log(xi )}.
We now argue about the correctness of the reduction, by

means of the subsequent two lemmas.

Lemma 5 Suppose there exist xπ(1), . . . , xπ(k) ∈ {x1, . . . , xn}
such that

∑
i xπ(i) = t . Then there exists a schedule with

∑
j w jU j ≤ kX − t + (n − 1)k.

Proof Wecreate a schedulewith 2k+1batches B1, . . . , B2k+1.
For � ∈ {1, . . . , k}, we schedule all jobs in set Jπ(�),� in
batch B2�−1, and t − xπ(�) leftover jobs in batch B2�. The
starting time of batch B2�−1 is at 3t(�− 1), and that of batch
B2� is at 3t(� − 1) + t + xπ(�). The remaining jobs are all
scheduled in batch B2k+1 which starts at time 3kt . Note that
in this way all jobs are scheduled after their release date, and
only jobs in the last batch B2k+1 are tardy. An easy calcu-
lation shows that the total weight of jobs in this last batch
is

∑

j∈B2k+1

w j = kX + kn −
k∑

i=1

(xπ(i) + 1)

= kX − t + (n − 1)k.


�
We illustrate Lemma5 by an example in Fig. 2.

The converse of Lemma5 requires more technical detail.
We therefore introduce some further notation that will be
used throughout the remainder of the section. Assume our
constructed instance of 1|s-batch(∞), r j | ∑w jU j admits a
schedule where the total weight of tardy jobs is at most kX +
(n−1)k− t . Let B1, . . . , Bb, Bb+1 denote the batches of this
schedule, with respective starting times S1 < · · · < Sb+1 and
completion times C1 < · · · < Cb+1. Below we modify this
schedule, without increasing the total weight of tardy jobs,
in order to make our arguments easier.

Lemma 6 Suppose that the constructed instance of
1|s-batch(∞), r j | ∑ w jU j has a schedule where the total
weight of tardy jobs is at most kX + (n − 1)k − t . Then
it has a schedule where the total weight of tardy jobs is at
most kX + (n− 1)k − t and with batches B1, . . . , Bb, Bb+1,
scheduled in that order, where:

• All tardy jobs are in Bb+1, and include no leftover jobs.
• All early jobs are in B1, . . . , Bb, and include normal jobs
with total weight at least t + k.

Proof Consider any schedule where the total weight of tardy
jobs is atmost kX+(n−1)k−t andwith batches B1, . . . , Bb,
scheduled in that order, that has at most kX − t + (n − 1)k
total weight of tardy jobs. We first observe that no leftover
job is tardy, as a single leftover job has weight k(X + n) >

kX− t+(n−1)k. Moreover, as the total weight of all normal
jobs of the instance is k(X + n), the total weight of the early
normal jobs must be at least t + k. Finally, we can move
all tardy jobs to a new batch Bb+1 that starts right after Bb

completes, deleting all empty batches resulting from this,
without increasing the total weight of tardy jobs. 
�

Due to Lemma6, some normal jobs must be early. For
� ∈ {1, . . . , k}, we use E� denote the early jobs of type
� in the schedule; here, a job has type � if it belongs to
Jx(i),� for some i ∈ {1, . . . , n}. Then ⋃

� E� �= ∅. We use
p(E�) and w(E�) to respectively denote the total processing
time and weight of jobs in E�, i.e., p(E�) = ∑

j∈E�
p j and

w(E�) = ∑
j∈E�

w j .

Lemma 7 For each � ∈ {1, . . . , k} with E� �= ∅, there is a
unique batch B(�) ∈ {B1, . . . , Bb} with E� ⊆ B.

Proof Choose some non-empty E�. Then each job j ∈ E� is
released at time r� and has a due date of r�+t+x < r�+2t for
some x ∈ {x1, . . . , xn} (the inequality follows, as all xi are
smaller than t). As batch setup requires t units of time, and all
jobs in E� are early, there must be some batch that contains
all jobs of E�. Furthermore, this batch cannot contain jobs
of some E�′ , �′ �= �, since those jobs either have due dates
prior to r� (in case �′ < �), or release dates that are later than
the due dates of jobs in E� (in case �′ > �). 
�
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Fig. 2 An illustration of how
the schedule given in Lemma5
looks like

Lemma7 implies that we can assume there is a specific
batch associated with each non-empty E�. Let d� be the earli-
est due date in E�. Then d� = (�− 1)3t + t + xπ(�) for some
integer xπ(�) ∈ {x1, . . . , xn}. Thus, there is also a specific
due date and input integer associated with E�.

Lemma 8 For each � ∈ {1, . . . , k} with E� �= ∅ we have:

• p(E�) ≤ xπ(�).
• w(E�) ≤ p(E�) + 1, and this holds with equality if and
only if E� = Jπ(�),�.

Proof According to Lemma7, there is a unique batch B(�)

which includes all jobs of E�. Let p(B(�)) denote the sum
of processing times of jobs in B(�). As the release date of all
jobs in E� is r� = (� − 1) · 3t , and the setup time of B(�)

is t , it must be that p(E�) ≤ p(B(�)) ≤ xπ(�); otherwise,
jobs in E� with due date d� would be late. Now, for each
job j ∈ E�, let x( j) ∈ {x1, . . . , xn} denote the integer to
which j is associated (i.e., j ∈ Jx( j),�). Then x( j) ≥ xπ(�),
by definition of xπ(�). Since p(E�) ≤ xπ(�), we have

w(E�) =
∑

j∈E�

(p j + p j/x( j))

≤
∑

j∈E�

(p j + p j/xπ(�))

= p(E�) + p(E�)/xπ(�)

≤ p(E�) + 1.

Note that the first inequality is strict if and only if there is a
job j ∈ E�\Jπ(�),� as x( j) ≥ xπ(�) and the second inequality
is strict if and only if p(E�) < xπ(�). Hence, equality holds
if and only if E� = Jπ(�),�. The statement of the lemma thus
follows. 
�
Lemma 9 E� �= ∅ for each � ∈ {1, . . . , k}.
Proof By Lemma6, we have t + k ≤ ∑

� w(E�). By
Lemma8, we have p(E�) ≤ xπ(�) and w(E�) ≤ p(E�) + 1.
Thus,

t ≤
k∑

�=1

w(E�) − k ≤
k∑

�=1

p(E�) ≤
k∑

�=1

xπ(�),

where xπ(�) = 0 if E� = ∅ in the summation above. Since
any k−1 integers in {x1, . . . , xn} sumup to a numberwhich is
smaller than t , it must be that xπ(�) > 0 for all � ∈ {1, . . . , k},
and the statement of the lemma follows. 
�

Lemma 10 If there is a schedule where the total weight of
tardy jobs is at most kX + (n − 1)k − t , then there is one
with batches B1, . . . , B2k+1 scheduled in that order, where
for each � ∈ {1, . . . , k}:

• B2�−1 is scheduled at time 3t(� − 1); B2� is scheduled
immediately after B2�−1 is completed.

• B2�−1 contains only normal jobs of type of �, and B2�

contains only leftover jobs.
• All tardy jobs are in B2k+1, and are normal.

Proof Let B1, . . . , Bb+1 be the batches of our schedule as in
Lemma6. We modify the batches of this schedule so as to fit
the requirements of the lemma without increasing the total
weight of tardy jobs in the schedule.

We first note that for each �, batch B(�) is completely
processed in the interval [3t(� − 1), 3t(� − 1) + 2t]. Thus,
if there is no batch between B(�) and B(� + 1), we might
as well add one as the time between the completion time
of B(�) and the starting time of B(� + 1) is at least t . Since
there is a batch B(�) for each � ≤ k, by Lemma9, there are
2k batches consisting only of early jobs.

Suppose that the completion time of a batch Bi is in the
interval (3t(�−1), 3t(�−1)+ t] for some �. Then Bi cannot
contain type � jobs, as it started before 3t(� − 1). Hence,
Bi only contains leftover jobs. We can move some leftover
jobs from Bi to Bi+1 = B(�) and simultaneously reduce the
starting time of B(�) by the number of moved jobs, until the
starting time of Bi equals 3t(� − 1).

If no batch is completed in (3t(�−1), 3t(�−1)+ t], then
we can start B(�) at time 3t(�−1). This can only decrease the
completion times of the jobs. If there are leftover jobs in batch
B(�) = B2�−1, then we can move them to batch B2�. They
will not be late, as the completion time of B2� is at most 3kt .


�
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Lemma 11 If the constructed instance of 1|s-batch(∞),

r j | ∑w jU j admits a schedule with
∑

j w jU j ≤ kX − t +
(n−1)k, then there are xπ(1), . . . , xπ(k) ∈ {x1, . . . , xn} with∑

i xπ(i) = t .

Proof Let B1, . . . , B2k+1 be the batches of a schedule as
promised by Lemma10 for our 1|s-batch(∞), r j | ∑w jU j

instance with
∑

j w jU j ≤ kX − t + (n − 1)k. Then
batch B2k completes at time C2k ≤ 3kt , since 3kt is the
latest due date of the input jobs. Since there are 2k batches
with early jobs, and the setup time for each of these batches
is t , we have

∑2k
�=1 p(B�) ≤ kt . Thus, as the total processing

times of all leftover jobs is (k − 1)t , we have

k∑

�=1

p(E�) =
2k∑

�=1

p(B�) −
k∑

�=1

p(B2�)

=
2k∑

�=1

p(B�) − (k − 1)t ≤ t .

Recall that, by Lemmas6 and 7, we also have

t ≤
k∑

�=1

w(E�) − k ≤
k∑

�=1

p(E�).

Therefore,
∑

p(E�) = t and
∑

w(E�) = ∑
p(E�) + k.

The latter equality can only happen if w(E�) = p(E�) + 1
for all � = 1, . . . , k, which in turn implies by Lemma9 that
p(E�) = xπ(�) for all � = 1, . . . , k. So

∑
xπ(�) = t , and the

claim follows. 
�

4.1 Parameter #d+ #p

Lemmas5 and 11 combined prove that our construction
indeed showsW[1]-hardness for parameter #p+#r . We next
show that this construction can be transformed to show hard-
ness for parameter #p+ #d (formalizing the intuitive notion
of time reversibility).

Lemma 12 For non-negative integers k, k′, any instance of
1|s-batch(∞), r j | ∑w jU j with k distinct release dates and
k′ distinct due dates can be transformed into an instance of
1|s-batch(∞), r j | ∑w jU j with k′ distinct release dates and
k distinct due dates, which has the same objective value.

Proof Let J be a set of n jobs forming an instance of
1|s-batch(∞), r j | ∑ w jU j . We create a set J ′ of n jobs, as
follows. For each job j ∈ J , we create one job j ′ ∈ J ′ with
p j ′ = p j , w j ′ = w j , r j ′ = −d j and d j ′ = −r j . Observe
that the problem of finding a maximum-weight set of early
jobs is the same for both J and J ′:

Let σ be a schedule for J , and let Je(σ ) be the set of
jobs in J that are early in σ . For j ∈ Je(σ ) let S j denote

its starting time of j and C j its completion time. Then
we obtain a schedule σ ′ for J ′ by setting the start time of
j ′ to be S j ′ = −C j for all jobs j ∈ Je(σ ) and schedul-
ing the remaining jobs late. No two jobs will be processed
at the same time, as the intervals (S j ,C j ), (S j ′ ,C j ′) are
pairwise disjoint for all j, j ′ ∈ Je(σ ). Thus the inter-
vals (−C j , S j ), (−C j ′ , S j ′) are also pairwise disjoint for all
j, j ′ ∈ J ′

e(σ
′). Further, for each j ∈ Je(σ ) we have S j ≥ r j

and d j ≥ C j and thus also r j ′ = −d j ≤ −C j = S j ′ and
d j ′ = −r j ≥ −S j = C j ′ .

Similarly, given the set J ′
e(σ

′) of early jobs for a
schedule σ ′ for J ′ we obtain a schedule for J such that all
jobs j for which j ′ ∈ J ′

e(σ
′) are scheduled early, by setting

S j = −C j ′ .
This shows that the problem 1|s-batch(∞), r j | ∑ w jU j

with parameter #d + #p is as hard as
1|s-batch(∞), r j | ∑w jU j with parameter #p + #r . 
�
Corollary 1 Problem 1|s-batch(∞), r j | ∑w jU j is W[1]-
hard for parameter #d + #p.

4.2 XP algorithms

Last in this section, we give an XP-algorithm for the problem
1|s-batch(∞), r j | ∑w jU j parameterized by #p+#r +#w.
We use the following notation: Similarly to the due dates, we
order the release dates as follows: r (1) < r (2) · · · < r (#d).

Lemma 13 Problem 1|s-batch(∞), r j | ∑w jU j is solvable
in time n f (#p+#r+#w).

Proof Let I be the set of job types with respect to processing
time, weight and release date. Let ni be the number of jobs
of type i . Let U = {v ∈ {1, . . . , n}I }, and let V = {v =
(v1, . . . , v#r ) ∈ U #r | ∑#r

�=1(v�)i ≤ ni } denote the space of
possible solution vectors. For each element v ∈ V we decide
if one can obtain a schedule that starts (v�)i early jobs of type
i ∈ I in the interval [r (�), r (�+1)).

First, note that if such a schedule exists thenwecan assume
that jobs of types i are scheduled in order of their due date,
and only the

∑#r
�=1(v�)i jobs of type i with the latest due

dates are scheduled early. Hence we know which jobs are
started in each interval [r (�), r (�+1)).

Second, notice that if we schedule the jobs that are started
in [r (�), r (�+1)) in (EDD)-order starting new batches only if
it is necessary, i.e. if adding the job to the current batchwould
cause another job in the batch to be tardy. Then we also get
a schedule for these jobs that ends as early as possible. Thus
all we need to do in order to decide whether such a schedule
exists is to the following: First schedule all jobs that start
in [r (1), r (2)) in (EDD). Then let t1 be the date where the
last of these jobs is finished. Then we schedule all jobs that
start in [r (2), r (3)) in (EDD) but the starting time of the first
batch is max{r (2), t1}. Then let t2 be the date where the last of
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these jobs is finished. We then continue in the obvious way.
If all jobs scheduled are early and no job is started before
its release date then there is such a schedule; otherwise, no
such schedule exists. From all schedules we obtain, we take
the one that maximizes

∑
�,i (v�)iwi . The total run time is

nO(#p+#r2+#w). 
�
Using Lemma12 we also get the following result:

Corollary 2 Problem 1|s-batch(∞), r j | ∑w jU j is solvable
in n f (#d+#p+#w) time.

5 Serial batching with bounded batch sizes

In this section, we consider serial batching where batches
have bounded size |B| ≤ b; this yields problem
1|s-batch(b)|∑ w jU j .

We will use the notion of job types: Each job j ∈ J has
a type, which is given by the vector τ( j) = (p j , w j , d j , r j ).
In some settings parts of the tuple can be omitted, which
allows us to shortcut the job type. For example, a job of type
(p j , w j , d j , r j ) is also of type (p j , d j , r j ). We denote the
set of all job types of an instance I by T . For each type
τ ∈ T let nτ be the number of jobs in I of type τ ; further,
let dτ , pτ , rτ and wτ denote the due date, processing time,
release date and weight of jobs with type τ .

First, we show that 1|s-batch(b)|∑w jU j is
fixed-parameter tractable for parameter #d + #w, proving
the first part of Theorem3.

Lemma 14 Problem 1|s-batch(b)|∑ w jU j can be solved in
time f (#d + #w) · nO(1).

Proof For an instance I of 1|s-batch(b)|∑ w jU j , we set up
a mixed-integer linear program (MILP) to find an optimal
schedule. The variables of the MILP fall into one of three
classes.

For the first class, let I = {(w, d) | (w, p, d) ∈ T
for some p} be the set of job types with respect to weight
and due date. For each type i ∈ I and each � ∈ {1, . . . , #d}
we have one integer variable x(i,�) to indicate the number of
jobs of type i which finish in the time interval (d(�−1), d(�)]
in the computed schedule. (Note that this means that their
batches finish in the interval.)

In the second class, for each job type τ = (dτ , pτ , wτ )∈T
and each � ∈ {1, . . . , #d} we have one fractional variable
y(τ,�) ∈ [0, nτ ] to indicate the number jobs of type τ which
are processed in time before their due date d(�). (Recall
that nτ is the number of jobs of type τ .)

In the third class, for each index � ∈ {1, . . . , #d} we have
one integer variable z� to indicate the number of batches that
are completed before or at time d(�). Finally, set z0 = 0. The
MILP is given by

min
∑

τ∈T
(nτ − y(τ,#d))wτ (1)

z� ≥ z�−1 + 1

b

∑

i∈I
x(i,�), � = 1, . . . , #d, (2)

∑

�0≤�

x(i,�0) =
∑

τ∈T ,
wτ =wi∧dτ =di

y(τ,�), i ∈ I , � = 1, . . . , #d,

(3)

z�� +
∑

τ∈T
pτ y(τ,�) ≤ d(�) � = 1, . . . , #d. (4)

The MILP has #d(|I | + 1) = O(#d2 · #w) integer variables
and |T |#d = O(|T |2) fractional variables. It can be solved
by Lenstra’s algorithm (Lenstra, 1983) for integer program-
ming in fixed dimension in time f (#d + #w) · nO(1).

It remains to show that optimal solutions of value W to
the MILP correspond to optimal schedules with weighted
number of tardy jobs equal to W . A key observation is that,
given an optimal solution to the MILP, we can assume that
all variables y(τ,�) take integer values. This is due to the fact
that, given a job type τ ∈ T and an index � ∈ {1, . . . , #d},
we can assume that if y(τ,�) < n j then y(τ ′,�) = 0 for all τ ′
with pτ ′ > pτ , wτ ′ = wτ and dτ ′ = dτ . For if that was not
the case, then we can increase y(τ,�) and decrease y(τ ′,�) by
the same amount, without changing the objective value or
violating constraint (3) or constraint (4). The intuition here
is that we can process jobs of type i ∈ I in increasing order
of their processing time.

Note that (2) assures that we use � 1
b

∑
i∈I x(i,�)� batches

ending in (d(�−1), d(�)] which is the minimum number of
batches needed to complete all jobs ending in that interval.
Constraint (3) is for determining the exact types of the jobs
that are processed rather than just the type with respect to
weight and due date. As said, we can assume that y-variables
are integral in an optimum solution. Constraint (4) ensures
that all early jobs are indeed completed before their due date.

To obtain a schedule from a solution to the MILP, we first
process x(i,1) jobs of type i for each i in order of their pro-
cessing times with ties broken arbitrarily, and always starting
a new batch when necessary and closing the last batch at the
end. Then we can continue with x(i,2) jobs of type i for each i
the same way, and so on. Conversely, a schedule translates
into a solution (also fulfilling (2)) using the interpretations
for the variables. 
�

If #d + #p (rather than #d + #w) is our parameter, then
we obtain fixed-parameter tractability even in the presence of
release dates. More precisely, we can solve instances where
jobs additionally have different release dates as long as the
number of different release dates is our parameter.

Lemma 15 Problem1|s-batch(b), r j | ∑ w jU j canbe solved
in time f (#d + #p + #r) · nO(1).
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Proof Let T = {r j | j ∈ J } ∪ {d j | j ∈ J } be the set
of critical time points. Further, we order T = {t1, . . . , tk}
increasingly, i.e., t1 < · · · < tk . We again design a MILP,
but this time with slightly more variables than the MILP in
the proof of 14. Again, there are three classes of variables.

For the first class, we set I = {(p, r , d) | (p, w, r , d) ∈ T
for some w} to be the set of job types with respect to weight
and due date. Then instead of variables x(i,�), we have inte-
ger variables x(i,�,�′) to indicate the number of early jobs of a
given type that are processed in batches starting at or after t�
but before t�+1 and completed before or at t�′ but after t�′−1.
Note that we do not create variables x(i,�,�′) if di < t�′ or
ri > t�.

For the second class, we use variables yτ to indicate the
number of early jobs of type τ ∈ T in the computed schedule.

For the third class, instead of variables z�, this time we
will use integer variables z(�,�′) for any � < �′ to indicate the
number of batches that start at or after t� but before t�+1 and
finish before or at t�′ but after t�′−1.

The MILP has as objective function

min
∑

τ∈T
(nτ − yτ )wτ ,

and the following four kinds of constraints:
∑

i∈I
x(i,�,�′) ≤ bz(�,�′) for any 1 ≤ � < �′ ≤ k

∑

�,�′
x(i,�,�′) =

∑

τ∈T ,
pτ =pi∧ri=rτ ∧dτ =di

yτ for each i ∈ I

t +
∑

t≤t�<t�′≤t ′

(

z(�,�′)� +
∑

i∈I
pi x(i,�,�′)

)

≤ t ′

for each each t, t ′ ∈ T with t < t ′

yτ ≤ nτ for each τ ∈ T .

We need two more kinds of constraints to guarantee that if
there is a long batch, i.e., a batch that starts before t� and
ends at or before t�′ but after t�′−1 ≥ t�, then there can-
not be any other batch starting and ending in [t j , t j ′ ] for
any pair ( j, j ′) ∈ {�, . . . , �′}2\{(t�, t�+1), (t�′−1, t�′)}. These
constraints are thus:

z(�1,�2)+z(�3,�4) ≤1 if �1≤�3<�3 + 2 ≤ �4≤�2 (5)
z(�,�+1)

n
+ z(�1,�2) ≤ 1 if �1 < � and �2 > � + 1. (6)

Using the interpretations of the variables, from a given
schedule one can easily construct a feasible solution of the
MILP with same value. In an optimal solution of the MILP,
all variables of the form yτ are integral, and yτ ≤ nτ implies
yτ ′ = 0 for all other types τ ′ with the same processing time,
release date and due date but higher weight. To see this,

assume there is some non-integral yτ . Let τ be of (sub)type
i ∈ I . As

∑

τ∈T ,wτ =wi∧ri=rτ ∧dτ =di

yτ =
∑

�,�′
x(i,�,�′)

is integral, there is another non-integral variable yτ ′ so that τ ′
is also of type i . Assume, without loss of generality, that
wτ > wτ ′ . As nτ is integral, it holds yτ < nτ . Thus we can
increase yτ and decrease yτ ′ by the same amount until either
yτ = nτ or yτ ′ = 0. The solutionwe get is still feasible but its
value is smaller, contradicting the optimality of our previous
solution. The same argumentation can be used to show that
yτ ≤ nτ implies yτ ′ = 0 for all other types τ ′ with the same
processing time, release date and due date but higher weight.

Now to create a schedule we create z(�,�′) batchesB�,�′ for
each variable z(�,�′) and fill them with appropriate jobs, i.e.,
such that there are x(i,�,�′) jobs of type i assigned to them.
We schedule the batches as follows: If batch B is in B�,�′ and
batch B ′ is in B�1,�2 , then we schedule B before B ′ if � < �1
or if � = �1 and �′ < �2. Apart from this rule, batches can be
scheduled in arbitrary order. Given this ordering, we sched-
ule batch B ∈ B�,�′ at the completion time of the previous
batch if it finishes later than t�, or at t� otherwise.

Weneed to show that indeed all
∑

�,�′ x(i,�,�′) jobs of type i
scheduled in these kind of batches are early for each type i .
Suppose, for sake of contradiction, that there is late job j
in batch B ∈ B�,�′ for some � and �′. Let t�0 be the latest
time point less than or equal to t� such that there is idle time
before t�0 , or—if no such time point exists—we set t�0 to be
the smallest release date.

We claim that

t�0 +
∑

�0≤�1,�2≤�′

(

z(�1,�2)� +
∑

i∈I
pi x(i,�1,�2)

)

> t�′ .

To see that, notice that only jobs in batches inB�1,�2 with �1 ≥
�0 and �2 ≤ �′ are scheduled before the completion time of j .
This holds true as any batch B ′ ∈ B�1,�2 with �1 < �0 is com-
pleted before t�0 by definition of �0 and any batch B

′ ∈ B�1,�2

with �1 ≥ � and �2 > �′ is scheduled later than j . Further,
we have z(�1,�2) = 0 if �1 < � and �2 > �′ by constraint (5)
and (6) using that z(�,�′) ≥ 1. However, our claim contradicts
the feasibility of such a schedule; thus, j cannot be late. 
�

6 Discussion and open problems

We provided an extensive multivariate analysis of the single-
machine batch scheduling problem tominimize the weighted
number of tardy jobs. In particular, we significantly refined
and extended the work of Hochbaum and Landy (1994), as
well as Hermelin et al. (2018).
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Several open questions remain, even for the non-batch
setting. It appears especially challenging to answer if
1|| ∑ w jU j is fixed-parameter tractable for parameter #p
or parameter #w, or is W[1]-hard for either of those param-
eterizations. This question was already stated by Hermelin
et al. (2018). Naturally, we do not know the answer to this
question for the more general 1|s-batch(∞)|∑Ujw j prob-
lem; however, we also do not know the status of parameter
#p + #w for which 1||∑ w jU j is known to be fixed-
parameter tractable (Hermelin et al., 2018). An interesting
question is if 1|s-batch(b)|∑Uj is fixed-parameter tractable
for parameter #p or b, or even solvable in polynomial time.

Another interesting research directionwould be to explore
the parameterized complexity of parallel batching problems.
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