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Abstract
In this paper, we consider a resource overload problem and add a tardiness penalty to the
objective function when a prescribed project makespan is exceeded, which enables a trade-
off between a balanced resource utilization and a project delay. For the tardiness penalty,
we distinguish between a constant and variable delay cost variant. Based on the structural
properties of the resource overload problem, we show that the search space of the resource
overload problem with tardiness penalty can also be reduced utilizing quasistable schedules.
In addition, we discuss the application of these findings to further problems, which include
objectives composed of a locally concave and a concave function or a reward structure for an
early project completion instead of a tardiness penalty. As solution approaches, we present
mixed-integer linear model formulations as well as a novel genetic algorithmwith a decoding
procedure, which exploits the devised structural properties. The performance of the genetic
algorithm is improved by implementing learningmethods and utilizing lower bounds. Finally,
we present results from experiments on small to medium sized problem instances.

Keywords Project scheduling · Resource overload · Tardiness penalty · Quasistable
schedules · Genetic algorithm

1 Introduction

Instances of the resource overload problems often arise when costly fluctuations in resource
utilization are to be minimized and a maximum project duration is given. However, as the
scheduling of projects is an inherent multi-objective optimization problem, the exceeding of
the prescribed project makespan can be allowed at additional cost. This enables a trade-off
between a more balanced resource utilization and a project completion delay to achieve a
more cost and resource efficient outcome. These additional cost may represent opportunity
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cost for further orders, an earlier market entry, or alternatively tardiness penalties for missed
deadlines (Schnabel et al., 2018).

For the resource overload problem and other resource levelling problems several mixed-
integer linear models are presented in Rieck et al. (2012) and Rieck and Zimmermann
(2015). To solve the resource overload problem heuristically, Ballestin et al. (2007) propose
a population-based greedy algorithm that constructs quasistable schedules, among which
there is at least one optimum. Schnabel et al. (2018) consider a resource-constrained project
scheduling problem where the objective includes revenues, which decrease with an increas-
ing makespan, as well as resource overload cost. They observe that for this problem, unlike
the resource overload problem, there is not always an optimum among the quasistable sched-
ules, which would allow for a search space reduction. To solve the proposed problem, they
present a genetic algorithm with different representations based on an activity list and either
a maximum allowable overload per resource or per activity. Atan and Eren (2018) discuss the
impact of relaxing a prescribed project makespan at no additional cost for different resource
levelling problems to identify the minimum project duration for the best levelled schedule.
As an heuristic, the authors use the population-based approach of Ballestin et al. (2007) but
do not restore the quasistableness of the schedules. In Kim et al. (2005), the project duration
is extended stepwise in increments of one time unit to determine different schedules for a
project manager to decide from. Hegazy (1999) present objectives that consider the sum of
the project duration and a resource levelling metric, which can be weighted. Koulinas and
Anagnostopoulos (2012) formalize the approach of Hegazy (1999) further by introducing
a trade-off coefficient to weight the cost factors in the objective function. Ponz-Tienda et
al. (2013) present an adaptive genetic algorithm for a resource levelling problem in which
exceeding the prescribed project makespan is allowed with a tardiness penalty that increases
linearly with the project extension. In Hartmann and Briskorn (2022), an overview of fur-
ther incorporations of makespan-dependent cost and respectively the minimization of the
project makespan into various project scheduling problems is given. For instance, Shadrokh
and Kianfar (2007) and Gerhards and Stürck (2018) consider a resource investment problem
with tardiness penalty. An overview of the discussed literature related to resource levelling
is given in Table 1, focusing on the utilized objective function and solution approach.

In this paper, we discuss the resource overload problem with different variants of tar-
diness penalties. The latter applies if a prescribed project makespan is exceeded, whereby
a distinction is made between constant and variable cost for each time unit of delay. We
close the research gap outlined in Schnabel et al. (2018) by proofing that the problem can
be divided into subproblems for which there is at least one optimum among the quasistable
schedules. As a result, the search space can be reduced, and in most cases only a considerably
smaller subset of schedules needs to be investigated in order to obtain an optimal solution.
The findings obtained are of particular importance since they also apply to other bi-objective
problems whose objective function is a weighted sum of a locally concave function and
a concave function. Besides mixed-integer linear model formulations, we present a novel
genetic algorithm with a decoding procedure, which constructs only solutions within the
derived set of quasistable schedules of different project durations. In addition, the solution
representation indicates a start time selection rule for each activity and two learning methods
are incorporated in the algorithm. We contribute a parametrization of the resource overload
problem with tardiness penalty and test the two solution approaches on small to medium
sized problem instances.

This paper is organized as follows: Sect. 2 is devoted to the problem description of the
resource overload problem with tardiness penalty. Some structural properties of the basic
resource overload problem are presented in Sect. 3 and are adapted to consider tardiness
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Table 1 Overview of relevant literature

First author Year Objective Solution approaches

RL RL + TP RV – ROP MIP GA POP w. QS

Hegazy 1999 �
Kim 2005 �*

Ballestin 2007 � �
Koulinas 2012 �
Rieck 2012 � �
Ponz-Tienda 2013 � �
Rieck 2015 � �
Atan 2018 �* �
Schnabel 2018 � � �

RL: Resource levelling (including resource overload), TP: Tardiness penalty, RV: Revenue
MIP: Mixed-integer linear program, GA: Genetic algorithm, POP w. QS: Population based approach with
quasistable schedules
* different project makespans are investigated

penalty, too. The application of these findings to other (bi-objective) problems is discussed in
Subsection 3.4. In Sect. 4, mathematical model formulations are presented. Section5 intro-
duces our novel genetic algorithm. We test the solution approaches in experiments, which
are described in Sect. 6 and the paper is concluded in Sect. 7.

2 Problem description

Weassume that a project consists of a set of activities V , where each activity i ∈ V is assigned
a processing time pi ≥ 0 that cannot be interrupted. Among the activities, there are n real
activities and two fictitious activities 0 and n + 1 with p0 = pn+1 = 0 corresponding to the
project start and completion. The start time of activity i is given by Si ≥ 0, where the project
start is assumed to be scheduled at time zero (S0 = 0). Moreover, the completion time of
an activity i is defined as Ci := Si + pi . Between the start times of two activities i and j ,
general temporal constraints S j − Si ≥ δi j are assumed with δi j ∈ R. A minimum time lag
between the start of activity i and j applies if δi j ≥ 0, whereas δi j < 0 denotes a maximum
time lag. Among the maximum time lags, the maximum project duration d (specifying the
underlying planning horizon) is described by a temporal constraint from project completion
to project start S0 − Sn+1 ≥ −d . For each activity i an earliest start time ESi and latest
start time LSi can be computed by means of some longest path algorithm (Ahuja et al.,
1993), from which the total float T Fi := LSi − ESi of each activity i can be derived.
A schedule S = (S0, S1, . . . , Sn+1) contains a sequence of start times, which are ordered
according to the numbering of the activities. To visualize the project, we use an activity-on-
node network N = (V , E, δ), where the processing time pi is given above each node i ∈ V
and an arc 〈i, j〉 ∈ E depicts a minimum or maximum time lag δi j .

A schedule that satisfies all the temporal constraints is termed time-feasible and the set of
those schedules is denoted as ST . The set of renewable resources, which are utilized to carry
out the activities, is represented byR. Each activity i is assigned a resource utilization rik ≥ 0
for each resource k ∈ R, which are listed below the respective activity in the project network
N . The resource function rk(S, ·) of a schedule S and a resource k is a stepwise function,
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Fig. 1 Activity-on-node project network

which computes the sum of the resource utilization of every active activity at point in time
t ∈ R≥0. An activity i is active if the current time t is greater or equal to the start time Si and
less than Ci . A resource profile visualizes the resource function rk(S, ·) for a given resource
k ∈ R and schedule S in dependence of t . The resources are assumed to be uncapacitated.
However, a resource threshold Yk is defined for each resource k ∈ R from which positive
deviations in the resource utilization rk(S, t) at any point in time t are penalized.

Example 1 Figure1 depicts an activity-on-node network which contains three real activities
and one renewable resource. The earliest project completion is 10 and the maximum project
duration d is limited to 14. Activity 2 has only one feasible start time S2 = 1 and activity 3
has to be scheduled at S3 = 6. Only activities 1 and 4 have a total float greater than zero.

The objective of the basic resource overload problem coincides with the cumulative cost of
positive deviations from the resource thresholds Yk . The positive deviations for each resource
can be weighted differently by cost factors ck ∈ R>0.

fROP (S) =
∑

k∈R

ck

∫

t∈[0,d]
(rk(S, t) − Yk)

+dt

The resource overload problem is to determine an optimal schedule that minimizes the objec-
tive function fROP while satisfying the temporal constraints. It can be formulated as follows:

Minimize fROP (S)

subject to S j − Si ≥ δi j 〈i, j〉 ∈ E

S0 = 0

Si ≥ 0 i ∈ V

As there are no other constraints such as resource capacities, the set of time-feasible
schedules equals the set of feasible schedules i.e. S = ST .

For the resource overload problem with tardiness penalty, we assume that besides a max-
imum project duration d a prescribed project makespan T ∈ [ESn+1, d] is given. T can be
exceeded at additional cost fT P , which is added to the objective function (Ponz-Tienda et
al., 2013; Shadrokh & Kianfar, 2007).

f (S) = fROP (S) + fT P (S)

Here, we assume that the prescribed project makespan T and the maximum project duration
d are positive integers. Additionally, we suppose that an increase in tardiness penalty only
occurs with each whole unit of time and not with each arbitrarily small delay. First, the delay
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Fig. 2 Tardiness penalty function
with a constant delay cost factor
ρ = 1

Fig. 3 Tardiness penalty function
with a variable delay cost factor
ρ13 = 0.5 and ρ14 = 1.25

cost factor ρ ∈ R≥0 is assumed to be constant, with the value of fT P increasing linearly
with an additional time unit to be penalized. The resulting tardiness penalty function fT P is
piecewise defined depending on the project completion Sn+1 and has jump points at every
integer time point greater or equal to T . Moreover, fT P is lower semi-continuous on all
schedules.

fT P (S) =
{
0, Sn+1 ∈ [

ESn+1, T
] ;

ρ · (a + 1), Sn+1 ∈ (
T + a, T + a + 1

]
, a ∈ {

0, . . . , d − T − 1
}
.

In typical real-world examples, different additional cost ρt ≥ 0, t ∈ {T + 1, . . . , d}
may apply for every additional time unit of delay. The resulting function fT P is also lower
semi-continuous and monotonically increasing.

fT P (S) =

⎧
⎪⎨

⎪⎩

0, Sn+1 ∈ [
ESn+1; T

] ;
�Sn+1�∑

t=T+1

ρt , Sn+1 ∈ (
T + a; T + a + 1

]
, a ∈ {

0, . . . , d − T − 1
}
.

Example 2 In the following, an example is given for each tardiness penalty function variant.
As in the project network in Fig. 1, a maximum project duration of 14 is assumed. Let T = 12
be the prescribed project makespan. In Fig. 2, a tardiness penalty function with a constant
delay cost factor ρ = 1 is shown. Figure3 depicts a tardiness penalty cost function with
variable, increasing, delay cost factors.

Remark 1 The formulation of fT P can be further generalized for constant and variable delay
cost. Instead of no cost ( fT P = 0) for Sn+1 ∈ [

ESn+1; T
]
, any constant ρ0 ∈ R can be

utilized. Obviously, for two schedules S1 and S2 with fT P (S1) < fT P (S2), the same holds
even if the constant ρ0 is considered. The generalization can be used to represent a reward
structure for an early project completion which may only decrease with an increase of the
project duration like in Schnabel et al. (2018). However, such a function must be multiplied
by −1 to satisfy the minimization objective.

As shown in Neumann et al. (2003), the basic resource overload problem is alreadyNP-
hard in the strong sense. Thus, the same applies to the resource overload problem with
tardiness penalty. However, finding a feasible solution is easy, because the ES-schedule is
always feasible.
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Fig. 4 Resource profile of
ES = (0, 0, 1, 6, 10)

3 Structural properties

In this section, we discuss order-based structural properties and properties of the resource
overload objective function. These can be utilized to reduce the search space of the basic
resource overload problem, and then similarly for variants with tardiness penalty. As
described in Neumann et al. (2003), a strict order relation is implicated if an activity j starts
after an activity i is completed (S j ≥ Si+ pi ). A schedule induced order O(S) is introduced to
refer to all strict order relations between pairs of real activities (i, j) ∈ {1, . . . , n}×{1, . . . , n}
that are met by the schedule S. Let

ST (O(S)) := {S ∈ ST | S j ≥ Si + pi for all (i, j) ∈ O(S)}
denote the set of all time-feasible schedules that satisfy the strict order given by O(S). A
set of schedules that induces an identical strict order as schedule S is termed equal order set
S=
T (O(S)). If the start time Si of at least one activity i is shifted forward or backward from

a time feasible schedule S, resulting in a non-identical and time-feasible schedule S′, this
movement is referred to as a shift. An order preserving shift describes a shift from a schedule
S to another feasible schedule S′ such that the order of the initial schedule is preserved
(O(S′) ⊇ O(S)). Two shifts that transform a schedule S into a schedule S′ and a schedule
S′′ are called a pair of opposite shifts if S′′ − S = λ(S′ − S) with λ < 0 holds. A feasible
schedule S is said to be quasistable if there is no pair of opposite order preserving shifts.

3.1 Resource overload problem

The function fROP is continuous and thus also lower semi-continuous.Moreover, the function
is concave on each equal order set, denoted as locally concave. Neumann et al. (2003)
proof that there is always a quasistable schedule among the optima for functions f that are
locally concave. A quasistable schedule S has useful structural properties: For the start time
of each activity i ∈ V , there is always an activity j ∈ V for which either a precedence
relationship S j = Si + pi or S j = Si − p j or a temporal constraint S j = Si + δi j or
S j = Si − δ j i is binding (Neumann et al., 2003). If δi j ∈ Z (including d), pi ∈ N0 and
ST 
= ∅, quasistable schedules contain only integer start times. Since there is always an
optimum among quasistable schedules, there is also always an integer optimum solution.
Therefore, the time horizon can be discretized for the resource overload problem without
loss of solution quality. In the following, we assume that the temporal input fulfills the above
mentioned conditions. In addition, if only one renewable resource is used in an example, the
corresponding indices are omitted.

Example 3 We consider again the project depicted in Fig. 1. The resource profile of the ES-
schedule is displayed in Fig. 4. The ES-schedule induces the order O(ES) = {(1, 3), (2, 3)}.
In Fig. 5, fROP is depicted in dependence of the start time S1 of activity 1 where the cost per
resource overload unit is assumed to be c = 1 and the resource threshold is set to be Y = 1.
It is obvious that the minimum of fROP (S1) is at S1 = 10. In the same figure, the different
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Fig. 5 Resource overload
function, schedule induced
orders, equal order sets and
quasistable schedules

Fig. 6 Resource overload
function with a constant delay
cost factor

induced orders are highlighted in different shades depending on the start time of activity 1.
Since identical schedule induced orders belong to the same shade of gray, their respective
equal order sets are the union of all schedules marked with the same shade. It can be seen
that the resource overload function is concave on equal order sets. The quasistable schedules
are marked with dots, which include the minimum of the function fROP .

3.2 Constant delay cost factor

In this subsection, we discuss structural properties of the resource overload problem with a
constant delay cost factor.

Example 4 We consider again the project depicted in Fig. 1. For fT P , a constant delay cost
factor ρ = c = 1 is assumed for every additional time unit of delay when the prescribed
project makespan of T = 12 is exceeded (see Fig. 2). In contrast to the resource overload
function in Fig. 5, fROP can also be visualized as a function of the completion C1 of activity
1. This is useful here because the completion of activity 1 and the project completion Sn+1

coincide if activity 1 completes at time 6 or later. Moreover, activity 1 is the only real activity
that can be shifted. As a result, fT P and thus f can also be represented as a function of
C1 in this specific example. In Fig. 6, the course of function f is depicted. The quasistable
schedules are marked in light gray. It can be seen that the minimum of the combined objective
function f is reached when activity 1 ends at 12, which is the prescribed project makespan
T . However, this schedule is not a quasistable schedule.

In the following, we provide an extension of the set of quasistable schedules that contains
at least one optimum for resource overload problems with a constant delay cost factor. This
set is obtained by dividing the problem into two subproblems based on different minimum
and maximum project durations and determining the set of quasistable schedules for both
subproblems.

Theorem 1 Given a resource overload problem with a constant delay cost factor P, two
subproblems P ′ and P ′′ can be constructed. The set of feasible schedules of subproblem P ′
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is further limited by an adjusted maximum project duration of T . The set of feasible schedules
of the second subproblem P ′′ is further limited by a minimum project duration of T . Among
the quasistable schedules of the two subproblems P ′ and P ′′, there is at least one optimal
solution of P.

Proof A resource overload problem with a constant delay cost factor can be divided into
two subproblems. For the first subproblem, a maximum project duration of T applies. This
subproblem has a set of feasible schedules ST,≤T , all of which have no tardiness penalty.
Therefore, this subproblem is a basic resource overload problem and among the set of its
quasistable schedules, there is at least one of its optima. The second subproblem has a
minimum project duration of T and a maximum project duration of d . The connected set
of time-feasible schedules ST ,≥T contains schedules S ∈ ST with a project duration of

T ≤ Sn+1 ≤ d. The equal order sets of this subproblem are denoted as

S=
T (O(S))≥T := S=

T (O(S)) ∩ {
S′ ∈ ST : S′

n+1 ≥ T
}
.

On the equal order sets S=
T (O(S))≥T , the resource overload function fROP is still concave.

However, for this subproblem the combined objective function f is not equal to fROP because
the values of the tardiness penalty function fT P can be greater than zero. To nevertheless
determine schedules that minimize f in this subproblem, the auxiliary function fh is defined
for S ∈ ST with Sn+1 ≥ T .

fh(S) = ρ · (
Sn+1 − T

)

The function fT P is the ceiling function of fh within the discussed subproblem. Therefore,
fh underestimates the value of fT P at every point in time t ∈ [T , d] by a value within the
interval [0, 1). Moreover, functions fh and fT P have the same objective function values if the
project makespan Sn+1 is an integer and thus fROP + fT P = fROP + fh for all schedules
with Sn+1 ∈ N. The auxiliary function fh is concave and therefore also locally concave.
The sum of locally concave functions, here fROP and fh , is again locally concave. Since
fROP + fh underestimates f and they have the same value for each schedule with only
integer start times, among the quasistable schedules that satisfy T ≤ Sn+1 ≤ d is at least
one optimum of this subproblem.

Remark 2 Let I be an instance of the resource overload problem with a constant delay cost
factor. The project network N of I can be modified to represent the temporal constraints
of either of the two subproblems described. By adding an arc 〈n + 1, 0〉 with the weight
δn+1,0 = −T , the project network N is adapted to the first subproblem. For the second
subproblem an arc 〈0, n + 1〉 with a weight of δ0,n+1 = T is added, which indicates a
minimum time lag and therefore a minimum project duration.

3.3 Variable delay cost factor

We now assume that for every additional time unit of delay different additional tardiness
penalty cost ρt ≥ 0, with t ∈ [

T + 1, . . . , d
]
apply, which results in a monotonically

increasing penalty function. This function cannot be necessarily underestimated by a linear
function. Moreover, it can be seen in Fig. 7 that the minimum is not among the schedules
described in Theorem 1. The problem is therefore divided into further subproblems.

Theorem 2 Givena resource overloadproblemwith a variable delay cost factor, the following
subproblems can be constructed. The subproblem P ′ has a set of feasible schedules that is
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Fig. 7 Resource overload
function with a variable delay
cost factor

further limited by an adjustedmaximumproject duration of T . For all a ∈ {0, . . . , d − T − 1}
an additional subproblem Pa is defined. The set of feasible schedules of each Pa is further
limitedbyaminimumproject durationof T+a andbyamaximumproject durationof T+a+1.
Among the quasistable schedules of the subproblems P ′ and Pa for all a ∈ {0, . . . , d−T−1},
there is at least one optimal solution of P.

Proof It can be argued analogously to the previous proof. However, the resource overload
problem with variable delay cost factors is divided into d − T + 1 subproblems. The first
subproblem has a maximum project duration of T . In this subproblem no tardiness penalty
occurs and therefore it is a basic resource overload problem. The additional subproblems
are distinguished by their minimum and maximum project duration, which are computed
in dependence of a ∈ {0, . . . , d − T − 1}. The minimum project duration of each of these
subproblems is equal to T + a and the maximum project duration is equal to T + a + 1. For
each of these subproblems, a set of feasible schedules ST ,a and equal order sets S=

T ,a(O(S))

can be defined as

ST ,a := ST ∩ {
S ∈ ST : T + a ≤ Sn+1 ≤ T + a + 1

}

and
S=
T ,a(O(S)) := S=

T (O(S)) ∩ {
S′ ∈ ST : T + a ≤ S′

n+1 ≤ T + a + 1
}
.

Again an auxiliary function fh can be defined in dependence of Sn+1 for S ∈ ST .

fh(S) =
�Sn+1�−1∑

t=T+1

ρt + (Sn+1 − �Sn+1� − 1) · ρ�Sn+1�−1

Because fT P (S) equals the ceil of fh(S) for every schedule S ∈ ST ,a , the latter function
underestimates the value of the former fT P . Moreover, the functions fh and fT P have the
same objective function values for each integer project duration. The auxiliary function fh is
concave on every subproblem and therefore also concave on every equal order setS=

T ,a(O(S))

but not necessarily concave beyond the described subsets. The sum of fh and fROP is again
concave on S=

T ,a(O(S)). Because the sum of fh and fROP underestimates f in the respective
subproblem and has the same value for each schedule with only integer start times, among
the set of quasistable schedules of each described subproblem is at least one of its optima.
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3.4 Comprehensive application of findings

The structural properties devised can also be used to reduce the search space of other project
scheduling problems including resource levelling problem variants with resource constraints
ormakespan-dependent resource thresholds.Generally,Theorem1applies to problemswhose
objective is a sum of a locally concave function like the resource overload function and a
concave function like a linear increasing cost function. Instead of the concave function,
lower semi-continuous functions that can be underestimated in the way described can be
utilized. As a result, the basic resource levelling problem, which considers total squared
utilization cost, and whose objective function is also locally concave could be combined with
the described tardiness penalty functions into a single-objective and the search space of the
problem can be reduced. The same applies for the total adjustment cost objective, where the
cost result from increases and decreases in resource utilization. Structural properties of this
metric are discussed in Kreter et al. (2014). The release and re-hire objective adapts the total
adjustment cost objective by subtracting the maximum resource utilization for each resource
(Atan & Eren, 2018). Since the maximum resource utilization for each resource is the same
for all schedules within the same equal order, it can be assumed to be a constant for this set.
Therefore, the release and re-hire objective is still locally concave.

As discussed, Schnabel et al. (2018) consider an objective function consisting of
makespan-dependent revenue reduced by overload cost, which can be transformed into the
objective function studied in this paper as described in Remark 1. However, they also apply
resource constraints. In this case, not all time-feasible schedules are also resource feasible.
However, all schedules within the same equal order set have the samemaximum resource uti-
lization for each resource. If one of these maximum resource utilizations violates a resource
constraint, then all schedules in the equal order set are not feasible. Furthermore, if a schedule
within an equal order set satisfies the resource constraints, all schedules in the equal order sets
are feasible. Therefore, the resource overload problem with tardiness penalty and resource
constraints can again be divided into the delay cost variant-dependent subproblems. For each
subproblem, the objective function f is still concave on each resource-feasible equal order
set and the extension of the quasistable schedules contains at least one optimum.

Another problem is the resource overload problem with makespan-dependent resource
threshold, which was proposed by Atan and Eren (2018). In this problem variant, the thresh-
olds for evaluating resource deviations decreases with an increasing project makespan. Since
resources are usually acquired or employed in whole units, it does not appear reasonable for
the resource thresholds to be exactly the average of total resource utilization and the project
makespan. If the average resource utilization is rounded to the largest integer less or equal,
the resulting objective function f is lower semi-continuous. To ensure that jump points only
occur at integers time points, we apply the ceil function to the project makespan Sn+1.

f (S) =
∑

k∈R

ck

∫

t∈[0,d]

(
rk(S, t) −

⎢⎢⎢⎣

∑
i∈V

rik · pi
�Sn+1�

⎥⎥⎥⎦

︸ ︷︷ ︸
Yk (S)

)+
dt

This problem can be divided into subproblems with the same resource thresholds Yk(S)

for all k ∈ R. Each of the subproblems resembles a resource overload problem with fixed
resource thresholds. In contrast to the aforementioned problems, the set of feasible schedules
for every subproblem is not necessarily closed. However, if this is the case the limit points
of the set of feasible schedules are the boundary of another subproblem, where at least one
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resource threshold is greater than in the considered subproblem. Because fROP is lower
semi-continuous, the schedules on the boundary of the other subproblem have an equal or
lower objective value than every schedule in the first considered problem. Thus, the search
space of this problem can also be restricted to quasistable schedules with different project
durations.

4 Mathematical model formulation

Like most model formulations for project scheduling problems, we utilize a time-discrete
formulation, which was introduced by Pritsker et al. (1969). Binary variables xit are defined
for every activity i ∈ V and for every feasible start time t ∈ Wi = {ESi , . . . , LSi }, where

xit =
{
1, if activity i starts at point in time t,

0, otherwise.

To determine the total resource overload, non-negative overload variables okt for every k ∈ R
and t ∈ T := {0, . . . , d −1} are utilized (Rieck & Zimmermann, 2015). The formulation for
the resource overload problem with a constant delay cost factor is given in (1)–(9), where the
auxiliary variable �T is utilized to represent the delay of the prescribed project makespan
like in Ponz-Tienda et al. (2013).

Minimize
∑

k∈R

ck
∑

t∈[0,d−1]
okt + ρ · �T (1)

subject to
∑

t∈Wi

xit = 1 i ∈ V (2)

∑

t∈Wj

t · x jt −
∑

t∈Wi

t · xit ≥ δi j 〈i, j〉 ∈ E (3)

x00 = 1 (4)

okt ≥
∑

i∈V
rkt

min{t;LSi }∑

τ=max{ESi ;t−pi+1}
xiτ − Yk k ∈ R, t ∈ T (5)

�T ≥
∑

t∈Wn+1

t · xn+1,t − T (6)

xit ∈ {0, 1} i ∈ V , t ∈ Wi (7)

okt ≥ 0 k ∈ R, t ∈ T (8)

�T ≥ 0 (9)

The objective function (1) to be minimized describes the overall cost depending on the total
resource overload cost and the tardiness penalty. Constraints (2) and (7) express that for each
activity i ∈ V exactly one start time is applicable. Inequalities (3) ensure that all temporal
constraints are satisfied and (4) sets the project start at time zero. Constraints (5) and (8)
describe the resource overload of resource k at time t . Finally, inequalities (6) and (9) define
the delay of the prescribed project makespan, which cannot be negative.

In order to incorporate variable delay cost factors, the objective function (1) has to be
revised to (12). Moreoever, constraints (6) and (9) have to be exchanged with (10) and (11),
for which the applicable tardiness penalty ρτ can be calculated beforehand for each feasible
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τ ∈ Wn+1.

ρτ :=
τ∑

t=0

ρt

Constraints (10) and (11) define a new auxiliary variable ρ that specifies the tardiness penalty
of the chosen project makespan.

ρ ≥
∑

t∈Wn+1

ρt · xn+1,t (10)

ρ ≥ 0 (11)

Since ρ already considers the tardiness penalty over all time units of delay, the objective
function is adapted as described in (12).

Minimize
∑

k∈R

ck
∑

t∈[0,d−1]
okt + ρ (12)

Since the number of constraints (5) increases not only proportionally with the number of
renewable resources, but also with the length of the planning horizon, the time discretization
and maximum project duration is of importance.

5 Genetic algorithm

Motivated by population based approaches described in related work (Ballestin et al., 2007;
Schnabel et al., 2018), e.g., a genetic algorithm appears promising for solving the resource
overload problem with tardiness penalty. We propose a decoding procedure that only consid-
ers start times for each activity that result in quasistable schedules in regard to the tardiness
penalty variant-dependent project subproblems. In addition, the genetic algorithm employs
a representation that specifies for each activity a start time selection rule. To further improve
the performance of the algorithm, we apply two learning methods: one to generate a diverse
initial population and the other to analyse the best solutions of different generations in order
to obtain adaptive mutation probabilities.

5.1 Representation

A schedule is encoded by a matrix with three rows and a column for each activity i ∈ V \{0}.
The genes of the project completion n + 1 are of importance as they allow exploration of
different subproblems given by their maximum project makespans, for instance T . The first
row of the representation contains random keys rk1,i ∈ [0, 1], which refer to the scheduling
priority of activity i (Kolisch & Hartmann, 1999). Preliminary tests have shown that using
an activity list instead of priority values does not improve the performance of our genetic
algorithm. The second value for each activity i ∈ V \ {0} is a binary value b2,i specifying
one of two start time selection rules. A value b2,i = 1 signifies that an objective function
value-oriented selection of start time Si is conducted. The other start time selection rule
(b2,i = 0) is based on an ascending order of possible start times Si for activity i . Starting
from zero, each possible start time Si is assigned an equal sized subinterval of the domain of
rk3,i according to the specified order. The domain of the random key rk3,i is chosen as [0, 1)
so that each subinterval has exactly the same length and the domain has a normalized length
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of 1. For each activity i , rk3,i then lies exactly in one of the subintervals. The associated start
time Si is then selected. The same technique for decoding rk3,i is utilized in Abbasi Iranagh
(2015).

⎡

⎣

activity 1 activity 2 ... activity n+1

rk1,1 rk1,2 . . . rk1,n+1

b2,1 b2,2 . . . b2,n+1

rk3,1 rk3,2 . . . rk3,n+1

⎤

⎦
scheduling priority ∈ [0, 1]
start time selection rule ∈ {0, 1}
order-based selection ∈ [0, 1)

5.2 Initial population

The genetic algorithm starts with the generation of an initial population. It is realized in
three steps using opposition-based learning to enhance the diversity of the initial population
described in Rahnamayan et al. (2008). First, a number of solutions corresponding to the
given population size is generated by randomly choosing the random key values from their
respective interval with a uniform distribution. In contrast, we choose to set the binary values
b2,i to 1 for all activities i ∈ {1, . . . , n + 1}. For each individual in the starting population,
an individual is generated with opposite random keys in regards to its interval boundaries
to create an opposite population. The binary values are still all set to 1. Finally, the initial
population is composed by taking the best solutions of both sets until the given population
size is reached. To further increase diversification, a newly generated solutionwhose schedule
has already been obtained by another individual is always discarded.

5.3 Evolution

Anewpopulation is created using an elitist strategywhere a fixed number of the best solutions
from the population is directly inserted into the next one. The fitness value of an individual is
set to be equal to the difference between the worst objective function value in the generation
and its objective function value. To complete the new population, as many children are
produced as necessary tomaintain the population at the predetermined size. A pair of children
is created by picking two parent solutions from the populationwith a roulette wheel selection,
applying a uniform crossover and then a mutation operator. Afterwards, the parent pair is
reinsert into the population. In our parametrized uniform crossover, it is determined for one
child whether the set {rk1,i , b2,i , rk3,i } of each activity i ∈ {1, . . . , n + 1} is inherited from
the first parent or the second. Thereby, a predefined crossover probability gives the probability
of selecting {rk1,i , b2,i , rk3,i } of the first parent. For the other child, the opposite choice is
made for each activity i ∈ {1, . . . , n + 1}. Afterwards, a mutation operator is applied to
both children considering a given mutation probability. Within the mutation operator, it is
decided separately for each representation entry as to whether it is altered. For rk1,i and rk3,i
a new value is drawn from the respective uniform distribution with a given probability or the
current one is retained. For b2,i the current entry is changed to the other value with the same
probability. It is possible to obtain children whose schedule already exists among the parent
solutions or the children already created. To prevent premature convergence, these children
are discarded.

To enable further learning, mutation probabilities for binary values b2,i are distinguished
for each individual activity i and the two possible values. These mutation probabilities are
adjusted in the evolutionary process based on good solutions. When a new best solution
is obtained, it is stored separately along with other solutions that were the best when they
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first occurred. As soon as a predefined number l of these solutions is acquired, they are
evaluated. If for an activity i the binary entry b2,i is the same across all solutions considered,
the mutation probability for altering b2,i with this exact value is divided by a scaling factor
s greater than 1. The given mutation probability for the random keys remains unaffected. If,
after that, a new best solution is found, the oldest considered solution is dismissed and the
mutation probabilities for the binary values are again updated.

5.4 Decoding procedure

Algorithm 1 shows our decoding procedure, which is partly derived from schedule generation
schemes described in Neumann and Zimmermann (1999) and Neumann et al. (2003). It starts
with setting S′

0 := 0, resulting in a partial schedule S′.Moreover, the set of scheduled activities
C := {0}, the set of unscheduled activitiesC := {1, . . . , n+1} aswell as the earliest and latest
start times for every unscheduled activity are initialized (line 1–2). The decoding procedure
exploits that a schedule S is quasistable exactly if there is a spanning tree T = 〈V , ET , δT 〉,
where each arc 〈i, j〉 ∈ ET represents either a binding temporal or precedence constraint.
Thus, starting from S′

0 := 0, in each iteration the current partial spanning tree is extended
by a corresponding edge connecting an activity i ∈ C to an activity j ∈ C , resulting in a
quasistable partial schedule. For that purpose, a set of start times Di can be determined for
every activity i ∈ C . It consists of all start times Si ∈ {ESi , . . . , LSi } for which there is at
least one of the following constraints satisfied with at least one activity j ∈ C and S′

j ∈ S′:

1. Si = S′
j + δ j i (temporal constraint)

2. Si = S′
j − δi j (temporal constraint)

3. Si = S′
j + p j (precedence constraint)

4. Si = S′
j − pi (precedence constraint)

To additionally consider the quasistable schedules of all relevant subproblems, the decision
set Dn+1 of the project completion n + 1 is extended by the maximum project durations of
all subproblems that are necessary according to the tardiness penalty variant.

5. Sn+1 = S′
0 + T (constant delay cost factor)

6. Sn+1 = S′
0 + t, t ∈ {T , . . . , d − 1} (variable delay cost factor)

In each scheduling step, an activity h ∈ C is eligible for scheduling if Dh 
= ∅ (line 7–13).
Of the eligible activities, the activity i ∈ C with the highest rk1,i is chosen. Therefore, before
determining Dh for each activity h ∈ C , it is examined first for each h ∈ C whether rk1,h
exceeds the current highest priority value rk1,max in the respective iteration (line 6). If this
is the case and Dh 
= ∅, the current highest random key rk1,max is updated and activity h is
kept as activity i to be scheduled next. Otherwise, activity h is discarded for this iteration.
After all activities h ∈ C have been considered, the complete set Di of eligible start times is
determined for the activity i next to be scheduled (line 15–23). Once this set is established,
the start time selection rule specified by binary value b2,i must be taken into account. If
b2,i = 1, the increase of the resource overload objective is calculated for every scheduling
option t ∈ Di . Then, the start time t with the smallest value is chosen as S′

i (line 24). In
the case where multiple t ∈ Di result in the lowest resource overload function value, we
choose the earliest start time among them. If b2,i = 0, the interval [0, 1) is divided into m
subintervals, where m := |Di |. The subinterval [0, 1/m) is linked to the first entry in the
ascending sorted set Di , the second to the subinterval [1/m, 2/m) and so forth. Depending
on which subinterval rk3,i lies in, the corresponding start time S′

i is selected. The scheduling
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process of an activity i is completed when it is removed from the set of unscheduled activities
C and inserted into the set of completed activities C . If C is empty, the algorithm terminates.
The resulting schedule is always feasible.

Algorithm 1 Decoding procedure

1: Set S′
0 := 0, initialize C := {0} and C := V \ {0}

2: Compute ESi := d0i and LSi := −di0,∀i ∈ C
3: while C 
= ∅ do
4: Initialize i := −1 and rk1,max := −1
5: for h ∈ C do
6: if rk1,h > rk1,max then
7: for j ∈ C do
8: if (〈h, j〉 ∈ E and ESh ≤ S′

j − δhj ≤ LSh )

9: or (〈 j, h〉 ∈ E and ESh ≤ S′
j + δ jh ≤ LSh )

10: or (ESh ≤ S′
j − ph ≤ LSh )

11: or (ESh ≤ S′
j + p j ≤ LSh ) then

12: i := h, rk1,max := rk1,h .
13: break
14: Initialize Di := ∅
15: for j ∈ C do
16: if 〈i, j〉 ∈ E and ESi ≤ S′

j − δi j ≤ LSi then Di := D ∪ {S′
j − δi j }.

17: if 〈 j, i〉 ∈ E and ESi ≤ S′
j + δ j i ≤ LSi then Di := D ∪ {S′

j + δ j i }.
18: if ESi ≤ S′

j − pi ≤ LSi then Di := D ∪ {S′
j − pi }.

19: if ESi ≤ S′
j + p j ≤ LSi then Di := D ∪ {S′

j + p j }.
20: if i = n + 1 and constant delay cost then
21: Di := Di ∪ ({ESn+1, . . . , LSn+1} ∩ {T }).
22: else if i = n + 1 and variable delay cost then
23: Di := Di ∪ ({ESn+1, . . . , LSn+1} ∩ {T , . . . , d − 1}).
24: if b2,i = 1 then choose S′

i := argmin
τ∈Di

(� fROP (τ ))

25: else choose τ ∈ Di according to rk3,i and set S
′
i := τ

26: Remove activity i from C , insert activity i into C
27: for h ∈ C do
28: ESh := max(ESh , S′

i + dih), LSh := min(LSh , S′
i − dhi )

5.5 Lower bound of the optimal objective function value

The lower bound (LB) for the objective function value of the resource overload problem
with tardiness penalty described in this subsection can be used as a termination criterion for
the genetic algorithm or otherwise as an estimate of its solution quality. To compute LB,
a lower bound for the cost of resource overload

∑
k∈R ckomin

kSn+1
can be estimated first for

every feasible project makespan Sn+1 ∈ {ESn+1, . . . , d}, to which the applicable tardiness
penalty fT P (Sn+1) must then be added. Of these values, the minimum is then used as the
lower bound for the optimal objective function value.

LB := min
Sn+1∈{ESn+1,...,d}

(
∑

k∈R
cko

min
kSn+1

+ fT P (Sn+1)

)
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Fig. 8 Resource utilization of all
real activities at their feasible
execution times for a project
makespan of 12

There are several ways to determine the variables omin
kSn+1

for each k ∈ R, of which the
maximum is selected. An option is to calculate the total resource utilization of resource k
and reduce it by the product of the project duration Sn+1 and the resource threshold Yk . This
lower bound can be tightened by determining for each time period t ∈ {0, . . . , Sn+1 − 1} the
sum of resource units rmax

k (t) utilized by all real activities that can possibly be in execution.
If rmax

k is below the threshold Yk in one or more periods, this may increase the resource
overload that must occur in the remaining periods. A second way to determine the minimum
resource overload omin

kSn+1
can be to look at the resource utilization rik of each activity and

evaluate whether and how much it exceeds Yk alone during its execution.

Example 5 We adjust the project network shown in Fig. 1 by adapting the minimum time lag
between the project start 0 and activity 1 to δ01 = 1, resulting in an earliest start ES1 = 1.
Moreover, the minimum and maximum time lag between the start of activity 2 and the start
of activity 3 is increased to exactly 6. In this project, the three real activities have a total
resource utilisation of 12 resource units. Let us consider a project makespan of Sn+1 = 11.
Calculating the minimum resource overload omin

11 by reducing the total resource usage by the
resource threshold Y = 1 multiplied by the project duration 11 yields in a value of 1. If we
depict the maximum resource units rmax possibly utilized in each time period (see Fig. 8),
we see that in period 0 the maximum resource utilization is 0 and thus below the threshold
Y = 1. The minimum resource overload omin

11 therefore can be adjusted to 2. This is a tight
lower bound for a project duration of 11 as the optimal resource overload function value
equals 2 resulting, for example, from the schedule S = (0, 5, 1, 7, 11). The other variant
of determining omin

kt is not relevant here because none of the activities alone exceeds the
resource threshold.

6 Experiments

In the following section, the performance of theMIP-formulation as well as the novel genetic
algorithm is investigated. We first describe howwe extend well-known instance sets to incor-
porate tardiness penalty. Then, the parametrization of the solution approaches is described.
Finally, we present and discuss the results of experimental results for constant and variable
delay cost, distinguishing between different prescribed project makespans and maximum
project durations.

6.1 Test design

The computational tests are based on the test sets UBO for the RCPSP/max, which were
obtained by the problem generator ProGen/max (Schwindt, 1998), cf). Every test set incor-
porates 90 instances with either 10, 20, 50 or 100 real activities and 5 renewable resources.
In addition, the restrictiveness of Thesen (RT) is given for the instances that measures the
degree to which the total number of feasible activity sequences is restricted by the precedence
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relationships. If RT = 0, the real activities are all parallel to each other. RT = 1 occurs only
for a serial project network. For the test instances, RTs in {0.25, 0.5, 0.75} are targeted.

In order to perform our experiments, further parametrizations of the instances are required.
The maximum project duration is set with a coefficient α > 1 to d := �αESn+1�. Moreover,
the prescribed project makespan T is initialized as T := �βESn+1�where 1 ≤ β < α. The
resource thresholds Yk for all k ∈ R are chosen according to the total resource utilization
and the prescribed project makespan T instead of the maximum project duration used in
Neumann et al. (2003) (Yk := ⌈∑

i∈V rik · pi/T
⌉

, k ∈ R). We assume that the cost factor
ck for each overload unit of resource k is 1. To calculate the tardiness penalty, a factor γ

is introduced. The constant delay cost factor ρ is then calculated as ρ := γ
∑

k∈R Yk . To
test the solution approaches with variable delay cost factors, monotonically increasing cost
factors ρt are chosen.

ρt :=
⎧
⎨

⎩
γ · ∑

k∈R
Yk · (1 + γ )(t−T ), t > T ;

0, t ≤ T .

Weuse C++ in theMicrosoft Visual Studios 2022 development environment to implement
the mixed-integer linear models and the genetic algorithm. For the MILPs the solver IBM
ILOG CPLEX 20.1 is utilized. For CPLEX, the time limit is set to be 1800s for all instances.
Preliminary results have shown that providing the previously described lower bound to the
solver does not improve the run time or the best objective function value overall. The param-
eters of the genetic algorithm are chosen as follows: the population size is set according to
the number of real activities in the instance to be 2n. The proportion of elitist individuals
is defined as 0.35 of the population size. The crossover probability is set to be 0.7 and the
mutation probability as 0.1. For small instances with n = 10, the genetic algorithm runs until
K -iterations without an improvement of the best objective function value are performed.
We choose K := 500. For larger instances, a time limit is set. For instances with n = 20,
the run time is limited to 30s, for n = 50 and n = 100 to 300s. The genetic algorithm
is terminated early if the best objective function value equals the calculated lower bound.
Preliminary runs have shown that the two learning methods (opposition-based learning and
adapting mutation probabilities) lead to a better overall result for instances with 50 or more
activities. Therefore, the learning methods are only applied for these instances. To create an
initial population for smaller instances, only the first step described in Sect. 5.2 is performed.
To adjust the mutation probabilities in case of n = 50 and n = 100, the number of analysed
solutions is set to l := 3 and the scaling factor to s := 4.

For the first experiments, the maximum project duration is set using α := 1.25. In order
to examine the influence of different prescribed project makespans, we solve the instances
with β ∈ {1.0, 1.1}. To determine γ , preliminary CPLEX runs are performed for instances
with 10 activities, where optimality can always be proven in a short time for each instance
solution. However, runswith γ = 0.3 for the resource overload problemwith a constant delay
factor and γ = 0.1 for variable delay cost factors have a slightly higher average run time
in contrast to other parametrizations. Moreover, it is observed that the project durations of
the optimal schedules are comparatively widely scattered across instances compared to other
parametrizations. Therefore, γ. = 0.3 for the resource overload problem with a constant
delay factor and γ := 0.1 for variable delay cost factors is investigated for all instance sizes.
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Table 2 Resource overload problem with a constant delay cost factor with α = 1.25

Instances CPLEX Genetic algorithm

α β γ n #opt ∅gap ∅topt [s] ∅gapr ∅tga [s] ∅ss

1.25 1.0 0.3 10 90 0 0.92 0.35 0.59 23.36

20 79 1.17 149.71 0.76 30.00 19.90

50 0 44.22 −− −6.68 300.02 20.72

100 0 60.92 −− −13.42 300.14 17.55

1.25 1.1 0.3 10 90 0 1.00 0.14 0.81 23.61

20 82 0.82 160.86 0.51 29.15 20.39

50 0 38.62 −− −4.34 300.02 21.25

100 0 60.16 −− −21.25 300.12 17.51

6.2 Results

All of the tests were conducted on computers with 64 GB RAM and an Intel(R) Core(TM)
i7-7700K with 4x4.20 GHz and 8 threads. The results provide the number of instances per
test set which are solved to optimality and its optimality is proven (#opt) and the average
gap over all instances (∅gap) achieved by CPLEX. The average run time of the instances
counted in #opt is denoted as ∅topt and is measured in seconds. To investigate the quality
of the genetic algorithm, the average relative gap (∅gapr ), which is calculated in regards
to the best objective function value obtained by CPLEX, is depicted. The average run time
in seconds of the genetic algorithm is denoted as ∅tga . To obtain an estimate of the search
space reduction, the number of start times within the decision set |Di | is compared to the
number of feasible start times LSi − ESi + 1 for each activity i ∈ V \{0} and the average
over all solutions in all generations within a test set is denoted as ∅ss.

6.2.1 Constant delay cost

Table 2 summarizes the results for the resource overload problem with a constant delay
cost factor, where we differentiate between two mentioned prescribed project makespan
parametrizations, which also lead to different resource thresholds. For all of the instances
with 10 activities, an optimal solution is found and its optimality is proven by CPLEX in
under 11s. Moreover, for the majority of instances with 20 activities (90 %) the solver
determines an optimum within half an hour and ∅topt is for both different prescribed project
makespan parametrizations relatively equal. Aswe expected, the solution quality of the solver
decreases with an increasing number of activities. CPLEX could not prove the optimality
for any of the instances with 50 or 100 activities and the average gap is approximately 40%
for n = 50 and 60% for n = 100 after half an hour of run time for both β. However, the
gap varies significantly across the instances. The gap is considerably larger than the average
for instances with a rather parallel network (RT ≈ 0.25), whereby for more serial networks
with RT ≈ 0.75 the gap is significantly smaller. For the test sets with 50 or 100 activities,
the correlation coefficients of RT and the solver gap lie in the range of −0.8 to −0.7.

The last columns of Table 2 reveal the performance results of the genetic algorithm. On
instances with n = 10 and n = 20, the genetic algorithm performs similarly well as CPLEX.
But especially for instances with 20 activities, the average run time ∅tga is significantly
shorter. An early termination due to reaching the calculated lower bound never occurs for
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instances with a tight prescribed project makespan (β = 1.0). When setting β = 1.1,
considering the calculated lower bound leads to the termination of the genetic algorithm 5
times with 10 activities and 3 times with 20 activities. All of the affected instances have a
project duration that does not exceed the prescribed project makespan T and therefore no
tardiness penalty applies. On larger instances with 50 activities, the genetic algorithm obtains
an average relative gap of−6.68% and−4.34%. Comparing the solution quality of instances
with 100 activities, the genetic algorithm obtains on average significantly better results than
CPLEX within a significantly shorter run time. With a tight prescribed project makespan
(β = 1.0), CPLEX only obtains a better solution for 5 out of 90 instances. With β = 1.1 this
is only the case for one instance.

Considering the average search space size ∅ss, it is evident that the genetic algorithm
only considers a small subset of feasible start times and thus a search space reduction is in
place. The values of ∅ss for both prescribed project makespan parametrizations are similar,
although no separate consideration of T as the project makespan is necessary for β = 1.0 in
contrast to β = 1.1. In addition, we investigate the average of the binary values b2,i for all
i ∈ V \{0} for the best solution obtained for each instance, in order to draw conclusions about
the start time selection rules. The average varies widely for instances with 10 activities (0.25
to 1.0) and the least for instances with 50 and 100 activities (0.51 to 0.88). In regards to the
good performance of the genetic algorithm, an objective function value-oriented start time
selection, indicated by b2,i = 1, seems to be appropriate for the resource overload problem
with tardiness penalty. This is especially the case with medium-sized instances.

To test the usefulness of opposition-based learning and mutation probability adjustment,
we conduct runs with 50 and 100 activities where we excluded the learning methods. The
results show that for all four runs the gap is at least 0.9% higher without them, with the
difference being greater for instance sets with 100 activities, being as high as 3.4%. With
additional runs, we observed that the benefit of adapting mutation probabilities is far greater
than the impact of opposition-based learning. We regard this as reasonable, since the latter
affects only one generation.

6.2.2 Variable delay cost

In Table 3, the results of the experiments of the resource overload problemwith variable delay
cost factors parametrized with γ = 0.1, α = 1.25 and β ∈ {1.0, 1.1} are provided. Generally,
the results shown are similar to the previous ones with a constant delay cost factor. Regarding
small instances, the genetic algorithm terminates early for the same instances and the same β

as before. As the number of activities increases, the superiority of genetic algorithm is evident
again. Regarding the test set with 100 activities and β = 1.1, the genetic algorithm obtains
a better result than CPLEX for each of the 90 instances. For a tighter prescribed project
makespan (β = 1.0), the genetic algorithm yields a better solution for 80 instances within
300s. As expected, the average search space is larger than for the test sets with a constant
delay cost factor. However, increasing β from 1.0 to 1.1 results in a reduction of the number
of project durations, which additionally need to be considered in the genetic algorithm. This
search space reduction is also evident from ∅ss. The lowest average binary value for the best
solution of the instances here is 33%, obtained for an instance with n = 10 and β = 1.1.
Increasing the number of activities, leads also to an increase of the lowest average binary
value found in the best solutions in both test sets up to 0.57. To us, this once again underlines
the effectiveness of the two start time selection rules considered.

123



170 Annals of Operations Research (2024) 338:151–172

Table 3 Resource overload problem with a variable delay cost factor with α = 1.25

Instances CPLEX Genetic algorithm

α β γ n #opt ∅gap ∅topt [s] ∅gapr ∅tga [s] ∅ss

1.25 1.0 0.1 10 90 0 1.36 0.34 0.60 27.21

20 82 0.98 155.70 0.67 30.00 23.42

50 0 43.57 −− −6.18 300.02 21.79

100 0 59.49 −− −13.54 300.12 21.65

1.25 1.1 0.1 10 90 0 0.85 0.16 0.81 26.68

20 80 0.98 93.88 0.80 29.01 22.23

50 0 39.42 −− −6.20 300.02 21.62

100 0 62.76 −− −28.75 300.13 18.94

Table 4 Resource overload problem with a constant delay cost factor with α = 1.5

Instances CPLEX Genetic algorithm

α β γ n #opt ∅gap ∅topt [s] ∅gapr ∅tga [s] ∅ss

1.5 1.2 0.1 10 90 0 3.13 0.46 0.46 17.57

20 63 2.57 349.73 1.09 26.03 14.93

50 0 34.52 −− −11.34 300.02 15.57

100 0 59.36 −− −32.82 300.14 12.62

6.2.3 Constant delay cost with a longer time horizon

We test the robustness of the solution approaches by increasing α := 1.5 for instances with
a constant delay cost factor (Table 4). We assume that with a longer planning horizon, the
prescribed project makespan already allows more float. Therefore, we choose β := 1.2. To
maintain a scattering of optimal project durations, γ is reduced to 0.1. With the increased
planning horizon, both approaches deteriorate on instances with 10 and 20 activities, with
CPLEX being more affected especially regarding the number of optimal solutions found
and its optimality proven as well as ∅topt . For n = 10, the genetic algorithm terminates
16 times due to reaching the calculated lower bound, which explains the lowest average
run time for n = 10 over all experiments. For n = 20, the genetic algorithm terminates
9 times early. The respective instances for both numbers of activities have again a project
duration equal or less than T . Across all experiments, the best average relative gaps (∅gapr )
are obtained for problem instances with 50 and 100 activities. Since the number of start
times considered in the genetic algorithm depend primarily on the number of other activities
and not on the planning horizon in contrast to the mathematical model formulation, this
performance improvement seems reasonable to us. In addition, for 83 instances containing
100 real activities the calculated lower bound is better that the one provided by CPLEX. If
this lower bound is considered, the average gap for the genetic algorithm is 40.46% and thus
nearly 20% lower than the average gap of CPLEX.
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7 Conclusion

In this paper, we have shown that the set of quasistable schedules can be adapted to reduce
the search space for the resource overload problem with tardiness penalty. Besides a mixed-
integer linear model, we present a genetic algorithm with a decoding procedure that ensures
that only solutions within the reduced search space are examined. The experiments show that
small instances are solved efficiently by CPLEX. Our genetic algorithm performs similarly
well as the solver on these instances, however on average it is slightly faster. On the majority
of the medium sized instances, the devised genetic algorithm outperforms the mixed-integer
linearmodels implemented inCPLEX.An area of future research could be the development of
an exact algorithm for the resource overload problemwith tardiness penalty. To further enable
a trade-off between resource levelling and the project makespan, a multi-mode resource
overload problemwith tardiness penalty can be investigated. Of particular interest are activity
execution modes that lead to different processing times (Węglarz et al., 2011). Both constant
resource utilizations for each execution mode and varying execution intensities in terms of
a workload perspective can be considered (Bianco et al., 2016; Tarasov et al., 2021). Future
research could address, to what extent the search space can be reduced for these extensions
and which prerequisites that have to be satisfied for that.
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