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Abstract
We consider the problem of a project manager of a matrix organization responsible for the
timely completion of projects arriving over time and requiring the usage of a set of resources
under his/her purview. A project is defined by a set of activities, precedence relations between
activities, resource requirements, a customer due date, and a priority (a weight). Arriving
projects are released to a flow control system that monitors the progress of activities and
schedules the set of available activities, i.e., activities that are ready to be processed, as
appropriate. A critical feature of such control systems is the decision process for choosing
the next activity to seize a given resource. This is the focus of this paper. In the past several
decades, various heuristic priority rules have been proposed in the literature to support this
type of decision in differing settings such as the job shop problem and the deterministic
resource-constrained project scheduling problem. A gap exists with respect to testing the
various rules all together in the more realistic dynamic-stochastic multi-project environment
when the objective is to minimize weighted project tardiness. The purpose of this paper is
to fill this gap. Results show that the priority rule “Weighted Critical Ratio and Shortest
Processing Time” (W(CR + SPT)) is the best performing rule with respect to minimizing
weighted project tardiness. W(CR+SPT) is shown to be a variant of the family of “Modified
Due Date” rules first introduced by Baker and Bertrand (J Oper Manage 1(3):37–42, 1982).
Repeated application of Duncan’s Multiple Range test demonstrates the robustness of our
findings. For the environmental parameters (due date tightness, variation of expected activity
durations, and utilization of resource), the W(CR + SPT) rule is dominant with respect to
weighted project tardiness among the eleven priority rules tested. Only when the number of
resources is very modest (either 1 or 3 resources) or under a purely parallel resource network
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is W(CR+SPT) not the dominant rule. In those cases, its variant W(CR+GSPT) is the best
performing rule with respect to weighted project tardiness.

Keywords Multiple project · Scheduling · Constrained resources · Stochastic · Priority rules

1 Introduction

In many project-based organizations such as R&D, a matrix structure is employed with func-
tional departments processing projects. Projects of different types (such as new development
projects, incremental development projects) arrive in a stochastic manner and their activities
have to be processed by the resources available in the functional departments. A relevant
objective is to minimize average weighted project delay in which project delay (tardiness)
is defined as the time the project finishes after its due date and weights indicate the impor-
tance of projects. The arrival time of projects and the duration of activities are stochastic.
This problem is termed as dynamic stochastic resource-constrained multi-project schedul-
ing problem (DSRCMPSP). Despite its practical relevance, only limited research has been
undertaken so far to address this problem. In the literature, the multi-project scheduling
problem is predominantly stated as static and deterministic with the set of projects given
at the outset and all parameters such as activity durations known in advance. However, in
reality these assumptions are generally not met. First, projects arrive continuously over time.
Second, project parameters such as activity durations are stochastic. Thus, the multi-project
scheduling problem is in many cases both dynamic and stochastic in nature. As we discuss
in Sect. 2.2, under the assumption of Markovian interarrival times and activity processing
times, the problem can be modeled as Markov Decision Processes. However, due the curse
of dimensionality large-scale real-world problems cannot be solved to optimality. Hence, the
prevailingmethod for approaching these real-life complicated conditions is via implementing
a dynamic scheduling policy to construct a schedule using a priority rule for specifying the
order of processing of activities by a resource. In addition to scalability, priority rules are
prevalent in industry as they are easy to understand and to communicate. Against this back-
ground, this paper aims to provide a comprehensive comparison of well-known priority rules,
which have been proposed for simpler settings, for the total weighted tardiness objective and
to adapt them as needed for application to the more practically relevant DSRCMPSP. From
the literature, in particular from the literature on the deterministic multi-project schedul-
ing problem, we identify a number of priority policies which have performed well in prior
computational studies. Whereas all these rules have shown promise for the total weighted
tardiness objective, they have never been compared together in the same study nor in the
dynamic stochastic resource-constrained setting, which we do here.

In order to introduce the problem formally, we follow the framework of Adler et al. (1995)
and depict an organization as a set R of resources. Resource r ∈ R comprises cr identical
units, each capable of processing one activity at a time. Projects arrive dynamically according
to a stochastic arrival process. We consider a stream of projects j = 1, . . . , J where each
arriving project j is of type p j ∈ P . Project type p ∈ P has a weight wp , an interarrival rate
λp , and is comprised of a set of activities Vp and a set of precedence relationsAp of the type
finish-to-start with minimum time lag of 0. Each precedence relation between activity i and
i ′ is written as a tuple (i, i ′) ∈ Ap . In order to be processed, activity i ∈ Vp seizes one unit
of resource rip ∈ R for a stochastic duration with mean dip . Resource r ∈ R has a capacity
of cr units. The set Er (t) refers to the set of activities being processed by resource r at time
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t ≥ 0, where each activity i of project j is referred to by tuple (i, j). On arrival of project
j at time a j , a due date Dj is assigned. We define the variables Si j ≥ 0 as the start time of
activity i of project j . Furthermore, let variable Tj ≥ 0 be the tardiness of project j . The
objective is to minimize the long term expected average weighted project tardiness with J
being the total number of projects arriving at the system:

Min Z = limJ→∞E

⎡
⎣ 1

J

J∑
j=1

w j · Tj

⎤
⎦ (1)

subject to the following constraints

a j ≤ Si j j = 1, . . . , J ; i ∈ V j (2)

Si ′, j + di ′, j ≤ Si, j j = 1, . . . , J ; (i ′, i) ∈ Ap j (3)

|Er (t)| ≤ cr r ∈ R; t ≥ 0 (4)

Si j + di j − Dj ≤ Tj j = 1, . . . , J ; i ∈ V j (5)

Si j , Tj ≥ 0 j = 1, . . . , J ; i ∈ V j (6)

The decisions are on the start time of the activities Si j . These must neither be before the
arrival time a j of their projects (Constraint (2)) nor of the finish time of each of its predecessor
activities i ′ ∈ Ap j (Constraint (3)). Furthermore, for each resource r the number of activities
processed at any time t must not exceed its capacity cr (Constraint (4)). Finally, Constraint
(5) sets the tardiness of each project j . The objective function (1) minimizes the long term
expected average weighted project tardiness. Note that project arrival times a j and duration
of activities di j are random and thus the activity start Si j and the project tardiness Tj are
random variables.

This paper is organized as follows. In Sect. 2we provide a brief survey of past relatedwork.
In Sect. 3 we present the priority rules used in our study. Section4 provides the experimental
design of our computational study. In particular, we define the problem parameters used.
Section5 reports the results of the computational study. Section6 provides a summary and
conclusion.

2 Relevant literature

We begin in Sect. 2.1 with a general review of the class of approaches to the DSRCMPSP,
namely “scheduling policies” under which our work falls. Then, in Sect. 2.2 we briefly review
the relevant literature to identify priority rules as used by scheduling policies found in various
environments to be effective for minimizing weighted tardiness. Section3 then follows with
formal descriptions of the rules we consider and how (if needed) the rules were adapted for
use in the DSRCMPSP.

2.1 Scheduling policies

The general approach that we take to address the DSRCMPSP is to employ a scheduling
policy ω. Different definitions of a scheduling policy can be found in the literature (e.g., see
Stork, 2001). Here, we employ a general definition based on Fernandez et al. (1998).

Definition 2.1 A scheduling policy ω defines actions at decision times. A decision time t is
either the time of a new project arrival a j or the completion time of an activity Si j + di j . An
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action at decision time t consists for each resource r ∈ R with at least one idle unit to select
one activity (i, j) ∈ Wr (t) from the set of activities waiting to be processed in the queue in
front of the resource r .

A scheduling policy has to meet the nonanticipativity constraint (see Fernandez et al.,
1996), which states that only information known up to decision time t may be used. We
consider completion times of activities and arrival times of the projects arrived until t . For
stochastic project scheduling problems various classes of policies have been proposed (see
for example Möhring et al. 1984; Stork 2001). Our focus is on the class of resource-based
priority policies (RBP) of Stork (2001) that is defined as follows:

Definition 2.2 At decision time t , a resource-based priority policy (RBP policy) orders the
activities inWr (t) based on priorities obtained by a priority rule and selects activities accord-
ing to this order until there are either no more activities in the queue or no more resource
units are available.

Note that resource-based priority policies have the non-delay property, i.e., no activity,
which can be started at time t will be deliberately delayed to a later start time (see Kolisch,
1996). In processor scheduling this is termed as work-conserving policy (see Tassiulas &
Georgiadis, 1996). Resource-based priority policies combine priority rules with the parallel
schedule generation scheme (see Kolisch, 1996) that is compatible with the nonanticipativity
constraint (see Ballestin, 2007). An alternative to RBPs are activity-based priority policies
(ABPs) (see Stork, 2001) where the additional constraint exists that an activity with a lower
priority must not be scheduled at an earlier time than an activity with a higher priority. From
a theoretical point of view, ABPs have the advantage that Graham anomalies (see Graham,
1966) are avoided. However, experiments by Fliedner (2015) show that ABPs lead in many
cases to poor performance or even unstable behavior with an unbounded long term average
number of projects in the system. This is due to the fact that idleness of resources occurs
quite frequently such that the busy periods of the resources are not sufficient to cope with
the workload associated with the arriving projects. Recent computational results for the
deterministic single project problem indicate that resource-based policies lead to solutions
with smaller expected makespan (see Ballestin & Leus 2009, Ashtiani et al. 2011, Chen et
al. 2015).

2.2 Relevant priority rule literature

We classify the existing related literature according to the two dimensions: project arrival
(static vs. dynamic) and project information (deterministic vs. stochastic) resulting in four
fields, which are discussed below.

Static-deterministic multi-project scheduling In the static-deterministic case of the multi-
project scheduling problem, there are a number of projects which have to be scheduled. Each
project is available at the beginning of the planning horizon and all data is deterministic.
The objective is to minimize total weighted project delay. A recent survey of the literature
in this field is given by Gómez Sánchez et al. (2022). Notable works include Kurtulus and
Davis (1982), Kurtulus and Narula (1985), Lawrence and Morton (1993) as well as Tsai
and Chiu (1996). In each case, the authors undertake computational studies where they
test the performance of different priority rules. Browning and Yassine (2010a) extend the
investigation to larger sets of priority rules andgive amore in-depth analysis of the relationship
between problemparameters and rules performance. Browning andYassine (2016) extend the
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consideration to portfolios of development projects. Building upon the work of Browning
and Yassine (2010b), Van Eynde and Vanhoucke (2020) evaluate a large set of priority
rules on a new set of instances. They differentiate the priority rules into “single project
rules”, “coupled rules”, and “decoupled rules”. For single and coupled project rules, the
multiple projects are modeled as a single super-project network. This is solved by single
project rules using activity information only, while coupled rules are applying project and
activity information. Decoupled rules are comprised of a pair of rules, and the projects are
modeled separately. Using project information, the first rule is applied to select a project while
the second rule, using activity information, is applied to choose an activity of the selected
project. The experimental study shows better results for the decoupled rules. The best pair of
priority rules for the project and the activity selection are Minimum Total Work Remaining
(MINTWR) and Minimum Latest Start Time (MINLST), respectively, when solving the
instances of Browning and Yassine (2010a), while for solving the newly generated instances
of Van Eynde and Vanhoucke (2020), the best pair is Minimum Critical Path (MINCP)
and Minimum Dynamic Slack (MINSLK). In a follow-up study, Van Eynde and Vanhoucke
(2022) propose new summary measures for the static-deterministic multi-project scheduling
problem and test the decoupled priority rules on benchmark instances, generated employing
the new summary measures. Using the instance set of Van Eynde and Vanhoucke (2020),
Bredael and Vanhoucke (2022) undertake an extensive comparison of ten re-implemented
metaheuristics from the literature.

Static-stochastic multi-project scheduling In the static-stochastic multi-project schedul-
ing setting, each project is available at the beginning of the planning horizon, and activity
durations are stochastic. The literature on this problem is rather sparse. Wang et al. (2017)
undertake a computational study to assess the performance of priority rules on quality and
robustness.Quality is related to time-based objectives being the delay per project relative to its
critical path length aswell as an aggregated delaymeasure over all projects. Robustness refers
to the stability of the results obtained for the case with deterministic activity durations in the
presence of stochastic activity durations. The set of rules as well as the problem parameters
to control the generation of problem instances is based on the work of Browning and Yassine
(2010a). Wang et al. (2017) find that the Earliest-Due-Date-First (EDDF) rule performs best
overall. Since we focus on the weighted tardiness objective in a dynamic-stochastic setting,
we expect the results will not be applicable to our problem context.

Dynamic-deterministic multi-project scheduling In this setting, projects arrive over time
and the arrival time of the projects is stochastic. At the arrival of a project, all information
on that project is known with certainty. Dynamic deterministic multi-project scheduling is
treated intensively by Dumond and Mabert (1988). In this category we also place relevant
studies of the special case of the dynamic job shop scheduling problem. Notable works
concerned with project (job) tardiness include: Baker and Kanet (1983), Vepsalainen and
Morton (1987), Anderson and Nyirenda (1990) and Kutanoglu and Sabuncuoglu (1999).

Dynamic-stochasticmulti-project scheduling In this field of the literature,multiple projects
arrive in a stochastic fashion over time. Once a project has arrived, the information about
the duration of its activities is stochastic while all other project information is known with
certainty. The seminal paper that addresses dynamic-stochastic multi-project scheduling is
Adler et al. (1995). There, and later in Levy and Globerson (1997), a multi-project organi-
zation is modeled as a fork-join-queueing network in which projects arrive over time and
each activity of a project has to be processed by one specific function (resource) of the orga-
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nization. Activities of different projects are queued in front of the resources in order to be
processed. Scheduling in this context is addressed by different approaches.

Optimal and near optimal policies are computed based on Markov Decision Processes
(MDP) byChoi et al. (2007),Melchiors (2015) andSatic et al. (2022). SinceMDPs suffer from
the curse of dimensionality, the authors limit the number of projects tomake the problemmore
tractable. Besides that, Choi et al. (2007) and Satic et al. (2022) restrict their considerations
to projects where activities are processed in a strict linear order.

For problem instances of realistic size, priority rules are investigated by different authors.
Anavi-Isakow and Golany (2003) investigate the performance of a set of simple priority rules
in the context of project control mechanisms where projects are backlogged in front of the
system until a threshold for a specific state such as the number of projects in the system ismet.
They find for a single problem instance, with three project types and up to seven activities per
project, that the Shortest Processing Time rule performed best w.r.t. average flow time per
project. Melchiors and Kolisch (2009) undertake a simulation study in which they show that
the MINSLK rule as well as policies based on the bottleneck dynamic approach of Lawrence
and Morton (1993) provide good results. Chen et al. (2019) extend the work by Wang et
al. (2017) by taking into account new project arrivals. These are modeled using a second
set of projects, referred to as insertion portfolio, from which a new project is selected at a
random time as long as the number of projects being in process does not exceed a maximum
number. On each arrival of a new project, the priority rule for scheduling is selected based
on the state of the project portfolio, measured by the fraction of critical activities which have
been scheduled. Since the definition of the dynamic-stochastic multi-project environment as
well as the evaluation of solutions in Chen et al. (2019) differs fundamentally from ours, the
results are difficult to compare.

Besides empirical works of limited scope, there are some theoretical results for scheduling
fork-join-queueing networks. Baccelli et al. (1993) consider the case with a single project
type and resources with a single unit. For this case, they show the optimality of the First-
Come, First-Serve (FCFS) rule applied on the project level (where all activities of one project
are prioritized over the activities of another project) for minimizing the long term expected
project flow time. Since prioritizing on the project level leaves room for prioritization on the
activity level, the rule defines the class of so-called FCFS-policies. In our study we assess the
performance of FCFS-policies for minimizing total weighted tardiness for multiple project
types.

2.3 Positioning our work

Major drawbacks of the studies undertaken so far for the dynamic-stochastic multi-project
scheduling problem are the small sets of problem instances and limited time horizon of the
investigation. Adler et al. (1995) and Levy and Globerson (1997) aim at demonstrating the
power of fork-join-queueing network models as a process-oriented approach for the inves-
tigation of uncertainty in the context of dynamic and stochastic multi-project organizations.
The authors draw on single case studies from collaborations with industry partners and con-
sider, amongst other approaches, using priority rules for the scheduling task, where only a
limited number of rules are considered.

Chen et al. (2019) use only a limited set of projects arriving in the future and thus consider
only a limited time horizon. In such settings, long term effects, which may lead to differing
outcomes are neglected. A well-known problem related to scheduling in queueing networks
in a dynamic-stochastic context is the stability of the system. Stability implies that the long-
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term average number of projects in the system is finite. Kumar and Seidman (1990) show that
instability may occur for some scheduling policies leading to unbounded numbers of projects
in the system over time. This may happen even if the utilization per resource is strictly less
than than one. Our experimental design ensures stability of the systems.

To the best of our knowledge, no large-scale systematic investigations of the effects of
problem parameters on the performance of priority rules have been carried out. An exception
holds for the preliminary works of Melchiors and Kolisch (2009) and Melchiors (2015). In
this paper we undertake an elaborate computational study where we assess the impact of
several problem parameters on the performance of priority rule based scheduling policies.
We thereby extend the works of Melchiors and Kolisch (2009) as well as Melchiors (2015)
in several ways: First, we consider additional priority rules such as switching rules, where
one of them turns out to be clearly the best rule. Second, we assess the idea of embedding
priority rules into project-based FCFS policies as proposed by Baccelli et al. (1993). Third,
we find groups of rules with similar performance and distinguish between groups of rules
with statistically different performance by using the Duncan test.

3 Priority rules

The selection of the rules was based on their performance for similar problems with total
tardiness or total weighted tardiness objectives. Several of the priority rules to be discussed
below employ the expected length of the critical path of a project and the expected latest
start time of a project’s activities needed to meet the project’s due date. These parameters
are stochastic and depend on the state of the system and future scheduling decisions. As
described below, we derive these parameters employing a Monte Carlo simulation of the
resource-unconstrained system. The notation employed in presenting the rules is summarized
in Table 15 in Appendix A.

3.1 Basic rule types for minimizing tardiness

In searching the literature of scheduling rules designed for minimizing total weighted tar-
diness, we see that all such rules, in some way or another, combine information about the
input parameters due date, activity processing time, and weight. Looking closely at such
rules, we see two fundamental ways in which this information is considered. At a very basic
level, the first approach is to consider some ratio involving due dates and processing times. A
second approach is to consider a time-sensitive binary switch in emphasis from due date to
processing time, which gives rise to two basic families of rules: ratio rules and binary switch
rules.

Probably the first evidence of the “ratio” approach is found in the work of Carroll (1965)
and his so-called “c over t” dispatching rule which was inspirational for a series of works
by Lawrence and Morton (1993) and Morton and Pentico (1993). For binary switch rules
the seminal work is provided by Baker and Bertrand (1982) with their “modified due date”
priority rule and later further developed by Baker and Kanet (1983), Dumond and Mabert
(1988), Anderson and Nyirenda (1990) and Kanet and Li (2004). We provide below pre-
cise descriptions of how we adapted the ideas of these various authors to the DSRCMPSP
environment.
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3.2 Ratio rules

The ratio rules which we investigate include the family of bottleneck dynamic (BD) rules
proposed by Lawrence andMorton (1993) as well asMorton and Pentico (1993). The generic
form of the rules defines the priority of an activity (i, j) ∈ Wr (t) at time t to be

w j ·Ui j (t)

πi j (t)
. (7)

The basic idea of bottleneck dynamic rules is to balance the cost w j · Ui j (t) of delaying
activity (i, j) for one period against the marginal opportunity cost πi j (t) associated with
starting (i, j) one period earlier. The term w j ·Ui j (t) for the delay cost has two components.
The weight w j , which reflects the maximum cost for increasing the tardiness of project j by
one period and the urgency factor Ui j , 0 ≤ Ui j (t) ≤ 1, defined as

Ui j (t) = exp

[
−max

(
0, (li j − t)

)

k · dri j (t)

]
. (8)

In the numerator of Eq. (8), li j is the latest start time of activity (i, j) and thus li j − t is
the slack of activity (i, j). In the denominator, dri j (t) is the average expected duration of
activities waiting in front of resource ri j at time t where ri j is the resource required by activity
(i, j). The factor k is a scaling factor denoted as the “lookahead parameter”. For nonpositive
slack the urgency factor is 1 and it decreases exponentially to zero for positive slack.

To estimate the opportunity costs πi j (t), Lawrence and Morton (1993) propose “myopic
activity costing” (MC) or “global activity costing” (GC). Myopic activity costing considers
only activity (i, j) to be scheduled on resource ri j , which yields opportunity cost

πi j (t) = πri j (t) · di j
cri j

. (9)

The rationale for myopic activity costing is that scheduling activity (i, j) seizes fraction
1

cri j
of the capacity from resource ri j for di j periods. Each period is worth πri j (t), which is

the estimated opportunity cost for postponing the activities waiting in front of resource ri j
by one period. As all activities waiting for resource r only seize this resource, the fraction
πri j (t)

cri j
becomes πr (t)

cr
and thus a constant term no longer relevant for the selection. Hence, by

omitting the constant term, Eq. (9) reduces to πri j (t) = di j .
Global activity costing (GC) takes into account the opportunity costs of all unfinished

activities of project j including activity (i, j) given in the set U j (t). Morton and Pentico
(1993) assume that to expedite project j all not yet finished activities (i ′, j) with i ′ ∈ U j (t)
of project j have to be started immediately and consecutively.We thus obtain the opportunity
cost

πi j (t) =
∑

m∈U j (t)

πrmj (t) · dmj

crmj

(10)

with resource prices πr (t) set either by uniform resource pricing according to Eq. (11) given
in Lawrence and Morton (1993) or by dynamic resource pricing according to Eq. (12) given
in Morton and Pentico (1993).

πU
r (t) = 1 (11)
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πD
r (t) =

∑
(i, j)∈Wr (t)

w j ·Ui j (t) (12)

Combining the two activity costing methods, myopic and global, with the resource pricing
schemes, uniform and dynamic, we obtain the following bottleneck dynamic (BD) priority
rules.
BD with Myopic Activity Costing (BD-MC)

max
(i, j)∈Wr (t)

{
w j ·Ui j (t)

di j

}
(13)

BD with Global Activity Costing and Uniform Resource Pricing (BD-GC-U)

max
(i, j)∈Wr (t)

⎧⎪⎨
⎪⎩

w j ·Ui j (t) ·
⎛
⎝ ∑

m∈U j (t)

dmj · πU
r (t)

crmj

⎞
⎠

−1
⎫⎪⎬
⎪⎭

(14)

BD with Global Activity Costing and Dynamic Resource Pricing (BD-GC-D)

max
(i, j)∈Wr (t)

⎧⎪⎨
⎪⎩

w j ·Ui j (t) ·
⎛
⎝ ∑

m∈U j (t)

dmj · πD
r (t)

crmj

⎞
⎠

−1
⎫⎪⎬
⎪⎭

(15)

The priority rules (13)–(15) are similar to the well-known weighted shortest processing time
(WSPT) rule. A formal definition of the WSPT rule is given in Eq. (25). The BD-MC-rule
multiplies for each waiting activity its WSPT-value with its urgency factor Ui j (t). In this
way, the project due date is taken into account. If all activities in the queue of resource r
have nonpositive slack and hence their urgency factor Ui j (t) = 1, the BD-MC rule equals
the WSPT rule. The two global activity costing rules BD-GC-U and BD-GC-D generalize
the WSPT-rule by considering all activities of the entire project not yet processed.

3.3 Binary switch rules

The basic idea behind binary switch rules is to provide a priority value for an activity, inwhich
emphasis switches (at a critical point in time) from the activity’s due date to its processing
time. The major rules falling into this category include the various forms of the “modified
due date” approach first provided by Baker and Bertrand (1982). We study several variations
of the modified due date approach applying it to the DSRCMPSP as outlined below.

Weighted Modified Due Date (WMDD) At decision time t , we select an activity according
to

min
(i, j)∈Wr (t)

{
1

w j
· max

{
Dj − t, qi j

}}
. (16)

In Eq. (16), Dj is the due date of project j , qi j is the expected time for the activities along
the critical path from activity (i, j) to the project completion, i.e., the tail of activity (i, j).
Note that WMDD gives an activity a priority at time t based on either its project’s due date
or the expected time of its project’s earliest completion.

Weighted Modified Activity Due Date (WMOD) This rule selects activity (i, j) following

min
(i, j)∈Wr (t)

{
1

w j
· max

{
di j , Di j + t

}}
. (17)
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The estimate of the activity’s due date Di j is calculated as Di j = 0.5 · (Dmax
i j − D

min
i j ) with

the maximum due date
D

max
i j = Dj − qi j + di j (18)

and the minimum due date
D

min
i j = a j + r i j + di j (19)

where r i j refers to the expected time for the activities along the critical path from the start
of the project to activity (i, j), i.e., the head of the activity (i, j).

Weighted Critical Ratio and Shortest Processing Time (W(CR+SPT))
First developedbyAnderson andNyirenda (1990) and studied byKutanoglu andSabuncuoglu
(1999) in the dynamic job shop setting, the CR+SPT rule is an interesting variation to the
WMOD approach. The name CR+SPT is somewhat of a misnomer as it suggests a linear
combination ofCRandSPT, rather than the “either-or” logic construction ofWMOD.The rule
is applied at the activity level (like WMOD) and like WMOD it sets priority to the greater of
an activity time till due or its processing time. The variation consists of dynamically changing
an activity’s due date (and thus its time till due) by multiplying it by the activity’s critical
ratio. The critical ratio CRi j (t) is the ratio of time till project j is due to the remaining
work content on the critical path to completion of j , i.e., CRi j (t) = (

Dj − t
)
/qi j such that

activities with larger CRi j (t) are less critical. This idea is used to obtain amodified (expected)
activity duration D′

i j = CRi j (t) · di j that is inserted into the classical WSPT rule as follows

min
(i, j)∈Wr (t)

{
1

w j
· max

{
D′
i j , di j

}}
. (20)

For activities with low critical ratio, the activity durations are increased in this rule. If all
activities have a critical ratio less than one, then the rule reduces to WSPT.

Weighted Critical Ratio and Global Shortest Processing Time (W(CR+GSPT)) This
rule extends W(CR+SPT) by considering the sum of the expected durations of all unfinished
activities, instead of the expected duration of only the current activity (i, j). With DG ′

i j =
CRi j (t)

∑
m∈U j (t)

dmj , we obtain

min
(i, j)∈Wr (t)

⎧⎨
⎩

1

w j
· max

⎧⎨
⎩DG ′

i j ,
∑

m∈U j (t)

dmj

⎫⎬
⎭

⎫⎬
⎭ . (21)

Following the distinction of the bottleneck dynamic rules of Morton and Pentico (1993)
into local and global rules as discussed in Sect. 3.2, we categorize the rule W(CR+SPT) as
local and the rule W(CR+GSPT) as global because the former considers only the expected
duration of activity (i, j) while the latter considers the sum of the expected durations of all
not finished activities, including activity (i, j).

Weighted Due Date Modified Shortest Activity from Shortest Project (WSASP-DD)
This rule represents a final variation of the binary switch approach. It was originally studied
by Kurtulus and Davis (1982) in the job shop environment and later adapted by Kurtulus
and Narula (1985) for the static deterministic resource-constrained multi-project case, and
by Dumond and Mabert (1988) for the dynamic deterministic multi project case. We adapt
it here for the DSRCMPSP by setting the activity’s priority at time t to be

min
(i, j)∈Wr (t)

{
w j · (li j − t

)
for li j − t < 0

1
w j

· (q0 j + di j
)
otherweise

}
, (22)
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where li j − t is the activity’s slack at time t , and q0 j is the tail of the dummy start activity
(0, j) of project j , i.e., the expected length of the critical path of project j . As described by
Dumond and Mabert (1988), SASP-DD is a refinement of the SASP of Kurtulus and Narula
(1985), which combines the features of shortest activity time with minimum slack with the
switch occurring when slack is depleted.

3.4 Benchmark rules

In addition to the rules outlined above, we investigate the following rules, which are com-
monly used for comparison in many of the studies cited above.

First-Come, First-Serve (FCFS) Here, we select activity(i, j) according to

min
(i, j)∈Wr (t)

{
ai j

}
, (23)

with ai j denoting the arrival time of activity (i, j) at resource ri j .

Weighted Minimum Slack (WMINSLK) Activity selection follows

min
(i, j)∈Wr (t)

{
wp j · (li j − t

)
for li j − t < 0

1
wp j

· (li j − t
)
otherwise

}
. (24)

Note that we modified WMINSLK such that for the case of negative slack, i.e., li j − t < 0,
the priority value is still positive.

Weighted Shortest Processing Time (WSPT)

min
(i, j)∈Wr (t)

{
di j
w j

}
(25)

Random (RAN) This policy randomly selects activities for scheduling.We employ the RAN
rule to serve as a baseline for rule comparisons.
Finally, we note that for all rules, ties are broken randomly.

4 Experimental design

We begin this section with a discussion of the specific assumptions for the simulation study.
We then outline the relevant parameters for the generation of problem instances and the
simulation.

4.1 Preliminaries

For each project type p ∈ P we assume a Poisson arrival process with rate λp . Arriving
projects are numbered in the order of arrival by assigning an index j irrespective of their type.
Activity durations are assumed to be exponentially distributed with expected value dip . The
assumption of exponentially distributed interarrival times of projects and duration of activities
is quite general and in line with the literature (see, e.g., Satic et al., 2022). An advantage of the
exponential distribution is that only limited information is required and that the distributions
are general and do not depend on a specific application or industry. Maximum allowed flow
times A j are drawn from the uniformly distributed interval

[
(1 − β) · Ap, (1 + β) · Ap

]
,
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Table 1 Systematically altered
levels of the system parameters

System parameter Values

|R| 1, 3, 5, 10, 15, 20

ρ 0.7, 0.9

CVd
r [0, 0.4], [0.8, 1]

where Ap denotes the mean maxiumum allowed flow time for project type p. Then, due
dates Dj are derived from A j by Dj = a j + A j . The number of projects in the system is
restricted to Nmax; otherwise the system might not reach steady state in the sense that the
system exhibits unstable system behavior if non-optimal scheduling policies are used (see
Kumar & Seidman 1990 as well as 2008). Nmax and Ap for all p ∈ P are determined by
simulation runs in which activities are scheduled with the RAN policy. In the first run, we
do not restrict the number of projects |J (t)| at any time t . In the next run, we set Nmax to the
number of projects which is not exceeded for 99% of the time. As a consequence, the system
is nearly an open system without limitation on the number of projects. In another RAN run,
taking into account Nmax as determined above, we calculate Ap such that the percentage of
completed projects of type p ∈ P with flow time C j − a j ≤ Ap equals 1 − αp . Parameter
αp measures the percentage of tardy projects of type p when using the RAN scheduling
policy. We employ αp to take into account that the difficulty of meeting due dates depends
on multiple factors, among others the utilization of resources (see Ramasesh, 1990). As αp

is a statistical measure defined on the realizations of project flow times, it allows control of
the due date tightness to be independent of other problem parameters. Furthermore, as RAN
does not use any information, the due date tightness does not depend on specific scheduling
policies. Finally, we discuss a normalization of the results. Instead of using the weighted
tardiness Z(ω) obtained by (priority) policy ω for a problem instance, we normalize the
results by applying

Zn(ω) = Z(ω)

Z(ωRAN)
(26)

where Zn(ω) is the average weighted tardiness obtained for a policy ω relative to the average
weighted tardiness obtained using the random policy ωRAN. In the following, we refer to
Zn(ω) as normalized weighted tardiness. The normalization has the advantage that when
averaging over the results from a set of problem instances, the values lie in a similar range
such that they have a similar impact on the mean. Furthermore, the performance can be
entirely explained by the information used by policy ω.

4.2 Generation of problem instances

The generation of problem instances is controlled by two sets of parameters, system param-
eters and project type parameters.
System parameters are the number of resources |R|, the system utilization ρ, and CVd

r ,
the coefficient of variation of the expected durations of activities processed on resource r .
The system parameters are systematically varied according to the parameter levels given in
Table 1.
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Table 2 Systematically altered
levels of the project type
parameters

Project type parameter Values

α 80%, 20%

β 50%

(|V1|, |V2|) (20, 20)

(w1, w2) (1, 2)

OS 0, 0.2, 0.4, 0.6, 0.8, 1.0

For each number of resources |R| we assume cr = 1∀ r ∈ R, i.e., each resource r can
process not more than one activity at a time. We assume identical utilization levels

ρr =
λ
∑

p∈P
∑

i∈Vpr
dip

|P| (27)

for every resource r ∈ R (such that ρr = ρ for all r ∈ R) with Vpr = {i ∈ Vp|rip = r} being
the set of activity types of project type p that are processed by resource r ∈ R. We attain a
given utilization level ρ by controlling the total arrival rate λ = λmax ·ρ with λmax = 0.1333.
Utilization ρ is set to 70% and 90%. For simplicity, the project type related arrival rates
λp have equal shares of λ such that λp = λ/|P| holds. The coefficient of variation of the

expected durations of activities processed on resource r is CVd
r , where CV

d
r is defined on dr ,

the expected duration of any activity arriving at resource r . For simplifying the computation,
we assume that expected durations are independent and identically distributed (i.i.d.). Note
that the i.i.d. assumption is normally not met due to the impact of scheduling policies and
interdependencies between activities of the same project. For example, multiple activities
from the same project may arrive on completion of their common predecessors. The expected
duration of all activities processed on a resource r is given by

dr =
∑
p∈P

∑
i∈Vpr

λp · dip
λr

= ρr

cr
(28)

in which
λr =

∑
p∈P

λp · |Vpr | (29)

is the total arrival rate at resource r ∈ R. Due to ρr = ρ, ρr is controlled via the utilization.
Finally, CVd

r is given by

CVd
r =

√√√√√√

⎛
⎜⎝λr

∑
p∈P

λp

∑
i∈Vpr

d
2
i p(∑

p∈P
∑

i∈Vpr
dip

)2

⎞
⎟⎠ − 1, (30)

for the derivation see Melchiors (2015). For our experiment, we require that CVd
r ∈[

CVd,min,CVd,max
]
for all r ∈ R. The intervals are given in Table 1.

Project type parameters are due date tightness α, the variation of the maximum flow time
β, the number of activity types per project type |Vp|, weights of project types wp , and order
strength OS. Table 2 summarizes how the project type parameters were systematically varied.

We investigate problem instanceswith two project types (P = {1, 2})withweightsw1 = 1
and w2 = 2. As we want to obtain general insights into the effects of problem parameters,
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Table 3 |Vpr | for all p ∈ P and
r ∈ R |R| |Vpr |

1 20

3 7, 7, 6

5 4, 4, 4, 4, 4

10 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

15 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

20 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

Table 4 Sample specifications
2 Samples of (rip, dip) for all i ∈ Vp and p ∈ {1, 2}
2 Network samples for each level of OS

we consider similar (but not identical) project types. For the following parameters the two
projects types have identical parameter levels: Two levels of due date tightness α = 20%
and 80%, one level for the variation of the maximum flow time β = 0.5, and one level
for the number of activity types for each project type |Vp| = 20. The network structure is
individually controlled for each project type using the order strength (OS). OS is a [0, 1]
normalized measure for the number of all precedence relationships, including the transitive
ones.Avalue of 0 indicates a parallel networkwith no precedence relations between activities,
while a value of 1 indicates a network with all activities in strict sequence. A formal definition
of OS is given by Schwindt (1998). We set OS = 0, 0.2, 0.4, 0.6, 0.8, and 1 for both project
types. For each level of OS, except 0 and 1, two pairs of non-identical networks are sampled,
one for each project type. For the extreme values of OS = 0 and OS = 1, only one network
exists for each value. Two sets of tuples (rip, dip) for all i ∈ Vp and p ∈ P are randomly
sampled. For our design, we have sampled two sets in order to cover the range of possible sets
and to avoid that conclusions are made based on specific properties of a single set. For each
activity type (i, p) we sample dip taking into account CVd . When determining the resource
rip where activity type (i, p) has to be processed, information on the number of activity
types |Vpr | to be processed at each resource r ∈ R is required. In our design, each resource
should roughly process the same number of activity types. Thus, for fixed |Vp| = 20 for all
p ∈ P , the values for |Vpr | depend on |R| (see Table 3). Table 4 gives the specification of
the samples.

The total number of problem instances results from the product over the number of param-
eter levels (given in parentheses) with respect to |R| (6), ρ (2), CVd (2), α (2), OS (6), as
well as the number of sampled pairs for each level of OS (2) and the number of the sets
of tuples (rip, dip) (2), such that we obtain 1, 152 instances. For each problem instance we
simulate each of the 12 priority policies (11 rules and RAN as well as two runs for Nmax and
the quantile for αp respectively) in a simulation run which results in 16,128 runs.

4.3 Simulation set up

For the simulation of the problem instances we have programmed a discrete event simulation
tool in Java.When running the simulation, we employed a warm-up period of 10,000 projects
to reach steady state. The length of the warm-up period was determined using Welch’s
procedure (see Law, 2007) for problem instances with |R| = 20 and ρ = 0.9 in which
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a high number of projects is expected to be in the system. In this way, a longer warm up
period than necessary is obtained for most instances. The length of the observation period
was set to 20,000 projects. As a variance reduction technique, we employed common random
numbers (see Law, 2007) such that for each problem instance all priority policies are applied
on the same sample of projects with respect to type, interarrival times, and activity durations.
For each problem instance and priority policy we ran 10 replications such that the width of
the confidence interval of the objective function is at most 10%. For the BD-policies, the
look-ahead parameter was set to k = 1, as for this value good results have been obtained in
preliminary experiments.

5 Experimental results

In the following we provide the results of the simulation study. The performance of a rule is
measured as the normalized weighted tardiness Zn(ω) given in Eq. (26). Duncan tests with
a 5% significance level were undertaken to detect groups of rules where rules in different
groups show a significant difference in performance while rules in the same group do not.
First, in Sect. 5.1 we provide the results for the base case instances. Afterwards, in Sect. 5.2,
we discuss the results for variations of the base case.

5.1 Results for the base case instances

Table 5 provides the performance of all priority rules aswell as the group,which a rule belongs
to, according to the Duncan test. Next to the 11 rules presented in Sect. 3, we consider the
random rule RAN, which by definition has a normalized performance of Z

n
(RAN) = 1.

The groups as obtained from the Duncan test inform us for any priority rule if the rule has a
significant different performance thanRAN.Obviously, priority rules, which are significantly
worse than RAN, should not be selected. To facilitate reading the tables, we have highlighted
in this as well as the following tables selected rules with the colors used in Table 5, i.e.,
W(CR+SPT) in yellow,BD-GC-D ingreen,BD-MC ingray-blue,BD-GC-U in turquoise, and
W(CR+GSPT) in orange.W(CR+SPT) is the best rule, being significantly superior to all other
rules. This extends the findings of Kutanoglu and Sabuncuoglu (1999) for the dynamic job
shop problem. BD-GC-D, BD-MC, andWMOD rank second. The global counterparts of the
local rules, namely W(CR+GSPT) and BD-GC-U, show a significantly worse performance
than the local versions W(CR+SPT), BD-GC-D, and BD-MC. This confirms observations
made by Kanet and Hayya (1982) and Kutanoglu and Sabuncuoglu (1999) for the job shop
problem. The rule WMDD is significantly inferior to the random rule RAN.

In Sects. 5.1.1–5.1.5 we discuss the effects of the problem parameters α, |R|, OS, CVd
r ,

and ρ on the performance of the priority rules for the base case instances. For the analysis
we consider the overall effect obtained from averaging over subsets of problem instances.

5.1.1 Due date tightness

Table 6 shows the impact of due date tightness α defined as the percentage of tardy projects
obtained in the simulation study when using the RAN rule. The two levels are α = 0.2
(low due date tightness) with 20% tardy projects and α = 0.8 (high due date tightness)
with 80% tardy projects. It turns out that overall good rules are good for both levels of due
date tightness. W(CR+SPT) is the best rule for low due date tightness and together with
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Table 5 Overall performance of
the priority rules and groups
according to the Duncan test

Rule Z
n
(ω) Groups

W(CR+SPT) 0.31 g
BD-GC-D 0.44 f
BC-MC 0.46 f
WMOD 0.51 f
WMINSLK 0.62 e
FCFS 0.63 e
WSASP-DD 0.81 d
BD-GC-U 0.95 c
WSPT 0.98 c
RAN 1.00 b, c
W(CR+GSPT) 1.07 a, b
WMDD 1.11 a

Table 6 Performances of the priority rules for different due date tightness

BD-GC-D best for high due date tightness. Note for the three rules WSPT, W(CR+GSPT),
and WSASP-DD, the standardized performance improves with higher due data tightness.
The performance of FCFS deteriorates with increasing due date tightness. This was to be
expected, as giving priority to activities that arrived early is not a meaningful strategy when
the majority of projects are tardy.

5.1.2 Number of resources

Figure 1 as well as Table 7 show the performance of the rules when increasing the number
of resources from 1 to 20. For a clearer presentation, we separate the priority rules into two
figures according to their performance: The left part of Fig. 1 provides priority rules, which
show deteriorating performance for an increasing number of resources. The right part of
Fig. 1 shows priority rules, which are not significantly impacted by the number of resources.
The rules depicted in the left part of Fig. 1, namely W(CR+GSPT), WMDD, WMINSLK,
WSASP-DD, BD-GC-U, and BD-GC-D do all use due date information. Furthermore, all
global rules are included in this set. For these rules we observe for up to 5 resources a small
deterioration of performance and small differences between the rules, but for more than 5
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Fig. 1 Impact of |R| on the performance of priority rules

Table 7 Impact of the number of resources on the performance

resources a high deterioration of performance and large differences between the rules. In
Table 7 we see that for a small number of resources, i.e., 1 and 3 resources, BD-GC-D, BD-
GC-U, and W(CR+GSPT) provide the best performance, showing no significant difference
according to the Duncan test. For the case of 5 resources, BD-GC-D is still in the best group,
now joined by W(CR+SPT). W(CR+SPT) stays in the best group for more than 5 resources.
The better performance of W(CR+GSPT) compared to W(CR+SPT) for a small number of
resources and loose due dates can be explained by Theorem B.1 given in Appendix B. In
general we observe that global-oriented rules perform better for a low number of resources
whereas local-oriented rules excel for high number of resources.
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Table 8 Performance of the priority rules for different levels of order strength

5.1.3 Order strength

Table 8 provides the performance of the priority rules for order strength (OS) levels between
0 (purely parallel activity networks) and 1 (purely serial activity networks). For OS-levels
between 0 and 0.6, BD-GC-D is in the best group while for OS-levels between 0.2 and
1, W(CR+SPT) is in the best group. For the special case of purely parallel networks with
OS = 0, W(CR+SPT) shows a low performance and thus is not a good choice whereas
its global counterpart W(CR+GSPT) is in the best group. However, the performance of
W(CR+GSPT) deteriorates rapidly for OS-levels larger than 0. The good performance of
W(CR+GSPT) for OS = 0 is due the fact that for instances with OS = 0 there are no
precedence constraints between activities. Hence, the start times of activities and the finish
time of projects are only constrained by the scarce resources. In this case, giving priority
to activities from projects with low total remaining work load is a meaningful strategy to
minimize total weighted tardiness.

5.1.4 Variation of expected activity durations

Table 9 gives the results for the two ranges of the coefficient of variation of the average
activity durations CVd . Again, W(CR+SPT) excels, being in the best group for both levels
of variation. Table 9 underlines the value of WSPT-information when the variance of activity
durations is high. While being in the group of worst performing rules for a low level of
variation, the performance of WSPT improves significantly for a high level of variation. This
improvement can be explained by the fact that minimizing the average weighted flow time
of the activities at each resource becomes more effective when the difference in the duration
of the activities becomes more pronounced.

5.1.5 Utilization per resource

Table 10 presents the effect of the utilization per resource on the performance of the priority
rules. For each level of resource utilization, W(CR+SPT) dominates, while BD-GC-D and
BD-MC belong to the second best group. In going from utilization of 0.7–0.9, the perfor-
mance spread between the best and the worst rule jumps from 50.19 to 110.17. This jump
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Table 9 Performance of the priority for different levels of the coefficient of variation of activity durations

Table 10 Effect of the resource utilization on the performance of priority rules

can be explained by growing queue lengths for increased resource utilization, which amplify
the effect of the priority rules. Our findings contrast those in the literature. There, the per-
formance of flow time related priority rules such as WSPT (see Kutanoglu & Sabuncuoglu
1999 or Vepsalainen & Morton 1987) improves for high utilizations. The explanation lies in
the different definition of the problem parameters and the related design of the computational
studies. In the literature, due dates are set without taking into account the resource utiliza-
tion. In contrast, in this study the due date tightness is controlled by the statistical measure
percentage of tardy projects α. In this way, we implicitly take the resource utilization into
account when setting the mean maximum duration D

max
p for the projects. As a consequence,

the due date tightness is not impacted by the utilization ρ.

5.2 Variations of the base case

In order to investigate the performance of the rules for settings different to the base case,
we considered three different setups: First, the case of a single project type; second, the case
of two project types differing in their weights and due date tightness; third, the case of two
project types differing in their weights and arrival rates.
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Table 11 Overall performance of
the priority rules and group
according to the Duncan test for
the single project type case

5.2.1 Single project type

In this experiment we considered a single project type, in contrast to two project types as in
the base case. Table 11 provides the results.

The following insights can be obtained: First, the range between the normalized perfor-
mance of the best and the worst rule maxω{Zn

(ω)} − minω{Zn
(ω)} decreases from 0.79 to

0.56, meaning that there is less variance between the performance of the rules. This is intu-
itive as problems with a single project type leave less room for good rules to excel. Second,
W(CR+SPT) is still the best performing rule, significantly better than any other rule. Third,
the order of performance of the colored rules is quite stable; only priority rule BD-MC dete-
riorates from the third to the fifth rank. Fourth, the global rules BD-GC-U andW(CR+GSPT)
improve in normalized performance from close to one to close to 0.5. These two rules give
priority to projects with a small amount of remaining work. In a single project type setting
this approach gives rise to better results than in settings with multiple types of projects.

5.2.2 Project type differentiation according to due date tightness

We consider two types of projects. Project type 1 with low due date tightness α1 = 20%
and low weight w1 = 1 and project type 2 with high due date tightness α2 = 80% and high
weight w2 = 2. Table 12 shows the results for this setting.

From the results we can obtain the following insights. First, the performance of all rules
except FCFS improves compared to the random rule. In fact, all rules except WSPT are
now signficantly better than the random rule RAN. Second, W(CR+SPT) is still the best
performing rule at the 5% level of significance, according to the Duncan test. Third, the order
in performance of the colored rules is not changed and the order of all rules tested is quite
stable.

5.2.3 Project type differentiation according to arrival rate

We consider two types of projects. Project type 1 with a share of 30% of the total arrival rate,
i.e., λ1 = 0.3 · λ, and low weight w1 = 1 and project type 2 with a share of 70% of the total
arrival rate, i.e., λ1 = 0.7 · λ, and high weight w2 = 2. Table 13 gives the results for this
setting. As for the case of different levels of due date tightness, the performance of all rules
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Table 12 Overall performance of
the priority rules and group
according to the Duncan test for
the case with different due date
tightnesses

Table 13 Overall performance of
the priority rules and group
according to the Duncan test for
different arrival rates

when compared to the random rule improves, with BD-GC-U andW(CR+GSPT) improving
considerably. In fact, all rules are now significantly better than the random rule RAN. Again,
W(CR+SPT) is significantly the best rule. The order of the colored rules is not changed with
the exception of W(CR+SPT).

6 Results for FCFS-policies

In the following we investigate the potential of First-Come, First-Serve (FCFS) policies first
proposed by Baccelli et al. (1993) for the case of multi-project scheduling with a single type
of project and general distributed i.i.d. interarrival times and activity durations. At first, we
provide a definition extended to multiple project types.

Definition 6.1 Given two activities (i, j1) and (i, j2) of the two projects j1 and j2 of the
same type p, where project j1 has arrived before project j2, then a First-Come, First-Serve
(FCFS) policy always schedules activity (i, j1) before (i, j2).
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Table 14 Performance comparison of FCFS-policies and Non-FCFS-policies

(%)

Baccelli et al. (1993) show that the class of FCFS-policies contains an optimal policy for the
multi-project scheduling problem with a single project type when minimizing the expected
project flow time. Thus, when due dates are tight, we can expect the FCFS-policy to pro-
vide good results for the weighted tardiness objective. In our experiment we compare the
performance of the priority rules presented above with and without embedding them into the
FCFS-policy scheme. This is done as follows: Instead of having one queue in front of each
resource r ∈ R, we have a dedicated queue for each activity type i ∈ Vp of each project
p ∈ P , which has to be processed on resource r , i.e., for which ri,p = r holds. Within queue
(i, p) all activities are of type (i, p) but belong to different projects. These activities are
sorted according to increasing arrival times ai of their projects, i.e., the activity (i, j) with
the earliest project arrival time a j is at the head of the queue. When one unit of resource
r becomes available at time t , one of the priority rules presented in Sect. 3 is applied to
determine the activity queue (i, p), from which the activity at the head of the queue is started
at t .

Table 14 provides the performance of FCFS-policies relative to the non-FCFS-policies
where the rules are sorted according to decreasing performance for the non-FCFS-policy.
Differing from the tables above, we added the RAN rule with a performance of 100% in
the non-FCFS-setting. In the last column, we indicate a significantly better result for the
FCFS-policy on the 95% level of confidence using the Duncan-test. The results show that
FCFS-policies provide better results than non-FCFS-policies. The relative ranking remains
approximately the same. The improvement when using a rule with FCFS-policy depends on
the rules used. The largest improvement is obtained with the RAN rule followed by WSPT.
For the W(CR+GSPT) rule, using the FCFS-policy leads to a slight deterioration. The best
rule W(CR+SPT) benefits through the FCFS-policy by 3.84%. Obviously, policies not based
on the GSPT idea and those that do not imitate the idea such as WMINSLK benefit most
from the FCFS.

7 Conclusions and future research

The main take-away of this study is that the W(CR+SPT) rule is consistently the best rule or
in the group of the best performing rules for minimizing average weighted project tardiness.
This holds for the base case study undertaken in Sect. 5.1 as well as for the variation of
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the base case in Sect. 5.2. Only for some very special settings in the base case study, i.e.,
few resource types or purely parallel project networks, does this not hold; in these cases
W(CR+GSPT), the global variant of W(CR+SPT), is best. The rule W(CR+SPT) is simple
regarding the required parameters, easy to implement, and straightforward to communicate
to practitioners.

Another important finding is that our result differ from several of those found in the
literature. There, the performance of flow time related priority rules such as WSPT (see
Kutanoglu & Sabuncuoglu 1999 or Vepsalainen & Morton 1987) improve for high utiliza-
tions. The explanation lies in the different definition of the problem parameters and the related
design of the computational studies. In the literature due dates are set without taking into
account the resource utilization or other problem parameters. In contrast, in this study the
due date tightness is controlled by the statistical measure percentage of tardy projects α. As
a consequence, the due date tightness is not impacted by the utilization ρ.

Further research can be undertaken in several directions. First, a study could be conducted
with different type of distribution functions for the activity durations. Such studies have
been undertaken for the single static resource-constrained project scheduling problem with
makespan objective (see, e.g., Ballestin, 2007) and the they show that priority rules perform
better for problems with activity duration distributions, which have a smaller coefficient of
variation than the exponential distribution. Second, the study at hand could be extended for
more project types and larger projects. Third, the performance could be assessed for policies,
which do not have the non-delay or work-conserving property. Finally, our analysis shows
that the difference in performance of priority rules increases remarkably with the number of
resources. Since studies for the dynamic job shop problem have not investigated instances
with more than 10 resources, this could be a further fruitful area of research.
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A Table of notation

See the Table 15.
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Table 15 Table of notation

Symbol Explanation

i Activity index

j Project index

J Number of projects arrived

p Project type index

t Time

a j Arrival time of project j

α Percentage of tardy projects as global parameter for due date tightness

αp Percentage of tardy projects of type p

A j Maximum allowed flow time for project j

Ap Mean maximum allowed flow time for project type p

Ap Arc set for precedence relations of project type p

Er (t) Set of activities being in process at resource r at time t

P Set of project types

R Set of resources

V j Index set for the activities of project j

Vp Index set for the activities of project type p

Wr (t) Set of activities waiting at resource r at time t

β Variation parameter for the maximum flow times around the mean maximum flow time

cr Number of capacity units of resource r

Ci j Completion time of activity i of project j

CRi j (t) Critical ratio of activity i of project j

CVd Coefficient of variation of the expected activity durations as global parameter

CVd
r Coefficient of variation of the expected durations of the activities processed by resource r

D
max
i j Upper estimate for activity due date in the WMOD rule based on the project due date

D
min
i j Lower estimate for activity due date in the WMOD rule based on the project arrival time

Di j Activity due date of the WMOD rule as the mean of the upper and the lower estimate

dr (t) Mean of expected duration of the activities waiting at resource r at time t

D j Due date of project j

D
′
i j Critical ratio modified expected activity duration

DG′
i j Critical ratio modified expected duration of the unfinished project activities

di j Duration (ex-post) of activity i of project j

di j Expected duration of activity i of project j

li j Expected latest start time of activity i of project j without project j being delayed

λmax Maximum arrival rate

λ Overall arrival rate of projects at the system

λp Arrival rate for the projects of type p
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Table 15 continued

Symbol Explanation

λr Arrival rate of the activities queued in front of resource r

Nmax Maximum number of projects in the system

OS Order strength as global parameter

OSp Order strength of project type p

πi j (t) Opportunity cost of scheduling of activity i of project j at time t

πr (t) Price of resource r at time t

πU
r (t) Price of resource r at time t calculated using uniform resource pricing

πD
r (t) Price of resource r at time t calculated using dynamic resource pricing

qi j Expected time for the activities along the critical path from activity (i, j) to the end of project j

ri j Resource required for activity i of project j

rip Resource required for activity i of project type p

ri j Expected time for the activities along the critical path from the start of project j to activity (i, j)

ρ Resource utilization as global parameter

ρr Utilization of resource r

Ui j (t) Urgency factor of activity i project j at time t

U j (t) Set of not finished activities of project j

w j Weight of project j

Z Average weighted tardiness

Z(ω) Average weighted tardiness when using policy ω for scheduling

Zn(ω) Normalized average weighted tardiness when using policy ω for scheduling

B Results for the single resource case

For the single resource case, each activity within each project has to be processed by the
single resource with capacity 1. As due dates get tighter, the weighted tardiness objective
approaches weighted flow time as given by

limJ→∞

⎡
⎣

J∑
j=1

w j · (C j − a j
)
⎤
⎦ (31)

where C j denotes the finish time of project j .

Theorem B.1 The optimal scheduling policy minimizing the long term expected weighted
project flow time is a priority policy where an activity is selected according to

max
(i, j)∈Wr (t)

{
w j∑

m∈U j
dmj

}
(32)

and ties are broken arbitrarily. The policy can be seen as as a global WSPT rule for selecting
activities. Instead of the expected duration of an activity, it takes into account the total
expected workload of all unfinished activities of project j from the setU j (t) including activity
(i, j).

For the proof seeMelchiors (2015).
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Thus, in particular when due dates are tight, globalWSPT-based rules (BD-GC-U, BD-GC-D
and W(CR+GSPT)) are near optimal policies, for the single resource case.
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