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Abstract
The paper develops a conceptual framework for the analysis and management of catas-
trophic risk. The framework serves to assess rare extreme events in systematic, quantitative
and consistent ways. It dispenses with probabilistic extreme value theory, concentrating on
descriptive statistics and simple probability distributions. Risk assessment is based on a
recently developed axiomatic approach to non-expected utility preferences defined on the set
of risky alternative courses of action available to an agent. The utility values of catastrophic
risks are given an explicit algebraic representation, which shows them to be highly unstable
(“elastic”) in the sense that they respond disproportionately to small perturbations of the
decision outcomes and their probabilities. Various elasticity coefficients are defined for the
outcome variables and utility preferences attached to them. They indicate whether a variable
possibly takes on large negative values. The coefficients can also be defined as sample statis-
tics and, thus, computed from observed data. The approach admits various applications to
practical problems of disaster risk management. The applications include estimations of the
effectiveness and cost-efficiency of risk management, the specification of limits of accep-
tance of catastrophic risk for regulatory purposes, and safety and security systems design and
dimensioning.

Keywords Catastrophic risk · Disaster risk · Extreme events · Non-expected utility · Risk
management

JEL Classification D81 · Q54 · C18 · C44

1 Introduction

Disaster risk analysis recently developed into, and was firmly established as, a field of quanti-
tative research (deHaan&Ferreira, 2006;Garrick, 2008;Grossi&Kunreuther, 2005;Michel,
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2018; Novak, 2012). The progress made draws considerably on probabilistic extreme value
theory, which is concerned with the maxima and minima of sample values of real random
variables and the probabilistic modelling of their frequency distributions. It admits math-
ematical representations of catastrophic risk in terms of strongly left-skewed probability
distributions with heavy tails on the left, corresponding to the notion of catastrophic risk as
low-probability, high-impact incidents (Pisarenko & Rodkin, 2010, 2014). In risk research,
it serves as a primary source of probabilistic models of rare random events involving extreme
loss or damage such asmajor earthquakes, aeroplane crashes or outbreaks of severe infectious
diseases.

The present paper develops a conceptual framework for disaster risk analysis and man-
agement which is complementary to the available quantitative approaches. It dispenses with
probabilistic extreme value theory and refers almost exclusively to relative frequency and
simple probability distributions instead. Disaster risk assessment will be conceptualised in
terms of a recently developed model of generalised expected (i. e., non-expected) utility pref-
erences defined on the set of risky choices available to an agent. Within the model, the utility
values of catastrophic risks prove highly unstable (“elastic”) in the sense that they respond
disproportionately to small perturbations of the decision outcomes and their finite-sample fre-
quency distributions even if the samples taken are large and random. The formalism is shown
to admit numerous applications to practical problems of the early indication, quantitative
assessment and management of rare extreme events.

There are important theoretical and practical reasons for considering alternatives to the
existing quantitative models of extreme events. First, probabilistic models of catastrophic
risk must specifically accommodate the asymptotic tail behaviour of heavy-tailed probability
distributions. They are thus exposed to systematic error. Methodically, this “model uncer-
tainty” is cumbersome to assess and control, and may lead to serious underestimates of the
losses incurred in disasters (for a recent, broad overview of the relevant literature in different
application areas of tail modelling and analysis, see Visser & Petersen, 2012; Visser et al.,
2014, 2015; Lam & Mottet, 2017; Huang and Lam 2019). These problems are exacerbated
by the dearth of information on extreme events, which leaves models difficult to test against
actual historical data or to validate by scenario-based computer experiments, notably so in
case of non-repetitive occurrences (“one-shot risks”) and extreme events without histori-
cal precedents. The latter case is typical, for example, of unprecedented weather extremes in
response to rapid global warming or hitherto inconceivable, large-impact safety risks induced
by technological innovations. Furthermore, probabilistic predictions of catastrophic events
may be unreliable and require non-stationarity models of extremes as well as elaborate ana-
lytical and numerical techniques to inform the practice of disaster anticipation and prevention
(Olsen et al., 1998; Renard et al., 2013; Serinaldi & Kilsby, 2015; Visser & Petersen, 2012;
Visser et al., 2015). To avoid these problems, concepts of model robustness (insensitivity of
results to model misspecifications or small perturbations of the model parameters) have been
introduced into to quantitative disaster risk analysis (Ermoliev & Hordijk, 2006; Ermoliev
et al., 2012; Guin, 2018). The present investigation develops and confirms a distinct approach
within this framework.

Secondly, the probabilistic modelling of catastrophic risks is widely viewed as a basic
requirement to improve risk management decisions (e. g., Garrick, 2008; Grossi & Kun-
reuther, 2005). However, the probabilistic modelling approaches currently taken in disaster
risk analysis typically dispense with key concepts of optimal (“rational”) risky choice such
as risk preferences and their utility representations. More generally, major areas of quanti-
tative risk and decision research do not make explicit reference to risk preferences at all,
for instance, theories and applications of risk measures developed in financial and actuarial
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mathematics (for analysis of this situation, see Denuit et al., 2006; Goovaerts et al. 2010;
Drapeau & Kupper, 2013; Kou et al., 2013), and probabilistic risk and safety analysis (PRA,
PSA) in the engineering sciences (Grechuk& Zabarankin, 2014; Johansen &Rausand, 2014;
Rausand & Haugen, 2020). From the perspectives of the present investigation, at least two
reasons can be given for this discrepancy. On the one hand, probabilistic risk measures and
analyses are particularly suited for setting regulatory requirements of capital, solvency, pub-
lic health and nuclear safety, and for assessing compliance with the regulations (see Bedford
& Cooke, 2001, p. 259; Dhaene et al., 2006; Föllmer & Knispel, 2013; Kou et al., 2013),
rather than improving management decisions in the sense of utility maximisation. On the
other hand, concepts of expected and non-expected utility have thus far proved difficult to
apply in quantitative assessments of catastrophic risks. Like the monetary risk measures, they
tend to be very sensitive to distributional assumptions in these applications and, hence, need
robustification (Grechuk & Zabarankin, 2014; Ikefuji et al. 2015; Ericson & Kruse, 2016). In
the following, improvements of planning and decision making in disaster risk management
will be based on the rigorous distinction between risk measurement (as defined exclusively
in statistical and probabilistic terms) and risk assessment (as defined in terms of preference
and human attitudes towards risk). As for the general significance of this distinction for deci-
sion science, see Cecconi et al. (2006), Drapeau and Kupper (2013), and Ericson and Kruse
(2016).

The scope of the present analysis can be outlined in more technical terms as follows. We
aimat assessing rare extremeevents in systematic (rather than adhoc), quantitative and consis-
tent ways. The assessment methodology is designed to enhance disaster prevention planning,
decision making and related risk management activities. To cope with the problems of model
robustness and sensitivity to distributional assumptions, we restrict the analysis to simple
probability functions and the random variables with finite ranges by which the functions are
determined. Technically, in our approach risk measurement means sampling random vari-
ables. However, since we are mostly concerned with statistical quantities directly computed
from the sample data, we need not explicitly estimate or model the underlying probability
distributions. To assess measured risks, we further restrict the analysis to sample frequency
distributions, their statistics and numerical risk preference values. Risk preferences will be
represented using a generalised expected (non-expected) utility framework recently intro-
duced in the literature (Geiger, 2008, 2020). It accounts for basic empirical properties of
risky choice known from behavioural economics. In addition to its descriptive power, the
approach offers a model of “pragmatic rationality”: it satisfies familiar rationality principles
of risky choice, with explicit reference being made to basic and frequently observed cir-
cumstantial constraints on decision making. They include the needs and demands (aspiration
level) of the decision maker, his current economic status, health, exposure to natural hazards
or technological risks (status quo), and time constraints on risk exposure (Kahneman&Tver-
sky, 1979; Diecidue and van de Ven 2008; Geiger, 2008, 2020; Diecidue et al., 2015). The
generalised expected utility approach taken has two prominent features on which the present
analysis builds. First, it admits an explicit, algebraically simple expression for the certainty
equivalent of a risk (Geiger, 2015). By the certainty equivalent (“intrinsic value”, “preference
value”) of a risk with outcome variable X and probability distribution p we mean the unique
existence1 of a real number cp so that the decision maker is indifferent in preference between
receiving the uncertain outcome X or the sure amount cp. Secondly, the certainty equivalent

1 In the underlying non-expected utility approach, the existence of a certainty equivalent follows immediately
from the result that the generalised utility function is uniquely defined everywhere on the real axis, smooth
and strictly increasing. Smoothness of the utility function, in turn, is to be attributed essentially to an axiom
of “transparent” first-order stochastic dominance preference (see Geiger 2008, 2020).
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cp, and, hence, the utility preference of p turn out to be highly risk-sensitive in case X takes
on large negative values even with small probabilities. An index measuring the variability
of highly risk-sensitive preferences of this kind will be defined. It is referred to as the risk
elasticity of the certainty equivalent of p. It remains well-defined and will be shown to be
finite, although possibly very large, provided that cp �= 0. Thus, if q is the relative frequency
distribution of a sequence of measurements of the random variable X with unknown prob-
ability distribution p and with the sample risk elasticity of cq being positive and large, the
measurements indicate that X may take on exceptionally large, negative values even if such
extreme outcomes have not yet occurred. This is basically what we mean by early indication,
or ex ante identification, of catastrophic risk.2 The concept of indication implies that the
measurements provide limited evidence for extreme events of a specific nature to happen,
although with unknown probabilities and at uncertain times. It does not imply that the large
risk elasticity of a measured certainty equivalent constitutes a necessary or sufficient criterion
of a catastrophic incident to occur, nor does it attempt to estimate the probabilities of extreme
events. However, it does provide useful information, andmethodological tools and criteria for
disaster risk management, especially for coping with problems of risk planning and decision
making. The problems include estimation of the effectiveness of (degree of risk reduction
achieved by), and cost-efficiency of (degree of risk reduction achieved per unit of money
invested in), disaster risk-preventive measures. Other such problems are specifications of the
limits of acceptance of catastrophic risk for regulatory purposes and the sizing of (technical,
organisational, medical, etc.) safety and security measures.

The analysis proceeds as follows. The next section summarises the analytical framework
of non-expected utility theory used in the approach. Brief explanations of the meaning and
significance of the theory and its basic implications will be added where necessary. Section 3
extends the formalism to the quantitative assessment of catastrophic risk. In Sect. 4, the key
indicators of catastrophic risk are introduced, and their validity and limits are discussed from
methodological perspectives. Two application examples are presented in Sect. 5. Section 6
characterises various typical disaster risk management tasks which can be treated with the
use of the disaster risk indicators developed. Section 7 closes with a brief discussion and an
outlook on theoretical extensions and further management applications of the approach.

2 The underlying utility model: notation and summary

The non-expected utility model used in the present investigation is summarised to the extent
required by the analysis in the subsequent sections. Similarly, the notation used in the
approach needs some preparatory effort to give the certainty equivalent of disaster risk the
simple algebraic representationwhich the risk assessmentmodel exploits. For amore detailed
account, axiomatic representation of the underlying principles of rational risky choice and
realistic applications, see Geiger (2008, 2015, 2020), and Petzel et al. (2015).

By a risk we mean any real random variable X (or, equivalently, the probability distribu-
tion it determines) measuring the quantitative consequences of an unintended, or “natural”,
event (safety risk) or intentional human action (security risk) being potentially harmful to
individuals and groups. Without loss of generality, we concentrate on random variables with
finite ranges within a given compact real interval I with interior point 0. Let P be the convex

2 The term „early warning” might sound more familiar than “early indication”. Early warning is often used
to refer to an imminent threat, however. In contrast, the present conceptual framework specifically serves the
requirements of long-term risk management strategies, which involve planning and preparatory action ahead
of time.
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set of simple probability distributions defined on I . Thus, every X considered is distributed
according to some p, p ∈ P. A person’s attitude towards a given risk is assumed to be governed
by this person’s neutral reference point, or aspiration level x0, x0 ∈ I , status quo risk with
probability distribution s, s ∈ P, and relative persistence ω of p in the presence of s. “Relative
persistence” means the overall probability of Tp > Ts, that is, ω = �tp >ts d(tp, ts), where
Tp and Ts are random variables measuring the uncertain risk resolution times of p and s,
respectively, and d(tp, ts) is the joint probability that Tp = tp and Ts = ts.3 Thereby, Tp and
Ts, too, are supposed to vary in a finite discrete fashion over suitably chosen time intervals,
“�tp >ts ” denoting summation over all pairs tp, ts in the support of d with tp > ts. In addition,
X and the real random vector (Tp, Ts) are supposed to be independent. We also note that the
account of non-expected utility underlying the present approach is based on the stochastic
independence of each p and s of d. While ω generally varies with p for given status quo s, x0
and s are exogenously given. To avoid trivial cases, s is non-degenerate and involves at least
some chance of gain s(x) > 0 for some x > x0, x ∈ I , and some risk of loss s(x′) > 0 for some
x′ < x0, x′ ∈ I . Without loss of generality, x0 is normalised to x0 = 0.

Status quo dependence of the preference order implies that the agent confronts the risk
s while ranking his preferences on P. It poses the problem of whether, once selected, p is
resolved prior to the resolution of s, or conversely, s is resolved first and p persists. How to
estimate or compute the probability ω that p persists while s is resolved first, is a problem
which is non-specific to the present approach, however. It can be treated within established
methodological frameworks of statistical lifetime and failure data analysis. Here, it suffices
to note that the present approach explicitly acknowledges that, together with status quo
dependence, the time to resolution of risk, Tp, constrains the assessment of p (see also
Epstein & Kopylov, 2007; Eisenbach and Schmalz 2013). As such, Tp-dependence is not
related to the problems of temporal risk and temporal preference, nor to the dynamics of
choice (Geiger, 2020). It will, however, be employed below to model disaster return periods
such as those of 100-year floods in hydrologic risk management.

Risks are represented with reference to their overall probabilities of gain and loss. Let Fp

be the cumulative distribution of p. Then, λp = (1−Fp(0))/(1−p(0)), p(0) �= 1, and 1−λp are
the overall probabilities of gains and losses, respectively, while p can be written as a convex
combination p = p+λp + p–(1−λp) of p±, where p+(x) = p(x)/λp and p–(x) ≡ 0 for x > 0,
and p–(x) = p(x)/(1−λp) and p+(x) ≡ 0 for x < 0, if 0 < λp < 1, x ∈ I . In addition, p+(0) =
p–(0)= p(0). If, on the other hand, λp = 1 or λp = 0, then p± = p, respectively. The expected
gain (loss) from p is μp

± = �x∈Sxp±(x), S being the support of p, S ⊂ I , with the mean
value μp = μp

+λp + μp
–(1 − λp). There exists a generalised expected (i. e., non-expected)

utility functional U: P → R so that U(p) ≥ U(q) for every pair p ∈ P, q ∈ P, if and only
if p is preferred or indifferent to q, respectively. As such, it is uniquely determined up to
monotonic, increasing transforms of the utility scale by three familiar axioms of rational
preference (axioms of weak ordering, continuity and a weak version of first-order stochastic
dominance preference) and one additional principle which postulates preferences on P to
depend on the status quo risk of the decision maker. Let x̂ denote the degenerate probability
distribution which gives the outcome x with certainty. Then, for every p, p ∈ P, there exists
a uniquely determined certainty equivalent cp, cp ∈ I , so that U(p) = U(ĉp), and

U (p) ≥ U (q) ⇐⇒ U
(
ĉq

) ≥ U
(
ĉq

) ⇐⇒ cp ≥ cq , p ∈ P, q ∈ P (1)

3 Otherwise, ω is known as the reliability parameter of bivariate lifetime models in failure and reliability
analysis. For reliability models with bivariate exponential lifetime distributions for instance, see Downton
(1970), Krishnamoorthy et al. (2007), and Geiger (2020). Here, the term “relative persistence” would seem
more appropriate, however, since ω gives the overall probability of s being resolved first while p persists.
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One also has cp = μp (“risk neutrality”, i. e., p is exactly worth its expected value) or else
cp ≶ μp, meaning risk aversion (proneness), that is, p is worth less (more) than its expected
value. Furthermore, cs = 0, corresponding to the notion that choosing s amounts to remaining
in the status quo and, hence, gaining or losing 0 with certainty. Finally, for every p ∈ P with
0 < λp < 1, there uniquely exist a real number λp

0, 0 < λp
0 < 1, and a convex combination

p0 = p+λp
0 + p–(1−λp

0) so that p0 and s are indifferent in preference, that is, cp
0 = cs = 0.

The overall probability of gain, λp
0, is determined by

zs = μ+
s λs + μ−

s (1−λs)(
μ+

s −μ−
s
)√

λs(1−λs)
= μ+

p λ0p + μ−
p (1−λ0p)

(μ+
p −μ−

p )
√

λ0p(1−λ0p)
(2)

(Geiger, 2008 Sec. 5). Denoting the certainty equivalents of p± and p0 by cp
± and cp

0,
respectively, one altogether has

μ−
p = c−

p < c0p = cs = 0 < c+
p = μ+

p (3)

From these definitions and results, one finds,

cp = μp�(λp, λ
0
p) (4)

where Φ gives the deviation of cp from the risk neutral case cp = μp,

�(λp, λ
0
p) = μ+

p (1−ω)(λp−λ0p)

μp(ω(1−λp) + (1−ω)(1−λ0p))
, λp ≥ λ0p, (5)

�(λp, λ
0
p) = μ−

p (1−ω)(λ0p−λp)

μp(ωλp + (1−ω)λ0p)
, λ0p ≥ λp (6)

(Geiger, 2015). The initial value of x0 must be added on the right-hand side of Eq. (4) in case
the normalisation x0 = 0 is cancelled. It is also important to note that in comparisons cp >
cq, different parameter values ωp and ωq must be inserted for ω in Eqs. (5) and (6) if p and
q are different by relative persistence. This ω-dependence of comparative risk assessment
typically arises in reliability management applications where safety components design and
dimensioning serve to decrease the failure rates of the systems or processes to be managed.
Demonstrations of this effect of failure rate management will be given below.

According to Eqs. (4–6), cp is simple to compute from p and the parameters x0, s and
ω. Together with Condition (1), the present formalism should therefore be of considerable
practical use to assess risks systematically and quantitatively. Somemore detailed results can
be resumed as follows. The limits of Φ(λp, λp

0) for λp → 0 and λp → 1 exist. Hence, the
representation (4) holds for every p, p ∈ P. One hasΦ(0, λp

0)= Φ(1, λp
0)= 1, corresponding

to “pure chance” p = p+ and “pure risk” p = p–. The latter is also known as “downside risk”.
In these special cases, risk neutrality cp = μp = μp

± obtains. Decision makers are risk averse
(prone) towards p0 if μp

0 > 0 (μp
0 < 0), and similarly for the status quo s with μs > 0 (μs

< 0). More generally, risk aversion (proneness) holds if Φ(λp, λp
0) < 1 (Φ(λp, λp

0) > 1),
whereas Φ(λp

0, λp
0) = cp

0 = 0 even in cases in which μp
0 does not vanish. If p persists

while s resolves first with certainty (ω = 1), cp = 0 holds as well. In fact, if p is selected in
the presence of s, but s is resolved first with certainty, p survives as the new status quo. For
later reference, we note this result as

cp = c0p = cs = 0, ω = 1, ρ ∈ P (7)

Conversely, if ω = 0, p resolves first with certainty while s persists. If, in addition, μs =
0, then the entire preference order on P is risk neutral, that is, Φ(λp, λp

0) = 1. One easily
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verifies this result, recalling that Φ(1, λp
0) = Φ(0, λp

0) = 1 and considering that μp
0 = μs

= 0 if 0 < λp < 1, by Eq. (2) (derive λp
0 = –μp

–/(μp
+−μp

–) from μp
0 = 0 and replace λp

0 in
Eqs. (5) and (6) accordingly). Finally, a risk p satisfying cp ≥ cs = 0 is viewed as acceptable
in the sense of being (weakly) preferred to the status quo. The exceptions are disaster risks.
They must meet an additional, more restrictive requirement even if they satisfy cp ≥ 0. This
case will be considered separately below.

Figure 1a depicts cp as a function of μp for a risk averse status quo with μs > cs = 0 and,
because of Eq. (2), μp

0 > cp
0 = 0. It illustrates that there exist risks with positive μp for

which cp is negative. Conversely, if his status quo is unfavourable (μs < 0 and, hence, μp
0

< 0), the decision maker may feel forced to “gamble for resurrection” and turn risk prone
(cp > μp). He thus assigns a positive cp to p even though μp is negative (Fig. 1b, hatched
area). This type of preference ranking must be expected to obtain in what may be called
decision making under risk and despair, corresponding to a “desperate” status quo with an
almost sure, large negative expected outcome (1−λs >> λs, μs < 0), but nonetheless cs = 0.
Finally, Fig. 1a shows the risk premium πp = μp−cp as the amount by which the expected
outcome of the risk p must exceed the risk-free amount cp in order for the decision maker to
be indifferent between p and ĉp. The risk premium is positive for risk aversion and negative
for risk proneness.

3 Catastrophic risk

Like gains and losses in general, extreme negative outcomes of random events are defined
with reference to the aspiration level. We first exclude the trivial case p = p– in which p+

= 0̂. In this instance of downside risk, Eq. (3) entails cp = cp
– < cs = 0, meaning that p is

unacceptable: the decision maker prefers to remain in the status quo rather than choose p,
irrespectively of whether resolution of the risk p may entail a disaster or not. Now assume
that μp

+ > 0. The risk p is defined to involve extreme losses if it is heavily skewed to the
left about x0, that is, μp

– is far below what the decision maker expects or needs to gain, at a
minimum of x0, from choosing p,

−μ−
p >> μ+

p (8)

The dependence of Condition (8) on x0 can be made explicit for arbitrary x0 prior to the
normalisation x0 = 0 roughly as follows: for μp

+ > x0 > 0, Inequality (8) gives –μp
– + x0

>> μp
+ + x0 so that – μp

– + x0 >> x0 and – μp
– >> x0 also hold, and similarly μp

– << x0
for x0 < 0.

Returning to the normalisation x0 = 0, we distinguish six types of comparison of μp
0 and

μp of the formμp ≤ μp
0 ≤ 0 <μp

+, which are compatible with Inequality (8). Three of them
involve the inequality μp ≤ μp

0 and, hence, cp ≤ cs = 0, as can be easily seen from Fig. 1.
So s is weakly preferred to p in these cases, which can be ignored. Two other comparisons,

μ0
p ≤ 0 < μp ≤ μ+

p and μ0
p ≤ μp ≤ 0 < μ+

p (9)

imply cp ≥ cs = 0, as is obvious from Fig. 1b, but these can be disregarded as well (see
below). The following analysis is concerned with the last and only relevant case,

0 < μ0
p ≤ μp ≤ μ+

p (10)
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Fig. 1 Certainty Equivalent as a Function of Mean Value of p. Various areas of risk attitude expressed by risk
premium πp = μp–cp ≷ 0 for different values of the governing parameters. The shaded areas signify risk
aversion πp > 0. a Risk averse status quo s with μs > 0 and μp

0 > 0. b Unfavourable status quo risk s with μs

< 0 and μp
0 < 0. The region in which risk proneness prevails includes the hatched area with positive certainty

equivalent for negative expected outcome of p
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Together with Inequality (8), it requires that, for cs = 0 ≤ cp to hold, p must satisfyμp
0 ≤

μp and, hence, λp
0 ≤ λp, while λp

0 must already be large and close to unity,

1 � λ0p ≥ −μ−
p

μ+
p − μ−

p
,

Hence, losses and, especially, extreme losses from p are rare,

1−λp << λp (11)

so one also has μp � μp
+.Inequality (11) explains why the special cases (9) can be excluded

from the present analysis. In fact, the inequalities in (9) apply to values of μp markedly
smaller than μp

+. These values violate Inequality (11) since large losses are not necessarily
rare in such cases. Real-time forecasting and early warning of an imminent threat, rather than
disaster early indication in the sense of the present analysis, would seem more appropriate
management approaches to situations in which Inequalities (9) apply. A similar situation
obtains in what has been referred to above as decision making under risk and despair, in
which the status quo risk is already highly unfavourable. If so, even a risk p satisfying
Condition (8) may have positive cp if it violates (11). This example of cp > 0 for μp < 0 is
similar to the case shown in Fig. 1b, in which the inequalities on the right-hand side of (9)
hold. However, disaster risk anticipation is trivial if (8) holds while (11) is violated.

Informally, Inequalities (10) and (11) provide a firm prospect of a positive overall gain
in view of a very unlikely, albeit massive, overall loss. At least, this is what the positive
certainty equivalent of p suggests for λp ≥ λp

0 according to Inequality (10). It means that
p is an improvement over the status quo despite the large losses to which it may give rise.
It is this prospect which may induce a “false sense of safety or security” in decision mak-
ers, exacerbating the need for early indication of catastrophic risk in practice. Meanwhile,
Inequality (11) raises the question of whether 1−λp << λp demands too much by referring to
the overall probability of loss rather than, more specifically, to the probability of extreme loss.
To clarify this point, assume that Inequality (11) is violated while (8) holds. From Eq. (2) and
Condition (10), one then has 1−λp

0 << λp
0 and μp ≤ μp

0 from the violation of Inequality
(11). The latter result does not only contradict Condition (10) for μp > μp

0, but also leads
back to the trivial case cp ≤ 0 discarded above. Finally, but most importantly, even the risk of
an extreme negative outcome may be very small if only λp is sufficiently close to unity. How
sufficient, then, is sufficient enough in terms of disaster risk reduction as a risk management
task? This question calls for criteria more refined than Conditions (8) and (11) to make the
present concept of disaster risk fully applicable. They will be developed in the next section.

Continuing restriction to the non-trivial caseμp
+ > 0,we further simplify the formalismby

scaling outcomes x to x/μp
+, thus normalising μp

+ to 1, and rewrite μp/μp
+ as μp, μp

–/μp
+

as μp
–, etc. Condition (8) now gives –μp

– >> 1. By Eqs. (4–6) and the equivalences in
(1), U(p) and cp are implicit, positive homogeneous functions of x (cf. Geiger, 2015). The
transformation x → x/μp

+ thus leaves comparisons of the form (1) invariant if μp
+ = μq

+

or cq = 0 (esp., in case q = s or q = p0). Otherwise, p and q will be tacitly assumed in (i.
e., transformed back into) their natural outcome scaling when to be compared in preference.
Figure 2 shows the typical shape of the cp-curve as a function of μp for a disaster risk p
satisfying Conditions (8) and (11), with a large negative cp in a wide range of λp- and μp-
values. A positive cp exists only for λp

0 and for λp-values close to 1, or, equivalently, in a
narrow intervalμp

0 < μp ≤ 1. The steep decline of the cp-curve for decreasing μp between 1
and μp

0 means that, as a catastrophic risk, p is unstable to small random perturbations of μp

(or, equivalently, μp
– or λp) and may strongly diminish in intrinsic value even under minor
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Fig. 2 Certainty Equivalent of Catastrophic Risk p. Typical shape of the cp-curve as a function ofμp for disaster
risk p (schematic representation). The shaded areas in (a) and (b) are the same. a For very low probability of
large loss, cp is positive (shaded area with μp

0 < μp ≤ 1). b Steep decline of the cp-curve for decreasing μp

between μp
+ = 1 and μp

0. Decreasing μp means increasing probability of a large overall loss
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changes of μp. Note that this characteristic feature of disaster risk arises already in finite
discrete representations and utility assessments of risk. In contrast to extreme value models,
asymptotic behaviour of probability distributions is not involved here.

4 Indicators of catastrophic risk

4.1 Indication of risk

An appropriate formal representation of risk indication is conditioning one random variable
on another in the usual sense, given simple probability distributions. Let f be the probability
function of the jointly distributed random variables X and Y , with the marginal distributions
f X = p and f Y = q. The event that X = x conditional on Y = y, q(y) �= 0, has the probability
f X |Y (x|y) in the usual notation. The event that Y = y is said to indicate (i. e., provide evidence
for) the event that X = x if f X |Y (x|y) > f X (x) and, similarly, to provide counterevidence to
the event that X = x if f X |Y (x|y) < f X (x), and to provide no indication that X = x in case of
independence of X = x and Y = y, that is, f X |Y (x|y) = f X (x). This terminology also draws
a distinction between strong and weak indication in terms of, respectively, a large or small
gain in the probability that X = x if, in addition, Y = y is given. It also covers the implication
(exclusion) of X = x by Y = y as the strongest possible instances of indication: Y = y is
equally probable as the joint event that Y = y and X = x (X �= x), that is, f X |Y (x|y) = 1
(f X |Y (x|y) = 0).

4.2 Risk elasticity of the certainty equivalent

A given relative increase in risk –dμp/μp, as expressed in terms of decreasing μp, may not
only lead to a sudden large disproportionate reduction of the preference value of p, but also to
relative changes –dcp/cp. The latter may themselves vary considerably with μp and also with
the parameters μp

0, ω, etc. This high sensitivity of risk assessment with which the decision
maker responds to potential massive losses is another characteristic feature of catastrophic
risk in the present risk assessment model. It motivates the following definition of the risk
elasticity of the certainty equivalent,

ηp = μp

cp
· dcp

dμp
, cp �= 0 (12)

The derivation of ηp as a function of μp is straightforward, yet lengthy and tedious. The
essential steps are outlined inAppendixA. It suffices to note the result for the relevant interval
μp

0 < μp ≤ 1,

ηp = Ap
μp

μp−μ0
p

· 1−μ0
p

1−μ0
p−ω(μp−μ0

p)
(13)

Ap = 2(μ0
p−μ−

p )

μ0
p−μ−

p (2−μ0
p)

(14)

The parameter Ap does not explicitly depend onμp, but strictly increases as a function ofμp
0

between Ap = 1 and Ap = 2 forμp
0 = 0 andμp

0 = 1, respectively. However, since we always
have μp

0 � 1 << –μp
–, Ap can be assumed constant and roughly equal to 2.

Figure 3 shows ηp as a function of μp for various values of μp
0, μp

– and ω. If μs = ω =
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Fig. 3 High Elasticity ηp of Certainty Equivalent of Catastrophic Risk p. Elasticity coefficient ηp >> 1 as a
function of μp for various values of μp

0, μp
– and ω, with minimum ηp

crit ≤ ηp

0, one has μp
0 = 0 for every p ∈ P with 0 < λp < 1, according to Eq. (2). Then, risk neutrality

cp = μp holds so that ηp = 1, consistently with Eqs. (12–14). Now, let μp
0 > 0. Since in

Eq. (2) zs = constant for given s, one finds that

−z2s μ
−
p 

(
μ0

p

)2

1−μ0
p

so μp
0 approaches 1 asμp

– decreases and goes to minus infinity. It follows that, for positive
values μp

0 well below 1, p with μp
0 < μp < 1 is an intermediate risk satisfying 1 � ηp  10,

whereas

ηp >> 1, μ0
p < μp < 1 (15)

under the conditions (8) and (11) of catastrophic risk p with cp > 0.
Although Inequality (15) follows from the conditions of rare extreme events stated in

Sect. 3, characterising p as a disaster risk solely in terms of a highly risk-elastic coefficient
cp can be misleading. In fact, Condition (15) holds for every p with μp close to μp

0 since by
definition ηp → ∞ for cp → cp

0 = 0. Similarly, in case of large ω, ω � 1, one has ηp →
dcp/dμp >> 1 for cp → μp → 1. To avoid these distracting boundary effects, we introduce
the minimum ηp

crit of the ηp-curve to signify a very large risk elasticity of cp in terms of a
minimax criterion,

∂ηp

∂μp
= 0 (16)
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Equation (16) is uniquely satisfied for

μp = μcri t
p = μ0

p

[

1 + 1−μ0
p

ωμ0
p

]1/2

, 0 < ω ≤ 1,

= μ0
p(1 + Bp)

1/2,

(17)

where Bp = (1−μp
0)(ωμp

0)–1. Equation (16) is intended to determine μp
crit and ηp

crit for
given μp

0, that is, for fixed μp
–, but variable λp. While ηp is an explicit function ofμp and

μp
0, μp

0 also depends implicitly on μp (or μp
–, for that matter): λp

0 together with μp
0 are

determined by μp
– according to Eq. (2) and μp

0 = λp
0 + μp

–(1−λp
0), respectively. Hence

the partial derivative (16). Inserting the result (17) into Eq. (13) gives

ηcri t
p = Ap Bp

2 + Bp−2
(
1 + Bp

)1/2 (18)

while Condition (15) goes over into

ηp ≥ ηcri t
p  4Ap B−1

p = 4Apωμ0
p

1−μ0
p

>> 1 (19)

for small Bp � 0 (i. e., μp
0 � 1). Generally, the strong inequality in Condition (19) may be

reasonably understood to mean ηp
crit ≥ 100. In practice, values of ηp

crit smaller than 100
may arguably be viewed to indicate a growing risk of large losses as well. The latter may be
expected to occur for ηp

crit ≥ 10, by order of magnitude.
Equations (13–19) define ηp, μp

crit and ηp
crit as the key indicators of disaster risk. Let

M and H be random variables so that M = 1 and M = μp
– with probabilities λp and 1−λp,

respectively, and, if μp > μp
0, H with probability 1 for H = ηp, and 0 for H �= ηp, ηp

≥ 1. Using the notation adopted above, one has 1−λp = hM |H (μp
–|ηp) as the conditional

probability with which the expected lossμp
– is obtained, given ηp. Recall that the preference

order on P is risk neutral if μp
0 = ω = 0, p ∈ P. In this case, Eqs. (13) and (14) entail ηp = 1

so that hM |H (μp
– |1) = hM (μp

–), which means that 1−λp = hM (μp
–) is trivially independent

of the event that ηp = 1. Nevertheless, M and H are dependent because of

hM|H (μ−
p |ηp) ≷ hM|H (μ−

p |1) = hM

(
μ−

p

)
, ηp > 1 (20)

Inequality (20) follows from the result that hM |H (μp
– |ηp) is a strictly monotonic function of

ηp,

∂

∂ηp
hM|H (μ−

p |ηp) = −∂λp

∂ηp
= −1

1−μ−
p

[
∂ηp

∂μp

]−1

≶ 0 (21)

considering that μp = (1−λp)(μp
–−1) + 1 and ∂ηp/∂μp ≷ 0 for μp > μp

crit and μp
0 < μp

< μp
crit , respectively (see Fig. 3).

In (20), the overall probability ofM = μp
– decreases or increases, conditional onH = ηp >

1 and depending on whetherμp ≷ μp
crit in (21). The boundary between negative and positive

changes of probability of loss demarcates extreme events which are sufficiently improbable
to tolerate the risk (in the sense that people fail to call for management responses to risk
exposure) and those which are not. To see this, let p satisfy Conditions (8) and (11), but
also cp > 0. Assume that p is subject to small random perturbations of λp which will result
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in small changes Δμp and Δcp. Estimating the average �cp of a large random sample of
perturbations Δcp, we show in Appendix A that

�cp  cp

μp
(�μp)

2 · ∂ηp

∂μp
(22)

Equation (22) states that when risks are subject to frequent, small random perturbations
of the underlying probabilities—as is arguably always the case in real applications—the
variations increase or decrease the certainty equivalent on the average, corresponding to
∂ηp/∂μp > 0 for μp > μp

crit or ∂ηp/∂μp < 0 for μp < μp
crit . In other words, for probability

values which are sufficiently large (λp > λp
crit), p is robust if exposed to disturbances which

are randomand limited in size. The situation is amarkedly different, unstable one ifλp <λp
crit .

We refer to it as acute catastrophic risk. When perturbed, it will likely deteriorate in safety
or security even if initially cp was positive and if the perturbations are small. Moreover, if p
is recurrent and resolved repetitively, the situation in which the decision maker finds himself
will “wear out” over time. This means that cp decreases continually and finally takes on
negative values, which makes the disaster risk entirely conspicuous. For constant Δμp, the
relative deterioration cp

–1�cp < 0 will even proceed at an ever faster pace since ηp → ∞
and ∂ηp/∂μp → –∞ as cp → 0.

Another important problem is how the disaster risk indicators respond to variations in
the expected damage μp

– or, more generally still, how they depend on the total differential
dμp. To solve this problem, the partial derivative (16) must be replaced by dηp/dμp. Besides
∂ηp/ ∂μp, the total derivative includes the term (dμp

0/dμp)∂ηp/μp
0. Neither dμp

0/dμp nor
∂ηp/μp

0 identically vanishes since ηp depends explicitly on μp and μp
0, but μp

0 also on μp

in an implicit, highly non-linear fashion, by Eq. (2). As a consequence, dηp/dμp gives rise to
some unwieldy algebra which leaves the explicit solution of dηp/dμp = 0 practically useless.
In view of this situation, we proceed as follows. In a first step, we restrict the analysis to
the indicator dependence on μp, with μp

– and μp
0 being held constant. Then, the impact of

variations of μp
– on risk parameters is treated separately by considering various different

p, q,… with distinct values μp
–, μq

–,… and μp
0, μq

0,… respectively. Finally, the distinct
results will be compared. For a demonstration of this procedure in detail, see the application
example in Sub Sect. 5.1.

A final point is the dependence of the disaster risk indicators on the exogenous parameters
x0, s and ω. We address this problem with reference to ω since the relative duration time of
risk is critical for indicating whether a presumptive extreme event is acute. Figure 4 shows
μp

crit as a function of ω andμp
0, according to Eq. (17). If ω increases,μp

crit decreases along
the curves μp

0 = constant. The increase in ω means that smaller values of μp
crit admit risks

p to be effectively reduced and leave the latter more robust in the sense that they satisfy μp >
μp

crit . In reliability engineering and management, strategies to decrease the failure rates of
systems and processes (i. e., to increase ω) are devised to achieve just this. Conversely, for
constant ω, μp

crit increases with μp
0. Catastrophic risks p must then yield values λp and μp

closer to unity for robustness to obtain because μp > μp
crit is required while μp

crit is already
large. Moreover, even a disaster risk p with μp

0 � 0.9 and very small overall probability of
loss,

1−λp �
1−μ0

p

1−μ−
p

� 10−3, μ−
p � −100

must be deemed acute if it is likely to be resolved prematurely (prior to the resolution of s),
because μp

crit = 1 for ω ≤ 0.5. An effective management strategy then is to defer disaster,

123



Annals of Operations Research (2024) 343:223–261 237

Fig. 4 Critical Value of Expected Outcomeμp
crit of Disaster Risk p as a Function ofω andμp

0. The parameter
μp

crit separates the regime of robustness from that of instability (of the certainty equivalent) of catastrophic
risk. The boundary between the two regimes varies with ω and μp

0

or “buy time”, by taking measures to increase ω beyond 0.5, if any. However, this procedure
may not suffice if the reduction of μp

crit achieved is not large enough to decrease μp
crit

below μp. Additional risk management decisions to increase μp will then have to be taken,
especially to reduce the overall probability or the expected amount of damage, or both.

4.3 Status quo risk: disaster deferred?

Risk analysis is often concerned not so much with decisions ahead, but with the uncertainties
decision makers currently confront. The question may arise whether an extant risk s must be
viewed as a “disaster deferred” (Stein, 2010) rather than amoremoderate risk, as is frequently
encountered in everyday life. The conceptual framework of the preceding sectionsmight seem
unsuitable for treating this question since cs vanishes by definition so that ηp is not defined for
p = s (Eq. 12). But the above formalism can be modified to indicate severe dangers inherent
in the status quo, too. To this purpose, we conceive of s as a risk selected by a person, or
imposed on him or her, in some previously existing risky status quo s′, s �= s′, with s′ being
otherwise arbitrary except for s �= 0̂. Thus, the assessment of s is in the presence of s′, but
unless explicitly defined with reference to s′, s will be independent of s′ in case s′ is resolved
first with certainty: the persisting risk s constitutes the new status quo and, as such, is no
longer constrained by s′. Putting p = s in Eqs. (17–19), taking the limits of μs

crit and ηs
crit

for ω → 1, and considering that s = s0 by definition (cf. Equation (7)), one easily confirms
that Eqs. (17) and (18) remain well-defined in these limits,

μcri t
s = μ

1/2
s (23)
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ηcri t
s = As(1 + μ

1/2
s )

1−μ
1/2
s

(24)

Likewise, Eqs. (19) and (24) approximately agree for μs � 1. Note that, when s′ is resolved
and the decision maker receives a non-zero outcome, his neutral reference point may shift
from x0′ = 0 in the status quo s′ to some x0, x0 �= x0′, in the new status quo s. Subsequently,
the outcome axis needs to be rescaled to x0 = 0 to obtain Eqs. (23) and (24).

It remains to clarify the meaning of Eqs. (23) and (24), considering that ηs is not defined.
Let q, q ∈ P, be such that q and s are identical up to λq �= λs. In particular, q± = s± and
q0 = s, but μq �= μq

0 = μs and cq �= cq
0 = cs = 0. Assume the decision maker to assess q

in the status quo s, whereby s is resolved first while q persists with certainty. So once more
one has ω = 1. With the replacement of p by q in Eqs. (12), (17) and (18), the resulting
expressions are well-defined, μq

crit and ηq
crit exist and, by construction, are equal to μs

crit

and ηs
crit , respectively. Since ηq

crit >> 1 implies an extreme expected loss μq
– << –1 if the

overall probability of loss 1−λq is small, the same holds true for μs
– << –1 as a consequence

of ηs
crit >> 1. Moreover, because 0 < μs < 1 is supposed, one always has μs < μs

crit , by
Eq. (23). Hence, small random perturbations of s yield �cs < 0, independently of how small
1−λs is, since such perturbations can be interpreted as probability distributions q with the
properties concerned (μq < μq

crit = μs
crit , ∂ηq/∂μq < 0 and �cq = �cs < 0). These results

make ηs
crit >> 1 and μs < μs

crit meaningful criteria of the catastrophic nature of s.
The latter conclusion is of some practical concern. Since according to Eq. (23), for every

λs, λs < 1, one has μs < μs
crit , an extreme status quo risk is hard to manage effectively solely

by measures to reduce the probability of extreme events. In fact, if 1−λs is lowered whileμs
–

remains constant, μs increases, but so does ηs
crit according to Eq. (24). This means that the

robustness of the status quo deteriorates if the overall probability of loss is further reduced
while it is already small. There is no paradox involved here, though. The situation corresponds
to the conclusion from extreme value theory that small finite tail probabilities of a random
variable tend to enhance model uncertainty: the uncertainty in the probability estimate is
much larger than the estimated probability value (Huang and Lam 2019). Accordingly, it
would seem more appropriate to concentrate on strategies and measures to mitigate the
consequences—rather than further reduce the probability—of an extreme event if it is rare
anyway. Section 6 outlines effectiveness and efficiency criteria to assess risk management
strategies which in this sense are specifically disaster risk-adjusted.

4.4 Indicator validity

Since ηp,μp
crit and ηp

crit are parameters of simple probability distributions, they can likewise
be defined for relative frequency distributions. If so, they quantify attributes not only of
random variables, but also of sample data sets. With a slight abuse of notation, by p, q, s,
we designate probability and frequency distributions alike. If frequency is intended, they
express observed variation rather than uncertainty. Given x0, s and ω, this variation, too, is
consistently assessed by the certainty equivalent in preference terms.

Assume that the relative frequency distribution q is obtained by randomly sampling the
(unknown) probability distribution p of some variable X , with the sample of size n, n ≥ 1.
The sampling process needs qualification to count as a source of valid empirical information.
“Validity” heremeans avoidance of systematic error.Wefirst treat the validity of the statistical
indicators of extreme risk froma definitional perspective.Operational issues of validationwill
then be addressed in Subsect. 4.5. Suppose that the sequence of measurements contributing
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to q converges to X in distribution for n → ∞.4 Convergence in distribution of X means
that the cumulative probability distribution Fp(x) can be arbitrarily closely approximated by
Fq(x) at every continuity point x of Fp by choosing a sufficiently large sample size (as for the
conceptual framework of convergence in distribution, see, e. g., Pfeiffer, 1990, pp. 399–407).
On these assumptions, the sample parameters μq

crit ,ηq and ηq
crit converge to the parameters

μp
crit ,ηp and ηp

crit for n → ∞, respectively.
In proof of this convergence, recall that cp > 0, corresponding to μp > μp

0 in Inequality
(10). Hence, eachμp

crit ,ηp and ηp
crit are bounded and continuous functions of the parameters

μp, μp
0 and μp

–, by Eqs. (13), (14), (17) and (18). This conclusion also applies toμq
crit , ηq

and ηq
crit as functions of μq, μq

0, and μq
–, provided that μq > μq

0. Since the measurements
contributing to q are supposed to converge in distribution to X , from the continuous mapping
theorem (e. g., Pfeiffer, 1990 p. 406) it trivially follows that the sample averages μq, μq

0,
and μq

– converge to μp, μp
0, and μp

–, respectively. Finally, the bounded and continuous
dependence of μq

crit ,ηq and ηq
crit on μq, μq

0, and μq
– confirms the above convergence

result.
Various basic issues are involved here. First, whether a given sequence of measurements

converges in distribution can be tested. Given the finite sample space of X , there exist criteria
providing—however limited—evidence on convergence in distribution solely and directly
with reference to the observeddata (Efron, 1979, pp. 22–23). They are basedon the resampling
methods and Monte Carlo techniques mentioned in the context of the operational validation
issues below. Secondly, the information on which risk assessment is based derives from the
sample statistics of q in any approximation which can be practically accomplished. Thirdly,
if ηq >> 1, this indicates cq to vary strongly with μq even if μq changes only marginally, for
example, if sampling continues beyond the sample of size n that has been collected up until
now. The indication is in the technical sense of Sub Sect. 4.1 and Condition (20). Finally,
the change of μq may result not only from a decrease of λq, but also of μq

–. In fact, if the
support of q is a proper subset of the support of p (typically, in case the latter is unknown),
ever larger amounts of loss may turn up with non-zero frequencies for increasing n so that
μq

– decreases further.

4.4.1 Practical significance of statistical indication

We outline the significance of these results by considering a few implications for applied dis-
aster risk analysis. As long as the overall relative frequency of loss remains small, even large
losses may fail to caution the observer that still worse outcomes are possible. A potentially
misleading assessment of catastrophic risk of this kind may be induced by the measurement
of a positive cq. Indeed, cq > cs = 0 suggests that the risk inherent in X is an improvement
over the extant uncertainty or variability s. But the improvement comes at a literally dis-
astrous price. This is made evident by a more complete and adequate analysis of the data.
Because of ηq >> 1, there is strong empirical evidence that p is acute: if μq < μq

crit ,cq may
fall below zero, and X may take on extreme negative values in future measurements. The
case μq > μq

crit is different. It implies a robust, although still highly left-skewed outcome
frequency distribution. This empirical indication of robustness is of practical use where the
risk of an extreme event (e. g., outlier, one-shot disaster) cannot be strictly excluded, but

4 Considering infinite sequences of measurements of random variables does not necessarily lead beyond
descriptive statistics. Here, we aim at indicating but not inferring properties of X, whereby indication is weaker
than inference or estimation, although no less a systematic endeavour. In fact, every parameter employed to
indicate disaster risk will here be a finite-sample statistic.
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seems sufficiently implausible to be ignored or at least tolerated. The framework of Eqs. (17)
and (18) and the conditionμq > μq

crit then leave any decisions to be taken on p data-based
and more precisely informed by reason of evidence.

Alternatively, assume that cq shows a more moderate risk elasticity (ηq ≥ ηq
crit � 10,

say), and let X change with time.5 Assume that X = X ′(t) is a non-stationary discrete-time
process with random variables X1 = X ′(t1), X2 = X ′(t2),… at successive times tk , with each
Xk being sampled during a sampling period tk+1−tk > 0 beginning at tk , where k = 1, 2,… If
successive measurements of X yield frequency distributions q with growing risk elasticities
of cq, the measurements of long-term changes of ηq, ηq

crit , etc., may then provide additional
information for disaster riskmonitoring and planning. For example, more precise and reliable
early indications of disastrous climatic changes X (on the time scales of decades) may be
obtained from measurements of ongoing global warming (by seasonal sampling of X , across
different geographical regions, with the individual measurements taken repeatedly over one
season beginning at time tk , respectively).

4.4.2 Preliminary application example

To illustrate further the practical significance of these conceptualisations for disaster risk
anticipation, we qualitatively refer to a recent salient example. It is the great March 2011
earthquake in what is known in geology as the Japan‘s Northeast (Tohoku) subduction zone.
“Many seismologists—and hence disaster planners—thought that such huge earthquakes
could not occur on this subduction zone…Great earthquakes—magnitude 8—were expected
and planned for. However, a giant magnitude 9 earthquake, which would release 30 times
more energy, was not considered. … Thus, the … earthquake generated a huge tsunami that
overtopped even 10-m seawalls, causing enormous damage including crippling nuclear power
plants” (Stein & Okal, 2011). Why did seismologists and safety planners not anticipate such
a huge earthquake on the basis of the available experience? Stein and Okal give three reasons,
among others, for this apparent misunderstanding of the historical earthquake record. If these
reasons had not been ignored, each could have massively enhanced the severity assessment
of future incidents in terms of a large risk elasticity of the assessments. The reasons are errors
in estimating the frequency of occurrence (1−λp), relative time scale of risk exposure (ω)
and size of damage (μp

–), respectively: “The apparent pattern resulted from the fact that
magnitude 9s are so rare, on average … These are about 10 times rarer than magnitude 8s.
Thus, the short seismological record (the seismometer was invented in the 1880s) misled
seismologists into assuming that the largest earthquakes known on a particular subduction
zone were the largest that would happen” (Stein & Okal, 2011). In contrast, the present risk
assessment model proposes that disaster risks tend to exhibit two distinguishing features.
First, exposure to disaster risk is indicated, conditional on well-defined risk measurement
and assessment criteria, by simple descriptive statistics. Secondly, in the absence of historical
parallels, information on presumptive future extremes can, on these criteria, be extracted from
the sample parameters and their risk elasticity properties encoded in the historical data. A
more subtle account of disaster risk anticipation, which makes these two features visible in
detail in the Tohoku earthquake example, is provided in Sect. 5 on the basis of the data given
by Kagan and Jackson (2013).

5 Non-stationary processes and trends are treated, and the relevant literature is reviewed, from various the-
oretical and application perspectives of extreme value analysis in Visser and Petersen (2012), Visser et al.
(2015), and de Haan and Zhou (2021).
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4.5 Validation issues

In real applications, convergence in distribution of sequences of measurements at best holds
approximately, so indication of potential extreme events is susceptible to systematic error in
risk measurement. We call models and methods of risk measurement valid if they are used
in applications and in ways for which they have been designed, methodologically approved
(i.e., shown to be logically consistent and correct, unbiased, avoid paradoxical results, etc.)
and empirically confirmed. Otherwise, they must be presumed to be sources of systematic
violation of the hypotheses to be tested or applied.6 For example, validation problems of
this kind typically arise where “inferences on extremes may be wrong if data are assumed
stationary while they are not” (Visser & Petersen, 2012). The problems clearly extend to the
indication of extreme risks as well. Of the statistical techniques and methods available to
cope with them, we name a few as pervasive examples. They are particularly suited to test
the validity of disaster risk indication. Since they are standard techniques of data acquisition
and analysis, we will be brief about validation.

Small sample size is a source of random sampling error. But the size of small samples
also tends to amplify the effects of these errors systematically (Hox, 2020). It must therefore
be subsumed under the validity problems of disaster risk indication, too. Scenario building
in combination with software-based simulations of random events, notably Monte Carlo
techniques, can help to expand databases to indicate rare extreme events more reliably. The
management applications of the present framework suggested below heavily rely on these
techniques.

A related basic problem area is the quality and sufficiency of the data available to warrant
anticipation of disaster risk. A large risk elasticity of the sample certainty equivalent can
be attributed to many different statistical effects such as insignificant outliers, the impact of
confounding variables, etc., affecting measurement procedures and scores. The problem is
to distinguish whether an indicator measures an attribute of the sampled random variable,
some other effect, or a combination of both, which it might be an error to ignore, however
(Rice, 2007; Rothman, 2012). We refer to the wide range of data analysis techniques to deal
with these and related problems, notably multiple regression, factor analysis and resampling
(jackknife, bootstrapping and subsampling; see Politis et al., 1999; Rice, 2007; Boos &
Stefanski, 2013). However, the use to be made of these techniques in disaster risk indicator
validation is different from the customary uses in hypothesis testing and parameter estimation.
If cq is highly elastic, these techniques can serve to determinewhether ηq is a resistant statistic
(Carling, 2000; Huber & Ronchetti, 2009). This means that resampling techniques can be
employed to test whether the observed strong inequality ηq >> 1 is robust, or “resistant”,
to the removal of the most extreme negative outcomes from a given sample. The random
variable in point reveals its disposition to take on large negative values in this way even if
the uncertainty attached to it has not been, or cannot be, entirely resolved.

6 We tacitly assume that the present concept of validity covers much of what is referred to in the literature as
validity and validation ofmodels andmethods (NationalResearchCouncil 2012).Observe that validity depends
on the application context. For example, an indicator may prove to be valid when measured in a sampling
experiment with replacement, but render the indicated result biased if sampling is without replacement.
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5 Application examples

5.1 Statistical indication of risk of a megathrust earthquake

An illustrative case in point is the statistical record of the seismic activities which gave rise to
the unprecedentedly devastating Northeast Japan earthquake and tsunami ofMarch 11, 2011.
Seismologists had not foreseen an earthquake of this size (moment magnitude m  9.1) to
occur off Japan’s Tohoku coast, nor had they believed it to be even possible (Kagan& Jackson,
2013).We refer to the data used in the paper byKagan and Jackson to demonstrate the present
approach in practice. As for the expanding geological research on the hazard potential for
very large earthquakes and their recurrence periods, we refer to Schäfer and Wenzel (2019)
and Pisarenko andRodkin (2022) and references given therein. As for analysis and discussion
of the geological causes and conditions of the Tohoku megathrust incident, course of events,
and types and amounts of damage incurred, we refer to the relevant literature (e. g., Kawase,
2014).

Figure 5 depicts the number N of shallow earthquakes (originating within 0–70 km of the
Earth’s outer surface) with seismic moment magnitudes equal to or larger than m, 5.8 ≤ m �
8.4, in Japan’s Tohoku region during 1977–2010. The sample size is n = 425. N is distributed
according to the step-like m–N curve and approximates the dotted straight line for m ≤ 8.
This line represents the empirical Gutenberg-Richter law. The dashed curves correspond to
observed or anticipated departures from the Gutenberg-Richter law for large m � 8.

Fig. 5 Measurement of Earthquake Risk: Example of Seismic Activity in Japan’s Tohoku Region. Cumulative
Distribution of Number of earthquakes of Moment magnitude (“size”) m in the northeastern Japan subduction
zone. The data shown were recorded during 1977–2010. The linear part of the curves satisfies the so-called
Gutenberg-Richter law. Figure reproduced from Kagan and Jackson (2013)
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Fig. 6 Example of Earthquake Risk Expanded from Kagan and Jackson (2013). Extended sample of shallow
earthquakes in Japan’s Tohoku area. The data for 1 < m < 5.8 have been extrapolated from the Kagan-Jackson
sample using the Gutenberg-Richter law

On the basis of Fig. 5, selected aspects of the status quo risk present in the Tohoku
region before March 2011 can be described as follows. The relevant variables, parameters,
numerical values and computations are specified and carried out, respectively, in Appendix
B. The results are visualised in Fig. 6. The negative value –E of the seismic energy E radiated
by an earthquake of magnitude m is measured relative to the amount Em=4.5 released at m =
4.5 and is defined as the outcome variable X−x0 = X = –E + Em=4.5 in the normalisation X
= x0 = 0. This definition corresponds to the notion that “the energy radiated by an earthquake
is a measure of the potential for damage to man-made structures” (Spence et al., 1989). Other
dimensions of damage such as death toll, injury or economic loss tend to correlate less with
E and, for the sake of definiteness, are not made explicit here. Japan’s Tohoku region is
seismically highly active, so earthquakes and the damage resulting from them are features
of everyday life: as damage incurred (X < 0, E > Em=4.5) for increasingly deleterious and,
eventually, devastating consequences ifm > 4.5; or else as damage avoided (X > 0,E <Em=4.5)
in case ofminor events belowvalues of roughlym �4.5.An approximatemagnitude threshold
can therefore be conceived as the reference amount of energy released at m = 4.5 for which
X = x0 = 0. Actually, this threshold means that earthquakes with m � 4.5 tend to be felt less
by people and often do not cause appreciable damage to man-made structures—in agreement
with the criteria governing the Modified Mercalli scale of earthquake intensity (see, e. g.,
Lowrie & Fichtner, 2020). Hence the conceptualisation of the case E < Em=4.5 as damage
avoided, or “gain” (as for the underlying m-E relationship, see Appendix B). Meanwhile, the
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Kagan-Jackson sample visualised in Fig. 5 has been augmented by data corresponding to m
< 5.8 and, especially, m < 4.5 to incorporate positive outcomes and, thus, define the sample
average of gain. We obtained the necessary data missing from the Kagan-Jackson sample
by applying the Gutenberg-Richter law to magnitudes as low as m = 1 (Schorlemmer et al.,
2005, Leary 2020), extending the sample in a consistent, empirically established way. On the
other hand, we left out the two or three largest measurements with m > 8 from the Kagan-
Jackson sample. Removing them from the data set offers a simple “generalised jackknife”
measurement and resistance test of the remaining subsample distribution parameters. As
for application details on the generalised jackknife methodology, see, for instance, Jekel and
Romero (2019). Here, it is employed as ameans of backtesting and resampling to demonstrate
statistically informed assessments of the hazard looming ahead of an event. The cumulative
relative frequency distribution of E is determined by dividing the m–N distribution function
by the size Nm=1  107 of the extended sample to obtain relative frequencies for N , E and,
eventually, X . Note that the vertical axes in Fig. 6 are scaled so that N and FE

c give the
cumulative number and complementary cumulative relative frequency distributions of the
sample, respectively.

Now consider random deviations from FE
c together with the risk elasticities of their

certainty equivalents. They can be attributed to subsamples of the extended status quo repre-
sented in Fig. 6 (maximum m = 8) because deviations with maximum m > 8 trivially involve
higher damages than Em=8 with finite frequencies and, hence, negative certainty equivalents,
even if they violate theGutenberg-Richter law (i. e., deviate from the straight line in Fig. 5). In
contrast, subsamples with maximum m < 8 have positive cm by construction, but nonetheless
cm will be unstable if ηm >> 1 and μm < μm

crit . To show this, we first avoid unnecessarily
cumbersome notation by another slight abuse of the formalism: while particular values of the
random variables E, N and X continue to be written as Em, etc. (or, more explicitly, Em=4.5,
Nm=1,…), subscripts are given a different meaning for particular magnitudes m when used to
denote sample parameters. In the following, dependence of the statistical parameters on the
largestm present in a sample is important, so in expressions likeμm = μm

+λm + μm
–(1−λm),

subscripts designate the largest m in the sample of which μm is the average. Without loss of
generality, these definitions are also meaningful for parameters defined only on subsamples.
In particular, one has μm = μm

– = 0 if m ≤ 4.5, whereas μm = μm
+ = μ4.5

+ = 1 and λm =
λ4.5  1−6·10–4 (Fig. 6) if 4.5 ≤ m ≤ 8.

Table 1 gives the critical parameter values for subsamples with different maxima m and
one subsample for two different values of ω. In the calculations, it has been assumed that
the seismic activities conforming to the Gutenberg-Richter law prevail over long periods of

Table 1 Disaster Risk Indices for Giant Earthquake (Example of the March 11, 2011 Event in northeastern
Japan’s seismic zone)

Sample maximum m of magnitude ω μm
0 μm μm

crit ηm
crit ηm

7.5 1 0.82 0.95 0.91 34 45

7.8 1 0.86 0.92 0.93 49 50

7.9 1 0.87 0.91 0.93 51 59

7.9 0.9 0.87 0.91 0.94 46 55

7.95 1 0.89 0.9 0.94 63 180

8 – 0.9 (= μs) – 0.95 76 –
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time, while violations of the law would be rare if any. In this sense, the risk of such violations
persists and satisfies ω = 1 in rough, although reasonable, approximation. The results of
one more calculation with ω = 0.9 have been added for comparison and in support of this
assumption. The table shows increasing values ofμm

0 andμm
crit from m = 7.5 to m = 8, that

is, risk measurements must yield ever larger positive outcome averages for cm to be positive
and its positive value to be robust (μm >μm

0 andμm >μm
crit , respectively), whereas the risk

of ever larger damage increases (decreasing μm) as a function of m. Thus, for m well below
8 (maximum m = 7.5), the critical risk elasticity is moderately large (η7.5crit  34), and c7.5
is robust, that is, it satisfies �c7.5 > 0 (Fig. 7a). At about m = 7.7, cm loses its robustness

if m further increases since μm decreases with m, while �cm < 0. Figure 7b illustrates this

situation for m = 7.8, with μ7.8 < μ7.8
crit . For still larger m, ηm gets exceedingly large

(η7.95  180), as shown in Fig. 7c, e. Figure 7f illustrates the status quo with maximum m
= 8, for which η8

crit is already large, according to Eqs. (23) and (24). The situation remains
qualitatively similar if ω < 1 is assumed, as the example of Fig. 7d shows.

Altogether, the present disaster risk indicators admit an utterly novel statistical assessment
of the hazard the available data could have provided in advance of the March 2011 event,
however. Although the assessment is based on an extended status quo sample with maximum
magnitude m = 8, the susceptibility of the Tohoku region to extreme earthquakes is already
statistically apparent from a subsample with a maximum magnitude of less than 7.8. Even
stronger evidence derives from sample maxima m > 7.8. They imply a high risk elasticity
(ηm >> 1) and lack of robustness (μm < μm

crit) of the observed risk preference values cm >
0.

It remains the issue of whether and why seismologists and disaster risk planners should
have considered a giant magnitude 9 event, who instead “dramatically underestimated”
(Kagan & Jackson, 2013) the maximum earthquake size possible on that subduction zone.
In contrast, the present account of the situation would have rigorously excluded this under-
estimate. If the observed sample maxima exceed m = 8, the relative frequencies of ever
larger earthquakes indeed decline, especially so since the Gutenberg-Richter law tends to be
increasingly violated for m > 8 (see dashed tapered m–N curves in Fig. 5). But at the same
time, the observed average damage μm

– rapidly decreases and, hence, μm decreases while
all the critical parameters involved approach their limits (μm

crit > μm
0 → 1, ηm

crit >> 1, ηm

→ ∞). They thus indicate a “dramatically” growing instability of both status quo sample
distributions and random deviations from the latter. Hence, in the present interpretation, the
historical earthquake record could have firmly disclosed, rather than led to underestimate,
the risk of magnitude 9 events. From a broader perspective, an upper boundary to moment
magnitude can be inferred only from relevant geophysical models and data. More recently,
the necessary information has become increasingly available in seismology (Pisarenko &
Rodkin, 2022; Schäfer &Wenzel, 2019), but had been partly unknown or attempted to derive
from inadequate hypotheses in the years before 2011.

5.2 Catastrophic technological risk

In applications of the present formalism to extreme technological risk, the approximation
ω = 1 assumed in the Tohoku earthquake example would seem inadequate. Technological
systems and devices have limited operational life spans and are as a rule subject to the
danger of premature failure. Thus, one typically hasω < 1 in technological risk analyses. The
consequences of this situation for the indication and management of technological disaster
risk are considerable. If ω ≤ μp

0(1 + μp
0)–1, it follows that μp

crit = λp
crit = 1 so that μp <
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Fig. 7 Risk Elasticities of
Certainty Equivalents of Samples
of Earthquakes of Varying
Maximum Size m. Risk elasticity
curves corresponding to ηm

crit as
given in Table 1. a Moderately
large critical risk elasticity for
maximum m well below 8 (m =
7.5); because of μ7.5 > μ7.5

crit ,
c7.5 is robust. b At about m =
7.7, cm loses its robustness, for
example, μ7.8 < μ7.8

crit . c, e For
still larger m, ηm gets exceedingly
large (η7.95  180). f Status quo
with maximum m = 8, for which
η8

crit = 76 is already large.
d Case m = 7.9 with ω < 1
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Fig. 7 continued
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μp
crit and, hence, every catastrophic risk p is acute, even for intermediate ω, however small

the overall probability of damage 1−λp may be. If so, p cannot even be made robust by
preventive measures reducing 1−λp. In fact, λp > λp

crit would have to hold to achieve this,
but λp cannot exceed λp

crit = 1. This impossibility obtains for all ω < 0.5 since μp
0(1 +

μp
0)–1  0.5 for values of μp

0 close to unity, on which the present analysis concentrates. To
be effective, measures to improve disaster safety would have to reduce system failure rates to
ensure values ω ≥ 0.5, as has been discussed above with reference to Fig. 4. The following
example illustrates this task.

In August 2003, major parts of the Midwest and Northeast of the United States and
Ontario, Canada, were affected by an electric power blackout unparalleled in the history of
North American power supply systems. According to the Final Report of the U.S.-Canada
Power System Outage Task Force (2004), the event affected an area with an estimated 50
million people and 61,800 megawatts of electric load in eight U.S. states and the Canadian
province of Ontario. Powerwas not fully restored for days and, partly, formore than oneweek
in some of these areas. As appears from Fig. 8, shorter and more localised outages occur
in North American power systems rather frequently. Long-term disruptions of large-scale
power systems are rare, but they occur more frequently than normally distributed outages
would do. A statistical representation ofmajor outage events between 1984 and 1997 inNorth
American power systems is given in Fig. 8a by the number of customers affected and the
rate of occurrence. The outage of August 2003 corresponds to the extreme event (outlier data
point added to the 1984–1997 sample on the lower right side). It surpasses the second-worst
incident (August 1996 blackout spreading acrossWestern Canada, theWestern United States
and Northwestern Mexico) by one order of magnitude in terms of people affected (second
outermost data point on the lower right side).

Again, we remove the outermost data point from the sample and examine the remaining
subsample for latent extremes. The number x of customers affected is treated as a measure
of the amount of damage incurred, in agreement with impact metrics widely used in the
literature on power outage analyses (Mukherjee et al. 2018a, b). Figure 8a gives x0  8000
as de minimis damage regarding major power outages. Correspondingly, we estimate μq

+ 
4000 in a first approximation because of lack of data for single outages with 0 < x < 8000. The
upper solid curve shown in Fig. 8b is fitted to the scatter plot in Fig. 8a, while the lower curve
gives the complementary cumulative relative frequency distribution of the damage incurred
in a continuous approximation. The frequency-weighted average from 8000 to 6,000,000
customers affected per outage event was numerically calculated to obtain μq

– = − 368,170,
with the normalised values μq

+ = 1 and μq
–  –92, and with λq  0.999 and μq = 0.999 +

(1−λq)μq
–  0.91. Other than in the example of Subsect. 5.1, sufficiently detailed statistical

information on the status quo risk is not available from the Final Report, however. So λq
0

and μq
0 are impossible to estimate on this basis. But ηq and ηq

crit can be more broadly
represented as functions of μq for given, although varying, values of μq

0 and ω (Fig. 9).
The figure shows key risk features the affected systems exhibited during the period from

1984 to 1997 and beyond. One such feature is that virtually all values ηq are exceedingly high
for the sample averageμq  0.91. Exceptions only arise forμq

0 = 0.85 (and below, although
not shown). They correspond to a diminishing disaster potential, by decreasing overall amount
of damage. The indicator values turn out less exceptional (ηq < 50) in these cases, but still
remain high. In all parameter combinations considered, instability prevails (μq  0.91 <
μq

crit). The case of ω approaching or falling below 0.5, with μq
crit approaching 1, is shown

in Fig. 9 for constant μq
0 = 0.9.

The result forω  0.5 indicates that, in technological systems, exposure to catastrophic risk
need not necessarily be due to unusual circumstances such as extreme weather conditions
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Fig. 8 North American Power SystemOutages, 1984–1997. a The circles represent individual outages in North
America between 1984 and 1997, plotted against the frequency of outages of equal or greater size over that
period. Figure reproduced fromU.S.-Canada Power SystemOutage Task Force (2004). b Smooth curves fitting
the data of (a) (by eye). The upper curve approximates the frequency distribution as scaled in 8(a). The lower
curve gives the complementary cumulative relative frequency distribution q in a continuous approximation
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Fig. 9 Risk Elasticity ηq as a
Function of μq and ηq

crit for
Various Values of μq

0 and ω.
Results for q as shown in Fig. 8b.
(a–c) Risk elasticity ηq as a
function of μq for varying μq

0

and ω. d Case of ω approaching
0.5, with μq

crit approaching 1 for
constant μq

0 = 0.9
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or severe lack of maintenance. Catastrophic risk may well arise under normal operating
conditions, which will often also constitute the status quo of a system and, as such, involve
equipment failure, cascading disruptive events, and so on. Then, the failure of status quo
operations and severe disruptions of a system may be rare, but the relative persistence of
either type of failure risk is about equally probable, for failures of both types draw on the
same source of initiating events (Morgan et al., 2011). This kind of latent extreme risk can
in principle be indicated and assessed systematically once ω can be determined or estimated
with some confidence in a probabilistic risk analysis.

6 Disaster risk management

6.1 Effectiveness and cost-efficiency of risk management

In the presence of catastrophic threats to human safety and security, risk reduction and
the effectiveness with which it can be accomplished are primary concerns of disaster risk
management. These topics have been treated in the literature fromvarious economic, although
not necessarily utility-oriented, perspectives of cost–benefit analysis (Layard & Glaister,
1994; Shreve and Kelman 2014; Fischhoff 2015; Mechler, 2016; Mishan and Quah 2020).
We restrict the present account to a few basic aspects to demonstrate its potentials for the
practice of disaster risk management.

Risk management decisions can normally be carried out with larger or smaller loss pre-
vention effort and success, leading to a lower (p) or higher (q) persistent residual risk.
Accordingly, cp ≥ cq ≥ cs = 0 gives different degrees of effectiveness of the safety mea-
sures planned or taken. Conversely, if cs = 0 > cq, one may still have 0 > cp > cq. In this
case, the risk management procedure (to be) taken proves ineffective or insufficient: neither
choice p nor q will reduce the risk the decision maker is currently facing although p means
a risk reduction over q. Let k(p, q) be the expenditure for some particular measure to reduce
a risk q to the “smaller” risk p the risk planner or decision maker prefers. Then, the ratio
(cp−cq)/k(p, q) gives the amount of risk reduction achieved per unit of money invested,
that is, the cost-efficiency of risk reduction. These concepts of risk reduction performance
dispense with comparisons between the cost incurred and loss avoided. Comparisons of this
kind are central to cost–benefit approaches to risk analysis, notably monetisations of the
value of human life. But they are also known to be difficult to conceptualise since they must
be based on trade-offs between quantities which are actual (cost) on the one hand, and vir-
tual (benefit conceived as loss avoided) on the other hand. In contrast, the present concept
of cost-efficiency—correctly—admits comparison only between actual, although uncertain,
outcomes due to p and q ranked on a common risk preference scale. The amount of risk
reduction achieved is thus defined and assessed independently of the reduction cost k(p, q),
as it should.

On the other hand, effectiveness of risk reduction is only a minimum requirement for the
adequacy of disaster risk management choices. The following definitions provide a broader,
disaster risk-adjusted perspective on managerial decisions. Let once more be s a status quo
risk such that ηs

crit >> 1 according to Eq. (24), and define

ξp = μp−μcri t
p

1−μcri t
p

, μ0
p ≤ μp ≤ 1 (25)
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Risk management actions transforming s into a less risky residual state p are called disaster
risk-effective if 0 ≤ ξp ≤ 1, and disaster risk-ineffective if ξp < 0. These definitions are
only partly analogous to those of the criteria of effectiveness of risk reduction (cp ≥ 0)
because ξp = 0 corresponds to μp = μp

crit but not to μp = μp
0. In this sense, disaster

risk-effectiveness means more than that the preferred risk management provisions engender
risk reduction from s to some p with cp ≥ 0. It requires an at least marginally robust residual
situation μp ≥ μp

crit , or ξp ≥ 0. Robustness can be improved by measures to decrease the
probability of damage (ideally, μp → 1 so that perfect disaster risk-effectiveness ξp = 1 is
approached); mitigate the expected damage (reduce –μp

– so that ηp decreases, that is, ηp →
1 because of ∂μp

0/∂μp
– < 0 according to Equation (A.5) and ∂ηp/∂μp

0 > 0 from Eq. (13));
or suitably manipulate the exogenous constraints on risk management such as the relative
persistence of risk (ω � 0.5), as has been discussed above (see also next subsection). On
the other hand, risk management provisions designed to reduce s to p can be effective in the
sense of cp ≥ 0, while not being disaster risk-effective (ξp < 0 because of μp

0 < μp < μp
crit).

Assessments of the effectiveness of risk management based on Eq. (25) are thus suitable to
identify and help to avoid insufficient disaster risk reduction practices. A similar point can be
made regarding the frequently observed discrepancy between what is effective and desirable,
and what is cost-efficient and affordable, in disaster risk management—for instance, in view
of the tremendous cost of global climate disaster prevention. This discrepancy and related
problems of what is desirable and what is affordable in disaster risk management can be
made accessible to quantitative analysis and application by defining the cost-efficiency of
disaster risk reduction as (ξp−ξq)/k(p, q) for choices p and q with ξp ≥ ξq ≥ 0.Meanwhile, to
compare p and q in terms of ξp and ξq, the equationμp

crit = μq
crit need not necessarily hold.

It is sufficient to assume (irrespectively of the use of normalised, dimensionless μp, μp
±,

etc.) that the outcomes of p and q are measured on a common scale. Otherwise, extensions of
the approach to multi-attribute disaster risk assessment along the lines established in Geiger
(2012, 2015) are required.

6.2 Disaster risk planning

The performance of disaster risk management procedures can, in principle, be measured,
tested and assessed within the same methodological framework as that outlined in Sub-
Sects. 4.4 and 4.5. However, management uses of this framework must also confront risks
conceived in the planning process but never before experienced in practice. Because of the
inherent lack of historical data on newly created risks, this problem is particularly critical
in risk prevention planning, and in the design and appropriate dimensioning of disaster risk
safeguards. In many applications, future uncertainty can be narrowed down, in principle,
using physical and economic models and the simulation of uncertain events and processes in
scenario- and software-based stochastic experiments under varying conditions. The relevant
methodologies are available from model building in the empirical and operational sciences,
what-if scenarios, Monte Carlo algorithms, and a wide range of sampling and data analysis
techniques. The contribution of the present approach to disaster risk management is then to
take the risk attributes together with their simulated variability as surrogate random variables
and rank order them according to uniquely and coherently defined, quantitative preferences
and risk elasticity properties. They can thus serve to guide planning and decision making in
thoroughly information-based, disaster risk-effective (as against more heuristic and ad hoc)
ways.
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6.3 Disaster return periods

Return periods are time intervalswithinwhich recurrent (natural hazard) events of a particular
kind and intensity occur once on the average. Thus, the “100-year flood” in a river catchment
area by definition has a recurrence period of 100 years, meaning that flood events of equal
or exceeding flood level occur with relative annual frequency of 1% in that area. Return
periods are important for the management of natural hazards since they help to benchmark
the size and design of protective systems in prevention planning. Extreme event return periods
can be given a probabilistic account in terms of exceedances of random variables above a
pre-selected threshold (“peaks over threshold”, POT) (Beirlant et al., 2004; Falk et al., 2011).

The present framework of disaster risk analysis offers a different approach to the concept of
mean time to resolution of risk. It remains entirely within the scope of established approaches
to statistical survival time analysis,most obviously to those usingnon-parametricmethods and
bivariate, discrete-time models (Kalbfleisch & Prentice, 2002; Klein et al., 2014; Marshall &
Olkin, 2007). As for more detailed consequences of this shift of perspective away from POT,
see Read and Vogel (2016), and Vogel and Castellarin (2017). Here, we briefly indicate how
the concept of relative persistence of a risk p given s makes the basic idea of the dependence
of risk assessment on time-to-event explicit. Consider the simple case of constant hazard
rates τ p and τ s associated with p and s, and stochastic independence of X and Tp, and Y and
Ts, where X and Y are the outcome variables, and Tp and Ts the resolution times of p and
s, respectively (see Sect. 2). Then, for large sample size, one approximately has ω = τ s(τ p

+ τ s)–1. The average return period of events X = x is τ p
–1 = ωτ s

–1(1−ω) –1. It is large if p
is highly persistent compared to the lifetime of s (ω � 1), and small in case ω << 1: given
s, larger recurrence intervals of p leave disaster risks more robust since they correspond to
larger ω, consistently with the findings above.

Several points are to be noted here. Although X and T are assumed independent, pref-
erences for X generally do depend on T . This dependence is an important determinant of
disaster risk indication. As such, it contributes to distinguishing risks pwith ηp ≥ 1 from those
with ηp >> 1, and disaster risks with μp below from those above μp

crit . Finally, established
approaches to the sampling and analysis of lifetime data are specifically suitable to support
the statistical indication and, thus, effective management of disaster risk.

6.4 Regulatory standards for safety and security

Similar points can bemade regarding legal, administrative and other socio-political standards
of disaster risk management. Although the current approach has been conceptualised with
reference to individuals’ optimal risky choices, it can equally be employed for regulatory
purposes such as the setting of risk tolerance standards. Applications of this kind may not
seem obvious since administrative risk regulation is guided (albeit not exclusively, see Bowen
& Panagiotopoulos, 2020) by the precautionary principle rather than principles of optimal
choice (de Sadeleer, 2006; Fisher, 2007). But introducing x0 as an aspiration level amounts to
setting standards of positive and negative consequences for riskmanagement decisions. In this
sense, x0 may represent, or be calculated from, diverse reference levels such as the maximum
allowable effective radiation dose or dose rate per person specifiedby a radiological regulatory
agency; regulated price and return indices in industries shaped by natural monopolies (“price-
cap” and “rate-of-return” regulation); or a maximum amount of admissible CO2 emissions
set up by an international binding agreement to mitigate global climate change. Consistently
with any such definition of x0, all further steps to test and assess disaster risk-effective
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management procedures can, in principle, proceed as outlined above. Since aspiration or
tolerance levels laid down by regulation are often subject to public controversy, the tests can
especially help to clarify reason and significance of the disputed levels in information-based
and explicitly risk-adjusted ways.

7 Conclusions

The preceding analysis draws largely on the explicit, simple algebraic representation the
certainty equivalent cp of a random variable X with probability distribution p has been given
within the present non-expected utility framework. In this representation, the risk elasticity ηp

of cp has been introduced as a characteristic parameter which, for values ηp >> 1, indicates
whether large random samples of X will include rare outcomes X = x << – 1. The risk
elasticity parameter can also be defined as a sample statistic and, as such, directly computed
from the measured data. Then, the empirical indication that X is a catastrophic risk takes
on the form ηq >> 1, where q is the sample distribution of a sufficiently large number of
randomly drawn measurements of X . The indicative power of sample values ηq >> 1 further
rests on the ability of the approach to distinguish between measurements ηq which show
cq to be stable (“robust”) or else unstable to small random perturbations of X . If instability
prevails, random variations of X even of limited size (outcome value and probability) will
lead to large changes of cq on continued sampling, indicating extreme events X = x << – 1
with finite, although unknown, probability. To obtain these results, probabilistic modelling
of extreme events is not required.

In real applications of the approach, various limits of applicability will likely become
apparent. Often, the data required for disaster risk analysis are too incomplete or strongly
biased for the risks in point to be captured by the present framework. Moreover, often the
most informative data are accessible only in aggregate form such as annual averages of loss or
damage published by administrations or the insurance industry.Asmentioned above, there are
numerous methodologies available in modern risk science to cope with these shortcomings,
however. Basically, these are modelling and scenario building of the physical and social
systems and processes at risk, software-based simulation and data processing techniques,
Monte Carlo, resampling and backtesting approaches in applied statistics, and combinations
of these. The present explicit, quantitative and, after all, realistic concept of risk assessment
contributes to exploiting more effectively these methodologies for disaster risk analysis and
management. Sections 5 and 6 take steps in this direction.

A similar point can be made regarding catastrophic security risks. In contrast to natural
hazards, for instance, security risks tend to involve planned, purposeful human action (e.
g. terrorist attacks). As such, they are quite the opposite of random events and ought to be
modelled by “games of strategy” rather than “games of chance” (von Neumann & Morgen-
stern, 1947). Alternatively, security incidents can be conceptualised as what-if scenarios,
with disaster risk analysis and assessment concentrating on their probabilistic damage con-
sequences. Scenario building is, thus, taken as a source of reference cases relative to which
the probabilistic attributes of security incidents can be analysed in definite ways. What-if
scenarios in combination with the present risk assessment model can accordingly serve as
planning instruments in catastrophic security risk indication and prevention planning.

Another field of applicability of the approach canbe envisaged inmanagement applications
to risky choice with multi-dimensional attributes of risk and non-expected utility trade-offs
between them (Geiger, 2012, 2015). A similar point can bemade regarding collective decision
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making with potentially disastrous consequences. The advantage offered by the approach in
these applications would be that, to apply the present conceptual framework, one only has to
specify the exogenous parameters s, x0 and ω appropriately. The specification will generally
be independent of utility (see, e. g., Geiger, 2012 in the multi-attribute utility case), whereas
the subsequent disaster risk indication and risk assessmentwould proceed as described above.

8 Appendix A Derivations of formulae

8.1 Derivation of Eqs. (13) and (14)

With the use of Eq. (5), rewrite Eq. (4) as

cp = (1−ω)(μp−μ0
p)

ω(1−μp) + (1−ω)(1−μ0
p)

, μp ≥ μ0
p

where the normalisationsμ+
p =

(
μ0

p

)+ = 1 and
(
μ0

p

)− = μ−
p are once more adopted, λp is

replaced by (μp − μ−
p )/(1− μ−

p ), and similarly for λp
0. Observe that cp explicitly depends

on μp and μp
0, but μp

0 implicitly depends on μp, that is, on μp
–, which in turn determines

λp
0 from Eq. (2) and μ0

p = λ0p + μ−
p (1 − λ0p). Hence,

dcp

dμp
= ∂cp

∂μp
+ ∂cp

∂μ0
p

· dμ
0
p

dμp
(A.1)

One straightforwardly finds

∂cp

∂μp
= (1−ω)(1−μ0

p)

(−ω(μp−μ0
p) + 1−μ0

p)
2 (A.2)

∂cp

∂μ0
p

= (1−ω)(1−μp)

(−ω(μp−μ0
p) + 1−μ0

p)
2 (A.3)

Trivially, one has dμp/dμ−
p = ∂μp/∂μ−

p and dμ−
p /dμp = 1/

(
dμp/dμ−

p

)
. Hence,

dμ−
p /dμp = (1 − μ−

p )/(1 − μp), which together with

dλ0p
dμp

= 1

dμp/dμ
−
p

· dλ0p
dμ−

p
(A.4)

gives

dμ0
p

dμp
= ∂μ0

p

∂μ−
p

· dμ
−
p

dμp
+ ∂μ0

p

∂λ0p
· dλ

0
p

dμp

= 1−μ0
p

1−μp
+ (1−μ−

p )2

1−μp
· dλ0p
dμ−

p

(A.4)

The probability λp
0 is defined as an implicit function of μp

– by Eq. (2), which we rewrite
as μ0

p = zs(μ
0
p − μ−

p )1/2(1 − μ0
p)

1/2. From this, we compute dμ0
p/dμ

−
p by means of the
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implicit function theorem and insert the result

dμ0
p

dμ−
p

= − μ0
p(1−μ0

p)

μ0
p−μ−

p (2−μ0
p)

(A.5)

into

dλ0p
dμ−

p
= d

dμ−
p

μ0
p−μ−

p

1−μ−
p

to obtain

dλ0p
dμ−

p
= 2(1−μ0

p)(μ
0
p−μ−

p )

(μ0
p−μ−

p (2−μ0
p))(1−μ−

p )2
(A.6)

Inserting Equation (A.6) into Equation (A.4) and the result together with Equations (A.2)
and (A.3), into Equation (A.1), eventually gives

dcp

dμp
= 2(μ0

p−μ−
p )

μ0
p(1 + μ−

p )−2μ−
p

· (1−ω)(1−μ0
p)

(−ω(μp−μ0
p) + 1−μ0

p)
2

Multiplication of the latter expression with

μp

cp
= μp(−ω(μp−μ0

p) + 1−μ0
p)

(1−ω)(μp−μ0
p)

entails Eqs. (13) and (14).

8.2 Derivation of Eq. (22)

Half of the disturbances of μp are positive and supposed to sum up to a total of Δμp, the
other half are negative and altogether equal to –Δμp, where Δμp is positive and Δμp/μp is
small. For the perturbations Δcp due to Δμp, one has

�cp  �μpdcp/dμp = cpηpμ
−1
p �μp

and

−�c′
p  −�μp

(
dcp/dμp

)′ = −c′
pη

′
p(μ

′
p)

−1�μp

for negative perturbations with μp
′ = μp − Δμp, where cp

′ = cp + Δcp
′ = cp −

Δμp(dcp/dμp)′, etc. As supposed in Eq. (16), the perturbations do not depend on μp
– and

μp
0. Hence, (dηp/dμp)′ equals (∂ηp/∂μp)′ so that

(
∂ηp/∂μp

)′ = ∂ηp/∂μp − �μp∂
2ηp/∂μ2

p

Expanding (μp
′)–1 = (μp − Δμp)–1 in the equation for Δcp

′ into (1 + μp
–1Δμp)μp

–1,
putting �cp = �cp + �c′

p and neglecting all but the lowest-order perturbation terms, one

immediately gets the result Eq. (22).
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9 Appendix B Calculation of entries in Table 1

At first, the sample parameters to be listed in Table 1 are computed for the variable E as
the relevant measureable quantity. The values obtained in this way are then rescaled in a
separate step to make them compatible with the change of variables and normalisations
adopted elsewhere in the analysis,

E → X−x0 = −E + Em=4.5, x0 = 0

and

μ+
m → μ+

m = 1.

We use the Gutenberg–Richter law to represent the m–N relationship,

lg(N ) = a−bm

where “lg” denotes the logarithm to the base 10, and a and b are parameters which take on
special values for any seismic zone. Kagan and Jackson find b = 1.5β, with β = 0.61 for the
Tohoku area, and a = 7.9 from Nm=5.8−2 = 423. When measured in units of Joule, E is a
function of m approximately given by lg(E)= 5.24+ 1.5m. Thus, N = 1011.1E–β . Rewriting
this as Nm = 1011.1Em

–β = NE and considering Nm=1  107, one gets

Fc
E = NE/Nm=1 = 104.1E−β

as the complementary cumulative relative frequency distribution of the random variable E
in a continuous approximation (Fig. 6), and f E = 104.1βE–1–β for the approximate relative
frequency distribution.Using the denotation introduced in Subsect. 5.1, one hasλm =λ4.5  1
− 6·10–4  1, with the neutral reference point Em=4.5 and, hence, λm = FE4.5 being invariant.
Before the normalisations assumed in Sects. 2 and 3 are carried out, one now determinesμm

±
conveniently in continuous approximation,

μ+
m = 104.1βλ−1

m

Em=4.5∫

Em=1

E−βdE = 104.1β(1−β)−1λ−1
4.5(E1−β

m=4.5−E1−β
m=1)

μ−
m = 104.1β(1−λm)−1

Em∫

Em=4.5

E−bdE = 104.1β(1−β)−1(1−λ4.5)
−1(E1−β

m −E1−β

m=4.5)

μm = μ+
mλm + μ−

m(1−λm) = 104.1β(1−β)−1(E1−β
m −E1−β

m=1)

 104.1β(1−β)−1E1−β
m

Thereby, the final approximation for μm follows from Em > > Em=1 for 7.5 ≤ m ≤ 8 (see
Fig. 6). Carrying out the normalisations chosen, one finally gets,

μ±
m → −μ±

m + Em=4.5

−μ+
m + Em=4.5

, Em=4.5 = 1012

To complete the calculations behind Table 1,μm
0 and, as a prerequisite, the parameters of

the status quo s entering Eq. (2) must also be determined. The “extended status quo sample”
is as shown in Fig. 6, with maximum m = 8. The only nontrivial parameter is μ8

– = – 184
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in the final normalisation, the other parameter values entering the left-hand side of Eq. (2)
are as above (λ8 = λ4.5  1 − 6·10–4  1, μ8

+ = 1),

z8 = 1−6 · 10−4 · 184
10−2(1 + 184)

√
6

 0.2

so that

0.2 = λ0m + μ−
m(1−λ0m)

(
1−μ−

m
)√

λ0m(1−λ0m)

can be solved for λm
0, given μm

– as above. Now, μm
0 = λm

0 + μm
–(1 − λm

0) is completely
determined. The remaining quantities ηm, μm

crit and ηm
crit can be calculated according to

Eqs. (13) and (14), (17) and (18), respectively. These steps complete the specification of
Table 1.
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