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Abstract
In this paper, we consider single-machine scheduling with multiple due dates per job. This is motivated by several industrial
applications, where it is not important by how much we miss a due date. Instead the relevant objective is to minimize the
number of missed due dates. Typically, this situation emerges whenever fixed delivery appointments are chosen in advance,
such as in the production of individualized pharmaceuticals or when customers can only receive goods at certain days in the
week, due to constraints in their warehouse operation.We compare this previously unexplored problemwith classical due date
scheduling, for which it is a generalization. We show that single-machine scheduling with multiple due dates is NP-hard in the
strong sense if processing times are job dependent. If processing times are equal for all jobs, then single-machine scheduling
with multiple due dates is at least as hard as the long-standing open problem of weighted tardiness with equal processing
times and release dates 1 | r j , p j = p | ∑

w j Tj . Finally, we focus on the case of equal processing times and provide
several polynomially solvable special cases as well as an exact branch-and-bound algorithm and heuristics for the general
case. Experiments show that our branch-and-bound algorithm compares well to modern exact methods to solve problem
1 | r j , p j = p | ∑

w j Tj .

Keywords Single-machine scheduling · Multiple due dates · Branch and bound

1 Introduction

In this paper, we consider a new scheduling model, aris-
ing from various industrial production planning problems.
Applications exist, for example, in the field of personalized
medicines or for productions with fixed delivery schedules.

Traditionally, in scheduling models with due dates, it is
assumed that if a job misses its due date, either a fixed
penalty or a penalty proportionate to the amount of tardi-
ness is incurred. However, in the production of personalized
medicines, where every patient is provided with an individ-
ual drug, another setup can be observed instead, in particular
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during clinical trials. Here, patients periodically show up in
treatment centers at fixed times to be examined and to receive
their drug. According to the study protocol, the drug should
be administered during a specific appointment. The date of
this appointment (minus a buffer for transportation) is the due
date to manufacturing the drug. If a due date cannot be met,
then the respective patient receives their drug at their next
appointment instead, for example one week later. Thus, if a
due date is missed, it can be missed by up to one week with-
out incurring any further negative effect, but if it is missed
by more than that, additional penalties may arise.

Similarly, production companies try to make transporta-
tion and warehouse operations more robust and plannable
by implementing periodic transportation schedules. Addi-
tionally, such measures are also used to minimize costs, by
ensuring that the company can send out shipments for neigh-
boring regions at the same time. Typically, these shipping
schedules are agreed upon with customers, such that a cus-
tomer can plan their own warehouse operations accordingly.
Again, this means that if a due date/shipping date for a job
is missed, there may be, e.g., a week until the next expected
shipping date. During that week, no additional penalty is
incurred by delaying the job further.
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In order to capture these additional features, we introduce
a new scheduling model, where each job can have multiple
due dates. Aweight is assigned to each due date, representing
the penalty that is incurred if the due date is missed. The goal
is to minimize the weighted number of missed due dates.

During the production process of our industry partner, the
same production steps have to be performed for each cus-
tomer, while only the input material is different for each
production. Since there is a single bottleneck resource, the
remaining production steps can be adapted by adapting the
release dates andduedates. Therefore,we focus on the single-
machine version of the problem in this paper.

Formally, let J be a set of n jobs {J1, J2, . . . , Jn}. Each
job J j ∈ J has a release date r j ∈ N, a processing time
p j ∈ N and a set Dj ⊂ N of K j ∈ N due dates, Dj =
{d j,1, d j,2, . . . , d j,K j }. Additionally, a weight w j,k ∈ N is
assigned to each due date d j,k ∈ Dj . From now on, we
always assume that the due dates of each job are numbered
in ascending order, i.e., d j,1 < d j,2 < . . . for each job J j ∈
J . Furthermore, we assume that the jobs are numbered by
ascending release date, i.e., r j ≤ r j+1. Also, given a set of
jobs J we define the set of distinct release dates of jobs in
J by R(J ). A feasible schedule ς assigns a start time S j (ς)

to each job and a completion time C j (ς) = S j (ς) + p j ,
such that no job is started before its release date and at most
one job is processed at any time. The goal is to find a feasible
schedule ς , whichminimizes theweighted number ofmissed
due dates. To be precise, given the function

Uj,k(ς) =
{
1 C j (ς) > d j,k

0 otherwise,

the objective function is given by

W (ς) =
n∑

j=1

K j∑

k=1

w j,kU j,k(ς). (1)

For sake of conciseness, wewill not refer to the schedule ς

unless necessary and use the shorthands S j andC j . In the fol-
lowing, we use the standard notation by Graham et al. (1979)
and write

∑
w j,kU j,k for the objective function. Then, in the

famous three-field notation, the problem of scheduling a sin-
gle machine to minimize the weighted number of missed due
dates can be written as

1 | r j |
∑

w j,kU j,k . (2)

Large parts of this paper are dedicated to the special case
where all processing times are equal, which is written as

1 | r j , p j = p |
∑

w j,kU j,k . (3)

For convenience,we also introduce the shorthandMDS (mul-
tiple due date scheduling problem) to denote problem (2),
i.e., scheduling a single machine to minimize the weighted
number of missed due dates. The special case (3) with equal
processing times is denoted by MDS − EP or, if all process-
ing times are unitary, MDS − UP.

1.1 Our results

Since MDS is a new problem formulation, we first start with
a complexity analysis and show that MDS is in general NP-
hard. For the special case of MDS − EP, we do not solve the
complexity status, but show that it is at least as hard as the
long-standing open problem of scheduling problemswith the
weighted tardiness objective function.

Furthermore, we show that MDS − EP is fixed parameter
tractable if the number of different release dates is seen as a
parameter.

Finally, we present a branch-and-bound algorithm and
heuristics for the equal processing case that we then test on
randomly generated problem instances. We extend a famous
classical result and show that if job release dates aremultiples
of the common processing time, it is possible tominimize the
weighted number of missed due dates in polynomial time by
solving an assignment problem. Using the previous result,
we develop a branch-and-bound algorithm, which solves our
problem exactly by iteratively solving assignment problems.
This branch-and-bound algorithm compares well to some
recent state-of-the-art exact algorithms for weighted tardi-
ness scheduling.

1.2 Literature review

To the best of our knowledge, problem MDS has not been
studied in the literature before. However, there are several
important, related problems, which we consider in this liter-
ature review.

Scheduling with due dates has a nearly seventy year long
history of research, starting with the result that the earliest-
due-date order minimizes the maximum lateness on a single
machine (also known as Jackson’s rule (Jackson, 1955)). The
other positive result is by Moore (1968), who showed that
minimizing the number of late jobs on a single machine takes
O(n log n) time (also knownasMoore’s algorithm).All other
traditional scheduling objectives involving due dates, namely
the weighted number of late jobs, the total tardiness and the
total weighted tardiness, are NP-hard to minimize even on
a single machine (Lawler & Moore, 1969; Lawler, 1977;
Lenstra et al., 1977).

On the other hand, in the special case where processing
times are equal for all jobs, on a single machine the problems
ofminimizing theweighted number of late jobs andminimiz-
ing the total tardiness are solvable in polynomial time, even if
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not all jobs are released at the same time, i.e., in the presence
of nonzero release dates (Baptiste, 1999, 2000). The com-
plexity status of minimizing the total weighted tardiness on
a single machine, when all jobs have equal processing times
and arbitrary release dates, remains undecided to this day
(Gafarov et al., 2020; van den Akker et al., 2010). Finally,
in the special case where all jobs have unitary processing
times even the total weighted tardiness problem with release
dates can beminimized in polynomial time via an assignment
problem (Brucker, 2007). Several of our results for problem
MDS − EP presented in Sects. 3, 4 and 5 are based on a gen-
eralization of this assignment approach. Unfortunately, apart
from the assignment solution, many of the more complicated
techniques used to solve traditional due date based problems
are often not applicable to problems MDS and MDS − EP,
since in the latter, jobs cannot be ordered by their due date.

There are some other strings of research that involve mul-
tiple due dates per job. In one, there is both a deadline that
must not be violated and a due date which should be met in
a good solution (cf. Lawler (1983); Hariri and Potts (1994)).
Another one are scheduling problems with assignable due
dates where there are multiple possible due dates per job.
Which due date is relevant must follow some rule but can be
chosen during the optimization. For details, see, e.g., Cheng
and Gupta (1989); Gordon and Kubiak (1998); Gordon et al.
(2002); Shabtay (2016); Shabtay and Steiner (2006). While
MDScan be seen as a generalization of the problemswith due
dates and deadlines, the freedom to decide which due date is
relevant is a fundamental difference compared to MDS.

The production of personalized medicine has received
more attention recently, see, for example, Hertrich et al.
(2020, 2022). There, the main focus lies on batching con-
straints that can typically be found when producing person-
alized medicines. Here, however, we focus on the influence
of the appointment schedule.

1.3 Paper overview

The remainder of this paper is structured as follows. In Sect.
2, we show some general results that are used in the subse-
quent sections and look at the complexity status of MDS and
its special cases. In Sect. 3, we show that subproblems of
MDS − EP can be solved in polynomial time by solving an
assignment problem. In Sect. 4, we present algorithms that
can be used to compute exact solutions for the equal process-
ing time case and present a fixed parameter tractability result.
In Sect. 5, we turn to scheduling heuristics and propose three
different, simple heuristics to solve our problem and com-
pare them in terms of theoretical run times and, if possible,
theoretical optimality gaps. These heuristics are compared
to the exact solutions in Sect. 6 via computational experi-
ments on both randomly generated instances and instances
generated according to instance descriptions used for exper-

iments in other state-of-the-art papers. We extend our results
to the weighted tardiness case in Sect. 7. In Sect. 8, we finish
this work with a summary and an outlook for possible future
research paths.

2 General results

In this section, we present several general results for problem
MDS. These are useful for later parts of the paper. First, we
consider certain properties of optimal solutions to problem
MDS. Then, we show that problem MDS is NP-hard in the
strong sense.

2.1 Properties of optimal solutions to problemMDS

First, note that by definition all weights of due dates are
nonnegative. Thismeans the objective functionW (ς)defined
by (1) is regular, i.e., non-decreasing in each completion time.
Thus, a given schedule ς can never be improved by adding
idle time into it unless a job with later release date can be
started earlier, and we obtain the following lemma.

Lemma 1 There exists an optimal left-shifted schedule ς∗
for problem MDS, where each job J j ∈ J starts either at
its own release date r j , or at the completion time Ci (ς

∗) of
some other job Ji ∈ J .

Proof We omit the proof for this lemma as it is straightfor-
ward. ��

Lemma 1 ensures that an optimal schedule among all
left-shifted schedules is also optimal among all feasible
schedules. Furthermore, in case a real-world application
motivates the use of countably many due dates, only finitely
many need to be considered by any algorithm since there is
always an optimal schedule that finishes before max R(J )+
∑

p.
For problemMDS − EP, Lemma 1 implies that at most n2

many possible job completion times need to be considered
for an optimal solution, if n ∈ N is the number of jobs.

Corollary 1 For problemMDS − EP, there exists an optimal
solution ς∗, in which all jobs start at some time S j ∈ S and
finish at some time C j ∈ C, where

S = {
r j + λp | j, λ = 0, . . . , n − 1

}

and

C = {
r j + λp | j, λ = 1, . . . , n

}
.

We will later use these sets in the branch-and-bound algo-
rithm to decide at which times a job must start.
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2.2 NP-hardness of problemMDS

We now turn to the complexity status of problem MDS.
While MDS is defined for problems with release dates, we
shortly regard the case 1 || ∑

w j,kU j,k , since multiple due
dates per job can be applicable in many other scenarios as
well. Note first that problem 1 || ∑

w j,kU j,k is a general-
ization of the traditional scheduling problem 1 || ∑

w jU j

(scheduling a single machine to minimize the weighted num-
ber of late jobs), where each job has only one due date.
Thus, and since problem 1 || ∑

w jU j is weakly NP-hard
(Lawler & Moore, 1969), we immediately get that problem
MDS is weakly NP-hard as well. However, it turns out that
problem 1 || ∑

w j,kU j,k is in fact NP-hard in the strong
sense. This can be shown via a pseudo-polynomial reduction
from the strongly NP-hard, traditional scheduling problem
1 || ∑

w j Tj .

Theorem 1 Problem MDS is NP-hard in the strong sense,
even if

• there are no release dates,
• due dates are periodic with a job-independent period,
i.e., there is a job-independent time t ∈ N such that the
due dates of all jobs can be formulated as d j,k = d j,1 +
(k − 1)t ,

• and weights are only dependent on the job, not on the
specific due dates, i.e., w j,k = w j for all J j ∈ J all
d j,k ∈ Dj and some w j ∈ N.

Proof The proof is presented in the appendix. ��
Note that in case of equal processing timeswe can use a poly-
nomial transformation, since at most n2 completion times
need to be considered for each job due to Corollary 1. There-
fore, we can define one due date for each of these completion
times such that at most n3 due dates are required for a given
problem instance.

Corollary 2 Problem 1 | r j , p j = p | ∑
w j Tj polynomially

reduces to problem MDS − EP.

The complexity status of problem 1 | r j , p j = p |
∑

w j Tj is still open (Gafarov et al., 2020), so the reduction
of Corollary 2 cannot be used to decide the complexity status
of MDS − EP. However, problem 1 | r j , p j = p | ∑

w j Tj

is a long-standing open problem, so the polynomial reduction
indicates that finding a polynomial algorithm for MDS − EP
is not an easy task. In a recent work, the authors have ana-
lyzed problem 1 | r j , p j = p | ∑

w j Tj and conjectured
that problem 1 | r j , p j = p | ∑

w j Tj is NP-hard, but it
was hard to proof using standard techniques(Gafarov et al.,
2020). The difficulties they found in proving NP-hardness
for problem 1|r j , p j = p | ∑

w j Tj similarly carry over,
at least in part, to MDS − EP. Thus, the exact complexity

status of MDS − EP is left open in this paper and we instead
focus on polynomially solvable special cases as well as prac-
tical solution algorithms for the general case of MDS − EP
(which then of course can also be used to solve problem
1 | r j , p j = p | ∑

w j Tj ).

3 Solving an assignment problem for
MDS− EP

In the following, we often use an assignment problem to
solve special cases or subproblems of MDS − EP in poly-
nomial time. Since reformulating a scheduling problem as
an assignment of jobs to completion times is a well-known
technique, we do not include the proof here.

Theorem 2 Let � be an instance ofMDS − EP with n jobs.
Let C̄ ⊂ C be a set of n possible, distinct completion times.
Then a best possible schedule using only completion times
in C̄ can be found in O(n3) time (or it can be decided that
no feasible schedule with these completion times exists), by
solving an assignment problem.

By Theorem 2, solving problem MDS − EP reduces to
selecting the n out of n2 completion times from set C which
lead to an optimal solution and then solving an assignment
problem in O(n3) time. Indeed, most algorithms in the later
sections of this paper, both exact and heuristics, are con-
structed by choosing a suitable set Rrel ⊂ R(J ) of release
dates at which jobs should start, then defining a correspond-
ing set of n job completion times C̄ ⊂ C and finally solving
an assignment problem by Theorem 2.

The remainder of this subsection is dedicated to construct-
ing a set of n completion times corresponding to a subset
Rrel ⊆ R(J ) of exactly those release dates at which jobs
start. Let � be an instance of problem MDS − EP with
job set J and let Rrel ⊆ R(J ). In what follows, a sched-
ule ς for instance � is called Rrel-schedule, if in ς a job
is started at each release date t ∈ Rrel, no job is started
at any release date t ∈ R(J ) \ Rrel, and each job that is
not started at some time t ∈ Rrel is started at the com-
pletion time of another job. Note that by definition, any
left-shifted schedule is also an Rrel-schedule for some set
Rrel ⊆ R(J ), but not every Rrel schedule is necessarily left-
shifted, since in Rrel-schedules jobs may also start at the
release date of other jobs. Furthermore, define by J (t) the
number of jobs J j ∈ J with release date no larger than t , i.e.,
J (t) = | {J j ∈ J | r j ≤ t

} |. Finally, for a finite set N ⊂ N

define the Next operator Next(t, N ) = min{n ∈ N | n ≥ t}.
Note that Next(t, N ) = ∞ if t > max{n ∈ N }. Then, for
i = 1, 2, . . . , n − 1 define n possible job completion times
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Fig. 1 Example completion
times

as follows:

c1 = min{r ∈ Rrel} + p

ci+1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ci + p, if ci /∈ R(J ) \ Rrel

and J (ci ) ≥ i + 1
and ci + p
≤ Next(ci , Rrel)

Next(ci , Rrel) + p, otherwise.

(4)

Here we define ∞ + p = ∞. Denote by C(Rrel) the set of
completion times defined by Eq. (4).

In Fig. 1, an example for the generation of completion
times via Equations (4) is depicted. Let Rrel be equal to
{r1, r4, r5}. First the finish time r1 + p is added. Next,
r1 + 2p < r4 is added. Since r1 + 3p > r4, the next fin-
ish time is added at r4 + p and not at r1 + 3p. Since only 4
jobs have a release date smaller than r4 + 2p, no finish time
is added at r4 + 3p but at r5 + p.

Theorem 3 Let� be an instance of problemMDS − EPwith
job set J .

1. Let Rrel ⊆ R(J ) be some set of release dates and let
set C(Rrel) be defined by Eqn. (4). Then there exists a
feasible Rrel-Schedule, if

• c < ∞ for all c ∈ C(Rrel), and
• r + p ∈ C(Rrel) for each r ∈ Rrel.

2. Let Rrel ⊆ R(J ) be some set of release dates and let
C(Rrel) = {c1, c2, . . . , cn} be constructed from Rrel as
above. Then it holds J (ci − p) ≥ i .

3. Let Rrel ⊆ R(J ) be some set of release dates. Then
rk + p ∈ C(Rrel) holds for all rk ∈ Rrel if and only if
|ri − r j | ≥ p for all ri , r j ∈ Rrel with ri �= r j .

4. There exists some set of release dates Rrel ⊆ R(J ) such
that there exists an optimal left-shifted Rrel-schedule with
the completion times given by C(Rrel).

Proof The proof is presented in the appendix. ��

4 Equal processing times - Exact solutions

We now turn to problem MDS − EP and some of its special
cases, in particular problem MDS − UP. First, we show that
problem MDS − UP, or, equivalently, problem MDS − EP
with the additional condition that all release dates are mul-
tiples of the common processing time p, can be solved in

O(n3) time by modeling it as an assignment problem using
the results from Sect. 3. Next, we use the same assignment
modeling technique to show that problemMDS − EP is fixed
parameter tractable, if the number of different release dates
Nr is seen as a parameter.

Finally, we extend the fixed parameter tractability result
to versions of problem MDS − EP where the number of dif-
ferent release dates Nr is part of the input, and construct a
branch-and-bound algorithm to solve problemMDS − EP in
the general case.

4.1 Release dates are multiples of p

In this section, we assume that all release dates are multiples
of p, i.e., r j = � j p with � j ∈ N. This is a sensible assump-
tion, if we consider for example a process where a fixed
number of productions are made every day and new input
materials arrive eachmorning.We first show that solving this
version of problem MDS − EP reduces to solving problem
MDS − UP. Indeed, since for each release date r j it holds
that r j = � j p for some � j ∈ N, it holds that

r j
p is integer

for all jobs. Additionally, due to Lemma 1, it can be assumed
that each job starts exactly at its release date or at the fin-
ish time of a previous job. Therefore, there exists an optimal
schedule were each completion time is a multiple of p. Thus,
any due date d j,k that is not a multiple of p can be reduced to
the largest multiple of p smaller than d j,k , without increasing
the objective value of such an optimal solution. Therefore, all
time-valued instance parameters can be assumed to be mul-
tiples of the common processing time p and we can w.l.o.g.
assume that p = 1. Thus, problem MDS − EP where all
release dates are multiples of the common processing time p
reduces to solving problem MDS − UP.

We now show that problem MDS − UP can be solved in
O(n3) time. Note that since p j = 1 for all J j ∈ J , there
exists an optimal solution where a job is started whenever
possible. Indeed, since all release dates are integers and each
job has unitary processing time, no job can be started before
some release date r j and finish after it. Thus, at any release
date r j themachine is available to process a job. Furthermore,
at each release date r j at least one job is available to be
processed (namely the job J j that is released at time r j ).
Finally, starting a job at time r j does not prevent us from
immediately scheduling a higher-valued job that is released
after r j , since any job started at time r j is completed before
any later jobs are released.

Corollary 3 MDS − UP can be solved in O(n3).
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Proof Note that in a schedule with completion times as
defined by C(Rrel), a job is started whenever possible in
case Rrel = R(J ) and p = 1. Since there is an optimal
schedule such that a job is started whenever possible, we can
solve problem MDS − UP by Theorem 2 in O(n3) time as
an assignment problem with the n completion times defined
by C(Rrel) and Rrel = R(J ). ��

4.2 Arbitrary release dates and due dates

In what follows, we discuss exact solution algorithms for the
general case of problem MDS − EP. In Sect. 4.2.1, we show
that problem MDS − EP is fixed parameter tractable if the
number of distinct release dates is seen as a parameter. Then,
in Sect. 4.2.2 we provide a branch-and-bound algorithm to
solve the general version of problem MDS − EP.

4.2.1 Fixed parameter tractability of ProblemMDS− EP

With the results from the previous sections, we can show
that problem MDS − EP is fixed parameter tractable when
the number of different release dates is viewed as a parameter
and not part of the input.

Theorem 4 The problem MDS − EP is fixed parameter
tractable when the number of different release dates is seen
as a parameter and not part of the input. At most 2Nr assign-
ment problems have to be solved to find an optimal solution
with Nr being the number of different release dates.

Proof Let � be an instance of MDS − EP with exactly Nr

different release dates, i.e., |R(J )| = Nr . This implies that
there are 2Nr subsets Rrel ⊂ R(J ). Furthermore, for each
subset Rrel ⊂ R(J ) by Theorem 2 and Theorem 3 the best
schedulewith finish times C(Rrel) can be computed in O(n3).
Also, again by Theorem 3, there is an optimal schedule with
finish times defined by C(Rrel) for some Rrel ⊂ R(J ). Thus,
to find an optimal schedule for instance � it is sufficient to
compute the best schedule with finish times C(Rrel) for each
subset Rrel ⊂ R(J ), which takes at most O(2Nr · n3) time,
which is polynomial, if Nr is fixed. ��

4.2.2 A branch-and-bound algorithm for problem
MDS− EP

In the following, we construct a branch-and-bound algorithm
for solving MDS − EP. Recall that in a Rrel-schedule at all
times t ∈ Rrel a job must start and no job is allowed to start
at t ∈ R(J )\Rrel. During the branch-and-bound algorithm,
multiple relaxed problems are solved. In each of these prob-
lems, there may be times in R(J ) such that it is not defined if
these times belong to Rrel, i.e., a job may or may not start at
these times. Therefore, we introduce the concept of (Ra, Ri)-
schedules with Ra being the set of times at which a job must

start and Ri being the set of times at which no job is allowed
to start. Note that in the following Ra ⊂ S and Ri ⊂ S with
S as defined in Corollary 1 are not necessarily subsets of
R(J ) and we assume that the two sets Ra and Ri are dis-
joint. Furthermore, we assume that R(J ) \ Ri �= ∅ since
there is always an optimal schedule such that at least one
job starts at a release time. We could restrict the sets Ra and
Ri to be subsets of R(J ). However, relaxing this condition
provides an opportunity for a faster branch-and-bound algo-
rithm. As mentioned before, there may be times t ∈ S and
especially t ∈ R(J ) such that t is neither in Ra nor in Ri,
and therefore, it is not yet defined if a job has to start at t . We
call a schedule a (Ra, Ri)-schedule if it is feasible, if for each
time ract ∈ Ra there is a job J j with S j = ract and for each
time rina ∈ Ri there is no job J j with S j = rina. Furthermore,
in a (Ra, Ri)-schedule all jobs start at a time s ∈ S that is
either a release date or the completion time of another job.
Since there are only n jobs and for all times t ∈ Ra a job has
to start at t , we assume in the following |Ra| ≤ n.

We first show how to compute a lower bound for the
objective value of the optimal schedule among all (Ra, Ri)-
schedules for two given sets Ra and Ri. Afterward, we show
a branching technique that can be used to construct Ra and
Ri step by step.

In order to show that a lower bound for the optimal sched-
ule among all (Ra, Ri)-schedules can be computed by an
assignment problem, we first derive a lower bound for the
start time of each job. To compute these bounds, we need
some technical results first. The lower bounds for the start
times will be used to adapt the original problem such that the
optimal value can be computed with an assignment problem
and such that the optimal value will not increase. In the pro-
cess, we restrict the set of feasible solutions and adapt the
release dates of the jobs.
For a given schedule ς and a job J j , we define tmax

act (ς, J j )
to be the maximum time in Ra ∪ R(J ) before or equal to
S j such that a job starts at tmax

act (ς, J j ). Similar to the Next
operator as defined in Sect. 3, we define thePrevious operator
Prev(t, N ) = max{n ∈ N | n ≤ t} with Prev(t, N ) = −∞
if t < min{n ∈ N }.

Lemma 2 Let � be an instance of problemMDS − EP with
job set J , and let Ra and Ri be two disjoint sets. For any
feasible (Ra, Ri)-schedule ς and for all jobs J j ∈ J , it holds

1. tmax
act (ς, J j ) ∈ (R(J ) ∪ Ra)\Ri,

2. tmax
act (ς, J j ) ≥ Prev(r j , Ra),

3. �ti ∈ Ri : ti ≥ tmax
act (ς, J j ), ti ≤ S j , (ti − tmax

act (ς, J j ))
mod p = 0.

Proof The proof can be found in the appendix. ��
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Given an instance of the MDS − EP and two disjoint sets Ra

and Ri, we define the set Tmax
act (Ji ) as follows:

Tmax
act (Ji ) = {t ∈ (R(J ) ∪ Ra) \ Ri|t

≥ Prev(r j , Ra),

�ti ∈ Ri : ti ≥ t,

ti ≤ r j + (t − r j ) mod p,

(ti − t) mod p = 0}.

Note that tmax
act (ς, J j )defines a specific time for a given sched-

ule and Tmax
act (Ji ) defines a set of times that is independent

from any schedule.

Corollary 4 Let ς be a feasible (Ra, Ri)-schedule. Then it
must hold tmax

act (ς, J j ) ∈ Tmax
act .

Proof Let ς be a feasible schedule. Then, with Lemma 2 we
know that tmax

act (ς, J j ) fulfills all conditions of Tmax
act (Ji ) since

the difference between the start time of J j and tmax
act (ς, J j )

must be a multiple of p. ��
The set Tmax

act (Ji ) can be used to compute a lower bound for
the start time of job J j . At the start of the branch-and-bound
algorithm, this lower bound for the start time is simply r j .
However, by adding times to Ra and Ri one can sometimes
conclude that the job J j cannot start at r j but at a later time.

Lemma 3 Let � be an instance of problemMDS − EP with
job set J and Ra and Ri two disjoint sets. We define

Smin
j := min

t∈Tmax
act (J j )

(max (t, r j + (t − r j ) mod p)).

For any feasible (Ra, Ri)-schedule ς , it holds

Smin
j ≤ S j (ς).

Proof The proof can be found in the appendix. ��
Due to the first two conditions of Lemma 2 only Prev(r j , Ra)

and jobs in R(J ) but not in Ra or Ri are candidates for
tmax
act (ς, J j ). Therefore, the more release dates are assigned
to Ra and Ri, the less the candidates for tmax

act (ς, J j ) exist
with the number of candidates reducing to one if all due dates
are assigned to either of the two sets. The previous lemmas
provide an opportunity to adapt the release dates of the jobs
without increasing the objective value if Smin

j > r j .
Next, we show how to compute a lower bound for the com-
pletion time of the job in the i-th position without knowing
the schedule and therefore without knowledge about which
job is in the i-th position. These lower bounds will then be
used in order to construct a set of possible finish times.
As before, we gather conditions that have to be fulfilled by
any job. To find a lower bound, we can take the minimum of

all times that fulfill the conditions.Note that not all conditions
are necessarily required to compute the lower bound. How-
ever, they lead to a higher lower bound and therefore improve
theperformanceof the branch-and-boundalgorithm.Thefirst
conditions ensure that the distance between the release dates
is at least p and that there are always enough jobs to schedule.
The next two conditions ensure that a job can be started for
all times in Ra. The last condition ensures that the conditions
from the previous lemmas can be fulfilled by the computed
schedules.

Lemma 4 Let � be an instance of problemMDS − EP with
job set J . Given two disjoint sets Ra and Ri, it holds for
the completion times C∗ = {c∗

1, c
∗
2, ..., c

∗
n} of the optimal

schedule among all (Ra, Ri)-schedules

1. ci − p ∈ S,
2. c∗

1 ≥ min((R(J ) ∪ Ra) \ Ri) + p,
3. c∗

i ≥ c∗
i−1 + p for 1 < i ≤ n,

4. �t ∈ Ra with t < c∗
i < t + p,

5. |{t ∈ Ra|t ≥ c∗
i }| ≤ n − i ,

6. J (c∗
i − p) ≥ i ,

7. ∃ta ∈ (R(J ) ∪ Ra) \ Ri) with

• c∗
i ≥ ta + p,

• ta ≥ Prev(c∗
i , Ra),

• (ta − c∗
i ) mod p = 0,

• �ti ∈ Ri with ta ≤ ti ≤ c∗
i − p and (ta−ti ) mod p = 0.

Proof The proof can be found in the appendix. ��
These results can be used in order to compute a lower bound
solution. We present an algorithm and show afterwards that
it computes a lower bound for the objective value of the
optimal (Ra, Ri)-schedule. Note that Ra and Ri are arbitrary
sets that are used as an input for the algorithm. We will show
later that as long as there is a feasible Ra, Ri-schedule, the
algorithm returns a lower bound for the objective value of
the best Ra, Ri-schedule. The algorithm first computes a set
of finish times. Then, it creates a second problem instance
that can be solved optimally with the given finish times while
every schedule of the original problem remains feasible.
Note that we assume R(J )\Ri �= ∅ as discussed before.

Algorithm 1 LowerboundGivenan instance�ofMDS − EP
and two disjoint sets Ra, Ri ⊂ S.

1. If there either exist t1, t2 ∈ Ra with |t1 − t2| < p or if it
holds

J (t) < |{t ′ ∈ Ra|t ′ ≤ t}|

for any t ∈ Ra, set Wl
Ra,Ri

= ∞ and terminate the algo-
rithm.
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2. Construct a set of finish times C(Ra, Ri) = {c1, . . . , cn}
by the following procedure.

c1 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min(R(J ) \ Ri) + p if Ra = ∅
min(R(J ) \ Ri) + p if min(R(J ) \ Ri)

+p ≤ min(Ra)

and |Ra| < n,

min(Ra) + p else.

Construct the remaining completion times as follows. Set
i = 2.

(a) For each s ∈ S, check whether ci = s + p fulfills the
conditions 3-6 from Lemma 4 and continue with the
next s otherwise.

(b) Search for the biggest tact ∈ (R(J ) ∪ Ra)\Ri with
tact ≥ Prev(s, Ra), tact ≤ s and (tact − s) mod p =
0. If no such tact exists go to step (a) and continue
with the next s.

(c) Iterate over all tina ∈ Ri with tina ≥ tact and tina ≤ s.
If ((tina − tact) mod p) = 0 go to (a) and continue
with the next s.

(d) Set ci = s+p. If i = n, stop the algorithm.Otherwise
set i = i + 1, go to (a) and continue with the next s.

If less than n completion times are defined, set Wl
Ra,Ri

=
∞ and terminate the algorithm.

3. Define a second problem instance �′ that is the same as
�. Then, adapt the release dates in �′ such that

r ′
j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Next(r j + p, C(Ra, Ri)) − p if |Ra| = n

Next(r j + p, C(Ra, Ri)) − p else if Smin
j ≥

Next(r j + p,

C(Ra, Ri)) − p

Prev(r j + p, C(Ra, Ri)) − p otherwise.

4. UseTheorem2 tofindanoptimal schedule for instance�′
with finish times C(Ra, Ri) and let Wl

Ra,Ri
be the objective

value of the solution of the assignment problem.

We now show that Algorithm 1 finds a lower bound for the
objective value of the optimal schedule among all (Ra, Ri)-
schedules. In Theorem 2, we have shown that there is a
one-to-one relation between the solution of the assignment
problem and a schedule of MDS − EP. Let ςl(Ra, Ri) be
the schedule that can be constructed by the solution of the
assignment problem in Algorithm 1.

Theorem 5 Given a problem instance of 1 | p j = p, r j |
∑ ∑

w j,kU j,k and given two disjoint sets of times Ra and
Ri, Algorithm 1 has the following properties.

1. If there is a feasible (Ra, Ri)-schedule, the algorithm ter-
minates with a finite value.

2. If the algorithm terminates with a finite value, a job is
started at each time in Ra and no job is started at a time
in Ri in ςl(Ra, Ri).

3. The solution is a lower bound Wl
Ra,Ri

for the objective

value W ∗
Ra,Ri

of the optimal (Ra, Ri)-schedule Wl
Ra,Ri

≤
W ∗

Ra,Ri
.

Note that an upper bound can be computed in a similar way.
The only difference is that the release times are not adapted.
Due to conditions 3 and 6 in Lemma 4, there is a feasible
schedule with the given completion times.

Theorem 6 Given a problem instance of 1 | p j = p, r j |∑∑
w j,kU j,k and given two disjoint sets of times Ra and

Ri, Algorithm 1 terminates in O(n4).

Proof The proof is presented in the appendix. ��
Note that the time complexity of the algorithmcan be reduced
to O(n3) by iterating simultaneously over S, Ra, R(J ) and
Ri, dividing the times into residue classes and keeping track
if a job can start at a time of each residue class. However,
defining this algorithm formally is omitted due to space limi-
tations. Furthermore, the branching strategy described below
adds at most 2n elements to Ri such that the complexity is
also reduced.

The lower bound can be used to solve the problem with a
branch-and-bound algorithm.We can use the following result
to develop a branching strategy.

Theorem 7 Given an instance ofMDS − EP and two disjoint
sets of start times Ra, Ri ∈ S, let t̂ ∈ S be the minimum
time such that t̂ ≥ r j and (t̂ − Prev(r j , Ra)) mod p = 0.
Suppose that for each t ∈ R(J ) with t > Prev(r j , Ra) and
t < t̂ it holds t ∈ Ri. Furthermore, suppose that it holds
t̂ ∈ Ra ∪ Ri. Then, job J j is not started before its release
date in ςl(Ra, Ri).

Proof The proof is presented in the appendix. ��
We can use the previous results to construct a branch-and-
bound algorithm. First start with a single node with two
empty sets Ra and Ri and compute a lower bound solution for
Ra and Ri. Either the schedule of the lower bound solution is
feasible or there is a job J j that starts before its release date.
In the first case, terminate the algorithm. In the latter, create
two child nodes. We want to find a schedule such that J j
is feasible. Therefore, add t = Prev(r ĵ , R(J ) \ (Ri ∪ Ra))

to Ra in one of the nodes and to Ri in the other node. If
Prev(r ĵ , R(J )\ (Ri ∪ Ra)) is smaller than Prev(r ĵ , Ra), add
r ĵ + (Prev(r ĵ , Ra) − r ĵ ) mod p to the two nodes instead.
With the previous result, we know that job J ĵ cannot start
before its release date in the resulting schedule ςl(Ra, Ri)
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as soon as all of these times have been added to Ra or Ri.
After creating the two nodes, compute a lower bound for
both of them with the new sets Ra and Ri. Then, create child
nodes for the node with the lowest lower bound among all
open nodes and repeat the process until a feasible solution is
reached. Again the previous result ensures that only finitely
many times have to be added to Ra or Ri until all jobs are
feasible in the lower bound solution.

5 Equal processing time - Heuristics

As shown in the previous sections, the MDS − EP can be
solved exactly by solving assignment problems. Either a sin-
gle one if certain conditions are met or a combination of
several assignment problems in a branch-and-bound algo-
rithm for the 1 | p j = p, r j | ∑∑

w j,kU j,k problem. In
the following, we outline some approaches how to solve the
MDS − EP heuristically.

5.1 Heuristic algorithms

First we provide some greedy heuristics that can be used to
find a solution to the MDS − EP problem with release dates.
In the numerical analysis, we show results from the heuristics
that are defined by the following rules.
Greedy algorithm without waiting: Start at time t = 0.
Whenever there is at least one job J j that has not yet been
processed and with release date r j ≤ t , start the job with the
highest sum of due date weights between t + p and t + 2p
and with release date r j ≤ t . If there is no such job, set
t = Next(t, R(J )).

Greedy algorithmwith waiting: Start at time t = 0.When-
ever there is at least one job J j that has not yet been processed
and with release date, r j ≤ t schedule the job j ′ such that
the sum of weights of missed due dates between t + p and
max(t + 2p, r j ′ + p) for all other unprocessed jobs with
release date r j ′ < t + p is minimized. If there is no such job,
set t = Next(t, R(J )).

The two greedy algorithms always schedule the job that
would increase the objective value if it was not scheduled
assuming that it is otherwise processed directly after the next
scheduled job. The waiting heuristic, however, may wait in
case there are due dates for a job j with d j,k < t + 2p.
Single assignment heuristic: Instead of solving multiple
assignment problems in a branch-and-bound algorithm, one
can restrict the problem with arbitrary release dates such that
a job is started whenever the machine is idle and there is a
job available. The finish times can therefore be chosen as

c1 = min R(J ) + p

ci+1 =
{
ci + p, if J (ci ) ≥ i + 1
Next(ci , Rrel) + p, otherwise.

(5)

This constrained problem can again be solved by a single
assignment problem, but the objective value may be worse
than in the original problem. However, the worst-case opti-
mality gap can be bounded as shown below. Note that the
finish times of the greedy heuristic without waiting are the
same as the finish times defined above. Since the assignment
problem finds the optimal schedule with these finish times,
the greedy heuristic without waiting can never result in a
better schedule.

5.2 Optimality gap for the single assignment
heuristic

Since we fix the finish times a priori, we use a slightly differ-
ent notation from before. We write w j (t) for the sum of the
weights of all missed due dates for job J j at time t . Further-
more, we assume that themachine is never idle, i.e., for n jobs
there is a feasible schedulewith start times 0, p, . . . , (n−1)p
and with finish times p, 2p, . . . , np. Since a job is scheduled
whenever the machine is idle and a job is available, the only
reason for an idle machine is that there are not enough jobs
released. If this is the case, we can split the problem into
multiple instances such all of them fulfill the assumption.
The bound for the optimality gap given below may be the
trivial bound, for example if there is at most one due date

for each interval between
[
i p + 1, (i + 1)p

]
for all i ≤ n.

However, the more due dates of different jobs there are in
each interval, the more bounding the following result is.

Theorem 8 The worst-case optimality gap of the single
assignment heuristic is smaller or equal to

n−1∑

k=1

�max
w (k) −

n−1∑

k=1

�min
w (k) (6)

with

�max
w (k) = max

j∈J

{
w j ((k + 1)p) − w j (kp)

}
.

�min
w (k) is defined accordingly.

Proof The proof can be found in the appendix. ��
We can see that the optimality gap is dependent on the
weight difference between two possible finish times. As
stated before, in some instances the bound for the optimality
gap is no strong result. In practice, however, the due dates are
often defined in fixed intervals, e.g., at the end of a day, such
that the worst-case optimality gap is lower the more jobs can
be processed during one day. Denote byD the set of different
due dates of all jobs. We assume that there are no two due
dates of the same job at the same time. Then, we can follow
the next result.
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Corollary 5 Letwmax
j be themaximumweight of all due dates

of all jobs. If there is a minimum time tmin ≥ p such that it
holds for di , d j ∈ D with d1 �= d2

|di − d j | ≥ tmin ≥ p,

the optimality gap of the single assignment heuristic can be
bounded by

wmax
j

⌈ np

tmin

⌉
.

Proof The proof can be found in the appendix. ��

6 Numerical results

In the following,we analyze the different solution approaches
on random problem instances. One problem is generated by
randomly creating n jobs with processing time p each. Each
job has a release date between 0 and f np with f being a
fixed parameter for each instance. The larger the f is, the
bigger is the average distance between the release dates, and
therefore, the less jobs are waiting at themachine on average.
Furthermore, each job has 10 due dates. The distance from
the release date to the first due date is randomly generated
between bmin p and bmax p. The distance from one due date
to the next due date is randomly selected between p and
5p. The weights of the due dates are randomly generated
between 1 and 10. We generate 20 problem instances for
each combination of

• n ∈ {10, 15, 20, 25, 30, 35, 40},
• p ∈ {1, 2, 5, 10, 20},
• f ∈ {0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5} and
• (bmin, bmax) ∈ {(1, 2), (3, 5), (6, 10)}.

Each instance is then solved by the branch-and-bound algo-
rithm and the three heuristics from before. The numerical
tests support the following arguments.

Waiting for a job j with a later release date instead of
scheduling a job that is currently available has the positive
effect that the job j can be scheduled earlier. In case the
weights are high, this may improve the solution. Further-
more, if there are other jobs with later release dates and high
weights, these jobs may also be scheduled earlier since it is
not necessary to schedule job j anymore. However, as long
as there are other jobs available to schedule, their finish times
are increased and therefore miss on average more due dates
if the machine is unnecessarily idle.

The parameters for Figs. 2, 3 and 4 are given in Table 1
with x being the parameter which has multiple values.

Influence of buffer times before the first due date: The
first notable observation is that there is only a marginal dif-
ference in solution quality between the single assignment
heuristic and the branch-and-bound algorithm in case the
buffer between the release date and the first due date of each
job is large enough. In Fig. 2a, the average objective value
depending on the parameter f is depicted for the parameters
given in Table 1. Note that lines for the single assignment
heuristic and the branch and bound overlap, such that the
one for the single assignment heuristic can be barely seen.
The same is true for the two curves of the two heuristics with
and without waiting.

The negative effect of waiting for a later job as described
before is true for all buffer times. The positive effect of
scheduling a job with high due date weights earlier, however,
decreases since there are more possible finish times before
the first due date. For random instances with large buffers,
it is highly unlikely to require waiting for a later job in the
optimal schedule. However, the bound of the optimality gap
of Theorem 8 can only be improved slightly and worst-case
instances can easily be constructed by hand. Also the branch-
and-bound algorithm found the solution much faster in the
problem instances with a bigger buffer.

Comparing the two heuristics with waiting and without
waiting, we can see that there is no difference for minimum
buffer times bigger than 2p. This can easily be explained
since by construction the waiting heuristic may only wait for
the release of job J j in case job J j would miss its first due
date otherwise. Since there is enough buffer time between
the release date and the first due date, this is not possible and
the two heuristics are the same. In practice, there is often a
minimum time between the release date and the first due date
such that using the single assignment heuristic is promising.
While a large buffer time is often enough to justify the usage
of the single assignment heuristic, in theory the cases with
low buffer times are more interesting since they show larger
differences between the optimal value and the solution of the
single assignment heuristic. Therefore, the following results
fix the buffer time multiplier to bmin = 1 and bmax = 2.
Influence of the number of waiting jobs:The next observa-
tion is that the optimality gap between the single assignment
heuristic and the optimal value is small in case the number
of waiting jobs is large. Figure2b shows that for low values
of f there is only a small difference between the optimal
value and the single assignment heuristic. Since on average
more jobs arrive than can be processed by the machine, the
number of jobs that are released but not processed grows
on average before f np for small f . Therefore, keeping the
machine idle in order to wait for a job with later release date
would increase the finish time of all these waiting jobs. Since
less jobs are waiting on average for higher values of f , this
effect decreases for high values of f and waiting becomes
better more often. Therefore, the difference between the two

123



Journal of Scheduling (2024) 27:565–585 575

Fig. 2 Objective value depending on machine utilization

Fig. 3 Objective value depending on number of jobs

Fig. 4 Objective value
depending on processing time
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Table 1 Parameter list for numerical results

Figure n p f bmin bmin

Fig. 2a 40 20 x 1 2

Fig. 2b 40 20 x 3 5

Fig. 3a x 20 0.8 1 2

Fig. 3b x 20 1.2 1 2

Fig. 4 40 x 1.2 1 2

solution approaches increases if the machine is not fully uti-
lized.

Furthermore, while the single assignment heuristic finds
a better solution than both greedy heuristics for low values
of f , the greedy heuristic with waiting becomes better for
high values of f since there are less waiting jobs, and there-
fore, waiting is better more often than not waiting. Note that
the solution of the single assignment heuristic can never be
worse than the heuristic without waiting since it finds the
optimal schedule among all schedules that start a job when-
ever possible.

Influence of the number of jobs: In the numerical test,
the optimality gap between the single assignment heuristic
and the branch-and-bound algorithm is nearly constant for
a growing number of jobs in case there is a high machine
utilization. Figure3b and a shows the average objective value
depending on the number of jobs if the other parameters are
fixed as given in Table 1.

If f is less than 1, more jobs arrive than can be processed.
Therefore, the more jobs arrive in total the more jobs wait
on average at the machine and waiting for a job with later
release date increases the average completion timeof all other
unfinished jobs. On the other hand, if the machine is not fully
utilized as in Fig. 3b theremust be idle times between the jobs
since not enough jobs arrive. Therefore, the average number
of available jobs does not increase with an increasing number
of total jobs. Because of these idle times, waiting for a later
job only increases the finish time until the next idle time and
the optimality gap of a single assignment heuristic increase
with n.
Influence of the processing time: The optimality gap
between the assignment problem and the branch-and-bound
algorithm is larger for large processing times. In Fig. 4, the
average objective value is depicted for different processing
times with the other parameters fixed as given in Table 4.

We can see that the optimality gap of a single assignment
heuristic is lower for small processing times. For p = 1, we
have already shown that solving a single assignment prob-
lem is optimal. Furthermore, since waiting for a later jobs
increases the finish time of other available jobs by at least 1

p ,
the negative effect of waiting for a job with later processing
time can be less for high processing times. Therefore, the
difference between the objective values of the single assign-

ment heuristic solution and the branch-and-bound solution
increases for increasing p. Since the difference 1

p and 1
p+1

goes to 0 for large p, this effect cannot be seen anymore for
large p.
Computation times: To test the competitiveness of the
branch-and-bound algorithm for theweighted tardiness prob-
lem, we generated problems as proposed in Gafarov et
al. (2020). There, jobs are generated for different p with
r j ∈ [0, (n−2)p], d j ∈ [0, (n−1)p], w ∈ [1, 120]. Further-
more, they require w1 ≤ w2... ≤ wn and d1 ≤ d2... ≤ dn .
Therefore, we first generated n due dates and weights and
sorted them. Their data show that r j may be bigger than d j

such that we did not restrict the release date to be smaller
than the due date. In Gafarov et al. (2020), it is stated that
the proposed algorithm did not solve instances for n = 20
in 60min. The main focus of this work lies on the theoret-
ical part. Therefore, we only implemented a non-optimized
version of our algorithm in python and let the assignment
problems be solved with the assignment solver of the SciPy
library. We were able to solve 1000 instances with p = 30
and n = 20 in around 12min. Implementing an optimized
version of both algorithms and comparing their run time
for different parameter go beyond the scope of this paper.
However, the results show that the branch-and-bound algo-
rithm is a promising candidate for a competitive algorithm
for the weighted tardiness problem. Furthermore, there are
ideas to improve the performance even further. For example,
we branch at the first job of the lower bound solution that
is not feasible in the original problem. Before doing that,
one could check whether the position could be changed with
another job without increasing the objective value. Doing so,
one could reduce the unnecessary branches even further.

7 Relation to the weighted tardiness
problem

In Theorem 1, we have used known results of the weighted
tardiness problem, denoted by 1 | r j , p j = p | ∑

w j Tj , to
prove the NP-hardness of MDS. On the other hand, we can
extend the results of the previous sections to the weighted
tardiness problem. In both problems, the number of possible
finish times is bounded by n2 if the processing times are equal
since the objective functions are regular, and therefore, an
optimal left-shifted schedule exists. The weighted tardiness
problem can be transformed into a problemwithmultiple due
dates per job by defining a due date for each possible finish
time. Therefore, we can extend the results from before to the
weighted tardiness case as well.

Corollary 6 The weighted tardiness problem 1 | p j = p, r j |∑
w j Tj is fixed parameter tractable with the number of dif-

ferent release dates being fixed.
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Corollary 7 The weighted tardiness problem 1 | p j = p, r j |
∑

w j Tj can be solved by a branch-and-bound algorithm by
solving at most 2Nr assignment problems.

The optimality gap term of Theorem 8 can be adapted in the
following way.

Corollary 8 The optimality gap resulting from the single
assignment heuristic is smaller or equal to

p(n − 1) max
J j∈J

w j .

8 Summary and outlook

In this work, we introduced multiple due date scheduling
MDS, a new scheduling model with multiple due dates per
job, as an generalization to traditional due date scheduling
problems. It can be used to find multipurpose algorithms
since many problems with traditional objective functions,
such as weighted number of late jobs, can be reduced to
MDS. Concentrating on the one machine model, we showed
that problem MDS is in general NP-hard in the strong sense
and then focused on the special case where all processing
times are equal, which we denoted by MDS − EP. We made
this assumption since in the area of personalized medicine,
often the same production stepswith different inputmaterials
have to be performed.

We proved that problemMDS − EP can be solved exactly
by solving either a single assignment problem or, in the pres-
ence of release dates, multiple assignment problems in a
branch-and-bound algorithm. Furthermore, we showed that
even in cases where solving a single assignment problem
does not provide an optimal solution, the optimality gap can
still be bounded.

Lastly, we provided several heuristics and compared them
to each other, the heuristic to solve a single assignment prob-
lem and an algorithm for a similar problem using numerical
experiments. In particular, the experiments showed that even
though the theoretical optimality gap bound of solving just a
single assignment problem is high, it performs well in prac-
tice as long as there is some buffer between the release date
of a job and its first due date or if there is a high machine
utilization. The numerical experiments also showed that the
presented branch-and-bound algorithm is competitive with
other state-of-the-art algorithms for solving instances of the
weighted tardiness problem.

There are several possibilities for further research, e.g.,
algorithms for solving the MDS in a general flow shop
environment are still missing. Furthermore, the solution
approaches presented in this paper can be enhanced by find-
ing an improvedbranching strategy for the branch-and-bound
algorithm or by refining the look ahead of the greedy heuris-

tics. Finally, this paper focused on the offline scenario of
problem MDS, i.e., all jobs and their characteristics are
known in advance. In real-world applications, however, it
is often necessary to compute partial schedules without have
complete knowledge about future job arrivals. Therefore, in
the future it would be interesting to consider online versions
of problems MDS, where schedules have to be computed
without complete knowledge of the problem instance in
advance.

Appendix A Proof of Theorem 1

Proof In what follows, we denote by D(P, K ) the decision
version of some scheduling problem P , i.e., the problem of
deciding, given an instance� of problemP , does there exists
a schedule σ for instance � with objective value no larger
than K for some given K ∈ N. To show the NP-hardness, we
show that problem 1 || ∑

w j Tj can be pseudo-polynomially
reduced to 1 || ∑

w j,kU j,k . Given an instance � of the
decision problemD(1 || ∑

w j Tj , K ), we define an instance
�′ of D(1 || ∑

w j,kU j,k, K ). For each job J j in problem
instance �, we define a job J ′

j for problem instance �′ and
set p′

j = p j . Additionally we define

cmax =
n∑

j=1

p j .

For each job J j with due date d j in � and for each time
t ∈ {d j , d j + 1, ..., cmax + 1}, we define a due date d ′

i, j in
�′ with weight w′

i, j = w j . We write W (ς) for the objective
value of a schedule ς in � andW ′(ς) for the objective value
of a schedule ς in �′.

We first show that if there is a solution for instance �

with objective value no larger than K , it follows that there is
also a solution to �′ with objective value no larger than K .
Let ς be a schedule with objective value K in �. Since the
processing times are the same for all jobs in instances � and
�′, the schedule ς ′ = ς , where each job J ′

j of instance �′
has the same start and completion time in ς ′ as job J j in ς ,
is feasible for instance �′. The objective value of schedule
ς ′ is

W ′(ς ′) =
n∑

j=1

K j∑

k=1

w′
j,kU j,k(ς

′)

=
n∑

j=1

K j∑

k=1

w jU j,k(ς
′)

=
n∑

j=1

w j (max{C j (ς
′) − Dj , 0})
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= W (ς)

≤ K .

Now we show the opposite direction. Suppose there exists
a schedule ς ′ for instance �′ with objective value no larger
than K . Then the schedule ς = ς ′, where each job J j has
the same start and completion time in ς as job J ′

j has in ς ′,
is feasible for instance � and has objective value

W (ς) =
n∑

j=1

w j (max{C j (ς) − Dj , 0})

=
n∑

j=1

K j∑

k=1

w jU j,k(ς
′)

=
n∑

j=1

K j∑

k=1

w′
j,kU j,k(ς

′)

= W ′(ς ′)
≤ K .

Therefore, there is a schedule ς for instance�with objective
value no larger than K if and only if there is a schedule ς ′
for instance �′ with objective value no larger than K . Thus,
the above construction reduces problemD(1 || ∑

w j Tj , K )

to problem D(1 || ∑
w j,kU j,k, K ). Since the constructed

reduction keeps the number of jobs as well as their pro-
cessing times and weights exactly the same and adds at
most n · cmax due dates, the reduction is pseudo-polynomial.
Since the decision version of problem 1 || ∑

w j Tj is NP-
complete in the strong sense and the decision version of
problem 1 || ∑

w j,kU j,k is in N P (for a given schedule
it can be decided in at most O(n2) time if it is feasible and
its objective value is no larger than K ), the given pseudo-
polynomial reduction implies that the decision version of
problem 1 || ∑

w j,kU j,k is NP-complete in the strong sense
(cf. Garey and Johnson (1979)) and problem1 || ∑

w j,kU j,k

is NP-hard in the strong sense. ��

Appendix B Proof of Theorem 3

Proof Proof of Claim 1: Assume that c < ∞ for each c ∈
C(Rrel) and r + p ∈ C(Rrel) for each r ∈ Rrel. Let J =
{J1, J2, . . . , Jn} be the set of jobs and assume that r j ≤ r j+1

for each 1 ≤ j ≤ n−1 (otherwise simply renumber the jobs).
We show that schedule ς constructed by setting S(J j ) =
c j − p and C(J j ) = c j for each 1 ≤ j ≤ n is a feasible Rrel-
schedule. First, note that since c j < ∞ for all c j ∈ C(Rrel),
by definition of C(Rrel) and due to Next(c j , Rrel) ≥ c j it

holds c j+1 ≥ c j + p for each 1 ≤ j ≤ n − 1. Thus, by
definition of ς and because the processing time of each job
is equal to p, no two jobs overlap in ς .

To prove feasibility of ς , we are left to show that no job
starts before its own release date in ς . For job J1, this is clear
by definition of completion time c1. Suppose now that job
J j is not started before its own release date in schedule ς .
We show that job J j+1 is not started before its own release
date in ς . Indeed, first assume that c j+1 = c j + p. Then by
definition of c j+1 at least j + 1 jobs are released at time c j .
This means that job J j+1 was released before or at time c j
(due to the chosen job numbering), and since it is started at
time c j , it is not startedbefore its own release date.Otherwise,
we have c j+1 = Next(c j , Rrel) + p. Then, since c j+1 <

∞ by assumption, Next(c j , Rrel) is finite and therefore is
the release date of some job Jk ∈ J by definition of Rrel.
Furthermore, since job J j finishes at time c j and is not started
before its own release date, this means that job Jk is released
after job J j , i.e., r j < rk . Again by the chosen numbering
of the jobs, J j+1 is the first job released after J j (though
the two jobs may also be released at the same time). Thus,
for the release date r j+1 of job J j+1 it holds that r j+1 ≤
Next(c j , Rrel), and thus, again job J j+1 is not started before
its own release date in ς . By induction, it follows that in ς

no job is started before its own release date.
To finish the proof, we are left to show that ς is a Rrel-

schedule. For this, note that for each r ∈ Rrel it holds r+ p ∈
C(Rrel), and because the processing time of each job is equal
to p, for each r ∈ Rrel a job is started at time r in ς . Finally,
note that r + p /∈ C(Rrel) for any r ∈ R(J )\Rrel. Indeed,
due to the definition of C(Rrel) for any c j ∈ C(Rrel) either
c j − p ∈ Rrel (cf. the definition of c1 and the second case
of the definition of c j+1 in Eq. (4)), or c j = c j−1 + p and
c j−1 /∈ R(J )\Rrel (cf. the first case of the definition of c j+1

in Eq. (4)). Therefore, in ς no job is started at any time
r ∈ R(J )\Rrel. Thus,ς is both feasible and an Rrel-schedule,
which finishes this part of the prove.
Proof of Claim 2: The statement is proved via induction.
Since c1 = min{r ∈ Rrel} + p at least one job is released at
time c1 − p. Suppose that the claim holds for i < n. Then,
in case ci+1 = ci + p by the first part of Eq. (4), it follows
J (ci ) ≥ i + 1 (by the condition on that part of Eq. (4)), and
at least i + 1 jobs are released at time ci+1 − p = ci . Other-
wise, we have ci+1 = Next(ci , Rrel)+ p. In that case, if there
exists some r ∈ Rrel such that ci ≤ r it follows ci+1 = r+ p.
r is the release date of some job, and i jobs are released by
time ci − p by assumption that means at time ci+1 − p = r
at least i + 1 jobs are released. Lastly, if no such r exists,
we have ci+1 = ∞. In that case, since the release dates of
all jobs are finite n ≥ i + 1 jobs are released by time ci+1,
which finishes the proof.
Proof of Claim 3: For this proof, we use notation Rrel =
{r1, r2, . . . , r�} with r i ≤ r j for all i ≤ j .
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⇒: First, we show that |r i − r j | ≥ p for all r i , r j ∈ Rrel

with i �= j implies r i + p ∈ C(Rrel) for all r i ∈ Rrel.
Assume otherwise, and let r i ∈ Rrel be the minimum time,
such that r i + p /∈ C(Rrel). First, note that by Eq. (4) we
have c1 = r1 + p, and therefore, i ≥ 2. Additionally, note
that r2 ≥ r1 + p by assumption, and thus, c1 ≤ r2 ≤ r i .
Let ck ∈ C(Rrel) be the maximum time such that ck ≤ r i .
Observe that k < n. Indeed, since at time r i ≥ ck a job is
released, there can be at most n − 1 jobs released at time
ck − p. Thus, by Claim 2 of the Lemma, we have k ≤ n − 1.
Now, since k < n there exists ck+1 ∈ C(Rrel)with ck+1 > r i

by choice of ck and construction of C(Rrel). First, assume
that ck+1 = ck + p with ck+1 ≤ Next(ck, Rrel). Then, since
r i ≥ ck and thus r i ≥ Next(ck, Rrel) it follows that ck+1 ≤
r i , a contradiction to the choice of ck . Otherwise, by Eq. (4),
we have ck+1 = Next(ck, Rrel) + p. Since r i + p /∈ C(Rrel),
it follows that r i �= Next(ck, Rrel), and since r i ≥ ck , it
follows further that r = Next(ck, Rrel) < r i . However, since
r i −r ≥ p by assumption and ck+1 = r + p by construction,
it follows that ck+1 ≤ r i , again a contradiction to the choice
of ck .
⇐: To prove the other direction, suppose that r i+p ∈ C(Rrel)

for all r i ∈ Rrel. By construction, it holds ck+1 ≥ ck + p.
Therefore, for each r i ∈ Rrel with i < �we have r i+ p+ p ≤
r i+1 + p which implies r i + p ≤ r i+1. Thus, r j − r i ≥ p
for all i < j , which finishes the proof.
Proof of Claim 4: In order to show the claim, we first show
the following result. Let R1

rel, R
2
rel ⊆ R(J ) be two sets of

release dates and let c1i be the i-th time in C(R1
rel) and c2i be

the i-th time in C(R2
rel). If there is a r∗ ∈ R1

rel ∩ R2
rel with

{r ∈ R1
rel|r ≤ r∗} = {r ∈ R2

rel|r ≤ r∗} and c1i ≤ r∗, it holds
c2i = c1i .
First suppose i = 1. Since ci ≤ r∗ and {r ∈ R1

rel|r ≤ r∗} =
{r ∈ R2

rel|r ≤ r∗}, it follows that c11 − p = min{r ∈ R1
rel} =

min{r ∈ R2
rel} = c21 − p, and therefore, the claim is true.

Now suppose i > 1 and that the claim holds for i − 1, i.e.,
we have c1i−1 = c2i−1. First, again since {r ∈ R1

rel|r ≤ r∗} =
{r ∈ R2

rel|r ≤ r∗}, c1i−1 = c2i−1 and ci ≤ r∗ by assump-
tion, it holds that ci−1 /∈ R(J ) \ R1

rel if and only if ci−1 /∈
R(J ) \ R2

rel. Furthermore, we have Next(ci−1, R1
rel) =

Next(ci−1, R2
rel) ≤ r∗. Finally we have J (c1i−1) = J (c2i−1).

Thus, it follows by Eq. (4) that c1i = c1i−1 + p if and only
if c2i = c2i−1 + p and c1i = Next(c1i−1, R

1
rel) if and only

if c2i = Next(c2i−1, R
2
rel). Again, using c1i−1 = c2i−1 and

Next(ci−1, R1
rel) = Next(ci−1, R2

rel) ≤ r∗, it follows that
c1i = c2i .
We now proof the claim of the lemma by showing that there
exists some set of release dates Rrel ⊆ R(J ) such that there
exists an optimal, left-shifted Rrel-schedule with the first i
completion times being equal to the first i times in C(Rrel)

for i = 1, ..., n. Note that the statement is the same as the
claim in the Lemma if i = n.

We first consider the case i = 1. Since the objective function
is regular, there exists an optimal left-shifted schedule. Let
ς1 be any of these schedules and let R1

rel ⊆ R(J ) be the
set of release dates at which jobs start in ς1. By definition
of R1

rel, the first job in ς1 must start at min{r ∈ R1
rel} and

therefore finish atmin{r ∈ R1
rel}+p. By definition ofC(R1

rel),
it holds c1 = min{r ∈ R1

rel} + p, and therefore, there is a set
R1
rel ⊆ R(J ) and an optimal left-shifted schedule such that

the first completion time is equal to the first time in C(R1
rel).

Now suppose the claim is true for i < n. We show that the
claim also holds for i + 1. Let Ri

rel be the set of release dates
such that there is an optimal left-shifted schedule ς i with
the first i completion times being equal to the first i times
in C(Ri

rel). If the (i + 1)th finish time in ς i is equal to the
(i + 1)th finish time in C(Ri

rel), the claim is true for i + 1
with C(Ri+1

rel ) = C(Ri
rel).

Now suppose otherwise. We consider the two cases ci+1 =
ci + p and ci+1 �= ci + p for ci+1 and ci as defined by C(Ri

rel)

with Eqn. (4). First assume ci+1 = ci + p. Note that in left-
shifted Rrel-schedules jobs must either start at the finish time
of other jobs or at a time in Rrel. Since the (i+1)th finish time
in ς i is not equal to ci+1, the (i + 1)th finish time in ς i must
be equal to Next(ci , Ri

rel) + p. By the conditions of Eq. (4),
it must hold that Next(ci , Ri

rel) ≥ ci + p and J (ci ) ≥ i + 1.
Therefore, there must be at least one job Jk with release date
smaller or equal than ci and that is started after ci in ςi . Since
there is no job processed between ci and Next(ci , Ri

rel) and
Next(ci , Ri

rel) − ci ≥ p, the job Jk could be started at ci as
well. We now construct another set of release dates Ri+1

rel and
an optimal left-shifted Ri+1

rel -schedule such that the first i +1
completion times are equal to the first i+1 times of C(Ri+1

rel ).

1. Set ς i+1 = ς i .
2. Let job Jk start at ci , i.e., Sk(ς i+1) = ci .
3. Shift the remaining jobs as early as possible, i.e., for

l = i + 2, . . . , n, let the job in position l start at the
maximum of its release date and the completion time of
the job in position l − 1.

4. Let Ri+1
rel be the set of release dates, at which jobs start

in ς i+1.

Note that the first i jobs in ς i+1 are equal to the first i jobs in
ς i . Furthermore, job Jk starts at ci . Therefore, the first i + 1
completion times in ς i+1 are equal to the first i + 1 times in
C(Ri

rel). We define r̂ to be the time at which the job in the
(i + 1)-position in ς i is started. Since it is not a completion
time of another job and the schedule is left-shifted, it must
be the release date of this job. Since job Jk is not started at a
release date, it holds {r ∈ Ri

rel|r ≤ r̂} = {r ∈ Ri+1
rel |r ≤ r̂}.

Therefore, due to result above, the construction of the first
i + 1 finish times is the same for both C(Ri

rel) and C(Ri+1
rel ).
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Furthermore, ς i+1 is a left-shifted schedule by construction.
Therefore, Ri+1

rel and C(Ri+1
rel ) fulfill the claim for i + 1.

Now suppose that ci+1 �= ci + p. Then, it must hold that
ci+1 = Next(ci , Ri

rel). In a left-shifted Rrel-schedule, jobs
may only start at their release dates or at completion times
of other jobs. Since the first i jobs in ς i are equal to the
first i times in C(Ri

rel) and since the (i + 1)th job in ς i is
not equal to ci+1 = Next(ci , Ri

rel), the (i + 1)th job in ς i

must start at ci . Due to ci+1 = Next(ci , Ri
rel), one of the

conditions ci /∈ R(J )\Ri
rel, J (ci ) ≥ i + 1 and ci + p ≤

Next(ci , Ri
rel) must be violated by ς i . Therefore, schedule

ς i must either be infeasible or cannot be an Rrel-schedule.
This is a contradiction to the assumption, which finishes the
proof. ��

Appendix C Proof of Lemma 2

Proof 1. By definition, no job is allowed to start at any t ∈
Ri and tmax

act (ς, J j ) must be a release date or in Ra.
2. For any feasible (Ra, Ri)-schedule, a job must start at

Prev(r j , Ra). Furthermore, Prev(r j , Ra) is less or equal
to r j . Since tmax

act (ς, J j ) is the maximum of all release
dates or times in Ra at which a job starts, property 2 must
hold.

3. In a (Ra, Ri)-schedule, all jobsmust start at a release date,
a time in Ra or at the completion time of a job that is not in
Ri. Since tmax

act (ς, J j ) is the maximum time before S j that
is either a release date or a time in Ra, a job has to start for
each t with tmax

act (ς, J j ) ≤ t ≤ S j and (ti − tmax
act (ς, J j ))

mod p = 0. Since no job is allowed to start for any time
in Ri, condition 3 must be true.

��

Appendix D Proof of Lemma 3

Proof Let ς be any feasible schedule. Assume that t ′ is the
maximum time inς before or equal to S j atwhich a jobs starts
and that is either a release date or a time in Ra. Therefore, t ′
must be in Tmax

act (J j ) and S j ≥ t ′. Furthermore, the job must
start after its release date and the difference between t ′ and
S j must be a multiple of p since only all jobs in between
must start at the completion time of another job. Therefore,
we can conclude S j (ς) ≥ max (t, r j + (r j − t ′) mod p).
Since

min
t∈Tmax

act (J j )
(max (t, r j + (t − r j ) mod p))

≤ max (t ′, r j + (r j − t ′) mod p),

the claim follows directly. ��

Appendix E Proof of Lemma 4

Proof 1. The definition of (Ra, Ri)-schedules requires all
jobs to start at times in S.

2. The first job cannot start before the first time in Ra or the
first release date that is not in Ri.

3. If the job at position i cannot start before t , the job at
position i + 1 cannot start before t + p since only one
job can be processed at a time.

4. If t is in Ra a job must finish at t + p. Since no two jobs
can be processed at the same time, no other job can finish
between t and t + p.

5. Since at all times in Ra a job must be started, there can
be at most n − i times in Ra which are larger than ci .

6. If the number of release dates smaller than c∗
i − p is less

than i , and i − 1 jobs have already been scheduled, no
job could be started at c∗

i − p.
7. The same arguments as in Lemma 2 ensure that for a job

to start at time t there must be a release date ta or a time
in Ra such that whenever a job finishes between ta and t
another job must be started. This time can therefore not
be in Ri.

��

Appendix F Proof of Theorem 5

Proof Proof of Claim 1:Letς be a feasible (Ra, Ri)-schedule.
Then, it must hold that |t1 − t2| ≥ p for t1, t2 ∈ Ra and
t1 �= t2 since only one job can be processed at a time and
at all times in Ra a job must start. Furthermore, it must hold
J (t) ≥ |{t ′ ∈ Ra|t ′ ≤ t}| for any t ∈ Ra. Assume otherwise.
Then, there is a t with J (t) < |{t ′ ∈ Ra|t ′ ≤ t}|. Since at all
times in Ra a job must start and only J (t) jobs are released
at time t , at least one job must start at a time, when it is not
released. This is a contradiction, and therefore, the first step
of the algorithm does not terminate in the first step if there is
a feasible (Ra, Ri)-schedule.
Therefore, it remains to show that the algorithm constructs
n finish times in step 2 and that the solution of the assign-
ment problem with these n finish times is finite. Let C(ς)i
be the finish time of the job in the i-th position in ς . We
show for i = 1, ..., n that at least i finish times are con-
structed by the algorithm and ci ≤ C(ς)i . We first show
the claim for i = 1. Assume that the claim is not true.
Then, it must hold C(ς)1 < c1. Since jobs cannot start
before their release dates in a feasible schedule, it must hold
C(ς)1 ≥ min(R(J )) + p. Since it holds C(ς)1 < c1, it
must hold that c1 �= min(R(J )) + p, and therefore, either
min(R(J )) + p ≤ min(Ra) or |Ra| = n. In the first case,
no job can start at min(R(J )) since only one job can be
processed at a time and a job must start at min(Ra). In the
second case, a jobmust start at all times in Ra. Since there are
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n times in Ra, no job can start at a time not in Ra. Therefore,
the claim holds for i = 1.

We now show that the claim also holds for 1 < i ≤ n if it
holds for i −1. Therefore, we assume that there is a schedule
with i − 1 finish times and ci−1 ≤ C(ς)i−1. The algorithm
iterates over all times inS. If it holds ci ≤ C(ς)i , the claim is
shown for i . Otherwise, the algorithm either terminate with
an infinite lower bound or with ci > C(ς)i . In both cases,
the algorithm iterated overC(ς)i − p as a potential start time
for the i-th job since ci−1 ≤ C(ς)i−1 ≤ C(ς)i − p. Since
ς is a feasible schedule, the start time C(ς)i − p fulfills all
conditions of Lemma 4with tact being the largest release date
or time in Ra at which a job starts in ς and that is smaller than
ci . Therefore, the algorithm would have selected ci = C(ς)i
which is a contradiction. Therefore, the claim also holds for
i . Since it also holds for i = 1, we can conclude by induction
that the claim must be true for i = n.

It remains to show that the solution of the assignment
problem is finite. In Theorem 2, we have shown the connec-
tion between the solution of the assignment problem and the
objective value of an associated schedule. Since the finish
times are separated by at least p, it is enough to show that
there is a schedule with the constructed finish times such that
no job is started before its release date. Condition 6 ensures
that at least i jobs are released at time ci − p. Therefore, if
the job with the i-lowest release date is started at ci − p, no
job is started before its own release date.

Proof of Claim 2: Since the algorithm terminates with a
finite value, we can assume that no t1, t2 ∈ Ra exist with
t1 �= t2 and |t1, t2| < p. Additionally, we can assume that

J (t) ≥ |{t ′ ∈ Ra|t ′ ≤ t}|

for any t ∈ Ra and that n completion times have been con-
structed. We show by contradiction that a job starts at each
time in Ra. Assume otherwise and let t be the minimum time
in Ra such that no job starts at t . Denote by î the maximum
index such that cî ≤ t . If no such cî exists, it must hold
that c1 > t + p. Since t is in Ra and by the assumptions
above, t + p fulfills all conditions of Lemma 4. This is a
contradiction, since c1 is chosen by the algorithm instead.

Therefore,we assume that there is such an î . The condition
|{t ∈ Ra|t ≥ c∗

i }| ≤ n − i of Lemma 4 ensures that î < n.
Since t is in Ra, the condition 4 of Lemma 4 and the fact that
there are no two times in Ra with distance smaller than p
ensure that no job finishes at a time t ′ with t < t ′ < t + p.
Since t is in Ra and cî fulfills all conditions of Lemma 4,
t+ p also fulfills the conditions with ta = t . Therefore, t+ p
would be chosen by the algorithm as cî+1 such that a job
starts at t . This is a contradiction to the assumption and at all
times in Ra a job must start.

Finally, suppose that in ςl(Ra, Ri) a job is started at a
time ti ∈ Ri. In ςl(Ra, Ri), jobs start only at times such

that ti + p ∈ C(Ra, Ri). By construction of c1, it follows
directly that c1 − p /∈ Ri. Therefore, ti + p = ci with i > 1.
Then, there must be a tact ∈ (R(J ) ∪ Ra)\Ri with tact ≥
Prev(ti , Ra), tact ≤ ti and (tact − ti ) mod p = 0. Due to
(tact − ti ) mod p = 0, the algorithm would continue with
the next s in step 2C. This is a contradiction to ti = ci .
Proof of Claim 3: If there is no feasible schedule, any value is
a lower bound and nothing is to show. Therefore, we assume
that there is a feasible schedule. We have shown before that
the algorithm terminates with a finite value and that a job is
started at each time in Ra and no time in Ri.

We show that any schedule feasible in � is also feasi-
ble in �′, and therefore, the objective value of the optimal
(Ra, Ri)-schedule in�′ is not higher than the objective value
of the optimal (Ra, Ri)-schedule in�. We then show that the
assignment problem solves �′ optimally such that its solu-
tion value is a lower bound for the objective value of the
optimal (Ra, Ri)-schedule in �.

We first add a constraint to �′ such that only schedules
are feasible that fulfill the conditions of Lemma 4. Note that
any feasible schedule in�must fulfill these conditions, such
that it remains feasible in �′. However, by relaxing other
constraints later, this constraint leads to a higher lower bound.

Lemma 3 ensures that job J j cannot start before Smin
j . By

construction, its release date is only increased to

Next(r j + p, C(Ra, Ri)) − p

if |Ra| = n or if

Smin
j ≥ Next(r j + p, C(Ra, Ri)) − p.

In the first case, C(Ra, Ri) is equal to Ra due to the previous
claim. Since in any feasible (Ra, Ri)-schedule a jobmust start
for each time in Ra, any feasible schedulemust use exactly the
completion times defined by C(Ra, Ri). Therefore, if there
is a job with r j + p /∈ C(Ra, Ri), its earliest start time in
any feasible (Ra, Ri)-schedule is Next(r j + p, C(Ra, Ri))−
p. In the second case, we know with Lemma 3 that job J j
cannot start before Smin

j . Therefore, all feasible schedules
in � remain feasible. The same holds true for any job with
reduced release date. Therefore, any schedule feasible in� is
feasible in�′ aswell, and since the due dates are not adapted,
the objective values are the same in both instances.

Next we show that there is an optimal schedule for the
adapted problem�′ with finish times defined as C(Ra, Ri) =
{c1, . . . , cn}. Then, there must be an i ≤ n such that there is
an optimal schedulewith thefirst i−1 completion times equal
to the first i − 1 completion times of C(Ra, Ri) but not with
the first i completion times. Let ς∗ be an optimal schedule
with finish times {c∗

1, . . . , c
∗
n} and c∗

k = ck for k ≤ i . The
algorithm only continues with the next s, if a condition of
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Lemma 4 is violated. Since these conditions must be met by
any feasible schedule, it must hold c∗

i > ci .
We first check i = n. By the third condition of lemma 4,

all n jobs must be released at cn − p. Therefore, the job that
finishes at c∗

i in the optimal schedule could also be started at
ci − p. Due to the regularity of the objective function, this
would result in an optimal schedule as well. Therefore, there
would be an optimal schedule with finish times defined by
C(Ra, Ri).

Therefore, we assume i < n and check ci < c∗
i < ci+1.

Since by construction all jobs have a release date r ′
j such

that r ′
j + p is in C(Ra, Ri), the release date of the job that

finishes at c∗
i must be smaller or equal than ci − p. Since

i is the smallest i such that c∗
i �= ci , it holds i = 1 or

ci−1 = c∗
i−1 and the job that finishes at c∗

i could also be
started at cn − p < c∗

i − p. Since the objective function is
regular, this would not increase the objective value and one
could construct an optimal schedule with finish times defined
as C(Ra, Ri).

Next, the last case to check is c∗
i ≥ ci+1. By the third

condition of lemma 4, there are i jobs with release dates
smaller or equal than ci − p. Therefore, there must be at
least one job j in ς∗ with release date smaller or equal to
ci − p and start time bigger than c∗

i . Since c∗
i − p ≥ ci

job, j ′ can be started at time ci such that it finishes before
c∗
i . Again, since the objective function is regular, this cannot
increase the objective value. Therefore, if there is an optimal
schedule with the first i − 1 times equal to the first i − 1
times of C(Ra, Ri) there is also an optimal schedule with the
first i times being equal. Therefore, there must be an optimal
schedule among all feasible �′ schedules such that the first
i finish times are equal to the first i times in C(Ra, Ri). This
is a contradiction to the assumption above.

The optimal schedule among these schedules can be found
by solving an assignment problem in O(n3) as shown in
Theorem2. Since any feasible schedule in� is feasible in�′,
the objective value of the optimal schedule can only be lower
than the objective value of the optimal (Ra, Ri)-schedule in
�. Therefore, objective value of the solution is a lower bound
for the objective value of the optimal (Ra, Ri)-schedule. ��

Appendix G Proof of Theorem 6

Proof The first step can be done in O(n) after sorting the
times in Ra. In the second step, we iterate over at most n2

times in S. For each s ∈ S, we iterate over at most 2n entries
in Ra ∪ R(J ) and n2 entries in Ri such that the step finishes
in O(n4).

In the third step for each job J j , the set Tmax
act can be com-

puted by iterating once over all times t in Ra ∪ R(J ) with at
most 2n elements. For each t , one must iterate over Ri with

at most n2 times. To find Smin
j , one must iterate once over

Tmax
act with at most n elements. Therefore, also the third step

terminates in O(n4).
Finally the assignment problem can be solved in O(n3).

��

Appendix H Proof of Theorem 7

Proof Suppose there is a job J j such that there is no time t ∈
R(J ) with t > Prev(r j , Ra), t < t̂ and t /∈ Ri. Furthermore,
assume that t̂ ∈ Ra ∪ Ri and that job J j is started before
its release date in ςl(Ra, Ri). We first show that Smin

j ≥ t̂ .

Assume Smin
j < t̂ . Then, by definition of Smin

j there must

be a time t ∈ Tmax
act with t ≤ Smin

j < t̂ . By the conditions

of the theorem, all release dates between Prev(r j , Ra) and t̂
are in Ri. Therefore, by the definition of Tmax

act it must hold
Prev(r j , Ra) ∈ Tmax

act .
First assume t̂ /∈ Ra such that t̂ ∈ Ri by definition

of t̂ . Additionally, we know that t̂ ≥ Prev(r j , Ra), t̂ ≤
(r j + (Prev(r j , Ra) − r j ) mod p) and (t̂ − Prev(r j , Ra))

mod p = 0. Therefore, Prev(r j , Ra) cannot be in Tmax
act

which is a contradiction.
Now assume t̂ ∈ Ra. Since additionally t̂ ≥ r j , it holds
t̂ ≥ Next(r j , Ra). By definition of t̂ , it holds t̂ = r j +
((Prev(r j , Ra)−r j ) mod p). Since Prev(r j , Ra) is the only
time in Tmax

act smaller than t̂ , we can conclude that Smin
j = t̂

by the definition of Smin
j .

Since the assignment problem only assigns job J j to start
time s in case, it holds r ′

j ≤ s, J j starts before its release
date and we knowNext(r j + p, C(Ra, Ri))− p > r j , we can
conclude Smin

j < Next(r j + p, C(Ra, Ri))− p and |Ra| < n.
First assumeNext(r j + p, C(Ra, Ri)) = ∞. Then, Prev(r j +
p, C(Ra, Ri)) = max(C(Ra, Ri)). By constructionofC(Ra, Ri),
we know that J (cn − p) ≥ n such that all n jobs are released
at max C(Ra, Ri). Therefore, job J j is not started before its
own release date since r ′

j ≥ r j .
Next assume Next(r j + p, C(Ra, Ri)) = c1. By construction
of c1, it must hold c1 − p ≤ min(Ra), and therefore,

Smin
j < Next(r j + p, C(Ra, Ri)) − p = c1 − p ≤ min(Ra).

Since Next(r j , Ra) ≥ min(Ra), we have the contradiction

Smin
j < min(Ra) ≤ Next(r j , Ra) ≤ Smin

j .

Now assume Next(r j + p, C(Ra, Ri)) = ci with i > 1.
By Theorem 5, it must hold ci − p /∈ Ri. We first consider
the case ci − p ∈ Ra. Since Next(r j , Ra) ∈ Ra, it holds
Next(r j , Ra) + p ∈ C(Ra, Ri) with Theorem 5. Therefore,
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we know

Next(r j + p, C(Ra, Ri)) ≤ Next(r j , Ra) + p,

and subsequently,

Next(r j + p, C(Ra, Ri)) − p ≤ Next(r j , Ra).

We have the contradiction

Smin
j < Next(r j + p, C(Ra, Ri)) − p ≤ Next(r j , Ra) ≤ Smin

j .

The last case to check is ci − p /∈ Ra. Since J j is started after
its release date in ςl(Ra, Ri), it must hold ci > r j + p.
AssumeNext(r j , Ra) < ci − p. Then there must be a t ′ ∈ Ra

with t ′ = Next(r j , Ra) < ci − p and t ′ + p ∈ C(Ra, Ri) due
to Theorem 5. This is a contradiction since r j + p ≤ t ′+ p <

ci , and therefore,

Next(r j + p, C(Ra, Ri)) ≤ t ′ + p < ci

= Next(r j + p, C(Ra, Ri)).

Furthermore, we know that ci − p /∈ Ra, and therefore, it
must hold ci − p < Next(r j , Ra). We have the contradiction

Smin
j < Next(r j + p, C(Ra, Ri)) − p = ci − p

< Next(r j , Ra) ≤ Smin
j .

Therefore, the claim must be true and job J j is not started
before its own release date in ςl(Ra, Ri). ��

Appendix I Proof of Theorem 8

Proof We use a similar approach as we did in computing the
lower bound for the branch-and-bound algorithm.We denote
the original instance as� and an adapted instance as�u . We
show that the single assignment heuristic solves �u opti-
mally. We then define another instance �l with an optimal
value that is guaranteed to be below or equal to the objec-
tive value of the optimal schedule of the original instance �.
Finally, we show that the difference of the optimal values of
the two adapted problems is bounded by the term (6).
Let � be an instance of MDS − EP. As stated before, we
can assume that there is a feasible schedule with start times
defined as S = {0, p, 2p, . . . , (n−1)p}. Let�u be the same
as �, but with adapted release dates

r j
(u) = Next(r j , S).

Similar to previous results, we show that there must be an
optimal schedule for �u with the start times given by S. The
reasoning follows the same steps as before. There must be

an optimal schedule such that the first job starts at 0. Assume
otherwise an let s′

1 be the first start time of any feasible sched-
ule ς ′. If s′ < p, the release date of this first job must be 0
and the job could also be started at time 0 which is a con-
tradiction. If s′ ≥ p, no job is processed between 0 and p.
Since there is at least one job with release date 0, this job
could be scheduled at time 0. In both cases, the new schedule
is optimal as well, since all jobs are started at the same time
or earlier and the objective function is regular.
Now assume there is an optimal schedule with the first i start
times being equal to the first i times in S. Then there must
also be an optimal schedule with the first i + 1 start times
being equal. This can be shown in the same way as before.
Either the job at position i + 1 can be started at ci or there is
enough time to schedule another job that is released before ci
but started at a later time. Therefore, there is also an optimal
schedule with the first i + 1 start times being equal to the
first i + 1 start times in S. Since it also holds for i = 1, there
must be an optimal schedule with the start times defined by
S.
The assumption that there is a feasible schedule with start
times

S = {0, p, 2p, · · · , (n − 1)p}

ensures that the set of finish times C constructed of Eq.5 is
equal to

{p, 2p, · · · , np}.

Since the single assignment problem finds the optimal
schedule among all schedules with these times, the single
assignment heuristic solves �u optimally (Fig. 5).
We define �l by reducing some of the original release dates.
Since all feasible schedules of the original instance � are
feasible in �l as well, the objective value of the optimal
schedule may only be improved. We set

r j
(l) = Prev(r j , S).

Let ς∗
l be an optimal schedule of �l and ς∗

u an optimal
schedule of �u . We know that for the optimal schedule ς∗
of the original problem � it holds

W (ς∗
l ) ≤ W (ς∗) ≤ W (ς∗

u ).

Furthermore, we know that for any feasible schedules ςu of
�u and ςl of �l it holds W (ς∗

u ) ≤ W (ςu) and W (ς∗
l ) ≤

W (ςl). In the following, we construct a feasible schedule
ςu for �u and show that it can be transformed into ς∗

l by
increasing the objective value by at most the bound of the
optimality gap given in the Lemma. To do so, assume the
optimal schedule of �l is ς∗

l . Next we construct a feasible
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Fig. 5 Construction of r (u)
j and

r (l)
j

Table 2 Example for Algorithm
2 ς∗

l J4 J3 J1 J2 J6 J5

ςu J1 J4 J3 J2 J5 J6

ς1
l J1 J4 J3 J2 J5 J6

ς2
l J4 J1 J3 J2 J5 J6

ς3
l J4 J3 J1 J2 J5 J6

ς4
l J4 J3 J1 J2 J5 J6

ς5
l J4 J3 J1 J2 J5 J6

ς6
l J4 J3 J1 J2 J6 J5

schedule ςu . We assign the job with the lowest release date
to the first position. If multiple such jobs exists, we take an
arbitrary job. At position i+1, we start the job that is in posi-
tion i in ς∗

l .We repeat this process until we reach the position
of the first job in ς∗

l . Then, we repeat this process with the
job with the lowest release among all jobs that have not been
assigned yet. Again we solve any tie arbitrarily. Algorithm 2
gives a formal definition for this procedure. For easier read-
ability, we write ςu(k) for the job in the kth position of the
schedule ςu . ��
Algorithm 2 Construction of ςu

1. Set i = 1.
2. Let J j be the job with the smallest release date among

all jobs that have not yet been assigned to a start time.
Let l be the position of J j in ς∗

l .
3. If l is equal to i , set i = i +1 and go to the previous step.

For k = i + 1, . . . , l, set ςu(k) = ς∗
l (k − 1).

4. If k = n, terminate the algorithm.Otherwise set i = k+1
and go to step 2.

Proof Table 2 shows an example for a schedule ςu con-
structed from ς∗

l . Additionally, the schedules ς i
l used later

are also depicted. Recall that we assume ri ≤ ri+1.
Note that by construction ofςu each job is assigned exactly

once. Furthermore, for each job J j it holds true that it is either
assigned to position k > j or it is exactly one position behind
its position in ς∗

l . Indeed, if the kth job is assigned in step 2
of the previous algorithm, there are at most k − 1 jobs with
lower release date. If the kth job is assigned in step 3, it is one
position behind its position in ς∗

l . By assumption, scheduling
a job with the kth lowest release date or a smaller release date
in the kth position must be feasible for �u . Furthermore, it

holds by construction r j (u) = r j (l) if r j = ruj or r
u
j = rlj + p.

Therefore, starting job J j p time units after its start inς∗
l must

be feasible for �u . Therefore, the whole schedule is feasible
for �u .
Finally, we bound the difference between ς∗

l and ςu . Set
ς1
l = ςu . For i ∈ {2, . . . , n}, define ς i

l = ς i−1
l , but change

the position of the i-th job with the (i − 1)-th job in case
ςu(i−1) �= ςl

∗(i−1). By construction, the first i−1 jobs of
ς i
l are the sameas inς∗

l . Since the jobs in position 1, . . . , n−1
are the same for ςn

l , also the job in position n must be the
same. Therefore, by construction it holds W (ςu) = W (ς1

l )

and W (ςn
l ) = W (ς∗

l ). Furthermore, since only the jobs in
position i+1 and i may be switched it holds

W (ς i
l ) − W (ς i+1

l ) ≤ �max
w (i) − �min

w (i).

with �max
w (i) and �min

w (i) as defined in the Theorem. We
now have the necessary results to conclude

W (ς∗
u ) − W (ς∗) ≤ W (ς∗

u ) − W (ς∗
l )

≤ W (ςu) − W (ς∗
l )

≤ W (ςu) − W (ς1
l ) + W (ς1

l ) − W (ς2
l )

+ · · · + W (ςn
l ) − W (ς∗

l )

≤
n−1∑

k=1

�max
w (k) −

n−1∑

k=1

�min
w (k).

��

Appendix J Proof of Corollary 5

Proof Denote by Ik the interval
[
kp, (k + 1)p − 1

]
for 0 ≤

k ≤ n − 1. Since the minimum distance between two due
dates for a single job is at least p, there is at most one due
date per job in each interval Ik . By definition, it holds

w j ((k + 1)p) − w j (kp) =
{

w j,l if ∃Dj,l ∈ Ik
0 else.

Due to the minimum time distance tmin between two due
dates, there are at most � np

tmin � intervals with due dates. Since
it holds for all jobs w j ((k+1)p)−w j (kp) = 0 for intervals
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with no due dates, we can follow

n−1∑

k=1

�max
w (k) −

n−1∑

k=1

�min
w (k) ≤

n−1∑

k=1

�max
w (k) ≤ wmax

j

⌈ np

tmin

⌉
.

��
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