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Abstract
In this paper we study optimal trading strategies in a financial market in which stock returns
depend on a hidden Gaussian mean reverting drift process. Investors obtain information on
that drift by observing stock returns. Moreover, expert opinions in the form of signals about
the current state of the drift arriving at fixed and known dates are included in the analysis.
Drift estimates are based on Kalman filter techniques. They are used to transform a power
utility maximization problem under partial information into an optimization problem under
full information where the state variable is the filter of the drift. The dynamic programming
equation for this problem is studied and closed-form solutions for the value function and
the optimal trading strategy of an investor are derived. They allow to quantify the monetary
value of information delivered by the expert opinions. We illustrate our theoretical findings
by results of extensive numerical experiments.

Keywords Power utility maximization · Partial information · Stochastic optimal control ·
Kalman-Bucy filter · Expert opinions · Black-Litterman model

Mathematics Subject Classification 91G10 · 93E20 · 93E11 · 60G35

1 Introduction

In dynamic portfolio selection problems optimal trading strategies depend crucially on the
drift of the underlying asset return processes. That drift describes the expected asset returns,
varies over time and is driven by certain stochastic factors such as dividend yields, the firm’s
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return on equity, interest rates and macroeconomic indicators. This was already addressed
in the seminal paper of Merton (1971, Sec. 9). We also refer to other early articles by
Bielecki and Pliska (1999), Brennan et al. (1997) and Xia (2001). The dependence of the
drift process on these factors is usually not perfectly known and some of the factorsmay be not
directly observable. Therefore, it is reasonable tomodel the drift as an unobservable stochastic
process forwhich only statistical estimates are available. Then solving the associated portfolio
problems has to be based on such estimates of the drift process.

For the one-period Markowitz model the surprisingly large impact of statistical errors in
the estimation of model parameters on mean-variance optimal portfolios is often reported
in the literature, e.g. by Broadie (1993). Estimating the drift with a reasonable degree of
precision based only on historical asset prices is known to be almost impossible. This is
nicely shown in Rogers (2013, Chapter 4.2) for a model in which the drift is even constant.
For a reliable estimate extremely long time series of data are required which are usually not
available. Further, assuming a constant drift over longer periods of time is quite unrealistic.
Drifts tend to fluctuate randomly over time and drift effects are often overshadowed by
volatility.

For these reasons, portfolio managers and traders try to diversify their observation sources
and also rely on external sources of information such as news, company reports, ratings and
benchmark values. Further, they increasingly turn to data outside of the traditional sources
that companies and financial markets provide. Examples are social media posts, internet
search, satellite imagery, sentiment indices, pandemic data, product review trends and are
often related to Big Data analytics. Finally, they use views of financial analysts or just their
own intuitive views on the future asset performance.

In the literature these outside sources of information are coined expert opinions or more
generally alternative data, see Chen and Wong (2022), Davis and Lleo (2022). In this paper
we will use the first term. After an appropriate mathematical modeling as additional noisy
observations they are included in the drift estimation and the construction of optimal portfolio
strategies. That approach goes back to the celebrated Black-Litterman model which is an
extension of the classical one-periodMarkowitz model, see Black and Litterman (1992). The
idea is to improve return predictions using expert opinions by means of a Bayesian updating
of the drift estimate.

Instead of a static one-period model we consider in this paper a continuous-time model
for asset prices. Additional information in the form of expert opinions arrive repeatedly over
time. Davis and Lleo (2013a) coined this approach “Black–Litterman in Continuous Time”
(BLCT).More precisely, we study a hidden Gaussianmodel where asset returns are driven by
an unobservable mean-reverting Gaussian process. Information on the drift is of mixed type.
First investors observe stock prices or equivalently the return process. Moreover, investors
may have access to expert opinions arriving at already known discrete time points in a form
of unbiased drift estimates. Since the investors’ ability to construct good trading strategies
depends on the quality of the hidden drift estimation we study a filtering problem. There the
aim is to find the conditional distribution of the drift given the available information drawn
from the return observations and expert opinions.

For investorswhoobserve only the return process that filter knownas the classicalKalman–
Bucy filter, see for example Liptser and Shiryaev (2001). Based on this one can derive the
filter for investors who also observe expert opinions by a Bayesian update of the current drift
estimate at each information date. This constitutes the above mentioned continuous-time
version of the static Black–Litterman approach.

Utilitymaximization problems for partially informed investors have been intensively stud-
ied in the last years. For models with Gaussian drift we refer to Lakner (1998) and Brendle
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(2006). Results formodels inwhich the drift is described by a continuous-time hiddenMarkov
chain are given in Rieder and Bäuerle (2005), Sass and Haussmann (2004) and more recently
by Chen and Wong (2022). A good overview with further references and generalization can
be found in Björk et al. (2010).

For the literature on BLCT in which expert opinions are included we refer to a series
of papers (Gabih et al., 2014, 2020; Sass et al., 2017, 2021, 2022) of the present authors
and of Sass and Westphal. They investigate utility maximization problems for investors
with logarithmic preferences in market models with a hidden Gaussian drift process and
discrete-time expert opinions. The case of continuous-time expert opinions and power utility
maximization is treated in a series of papers by Davis and Lleo, see Davis and Lleo (2013a,
2020, 2022) and the references therein. Power utility maximization problems for expert
opinions arriving randomly at the jump times of a Poisson process are treated in the recent
work (Gabih & Wunderlich, 2023). Similar portfolio problems for drift processes described
by continuous-time hidden Markov chains have been studied in Frey et al. (2012, 2014).
Finally, we refer to our companion paper (Gabih et al., 2022) where we investigate the well
posedness of power utility maximization problems which are addressed in the present paper.
Our contribution The new contribution to the literature in the present paper is the detailed
analysis of the case of power utility maximization for market models with a hidden Gaussian
drift and discrete-time expert opinions arriving at fixed and known time points. That case was
not yet treated in the literature and is only considered in the PhD thesis of Kondakji (2019)
on which this paper is based. Only recently, a few results of Kondakji (2019) were briefly
mentioned in Sass et al. (2022) and applied in numerical experiments. Note that the approach
in Gabih and Wunderlich (2023) for the case of randomly arriving expert opinions cannot be
adopted to the case of fixed arrival times considered in this paper. In Gabih and Wunderlich
(2023) the dynamic programming equation appears as a partial integro-differential equation
which requires a numerical solution. Instead, in this paperwe can derive closed-form solutions
to the derived dynamic programming equation.

Our main results are presented in Theorems 6.1 and 6.3. Here we present a backward
recursion for the value function and the optimal strategy of the partially informed investors
observing also discrete-time expert opinions, and discuss verification issues. Another contri-
bution are results of extensive numerical experiments which we present in Sect. 7. There we
study in particular the asymptotic properties of filters, value functions and optimal strategies
for high-frequency experts and themonetary value of expert opinions. These studies on high-
frequency experts and their limiting behavior provide a link to the results for continuous-time
expert opinions which are available from the works of Davis and Lleo, see Davis and Lleo
(2013a, 2020, 2022).

The paper is organized as follows. In Sect. 2 we introduce the model for our financial mar-
ket including the expert opinions and define information regimes for investors with different
sources of information. Further, we formulate the portfolio optimization problem. Section 3
states for the different information regimes the filter equations for the corresponding con-
ditional mean and conditional covariance process. Then it reviews properties of the filter,
in particular the asymptotic filter behavior for high-frequency expert opinions. Section 4 is
devoted to the solution of the power utility maximization problem. That problem is reformu-
lated as an equivalent stochastic optimal control problem which can be solved by dynamic
programming techniques. Solutions are presented for the fully informed investor. Section 5
presents the solution for partially informed investors combining return observations with dif-
fusion type expert opinions and Sect. 6 studies the case of investors observing discrete-time
experts. Section 7 illustrates the theoretical findings by numerical results.
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Notation Throughout this paper, we use the notation Id for the identity matrix in R
d×d ,

0d denotes the null vector in R
d , 0d×m the null matrix in R

d×m . For a symmetric and
positive-semidefinite matrix A ∈ R

d×d we call a symmetric and positive-semidefinite matrix
B ∈ R

d×d the square root of A if B2 = A. The square root is unique and will be denoted
by A1/2. For a vector X we denote by ‖X‖ the Euclidean norm. Unless stated otherwise,
whenever A is a matrix, ‖A‖ denotes the spectral norm of A.

2 Financial market and optimization problem

2.1 Price dynamics

Wemodel a financial market with one risk-free and multiple risky assets. The setting is based
on Gabih et al. (2014, 2020) and Sass et al. (2017, 2022, 2021). For a fixed date T > 0
representing the investment horizon, we work on a filtered probability space (�,G, G, P),
with filtration G = (Gt )t∈[0,T ] satisfying the usual conditions. All processes are assumed to
be G-adapted.

We consider a market model for one risk-free asset and d risky securities. We follow
an approach frequently used in the literature on optimal portfolio selection and consider
discounted asset prices with the risk-free asset as numéraire. Then the risk-free asset has a
constant price S0t = 1. The excess log returns or risk premiums R = (R1, . . . , Rd) of the
risky securities are described by stochastic processes defined by the SDE

dRt = μt dt + σR dW
R
t , (1)

driven by a d1-dimensional G-adapted Brownian motion WR with d1 ≥ d . In the remainder
of this paper we will call R simply returns. μ = (μt )t∈[0,T ] denotes the stochastic drift
process which is described in detail below. The volatility matrix σR ∈ R

d×d1 is assumed to
be constant over time such that�R := σRσ�

R is positive definite. In this setting the discounted
price process S = (S1, . . . , Sd) of the risky securities reads as

dSt = diag(St ) dRt , S0 = s0,

with some fixed initial value s0 = (s10 , . . . , s
d
0 ). Note that for the solution to the above SDE

it holds

log Sit − log si0 =
t∫

0

μi
sds +

d1∑
j=1

(
σ
i j
R W R, j

t − 1

2
(σ

i j
R )2t

)

= Ri
t − 1

2

d1∑
j=1

(σ
i j
R )2t, i = 1, . . . , d.

So we have the equality G
R = G

log S = G
S , where for a generic process X we denote by

G
X the filtration generated by X . This is useful since it allows to work with R instead of S

in the filtering part.
The dynamics of the drift process μ = (μt )t∈[0,T ] in (1) are given by the stochastic

differential equation (SDE)

dμt = κ(μ − μt ) dt + σμ dWμ
t , (2)
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where κ ∈ R
d×d , σμ ∈ R

d×d2 andμ ∈ R
d are constants such that all eigenvalues of κ have a

positive real part (that is,−κ is a stable matrix) and�μ := σμσ�
μ is positive definite. Further,

Wμ is a d2-dimensional Brownian motion such that d2 ≥ d . For the sake of simplification
and shorter notation we assume that the Wiener processes WR and Wμ driving the return
and drift process, respectively, are independent. We refer to Brendle (2006), Colaneri et al.
(2021) and Fouque et al. (2015) for the general case. Here,μ is themean-reversion level, κ the
mean-reversion speed and σμ describes the volatility of μ. The initial value μ0 is assumed to
be a normally distributed random variable independent of Wμ and WR with mean m0 ∈ R

d

and covariance matrix q0 ∈ R
d×d assumed to be symmetric and positive semi-definite. It is

well-known that the solution to SDE (2) is known as Ornstein-Uhlenbeck process which is
a Gaussian process given by

μt = μ + e−κt
[
(μ0 − μ) +

∫ t

0
eκsσμdW

μ
s

]
, t ≥ 0. (3)

2.2 Expert opinions

We assume that investors observe the return process R but they neither observe the factor
process μ nor the Brownian motionWR . They do however know the model parameters such
as σR, κ, μ, σμ and the distributionN (m0, q0) of the initial value μ0. Information about the
drift μ can be drawn from observing the returns R. A special feature of our model is that
investors may also have access to additional information about the drift in form of expert
opinions such as news, company reports, ratings or their own intuitive views on the future
asset performance. The expert opinions provide noisy signals about the current state of the
drift arriving at known deterministic time points 0 = t0 < t1 < . . . < tn−1 < T . For the
sake of convenience we also write tn = T although no expert opinion arrives at time tn . The
signals or “the expert views” at time tk are modelled by R

d -valued Gaussian random vectors
Zk = (Z1

k , . . . , Z
d
k )� with

Zk = μtk + �
1
2 εk, k = 0, . . . , n − 1, (4)

where the matrix � ∈ R
d×d is symmetric and positive definite. Further, (εk)k=0,...,n−1 is a

sequence of independent standard normally distributed random vectors, i.e., εk ∼ N (0, Id).
It is also independent of both the Brownian motions WR,Wμ and the initial value μ0 of the
drift process. That means that, given μtk , the expert opinion Zk isN (μtk , �)-distributed. So,
Zk can be considered as an unbiased estimate of the unknown state of the drift at time tk .

Modeling expert opinions as normally distributed random variables corresponds well to
a variety of additional information on average stock returns available in real-world markets.
We refer to Davis and Lleo (2020) for more details about an appropriate preprocessing,
debiasing and approximation of such extra information by Gaussian models. Let us briefly
sketch the mathematical modeling of analyst views in terms of confidence intervals. Inspired
by Davis and Lleo (2020) we consider the following example of a view at time t = tk : “My
research leads me to believe that the average stock return lies within a range of 6–10%, and
I’m 90% confident about this”. This view can be treated as a 90%-confidence interval for the
unknownmeanμtk of a Gaussian distribution centered at 0.08, which is the observed Zk . The
corresponding variance� is chosen such that the boundaries of the interval are 0.06 and 0.10.
We also want to emphasize that the Gaussian expert opinions allow to work with Kalman
filtering techniques. For other distributions, in general no closed-form filters are available.
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The matrix � is a measure of the expert’s reliability. The diagonal entries �i i are just
the variances of the expert’s estimates of the drift for the i-th asset at time tk : the larger
�i i the less reliable is the expert’s view about μi

tk , i = 1, . . . , d. The off-diagonal entries
describe the correlation between the experts’ views. An example for a diagonal matrix �,
i.e., uncorrelated views Zi

k about the i-th asset’s drift, is obtained if the random vector Zk

contains the views Zi
k of d independent analysts estimating the drift of a single asset only.

That case is hard to justify in reality where one can observe so-called “groupthink” leading
to positive correlations between the views of the analysts. However, correlations between the
views are hard to calibrate. We refer to Davis and Lleo (2020) for more details.

The above model of discrete-time expert opinions can be modified such that expert opin-
ions arrive not at fixed and known dates but at random times (Tk)k∈N. That approach together
with results for filtering and maximization of log-utility was studied in detail in Sass et al.
(2021). There the arrival times are modeled as the jump times of a Poisson process. The
maximization of power utility is considered in Gabih and Wunderlich (2023).

One may also allow for relative expert views where experts give an estimate for the
difference in the drift of two stocks instead of absolute views. This extension can be studied
in Schöttle et al. (2010) where the authors show how to switch between these two models for
expert opinions by means of a pick matrix.

In addition to expert opinions arriving at discrete time points we will also consider expert
opinions arriving continuously over time as in Davis and Lleo (2013a, 2020) who called this
approach “Black–Litterman in Continuous Time”. This is motivated by the results of Sass et
al. (2021, 2022) who show that asymptotically as the arrival frequency tends to infinity and
the expert’s variance � grows linearly in that frequency the information drawn from these
expert opinions is essentially the same as the information one gets from observing yet another
diffusion process. This diffusion process can then be interpreted as an expert who gives a
continuous-time estimation about the current state of the drift. Another interpretation is that
the diffusion process models returns of assets which are not traded in the portfolio but depend
on the same stochastic factors and are observable by the investor. Let these continuous-time
expert opinions be given by the diffusion process

d Jt = μt dt + σJ dW
J
t , (5)

where W J
t is a d3-dimensional Brownian motion independent of WR

t and Wμ, and such
that d3 ≥ d . The volatility matrix σJ ∈ R

d×d3 is assumed to be constant over time such
that the matrix �J := σJσ

�
J is positive definite. In Sects. 4.1 and 7.4 we show that based

on this model and on the diffusion approximations provided in Sass et al. (2022) one can
find efficient approximative solutions to utility maximization problems for partially informed
investors observing high-frequency discrete-time expert opinions.

2.3 Investor filtration

We consider various types of investors with different levels of information. The information
available to an investor is described by the investor filtration F

H = (FH
t )t∈[0,T ]. Here, H

denotes the information regime for which we consider the cases H = R, Z , J , F , and the
investor with filtration F

H = (FH
t )t∈[0,T ] is called the H -investor. The R-investor observes

only the return process R, the Z -investor combines return observations with the discrete-
time expert opinions Zk while the J -investor observes the return process together with the
continuous-time expert J . Finally, the F-investor has full information and can observe the
drift process μ directly and of course the return process. For stochastic drift this case is not
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realistic, but we use it as a benchmark. It will serve as a limiting case for high-frequency
expert opinions with fixed covariance matrix �, see Sect. 3.3, Thm. 3.9.

The σ -algebras FH
t representing the H -investor’s information at time t ∈ [0, T ] are

defined at initial time t = 0 by F F
0 = σ {μ0} for the fully informed investor and by FH

0 =
F I
0 ⊂ F F

0 for H = R, Z , J , i.e., for the partially informed investors. Here, F I
0 denotes the

σ -algebra representing prior information about the initial drift μ0. More details on F I
0 are

given below. For t ∈ (0, T ] we define
F R
t = σ(Rs, s ≤ t) ∨ F I

0 ,

F Z
t = σ(Rs, s ≤ t, (tk, Zk), tk ≤ t) ∨ F I

0 ,

F J
t = σ(Rs, Js, s ≤ t) ∨ F I

0 ,

F F
t = σ(Rs, μs, s ≤ t).

We assume that the above σ -algebras FH
t are augmented by the null sets of P.

Note that all partially informed investors (H = R, J , Z ) start at t = 0with the same initial
information given by F I

0 . The latter models prior knowledge about the drift process at time
t = 0, e.g., from observing returns or expert opinions in the past, before the trading period
[0, T ]. The expert opinion Z0 arriving at time t = 0 does not belong to this prior information
and is therefore excluded from F Z

0 and only contained in F Z
t for t > 0. At first glance this

may appear not consistent but it will facilitate below in Sect. 2.6 the formal definition of the
monetary value of the expert opinions.

We assume that the conditional distribution of the initial value drift μ0 given F I
0 is the

normal distribution N (m0, q0) with mean m0 ∈ R
d and covariance matrix q0 ∈ R

d×d

assumed to be symmetric and positive semi-definite. In this setting typical examples are:

(a) The investor has no information about the initial value of the drift μ0. However, he
knows the model parameters, in particular the distribution N (m0, q0) of μ0 with given
parameters m0 and q0. This corresponds to F I

0 = {∅,�} and m0 = m0, q0 = q0.
(b) The investor can fully observe the initial value of the drift μ0, which corresponds to

F I
0 = F F

0 = σ {μ0} and m0 = μ0(ω) and q0 = 0.
(c) Between the above limiting cases we consider an investor who has some prior but no

complete information about μ0 leading to {∅,�} ⊂ F I
0 ⊂ F F

0 .

2.4 Portfolio and optimization problem

We describe the self-financing trading of an investor by the initial capital x0 > 0 and the F
H -

adapted trading strategy π = (πt )t∈[0,T ] where πt ∈ R
d . Here π i

t represents the proportion
of wealth invested in the i-th stock at time t . The assumption that π is F

H -adapted models
that investment decisions have to be based on information available to the H -investor which
he obtains from observing assets prices (H = R) combined with expert opinions (H = Z , J )
or with the drift process (H = F). Following the strategy π the investor generates a wealth
process (Xπ

t )t∈[0,T ] whose dynamics reads as

dXπ
t

Xπ
t

= π�
t d Rt = π�

t μt dt + π�
t σR dW R

t , Xπ
0 = x0. (6)

We denote by

AH
0 =

{
π = (πt )t : πt ∈ R

d , π isF
H -adapted , Xπ

t > 0, E

[ ∫ T

0
‖πt‖2 dt

]
< ∞,

the process 
H defined below in (24) satisfies E
[

H

T

] = 1
} (7)
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the class of admissible trading strategies. The last condition in the definition ofAH
0 is needed

to apply a change of measure technique for the solution of the optimization problem. More
details are provided below in Sect. 4.2.

We assume that the investor wants to maximize the expected utility of terminal wealth
for a given utility function U : R+ → R modelling the risk aversion of the investor. In our
approach we will use the function

Uθ (x) := xθ

θ
, θ ∈ (−∞, 0) ∪ (0, 1). (8)

The limiting case for θ → 0 for the power utility function leads to the logarithmic utility

U0(x) := ln x , since we have Uθ (x) − 1
θ

= xθ−1
θ

−−−→
θ→0

log x .

The optimization problem thus reads as

VH
0 (x0) := sup

π∈AH
0

DH
0 (x0;π) where DH

0 (x0;π) = E

[
Uθ (X

π
T ) | FH

0

]
, π ∈ AH

0 , (9)

where we call DH
0 (x0;π) reward function or performance criterion of the strategy π and

VH
0 (x0) value function to given initial capital x0.
This is for H 
= F a maximization problem under partial information since we have

required that the strategy π is adapted to the investor filtration F
H . However, the drift coef-

ficient of the wealth equation (6) is not F
H -adapted, it depends on the non-observable drift

μ. Note that for x0 > 0 the solution of the SDE (6) is strictly positive. This guarantees that
Xπ
T is in the domain of logarithmic and power utility.

2.5 Well posedness of the optimization problem

The analysis of utilitymaximization problem (9) requires conditions underwhich the problem
iswell-posed. Problem (9) is said to bewell-posed for the H -investor, if there exists a constant
CH
V < ∞ such that VH

0 (x0) ≤ CH
V . Then, the maximum expected utility of terminal wealth

cannot explode in finite time as it is the case for so-called nirvana strategies described e.g. in
Kim and Omberg (1996) and Angoshtari (2014). Nirvana strategies generate in finite time a
terminalwealthwith a distribution leading to infinite expected utility although the realizations
of terminal wealth may be finite.

In general, well posedness will depend not only on the initial capital x0 but on the complete
set of model parameters which are T , θ, d, σR, σμ, κ, μ, x0,m0, q0,m0, q0, �, n, σJ .

For power utility with parameter θ < 0 we have Uθ (x) < 0 for all x > 0. Hence, in that
case we can simply chooseCH

V = 0 and the optimization problem is well-posed for all model
parameters with negative θ . The logarithmic utility function (θ = 0) is no longer bounded
from above but we show below in Sect. 4.1 that the value function VH

0 (x0) is bounded from
above by some positive constant CH

V for any selection of the remaining model parameters.
More delicate is the case of power utility with positive parameter θ ∈ (0, 1)which is also not
bounded from above. Here, well posedness is only guaranteed under certain restrictions on
the choice of model parameters such as the investment horizon and parameters controlling
the variance of the asset price and drift processes. For a market with a fully observed drift
rate modeled by an Ornstein-Uhlenbeck process this phenomenon was already described in
Kim and Omberg (1996). Further, it was also observed in Korn and Kraft (2004, Sec. 3) who
coined it “I-unstability”, in Angoshtari (2014, 2016), and Lee and Papanicolaou (2016) who
studied power utility maximization problems and their well posedness for financial market
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models with cointegrated asset price processes, and in Battauz et al. (2017) for markets with
defaultbale assets.

For detailed investigation also for models with not directly observable drift and expert
opinions we refer to our paper (Gabih et al., 2022) where we find sufficient conditions on
the model parameters ensuring well posedness. They are given below in (32) and (37). Some
results for markets with a single risky asset (d = 1) are also contained in Colaneri et al.
(2021). One of the findings is that depending on the chosen parameters well posedness can
be guaranteed only if the trading horizon T is smaller than some certain “explosion time”.
In the following we always assume that (9) constitutes a well-posed optimization problem.

2.6 Monetary value of information

In this subsection we want to express the value of information available to the H -investors
in monetary terms. It is expected that the fully informed F-investor which can directly
observe the drift has an advantage over the partially informed investors. In fact, an easy
calculation as in Lee and Papanicolaou (2016, Subsec. 3.1) and (2022, Subsec. 3.3) shows
that for H = R, Z , J it holds VH

0 (x0) ≤ E[VF
0 (x0) | FH

0 ]. This inequality expresses the
above advantage in mathematically. The difference between the right and left hand side of
the inequality is termed in Lee and Papanicolaou (2016, Subsec. 3.1) loss of utility and
constitutes a first measure for the value of information. However, utility functions and the
derived value function to the utility maximization problems (9) do not carry a meaningful
unit and therefore it is difficult to compare results for different utility functions. In order to
derive quantities with a clear economic interpretation which allow to express the value of
information inmonetary termswe follow a utility indifference approach as in Brendle (2006),
Lee and Papanicolaou (2016, Subsec. 3.1), (2014, Sec. 6).

First, we compare the fully informed F-investor with the other partially informed H -
investors, H = R, Z , J . Recall that the fully informed F-investor can observe the drift.
The R-investor can only observe stock returns while the Z - and J - investors have access to
additional information and combine observations of stock return with expert opinions. Now
we consider for H = R, Z , J the initial capital xH/F

0 which the F-investor needs to obtain
the same maximized expected utility at time T as the partially informed H -investor who
started at time 0 with wealth xH0 > 0 which according to (9) is given by VH

0 (x0). Following

this utility indifference approach xH/F
0 is obtained as solution of the following equation

VH
0 (xH0 ) = E

[
VF
0

(
xH/F
0

) | FH
0

]
. (10)

The difference xH0 − xH/F
0 > 0 can be interpreted as loss of information for the (non fully

informed) H -investor measured in monetary units, while the ratio

εH := xH/F
0

xH0
∈ (0, 1] (11)

is a measure for the efficiency of the H -investor relative to the F-investor.
The above utility indifference approach can also be used to quantify the monetary value of

the additional information delivered by the experts. We now compare the maximum expected
utility of an R-investor who only observes returns with that utility of the H -investor for
H = Z , J who can combine return observations with information from the experts. Given
that the R-investor is equipped with initial capital x R0 > 0 we determine the initial capital
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x R/H
0 for the H -investor which leads to the same maximal expected utility, i.e x R/H

0 is the
solution of the equation

V R
0 (x R0 ) = E

[
VH
0 (x R/H

0 ) | F R
0

]
.

Since we assume that at time t = 0 all partially informed investors have access to the same
information about the drift, it holds F R

0 = FH
0 = F I

0 (see Sect. 2.3) and the above equation
reads as

V R
0 (x R0 ) = VH

0 (x R/H
0 ). (12)

From the initial capital x R0 the R-investor can put aside the amount PH
Exp := x R0 − x R/H

0

to buy the information from the expert. The remaining capital x R/H
0 can be invested in an

H−optimal portfolio and leads to the same expected utility of terminal wealth as the R-
optimal portfolio with initial capital x R0 . Hence, P

H
Exp describes the monetary value of the

expert opinions for the R-investor.

3 Partial information and filtering

The trading decisions of investors are based on their knowledge about the drift process μ.
While the F-investor observes the drift directly, the H -investor for H = R, Z , J has to
estimate the drift. This leads us to a filtering problem with hidden signal process μ and
observations given by the returns R and the sequence of expert opinions (tk, Zk). The filter
for the drift μt is its projection on the FH

t -measurable random variables described by the
conditional distribution of the drift given FH

t . The mean-square optimal estimator for the
drift at time t , given the available information is the conditional mean

MH
t := E[μt | FH

t ].
The accuracy of that estimator can be described by the conditional covariance matrix

QH
t := E[(μt − MH

t )(μt − MH
t )� | FH

t ].
Since in our filtering problem the signal μ, the observations and the initial value of the
filter are jointly Gaussian also the the conditional distribution of the drift is Gaussian and
completely characterized by the conditional mean MH

t and the conditional covariance QH
t .

3.1 Dynamics of the filter

We now give the dynamics of the filter processes MH and QH for H = R, J , Z .
R-Investor The R-investor only observes returns and has no access to additional expert
opinions, the information is given by F

R . Then, we are in the classical case of the Kalman-
Bucy filter, see e.g. Liptser and Shiryaev (2001), Theorem 10.3, leading to the following
dynamics of MR and QR .

Lemma 3.1 The conditional distribution of the drift given the R-investor’s observations is
Gaussian. The conditional mean MR follows the dynamics

dMR
t = κ(μ − MR

t ) dt + QR
t �

−1/2
R dW̃ R

t . (13)
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The innovation process W̃ R = (W̃ R
t )t∈[0,T ] given by dW̃ R

t = �
−1/2
R

(
dRt − MR

t dt
)
, W̃ R

0 =
0, is a d-dimensional standard Brownian motion adapted to F

R.
The dynamics of the conditional covariance QR is given by the Riccati differential equa-

tion

dQR
t = (�μ − κQR

t − QR
t κ� − QR

t �−1
R QR

t ) dt . (14)

The initial values are MR
0 = m0 and QR

0 = q0.

Note that the conditional covariance matrix QR
t satisfies an ordinary differential equation

and is hence deterministic, whereas the conditional mean MR
t is a stochastic process defined

by an SDE driven by the innovation process W̃ R .
J -Investor The J -investor observes a 2d-dimensional diffusion process with components R
and J . That observation process is driven by a (d1 + d3)-dimensional Brownian motion with
components WR and W J . Again, we can apply classical Kalman-Bucy filter theory as in
Liptser and Shiryaev (2001) to deduce the dynamics of MJ and QJ . We also refer to Lemma
2.2 in Sass et al. (2022).

Lemma 3.2 The conditional distribution of the drift given the J -investor’s observations is
Gaussian. The conditional mean M J follows the dynamics

dM J
t = κ(μ − MJ

t ) dt + QJ
t (�

−1/2
R , �

−1/2
J )dW̃ J

t .

The innovation process W̃ J = (W̃ J
t )t∈[0,T ] given by

dW̃ J
t =

(
�

−1/2
R

(
dRt − MJ

t dt
)

�
−1/2
J

(
d Jt − MJ

t dt
)
)

, W̃ J
0 = 0,

is a 2d-dimensional standard Brownian motion adapted to F
J .

The dynamics of the conditional covariance QJ is given by the Riccati differential
equation

dQJ
t = (�μ − κQJ

t − QJ
t κ� − QJ

t (�−1
R + �−1

J )QJ
t ) dt .

The initial values are M J
0 = m0 and QJ

0 = q0.

Z-Investor The next lemma provides the filter for the Z -investor who combines continuous-
time observations of stock returns and expert opinions received at discrete points in time. For
a detailed proof we refer to Lemma 2.3 in Sass et al. (2017) and Lemma 2.3 in Sass et al.
(2022).

Lemma 3.3 The conditional distribution of the drift given the Z-investor’s observations is
Gaussian. The dynamics of the conditional mean and conditional covariance matrix are
given as follows:

(i) Between two information dates tk and tk+1, k = 0, . . . , n − 1, the conditional mean MZ
t

satisfies SDE (13), i.e.,

dMZ
t = κ(μ − MZ

t ) dt + QZ
t �

−1/2
R dW̃ Z

t for t ∈ [tk, tk+1).

The innovation process W̃ Z = (W̃ Z
t )t∈[0,T ] given by

dW̃ Z
t = �

−1/2
R

(
dRt − MZ

t dt
)

, W̃ Z
0 = 0,
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is a d-dimensional standard Brownian motion adapted to F
Z .

The conditional covariance QZ satisfies the ordinary Riccati differential equation (14),
i.e.,

dQZ
t = (�μ − κQZ

t − QZ
t κ� − QZ

t �−1
R QZ

t ) dt .

The initial values are MZ
tk and QZ

tk , respectively, with MZ
0 = m0 and QZ

0 = q0.

(ii) At the information dates tk , k = 1, . . . , n − 1, the conditional mean and covariance MZ
tk

and QZ
tk are obtained from the corresponding values at time tk− (before the arrival of the

view) using the update formulas

MZ
tk = ρkM

Z
tk− + (Id − ρk)Zk, (15)

QZ
tk = ρk Q

Z
tk−, (16)

with the update factor ρk = �(QZ
tk− + �)−1. At initial time t = 0 the above update

formulas give MZ
0+ and QZ

0+ based on the initial values MZ
0 = m0 and QZ

0 = q0.

Note that the dynamics of MZ and QZ between information dates are the same as for
the R-investor, see Lemma 3.1. The values at an information date tk are obtained from a
Bayesian update. Further, we recall that for the R- and J -investor the conditional mean MH

is a diffusion process and the conditional covariance QH is a continuous and deterministic
function. Contrary to that, for the Z -investor the conditional mean MZ is a diffusion process
between the information dates but shows jumps of random jump size at those dates. The
conditional covariance QZ is piecewise continuous with deterministic jumps at the arrival
dates tk of the expert opinions.

3.2 Properties of the filter

In this and the next subsection we collect some properties of the filter processes.We start with
a proposition stating in mathematical terms the intuitive property that additional information
from the expert opinions improves drift estimates. Since the accuracy of the filter is measured
by the conditional variance it is expected that this quantity for the Z - and J -investor who
combine observations of returns and expert opinions is “smaller” than for the R-investor
who observes returns only. Mathematically, this can be expressed by the partial ordering of
symmetric matrices. For symmetric matrices A, B ∈ R

d×d we write A � B if B − A is
positive semi-definite. Note that A � B implies that ‖A‖ ≤ ‖B‖.
Proposition 3.4 (Sass et al. (2021), Lemma 2.4) For H = Z , J it holds QH

t � QR
t and

there exists a constant CQ > 0 such that
∥∥QH

t

∥∥ ≤ ∥∥QR
t

∥∥ ≤ CQ for all t ∈ [0, T ].
At the arrival dates tk of the expert opinions the expert’s view Zk lead to an update of the

conditional meanMZ given by (15). That update can be considered as a weightedmean of the
filter estimate MZ

tk− before the arrival and the expert opinion Zk . The following proposition
shows that the update improves the accuracy both of the estimate MZ

tk− before the arrival as
well as of the expert’s estimate Zk .

Proposition 3.5 (Sass et al. (2017), Proposition 2.2) For k = 0, . . . , n− 1 it holds QZ
tk � �

and QZ
tk � QZ

tk−.

The following lemma provides the conditional distribution of the expert opinions Zk given
the available information of the Z -investor before the arrival of the expert’s view.
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Lemma 3.6 (Kondakji (2019), Lemma 3.1.6) The conditional distribution of the expert
opinions Zk given F Z

tk− is the multivariate normal distribution N (
MZ

tk−, � + QZ
tk−

)
, k =

0, . . . , n − 1.

According to this lemma we can choose a sequence of i.i.d. F Z
tk−-measurable random

vectors Uk ∼ N (0, Id), k = 0, . . . , n − 1 such that under F
Z it holds Zk − MZ

tk− =(
� + QZ

tk−
) 1
2 Uk . From the update formula (15) we deduce that the increments of the filter

process MZ at the information dates tk can be expressed as

MZ
tk − MZ

tk− = QZ
tk−

(
� + QZ

tk−
)− 1

2
Uk . (17)

Further, the update formula (16) implies that the (deterministic) increments of the filter
process QZ at the information dates tk can be expressed as


QZ
tk = QZ

tk − QZ
tk− = −QZ

tk−
(
� + QZ

tk−
)−1

QZ
tk−. (18)

Remark 3.7 We mention some asymptotic properties of the conditional variances QH
t for

t → ∞. Sass et al. (2017, Theorem 4.1.) show that the conditional variances QR and QJ

for diffusion type observations stabilize for increasing t and tend to a finite limit. For the
Z -investor receiving expert opinions at equidistant time points they show in Prop. 4.1 that
the conditional variances QZ

tk− and QZ
tk before and after the arrival, respectively, stabilize and

tend to (different) finite limits. We also refer to our numerical results presented in Sect. 7.2.

3.3 Asymptotic filter behavior for high-frequency expert opinions

In this subsection we provide results for the asymptotic behavior of the filters for a Z -
investor when the number of expert opinions goes to infinity. This will be helpful for deriving
approximations not only of the filters but also of solutions to the utilitymaximization problem
(9) in case of high-frequency expert opinions. We will denote the arrival times of the expert’s
views by tk = t (n)

k to emphasize the dependence on n. Then we have for all n that 0 =
t (n)
0 < t (n)

1 < . . . < t (n)
n−1 < T . Again we set t (n)

n = T . We also use an additional superscript
n and write (MZ ,n)t∈[0,T ] and (QZ ,n)t∈[0,T ] for the conditional mean and the conditional
covariance matrix of the filter, respectively, in order to emphasize dependence of the filter
processes on the number of expert opinions.

We distinguish two different asymptotic regimes. First the expert’s variance � stays con-
stant, second that variance grows linearly with the number n of expert opinions.

3.3.1 High-frequency expert opinions with fixed variance

For an increasing number of expert opinions with fixed variance � the investor receives more
andmore noisy signals about the current state of the driftμ of the same precision. Then, it can
be expected that in the limit the filter process MZ

t constitutes a perfectly accurate estimate
which is equal to the actual driftμt , i.e., the investor has full information about the drift. This
intuitive statistical consistency result has been rigorously proven in Sass et al. (2017) under
the following
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Assumption 3.8

1. The expert’s covariance matrix � is (strictly) positive definite and does not depend on n.
2. For the mesh size δn = max

k=0,...,n−1
|tn)
k+1 − t (n)

k | it holds lim
n→∞ δn = 0.

Theorem 3.9 (Sass et al. (2017), Theorem 3.4.) Under Assumption 3.8 it holds for all
t ∈ (0, T ] for
1. the conditional covariance matrix lim

n→∞ ‖QZ ,n
t ‖ = 0,

2. the conditional mean lim
n→∞ E

[∥∥MZ ,n
t − μt

∥∥2] = 0.

3.3.2 High-frequency expert opinions with linearly growing variance

Now we consider another asymptotic regime arising in models in which a higher arrival
frequency of expert opinions is only available at the cost of accuracy. We assume that the
expert views arrive at equidistant time points and the variance � of the views Zk grows
linearly with n. This reflects that contrary to the above setting with constant variance now
investors are not able to gain an arbitrary amount of information over a fixed time interval.

We recall the dynamics of the continuous expert opinions J = (Jt )t∈[0,T ] given in (5) by
the SDE d Jt = μt dt + σJ dW J

t , J0 = 0, and make the following

Assumption 3.10

(1) The expert arrival dates are equidistant, i.e., tk = t (n)
k = k
n for k = 0, . . . , n − 1 with


n = T
n .

(2) The experts covariance matrix is given by � = �(n) = 1

n

σJσ
�
J .

(3) The normally distributed random vectors (εnk ) in (4) are linked with the Brownian motion
W J from (5) via εnk = 1√


n

∫
[t (n)
k ,t (n)

k+1] dW
J
s .

In view of the representation of expert opinions in (4) the third assumption implies that

Z (n)
k = μ

t (n)
k

+ 1


n
σJ

∫
[t (n)
k ,t (n)

k+1]
dW J

s , k = 0, . . . , n − 1. (19)

The following theorem shows that in the present setting the information obtained from
observing the discrete-time expert opinions is asymptotically the same as that from observing
the diffusion process J representing the continuous-time expert and defined in (5).

Theorem 3.11 (Sass et al. (2022), Theorems 3.2 and 3.3) Let p ∈ [1,+∞). Under Assump-
tion 3.10 it holds:

(1) There exists a constant KQ > 0 such that
∥∥QZ ,n

t − QJ
t

∥∥ ≤ KQ
n for all t ∈ [0, T ].
In particular, it holds lim

n→∞ sup
t∈[0,T ]

∥∥QZ ,n
t − QJ

t

∥∥ = 0.

(2) There exists a constant Km,p > 0 such that E
[∥∥MZ ,n

t − MJ
t

∥∥p
]

≤ Km,p
n for all t ∈
[0, T ].
In particular, it holds lim

n→∞ sup
t∈[0,T ]

E

[∥∥MZ ,n
t − MJ

t

∥∥p
]

= 0.
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4 Utility maximization

This section is devoted to the solution of the utility maximization problem (9). We briefly
review in Sect. 4.1 the solution for logarithmic utility. For the more demanding case of power
utility we reformulate problem (9) in Sect. 4.2 as an equivalent stochastic optimal control
problem which can be solved by dynamic programming techniques. We present the solutions
for the fully informed investor (H = F) in Sect. 4.3. Results for partially informed investors
with diffusion type observations (H = R, J ) and for the Z -investor observing discrete-time
expert opinions will follow in Sects. 5 and 6.

4.1 Logarithmic utility

For an investor who wants to maximize expected logarithmic utility of terminal wealth
optimization problem (9) reads as

VH
0 (x0) := sup

π∈AH
0

E

[
log(Xπ

T ) | FH
0

]
. (20)

This optimization problemhas been solved inGabih et al. (2014) and generalized in Sass et
al. (2017) and Kondakji (2019) in the context of the different information regimes addressed
in this paper. In the sequel we state the obtained results.

Proposition 4.1 The optimal strategy (πH
t )t∈[0,T ]) for the optimization problem (20) is given

in feedback form by πH
t = �H (t, MH

t ) where the optimal decision rule is given by

�H (t,m) = �−1
R m for m ∈ R

d ,

and the optimal value is

VH
0 (x0) = log(x0) + 1

2

∫ T

0
tr

(
�−1

R E[MH
t (MH

t )�])dt

= log(x0) + 1

2

∫ T

0
tr

(
�−1

R

(
Var [μt ] + E[μt ]E[μ�

t ] − QH
t

))
dt . (21)

We assumed in our model for the drift process μ in (2) that the matrix κ is positive definite.
Using the closed-form solution of the SDE (2) given in (3) it can be deduced that the mean
E[μt ] and covariance matrix Var [μt ] are bounded. Further, it is known from Prop. 3.4 that
also the conditional covariance matrix QH

t is bounded. Thus from representation (21) it can
be derived that the value function VH

0 (x0) is bounded. As already mentioned in Sect. 2.5
there exists some constant CH

V > 0 such that VH
0 (x0) ≤ CH

V .
Representation (21) also shows that the value function depends on the information regime

H only via an integral functional of the conditional covariance (QH
t )t∈[0,T ]. This allows to

carry over the convergence results for the conditional covariance matrices QZ ,n for n → ∞
given in Theorems 3.11 and 3.9 to the value functions.We refer to Sass et al. (2017, Corollary
5.2.) for the convergence V Z ,n

0 (x0) → VF
0 (x0) for the case of a fixed expert’s variance �

and to Sass et al. (2022, Corollary 5.2.) for the convergence V Z ,n
0 (x0) → V J

0 (x0) for linearly
growing variance.
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4.2 Power utility

In this section we focus on the maximization of expected power utility as given in (8). That
problem can be treated as a stochastic optimal control problem and solved using dynamic
programming methods. We will apply a change of measure technique which was already
used among others by Nagai and Peng (2002) and Davis and Lleo (2013a). This allows to
study simplified control problems in which the state variables are reduced to the (slightly
modified) filter processes of conditional mean whereas the wealth process can be removed
from the state.
Performance criterionRecall equation (6) for the wealth process Xπ saying that dXπ

t /Xπ
t =

π�
t d Rt . Rewriting SDE (1) for the return process R in terms of the innovations processes

W̃ H given in Lemmas 3.1, 3.2 and 3.3 we obtain for H = R, J , Z the F
H -semimartingale

decomposition of Xπ (see also Lakner (1998), Sass and Haussmann (2004))

dXπ
t

Xπ
t

= π�
t MH

t + π�
t σ H

X dW̃ H
t , Xπ

0 = x0,

where σ R
X = σ Z

X = �
1/2
R and σ J

X = (�
1/2
R , 0d×d). From the above wealth equation we

obtain that for a given admissible strategy π the power utility of terminal wealth Xπ
T is given

by

Uθ (X
π
T ) = 1

θ
(Xπ

T )θ = xθ
0

θ

H

T exp
{ ∫ T

0
b(MH

s , πs)ds
}
, (22)

where for m, p ∈ R
d

b(m, p) = θ
(
p�m − 1 − θ

2
‖p�σX‖2

)
and (23)


H
T = exp

{
θ

∫ T

0
π�
s σX dW̃ H

s − 1

2
θ2

∫ T

0
‖π�

s σX‖2 ds
}
. (24)

Since we require that admissible strategies π satisfyE[
H
T ] = 1 we can define an equivalent

probability measure P
H
by 
H

T = dP
H

dP for which Girsanov’s theorem guarantees that the

process W
H = (W

H
t )t∈[0,T ] with

W
H
t = W̃ H

t − θ

∫ t

0
σ�
X πs ds, t ∈ [0, T ], (25)

is a (FH , P
H

)-standard Brownian motion. This change of measure allows to rewrite the
performance criterionDH

0 (x0;π) = E
[Uθ (Xπ

T ) | FH
0

]
of the utility maximization problem

(9) for π ∈ AH
0 as

DH
0 (x0;π) = xθ

0

θ
E

[

H

T exp
{ ∫ T

0
b(MH ,m0,q0

s , πs)ds
}]

= xθ
0

θ
E
H

[
exp

{ ∫ T

0
b(MH ,m0,q0

s , πs)ds
}]

. (26)

Above we used the notation E
H

for the expectation under the measure P
H
. Further, the

notation MH ,m0,q0 emphasizes the dependence of the filter processes MH , QH on the initial
values m0, q0 at time t = 0 and reflects the conditioning in E

[Uθ (Xπ
T ) | FH

0

]
on the initial
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information given by the σ -algebra FH
0 . It turns out that the utility maximization problem

(9) is equivalent to the maximization of

DH
0 (m0, q0;π) = E

H
[
exp

{ ∫ T

0
b(MH ,m0,q0

s , πs)ds
}]

(27)

over all admissible strategies for θ ∈ (0, 1) while for θ < 0 the above expectation has to be

minimized. Note that it holdsDH
0 (x0;π) = xθ

0
θ
DH

0 (m0, q0;π). This allows us to remove the
wealth process X from the state of the control problem which we formulate next.
State process In view of the performance criterion (27) the state process of the associated
control problem is the conditional mean MH for which we need to express the dynamics

under the measureP
H
. Recall theP-dynamics ofMH given in Lemma 3.1 through 3.3. Using

(25) the dynamics under P
H
for H = R, Z , J are obtained by expressing W̃ H in terms of

W
H
and leads to the SDE for MH = MH ,m0,q0

dMH
t = α(MH

t , QH
t ;πt ) dt + βH (QH

t ) dW
H
t , MH

0 = m0, (28)

where for m, p ∈ R
d and q ∈ R

d×d

α(m, q; p) = κ(μ − m) + θqp and βH (q) =
{

q�
−1/2
R , H = R, Z ,

q(�
−1/2
R , �

−1/2
J ), H = J .

Note that for H = Z the above SDE describes the dynamics only between two arrival dates
tk−1 and tk, k = 1, . . . , n, whereas at the arrival dates tk according to the updating formula
(15) there are jumps of size MZ

tk − MZ
tk− = (Id − ρk)(Zk − MZ

tk−). Further, note that the
drift coefficient α in the SDE (28) for MH now depends also on the conditional variance QH

as well as on the strategey π . Since the conditional covariance QH is deterministic it is not
affected by the change of measure.

The case of full information can formally be incorporated in our model with the settings
MF = μ and a state equation (28) with the coefficients α(m, q, p) = κ(μ−m), βF (q) = σμ

which are independent of q .
Markov Strategies To apply the dynamic programming approach to the optimization problem
(27) the state process MH needs to be a Markov process adapted to F

H . To allow for this
situation we restrict the set of admissible strategies to those ofMarkov type which are defined
in terms of time and the state process MH according to a given specified decision rule �,
i.e, πt = �(t, MH

t ) for a some given measurable function � : [0, T ] × R
d → R

d . Below
we will need some technical conditions on � which we collect in the following

Assumption 4.2

(1) Lipschitz condition
There exists a constant CL > 0 such that for all m1,m2 ∈ R

d and all t ∈ [0, T ] it holds
‖�(t,m1) − �(t,m2)‖ ≤ CL‖m1 − m2‖.

(2) Linear growth condition
There exists a constant CG > 0 such that for all m ∈ R

d and all t ∈ [0, T ] it holds
‖�(t,m)‖ ≤ CG(1 + ‖m‖).

(3) Integrability condition
For the information regimes H = R, J , Z the strategy processes π defined by πt =
�(t, MH

t ) on [0, T ] are such that the process 
 defined by (24) satisfies E[
H
T ] = 1.
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We denote by

AH :=
{
� : [0, T ] × R

d → R
d : � is a measurable function satisfying Assumption 4.2

}

the set of admissible decision rules.

Remark 4.3 The integrability condition guarantees that the Radon-Nikodym density process


H given in (23) is amartingale, hence the equivalent measureP
H
is well-defined. AMarkov

strategy π = (πt )t∈[0,T ] with πt = �(t, MH
t ) defined by an admissible decision rule � is

contained in the set of admissible strategies AH
0 given in (7) since by construction it is

F
H -adapted, the positivity of the wealth process Xπ follows from (22). The integrability

condition implies the square-integrability of π . Finally, the Lipschitz and linear growth
condition ensure that SDE (28) for the dynamics for the controlled state process enjoys for
all admissible strategies a unique strong solution.

Control problemWe are now ready to formulate the stochastic optimal control problem with
the state process MH and a Markov control defined by the decision rule �. The dynamics
of the state process MH are given in (28). We write MH ,�,t,m

s for the state process at time
s ∈ [t, T ] controlled by the decision rule � and starting at time t ∈ [0, T ] with initial value
MH

0 = m ∈ R
d . Note that MH ,�,t,m

s depends on the conditional covariance QH which is
deterministic and can be computed offline. Therefore QH needs not to be included as state
process of the control problem. Further, we remove the initial value q0 = QH

t from the
notation but keep in mind the dependence of MH ,�,t,m

s on QH .
To solve the control problem (27)wewill apply the dynamic programming approachwhich

requires the introduction of the following reward and value functions. For all t ∈ [0, T ] and
� ∈ AH the associated reward function or performance criterion of the control problem (27)
reads as

DH (t,m;�) := E
H

[
exp

{ ∫ T

t
b(MH ,�,t,m

s ,�(s, MH ,�,t,m
s ))ds

}]
, for � ∈ AH , (29)

while the associated value function reads

V H (t,m) :=

⎧⎪⎨
⎪⎩

sup
�∈AH

DH (t,m;�), θ ∈ (0, 1),

inf
�∈AH

DH (t,m;�), θ ∈ (−∞, 0),
(30)

and it holds V H (T ,m) = DH (T ,m;�) = 1. In the sequel we will concentrate on the case
0 < θ < 1, the necessary changes for θ < 0 will be indicated where appropriate.

In view of relation (26) and the above transformations the value function of the original
utility maximization problem (9) can be obtained from the value function of control problem
(30) by

VH
0 (x0) = xθ

0

θ
V H (0,m0). (31)

4.3 Full information

The utility maximization problem for the case of full information H = F is already investi-
gated in Kim and Omberg (1996), Brendle (2006) and Davis and Lleo (2013b, Chapter 2). In
our analysis itwill serve as a reference case for the comparisonwith results for partial informa-
tion. Recall that for H = F the state process is set to be the drift, i.e.,MF = μwhereas for the
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partially informed investors the state MH is the conditional mean process under the measure

P
H
. In the state equation (28) for H = F the coefficients read as α(m, q, p) = κ(μ − m),

βF (q) = σμ. Below we only present the results for the associated control problem (30)
which will serve as a reference when we investigate the other information regimes of partial
information. For details we refer to Kondakji (2019, Sec. 4.1, 5.1).
Well posednessWeassume that themodel parameters σR, σμ, κ, T , θ are such that the follow-
ing sufficient condition for the well posedness of the control problem under full information
is satisfied. It is derived in our paper (Gabih et al., 2022, Corollary 3.4) and requires that the
terminal value problem for the Riccati equation

d Aγ (t)

dt
= −2Aγ (t)�μAγ (t) + κ�Aγ (t) + Aγ (t)κ − γ�−1

R , Aγ (T ) = 0d×d (32)

has for γ = γ0 = θ
2(1−θ)2

a bounded solution on [0,T]. That condition implies restrictions
to the choice of model parameters for θ ∈ (0, 1), that is for investors which are less risk-
averse than log-utility maximizing investor. For θ < 0 it is always fulfilled. This follows
from Theorem 5.2 in Fleming and Rishel (1975). For θ < 0 we have γ0 < 0 and γ0�

−1
R

is negative semindefinite. Then the above theorem says that the solution Aγ0 to the Riccati
ODE (34) does not explode on (−∞, T ) and is thus always bounded on [0, T ].
Theorem 4.4 For the control problem (30) under full information (H = F) the optimal
decision rule is for t ∈ [0, T ),m ∈ R

d given by

�F = �F (t,m) = 1

(1 − θ)
�−1

R m. (33)

The value function for t ∈ [0, T ],m ∈ R
d is given by

V F (t,m) = exp
{
m�AF (t)m + m�BF (t) + CF (t)

}
,

where AF , BF andCF are functions on [0, T ] taking values inR
d×d ,Rd and R, respectively,

satisfying a terminal value problem for the following system of ODEs

d AF (t)

dt
= −2AF (t)�μA

F (t) + κ�AF (t) + AF (t)κ − 1

2

θ

1 − θ
�−1

R , AF (T ) = 0d×d ,

dBF (t)

dt
= −2AF (t)κμ + [

κ� − 2AF (t)�μ

]
BF (t), BF (T ) = 0d ,

dCF (t)

dt
= −1

2
(BF (t))��μB

F (t) − (BF (t))�κμ − tr{�μA
F (t)}, CF (T ) = 0.

(34)

A proof and a detailed verification analysis can be found in Davis and Lleo (2013b, Chapter
2).
Boundedness of AF ,BF ,CF The differential equations for AF , BF ,CF are coupled. The
ODE for AF is an autonomous matrix Riccati ODE which can be solved first. Given the
solution to AF , one can solve the linear ODE for BF , and then one can findCF by integrating
the r.h.s. of the last ODE. Therefore, a bounded solution AF implies boundedness of BF

and CF on [0, T ]. Since the Riccati equation for AF is a special case of (32) it is sufficient
to require the condition

the solution Aγ to (32) is for γ = γ F = θ

2(1 − θ)
bounded on [0,T], (35)
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to be satisfied. For θ < 0 we have γ F < 0 and as above for Aγ0 , from Fleming and Rishel
(1975, Theorem 5.2) it follows that the solution AF = Aγ F to (32) does not explode on
(−∞, T ) and is thus always bounded on [0, T ].

For θ ∈ (0, 1) and the scalar case, that is d = 1, condition (35) follows immediately from
the well posedness condition in (32). To see this, we introduce for G ∈ R the notation hγ (G)

for the r.h.s. of (32) such that this ODE reads d
dt Aγ0 = hγ0(Aγ0) and the Riccati equation

for AF = Aγ F as d
dt Aγ F = hγ F (Aγ F ). Since for θ ∈ (0, 1) it holds γ0 > γ F > 0 and �−1

R
is positive it holds for the r.h.s. of the above ODEs hγ0(G) < hγ F (G). Since the terminal
conditions Aγ0(T ) = Aγ F (T ) = 0 are the same for both equations it can be deduced that the
solutions satisfy Aγ0(t) ≥ Aγ F (t) = AF (t) for t ∈ [0, T ). From Roduner (1994, Theorem
1.2) it follows that for γ > 0 the solutions of the Riccati equations are nonnegative on [0, T ].
Thus, we have Aγ0(t) ≥ AF (t) ≥ 0 on [0, T ) and the boundedness of Aγ0 implies that AF

is bounded.
Monetary value of information In order to quantify the monetary value of information we
have introduced in Sect. 2.6 the quantity xH/F

0 for which we have to evaluate an expectation
given in (10). The latter can be given in terms of the functions AF , BF , CF appearing in the
above theorem. Using (31) we find for H = R, J , Z

E

[
VF
0

(
xH/F
0

) | FH
0

]
= E

[(
xH/F
0

)θ

θ
V F (0, μ0) | FH

0

]
=

(
xH/F
0

)θ

θ
E

[
V F (0, μ0) | MH

0 , QH
0

]
.

For MH
0 = m and QH

0 = q the conditional distribution of μ0 given FH
0 is the normal

distribution N (m, q), i.e. μ0 = m + q
1
2 ε with ε ∼ N (0, Id). Hence we have

E

[
V F (0, μ0) | MH

0 = m, QH
0 = q

]
= E

[
V F (

0,m + q1/2ε
)]

.

This approach can be extended to the case of arbitrary time points t ∈ [0, T ]withMH
t = m

and QH
t = q by means of the following function

V
F
(t,m, q) := E

[
V F (

t,m + q
1
2 ε

)]
, ∀t ∈ [0, T ]. (36)

The following Lemma gives an explicit form for computing V
F
(t,m, q).

Lemma 4.5 (Kondakji (2019), Lemma 5.1.3) Under the assumption that the eigenvalues of
the matrix Id − 2AF (t)q are positive, it holds

V
F
(t,m, q) = exp

{
m� A

F
(t, q)m + m�B

F
(t, q)m + C

F
(t, q)

}
,

for t ∈ [0, T ],m ∈ R
d , q ∈ R

d×d , where

A
F
(t, q) = (Id − 2AF (t)q)−1AF (t),

B
F
(t, q) = (Id − 2AF (t)q)−1BF (t),

C
F
(t, q) = CF (t) + 1

2

(
BF (t)

)�
(Id − 2AF (t)q)−1qBF (t) − 1

2
log det(Id − 2AF(t)q)

with AF , BF and CF given in Theorem 4.4.
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5 Partially informed investors observing diffusion processes

In this section we start to solve the control problem (30) for partially informed investors. We
consider investors observing the diffusion processes R and/or J , i.e., the information regimes
H = R, J . The case of the information regime H = Z with discrete-time expert opinions
follows in Sect. 6.
Well posedness In Gabih et al. (2022, Corollary 3.7) we show that for θ < 0 the control
problem (30) for H = R, J , Z is always well posed. However, for θ ∈ (0, 1) in addition
to the condition (32) ensuring well posedness of the control problem for the fully informed
investor one now also has to impose the condition

the eigenvalues of Id − 2(1 − θ)(t)QH
t are positive on [0, T ] for γ0 = θ

2(1 − θ)2
. (37)

Condition (37) says that the conditional covariance QH must not be “too big” such that the
eigenvalues of Id − 2(1 − θ)(t)QH

t are positive. Recall, QH is deterministic and can be
computed offline, and from Proposition 3.4 we know that QH is bounded.

For solving control problem (30) we apply dynamic programming techniques. Starting
point is the dynamic programming principle given in the following lemma. For the proof we
refer to Frey et al. (2014, Prop. 6.2) and Pham (1998, Prop. 3.1).

Lemma 5.1 (Dynamic Programming Principle) For every t ∈ [0, T ], m ∈ R
d and for every

stopping time τ with values in [t, T ] it holds

V H (t,m) = sup
�∈AH

E
H

[
exp

{ ∫ τ

t
b(MH ,�,t,m

s ,�(s, MH ,�,t,m
s ))ds

}
V H (τ, MH ,�,t,m

τ )

]
.

(38)

From the dynamic programming principle the dynamic programming equation (DPE) for
the value function presented in Theorem 5.2 can be deduced. That equation constitutes a
necessary optimality condition and allows to derive the optimal decision rule. We recall that
we focus on the solution for θ ∈ (0, 1), the case θ < 0 follows analogously by changing sup
into inf in (38). For convenience we introduce the shorthand notation

�
−1
H =

{
�−1

R , H = R, Z

�−1
R + �−1

J , H = J .
(39)

Theorem 5.2 (Dynamic programming equation)

(1) In the case of diffusion type observations. i.e., H = R, J , the value function V H satisfies
for t ∈ [0, T ) and m ∈ R

d the PDE

0 = ∂

∂t
V H (t,m) + D�

mV
H (t,m)

(
κ(μ − m) + θ

(1 − θ)
QH

t �−1
R m

)

+ 1

2
tr

{
DmmV

H (t,m)
(
QH

t �
−1
H QH

t

)}
+ θ

2(1 − θ)
m��−1

R mV H (t,m)

+ θ

2(1 − θ)

1

V H (t,m)
D�
mV

H (t,m)
(
QH

t �−1
R QH

t

)
DmV

H (t,m), (40)

with the terminal condition V H (T ,m) = 1 and DmV H , DmmV H denoting the gradient
and Hessian matrix of V H , respectively.
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(2) The candidate optimal decision rule is for t ∈ [0, T ) and m ∈ R
d given by

�H = �H (t,m) = 1

1 − θ
�−1

R

(
m + 1

V H (t,m)
QH

t DmV
H (t,m)

)
. (41)

Proof Let t, τ ∈ [0, T ) with τ > t for some fixed time point t . Then the dynamic program-
ming principle (38) and the continuity of MH ,�,t,m

s on [0, T ) imply

V H (t,m) = lim
τ↘t

V H (τ,m)

= lim
τ↘t

sup
�∈AH

E
H

[
exp

{ ∫ τ

t
b(MH ,�,t,m

s ,�(s, MH ,�,t,m
s ))ds

}
V H (τ, MH ,�,t,m

τ )
]
.

(42)

For the state process M = MH ,�,t,m given in (28) the associated generator L = Lp applied
to a function g ∈ C2(Rd) for fixed p = �(t,m) reads

Lg(m) = D�
m g(m)α(m, q, p) + 1

2
tr

{
Dmmg(m)βH (q)

(
βH (q)

)�}
.

From (42) we obtain using Dynkin’s formula for V H (τ, MH ,�,t,m
τ ) and standard arguments

of the dynamic programming approach the following PDE

0 = ∂

∂t
Vk(t,m) + D�

mV
H (t,m)κ(μ − m) + 1

2
tr

{
DmmV

H (t,m)QH
t �

−1
H QH

t

}

+ sup
p∈Rd

{
D�
mV

H (t,m)θQH
t p + θ

(
p�m − 1 − θ

2
p��R p

)
V H (t,m)

}
. (43)

The maximizer for the supremum appearing in (43) yields the optimal decision rule �H =
�H (t,m) which is given in (41). Plugging the expression for the maximizer �Z back into
the DPE (43) we obtain the PDE (40). ��

The above dynamic programming equation can be solved using an ansatz as in (44) below
and leads to closed-form expressions for the value function V H and the optimal decision rule
�H in terms of solutions of some ODEs. The results are given in the next theorem and are
known for H = R already from Brendle Brendle (2006). For the case H = J and details of
the proof we refer Kondakji (2019, Sec. 5.2).

Theorem 5.3 (Solution of DPE and optimal decision rule)

(1) In the case of diffusion type observations, that is H = R, J , the solution to the dynamic
programming equation equation (40) is given for t ∈ [0, T ],m ∈ R

d by

V H (t,m) = exp
{
m�AH (t)m + m�BH (t) + CH (t)

}
. (44)

The functions AH (t), BH (t) and CH (t) staisfy the system of ODEs

d AH (t)

dt
= −2AH (t)QH

t

( θ

1 − θ
�−1

R + �
−1
H

)
QH

t AH (t)

+
(
κ� − θ

1 − θ
�−1

R QH
t

)
AH (t)

+ AH (t)
(
κ − θ

1 − θ
QH

t �−1
R

)
− θ

2(1 − θ)
�−1

R ,
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dBH (t)

dt
=

[
κ�− 2AH (t)QH

t

( θ

1 − θ
�−1

R + �
−1
H

)
QH

t − θ

1 − θ
�−1

R QH
t

]
BH (t)

− 2AH (t)κμ,

dCH (t)

dt
= −(BH (t))�

[
κμ + 1

2
QH

t

( θ

1 − θ
�−1

R + �
−1
H

)
QH

t BH (t)
]

tr
{
QH

t �−1
R QH

t AH (t)
}
,

with terminal values AH (T ) = 0d×d , BH = 0d ,CH = 0.
(2) The candidate optimal decision rule is for t ∈ [0, T ),m ∈ R

d , given by

�H (t,m) = 1

1 − θ
�−1

R

(
m + QH

t (2AH (t)m + BH (t))
)
. (45)

The next proposition shows that the functions AH , BH ,CH solving the system of ODEs
in Theorem 5.3 can be expressed by the solutions AF , BF ,CF to the ODEs for the full

informationproblemgiven inTheorem4.4via the functions A
F
, B

F
,C

F
given inLemma4.5.

The proof is given in Kondakji, (2019, Lemma 5.2.1). The result will facilitate the proof of
boundedness of AH , BH ,CH .

Proposition 5.4 If the eigenvalues of Id − 2AF (t)QH
t are positive for all t ∈ [0, T ] then it

holds for the functions AH , BH and CH on [0, T ]
AH (t) = A

F (
t, QH

t

)
, BH (t) = B

F (
t, QH

t

)
, CH (t) = C

F (
t, QH

t

) − θ
H
X (t), (46)

where the functions A
F
, B

F
and C

F
are given in Lemma 4.5 and


H
X (t) := 1

2
log

det(Id − 2ξ H (t)QH
t )

det(Id − 2AF (t)QH
t )

+ K H (t) − K
H

(t), t ∈ [0, T ]. (47)

The function ξ H (t) satisfies on [0, T ] the Riccati equation
dξ H (t)

dt
= −2ξ H (t)�μξ H (t) + κ�ξ H (t) + ξ H (t)κ + 1

2
�H , ξ H (T ) = 0,

where �H is given in (39). The functions K H (t), K
H

(t) are given by

K H (t) =
∫ T

t
tr{�μ

(
AF (u) − ξ H (u)

)}du,

K
J
(t) = 1

2

∫ T

t
tr{QJ

u�−1
J (Id − 2QJ

u A
F (u))}du and K

R
(t) = 0.

Boundedness of AH,BH,CH In view of Proposition 5.4 this property holds under condition
(35) saying that AF is bounded, and if the eigenvalues of Id − 2(1 − θ)AF (t)QH

t are
positive on [0, T ]. Note that if AF is bounded then BF and CF are also bounded. Thus, the

expressions A
F (
t, QH

t

)
, B

F (
t, QH

t

)
, B

F (
t, QH

t

)
in (46) with A

F
, B

F
given in Lemma 4.5

are bounded on [0, T ]. This proves the boundedness of AH and BH . Finally, the boundedness
of CH follows from integrating the r.h.s. of the ODE for CH given in Theorem 5.3, which is
bounded.

Recall, for θ < 0 we have that AF is always bounded and negative semindefinite. Anal-
ogously to the approach in our paper (Gabih et al., 2022, Section 3) one can show that the
eigenvalues of K (t) = Id − 2(1 − θ)AF (t)QH

t are bounded below by 1 and thus positive.
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However, for θ ∈ (0, 1) the eigenvalues of K (t) are positive only if the conditional covariance
QH

t is on [0, T ] not “too large”. Since if λ is an eigenvalue of AF (t)QH
t then 1− 2(1− θ)λ

is an eigenvalue of K (t) one has to require that λmax(AF (t)QH
t ) < 1

2(1−θ)
for all t ∈ [0, T ].

Here, λmax(G) denotes the largest eigenvalue of a generic matrix G.
Verification We derived the above candidate solution to the control problem (30) using the
classical stochastic control approach. To ensure that the solution to the DPE is indeed the
value function V , the candidate optimal decision rule �H indeed satisfies V H (t,m) =
DH (t,m;�H ), and that �H defines an optimal strategy process via πH

t = �H (t, MH
t )

that is admissible, one needs to prove a suitable verification theorem. Such a verification
theorem is given in Hata and Sheu (2018, Theorem 4.1) for a slightly general setting. That
paper considers a combined consumption and investment problem in which the investor is
also allowed to consume portfolio wealth and aims to maximize the expectation of the sum
of the power utility of terminal wealth and aggregated running power utility of consumption.
Further, Hata and Sheu (2018) allows for correlation between return and drift process, non-
negative interest rate for the risk-free asset, and for discounting the utility. The findings can
be directly adopted to the control problem (30) for H = R, J if the utility for consumption
formally is set to zero, leading to zero optimal consumption, and removing the consumption
from the strategy process.

In Hata and Sheu (2018) the authors take advantage of the consideration of a logarithmic
transformation of the performance criterion and study the associated DPE for log V H . One
of the key assumptions for the above mentioned verifications results is the boundedness of
the functions AH , BH ,CH on [0, T ]. Further, the linearity of the optimal decision rule �H

w.r.t. the state variablem, see (45), is exploited to prove, that the optimal strategy process πH

generated by �H , is admissible. In particular, using a result of Bensoussan (1992, Lemma
4.1.1) which is also given in Nagai (2015, Lemma 5.1), it can be deduced that the associated
density process 
H defining the change of measure and given in (24) satisfies E[
H

T ] = 1.

Remark 5.5 The optimal decision rules given in (41) and (45) can be rewritten as

�H (t,m) = �F (t,m) + 1

(1 − θ)V H (t,m)
�−1

R QH
t DyV

H (t,m)

= �F (t,m) + 1

1 − θ
�−1

R QH
t (2AH (t)m + BH (t)).

Thus, �H can be decomposed into two parts. The first part �F is the optimal decision rule
of the fully informed investor given in (33). To obtain the value of the strategy process πt at
time t the fully informed investor plugs in for m the current value of the drift μt , whereas
the partially informed H -investor plugs in the filter estimate MH

t . In the literature �F is also
known as myopic decision rule. The second part is the “correction term” �H −�F which is
known as drift risk of the partially informed H -investor since it accounts for the investor’s
uncertainty about the current value of the non-observable drift, see Rieder and Bäuerle (2005,
Remark 1) and Frey et al. (2012, Remark 5.2). The decomposition shows that, in contrast to
the case of log utility (see Sass et al. (2017)), the so-called certainty equivalence principle
does not apply to power utility. It states that the optimal strategy under partial information is
obtained by replacing the unknown drift μt by the filter estimate MH

t in the formula for the
optimal strategy under full information.

Remark 5.6 It is well-known that log-utility can be embedded in the family of power utilities
using the relation Uθ (x) − 1/θ = (xθ − 1)/θ → log x for θ → 0. Replacing Uθ (x) by
Uθ (x) − 1/θ in the utility maximization problem (9) will only lead to an additive shift of the
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value function while the optimal strategy remains unchanged. Hence, it can be expected that
the optimal decision rule given (45) converges for θ → 0 to the optimal decision rule for
log-utility �H

log(t,m) = �−1
R m given in Proposition 4.1. And in fact, this is the case, since

for θ → 0 the solutions to the ODEs for AH , BH converge to zero. First, the r.h.s. of the
Riccati ODE for AH is a quadratic expression of AH with the absolute term − θ

2(1−θ)
�−1

R .

The latter vanishes for θ = 0. Since the terminal value at time t = T is zero, the solution AH

is zero on [0, T ]. Thus, the linear ODE for BH is homogeneous with zero terminal value,
and the solution BH is zero on [0, T ]. Finally, the correction term or drift risk �H − �F

containing 2AH (t)m + BH (t) vanishes for θ → 0.

By comparing the optimal decision rules for the R, J and F-investor for identical values
m of the conditional mean and q of the conditional covariance, some interesting properties
result, which are formulated in the following lemma. For the proof we refer to Kondakji
(2019, Lemma 5.2.4 and 5.2.5).

Lemma 5.7

1. If MR
t = MJ

t = m and QR
t = QJ

t = q then it holds �R(t,m) = �J (t,m).

2. If MH
t = μt = m and QH

t = 0 then it holds �F (t,m) = �H (t,m) for H = R, J .

Monetary value of informationTheorem5.3 allows to derive explicit expressions for the initial
investment x R/H

0 and xH/F
0 introduced in Sect. 2.6 and needed to evaluate the efficiency of

the R- and J -investor and the monetary value of expert opinions.

Lemma 5.8 (Kondakji (2019), Lemma 5.3.1) For the initial capital x H/F
0 and the efficiency

εH defined in (10) and (11), respectively, it holds for H = R, J

xH/F
0 = xH0 exp{−
H

X (0)} and εH = exp{−
H
X (0)}.

For the initial capital x R/J
0 defined in (12) and the monetary value of expert opinions P J

Exp
it holds

P J
Exp = x R0 − x R/J

0 with x R/J
0 = exp{−
J

X (0) + 
R
X (0)},

where 
J
X (0) and 
R

X (0) are given in (47).

6 Partially informed investors observing discrete-time expert opinions

After solving the control problem (30) for partially informed investors observing the diffusion
processes this section presents the solution for investors observing returns and discrete-time
expert opinions, i.e., the information regime H = Z . As in Sect. 5 for H = R, J we
impose the pair of well posedness conditions (32) and (37). We again apply the dynamic
programming principle to derive the DPE for the value function and introduce the notation

Vk(t,m) =
{

V Z (t,m), for t ∈ [tk−1, tk),
vk(y) = V Z (tk−,m) = lim

t↗tk
V Z (t,m), for t = tk,

for k = 1, . . . , n, i.e., Vk : [tk−1, tk] → R denotes the value function on the k-th interval
between two subsequent information dates and vk(y) its left-hand limit at tk . Note that for
tn = T we have vn(m) = V (T ,m) = 1.

123



922 Annals of Operations Research (2024) 341:897–936

Theorem 6.1 (Dynamic programming equation)

(1) Let the value function be defined piecewise for t ∈ [tk−1, tk), k = 1, . . . n, and m ∈ R
d

by V Z (t,m) = Vk(t,m). Then the functions Vk satisfy on (t0, t1) and [tk−1, tk), k =
2, . . . , n, the PDE (40) with the terminal conditions

Vk(tk,m) = vk(m) = E
Z
[
Vk+1

(
tk, M

�,tk−,m
tk

)]
, k = 1, . . . , n − 1. (48)

For t = tn = T it holds Vn(T ,m) = 1 and for t = t0 = 0

V1(0,m) = v0(m) = E
Z
[
V1

(
0, M�,0,m

0+
)]

, m ∈ R
d . (49)

(2) The candidate optimal decision rule is for t ∈ [tk−1, tk), k = 1, . . . n, given by

�Z = �Z (t,m) = �F (t,m) + 1

1 − θ
�−1

R QZ
t
DmVk(t,m)

Vk(t,m)
, (50)

where �F is given in (33).

Proof Let t, τ ∈ (0, t1) or t, τ ∈ [tk−1, tk), k = 2, . . . n, with τ > t for a fixed time point
t . Analogously to the proof of Theorem 5.2 the dynamic programming principle (38) and
the continuity of MH ,�,t,m

s on (0, t1) and [tk−1, tk), k = 2, . . . n, imply that Vk satisfies the
PDE (40) and that the optimal decision rule is given as in (50).

It remains to prove the terminal conditions in (48) and relation (49) for the initial time
t = 0. We fix an information date tk , k = 1, . . . , n − 1 and apply again the dynamic
programming principle (38) where we set τ = tk and consider the following limit

vk(m) = Vk(tk−,m) = V Z (tk−,m)

= lim
t↗tk

sup
�∈AZ

E
Z
[
exp

{ ∫ tk

t
b(MZ ,�,t,m

s ,�(s, MZ ,�,t,m
s ))ds

}
V Z (tk, M

Z ,�,t,m
tk )

]

= sup
�∈AZ

E
Z
[
Vk+1

(
tk, M

Z ,�,tk−,m
tk

)]
.

The above expectation depends only on the distribution of the jump size Mtk − Mtk− of the
state process which is independent of the decision rule �. Thus, we can omit the supremum

in the last equation and get vk(m) = E
Z
[
Vk+1

(
tk, M

Z ,�,tk−,m
tk

)]
.

For time t = 0we haveF Z
0 = F I

0 which represents the prior information on the initial drift
μ0 but does not yet contain the first expert opinion Z0. As above, the dynamic programming
principle yields for t = 0 and τ ∈ (0, t1)

V Z (0,m) = V1(0,m)

= lim
τ↘0

sup
�∈AZ

E
Z
[
exp

{ ∫ τ

0
b(MZ ,�,0,m

s ,�(s, MZ ,�,0,m
s ))ds

}
V Z (τ, MZ ,�,0,m

τ )

]

= sup
�∈AZ

E
Z
[
V1

(
0+, MZ ,�,0,m

0+
)] = v0(m).

��
Remark 6.2 The above theorem shows that at the information dates tk, k = 1, . . . , n − 1,
the value function exhibits jumps of size V Z (tk,m) − V Z (tk−,m) = Vk+1(tk,m) − vk(m).
Note that we excluded the information of the first expert opinion Z0 from the initial σ -
algebra F Z

0 . Therefore V exhibits at time t = 0 a jump of size V Z (0+,m) − V Z (0,m) =
V1(0,m) − v0(m).
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For H = Z the DPE appears as a system of coupled terminal value problems for the
PDE (40) for Vk which are tied together by the terminal conditions (48). The latter appear
as pasting conditions for the value function described by Vk and Vk+1 on two subsequent
intervals divided by the information date tk . Therefore that system can be solved recursively
for k = n, . . . , 1 starting with Vn(tn,m) = Vn(T ,m) = 1. From Sect. 5 it is already known

that the DPEs for the control problems for the information regimes H = R, J can be
solved explicitly using an exponential ansatz leading to the results given in Theorem 5.3.
We apply this idea to our problem and make for t ∈ [tk−1, tk), k = 1, . . . n, the ansatz

Vk(t,m) = exp{m�Ak(t)m + B�
k (t)m + Ck(t)} (51)

where Ak is a function on [tk−1, tk] taking values in the set of real symmetric d×d matrices,
whereas Bk and Ck are some functions on [tk−1, tk] with values in R

d and R, respectively,
which have to be determined.

Theorem 6.3 (Solution of dynamic programming equation and optimal decision rule)

(1) The solution to the dynamic programming equation given in (48) and (49) is for
[tk−1, tk), k = 1, . . . n and m ∈ R

d given by

Vk(t,m) = exp{m�Ak(t)m + B�
k (t)m + Ck(t)},

where the functions Ak, Bk and Ck satisfy on t ∈ (t0, t1) and t ∈ [tk−1, tk), k = 2, . . . n,
the system of ODEs given in Theorem 5.3 for H = R with terminal values for t = tk

Ak(tk) = �k Ak+1(tk), (52)

Bk(tk) = �k Bk+1(tk), (53)

Ck(tk) = Ck+1(tk)−1

2
B�
k+1(tk)�k 
QZ

tk Bk+1(tk) + 1

2
log det�k, (54)

where 
QZ
tk is the increment of the conditional variance at tk and given in (18). Further,

�k := (
Id+2 Ak+1(tk)
QZ

tk

)−1
for k = 1, . . . , n − 1. (55)

For k = n it holds An(tn) = 0d×d , Bn(tn) = 0d×1, Cn(tn) = 0.
For t0 = 0 the values of A1, B1,C1 are obtained from the formulas (52), (53), (54)
replacing Ak+1(tk), Bk+1(tk), Ck+1(tk) by A1(0+), B1(0+),C1(0+), respectively.

(2) The candidate optimal decision rule is for t ∈ [tk−1, tk), k = 1, . . . n, m ∈ R
d , given by

�Z = �Z (t,m) = �F (t,m) + 1

1 − θ
�−1

R QZ
t

(
2 Ak(t)m + Bk(t)

)
,

where �F is given in (33).

Proof Plugging ansatz (51) for Vk into PDE (40) with �
Z = �R and equate coefficients in

front ofm yields the ODEs given in Theorem 5.3 for H = R. The terminal value V (T ,m) =
Vn(tn,m) = 1 implies the given terminal values for An, Bn,Cn at the terminal time tn = T .
The other terminal values follow from the evaluation of the expectation on the right side of
(48). Using the shorthand notation Ã = Ak+1(tk), B̃ = Bk+1(tk), C̃ = Ck+1(tk) and ansatz
(51) for Vk+1(tk) we obtain

vk(m) = E
Z
[
Vk+1

(
tk, M

�,tk−,m
tk

)]

= E
Z
[
exp

{(
M�,tk−,m

tk

)�
Ã M�,tk−,m

tk + B̃�M�,tk−,m
tk + C̃

}]
.
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Completing the square with respect to M�,tk−,m
tk yields

vk(m) = E
Z
[
exp

{(
M�,tk−,m

tk + 1

2
Ã−1 B̃

)�
Ã

(
M�,tk−,m

tk + 1

2
Ã−1 B̃

)}

· exp
{

− 1

4
B̃� Ã−1 B̃ + C̃

}]
.

The above expectation can be evaluated using (Gabih et al., 2022, Lemma 3.5) saying that
for a d-dimensional Gaussian random vector Y ∼ N (μY , �Y ), b ∈ R

d and a symmetric and
invertible matrix U ∈ R

d×d such that all eigenvalues of Id − 2U�Y are positive, it holds

E
Z [

exp{(Y + b)�U (Y + b)}] =(
det(Id − 2U�Y)

)−1/2

× exp
{
(μY + b)� (Id − 2U�Y )−1U (μY + b)

}
.

We set U = Ã and b = 1
2 Ã

−1 B̃ and Y = M�,tk−,m
tk ∼ N (μY , �Y ). For mean

and covariance of Y update formula (17) and relation (18) imply μY = m and �Y =
QZ

tk−(� + QZ
tk−)−1QZ

tk− = −
QZ
tk . We obtain

vk(m) = exp
{(
m + 1

2
Ã−1 B̃

)�
�k Ã

(
m + 1

2
Ã−1 B̃

) − 1

4
B̃� Ã−1 B̃ + C̃ + 1

2
log det�k

}
.

and rearranging terms yields

vk(m) = exp
{
m��k Ã m + B̃��k m + C̃−1

2
B̃��k 
QZ

tk B̃ + 1

2
log det�k

}
,

On the other hand we have from ansatz (51) vk(m) = Vk(tk,m) = exp
{
m�Ak(tk)m +

B�
k (tk)m + Ck(tk)

}
.

By comparing the coefficients in front of m in the last two expressions for vk and substi-
tuting back the expressions for Ã, B̃, C̃ we obtain the desired result.

The proof for t = t0 = 0 is analogous. Finally, the expression for the optimal decision
rule follows if ansatz (51) for the value function V Z is substituted into (50). ��
Remark 6.4 Analysing the update formulas (52) through (54) for expert opinions which
become less and less reliable in the sense that

∥∥�−1
∥∥ → 0 it can be seen that 
QZ

tk tend to
0d and the update-factors �k given in (55) tend to Id . As a consequence the functions Ak , Bk

and Ck define a smooth value function V Z on [0, T ] which equals the value function V R of
the R-investor. This is as expected since in the considered limiting case for the Z -investors
expert opinions do not provide any additional information about the drift.

In Remark 5.6 we have seen that for H = R, J and θ → 0 the optimal decision rule
�H (t,m) converges to �H

log(t,m) = �−1
R m which is optimal for log-utility, see Proposi-

tion 4.1. The same holds for H = Z since the functions Ak, Bk and therefore the correction
term �Z −�F vanish for θ = 0. This can be seen from the vanishing solutions of the ODEs
for Ak, Bk between the information dates. This implies that the updates (52), (53) at the
informations dates also vanish.

Boundedness of Ak,Bk,Ck The proof of this property is based on the relations Ak(t) =
A
F (
t, QZ

t

)
and Bk(t) = B

F (
t, QZ

t

)
on [tk−1, tk], k = 1, . . . , n. They can be verified by

some calculations showing that between the information dates the left and right hand sides
satisfy the same ODEs as in the corresponding proof for AH , BH for H = R, J in Kondakji
(2019, Lemma 5.2.1). There are also the same terminal conditions at the information dates

which are given by the update formulas (52) and (52). In view of the definition of A
F
, B

F
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in Lemma 4.5, the boundedness of Ak, Bk follows from condition (35) saying that AF is
bounded. Then, also BF and CF are bounded.

Further, the eigenvalues of Id −2(1−θ)AZ (t)QZ
t have to be positive on [0, T ]. As already

explained for H = R, J this always holds true for θ < 0 while for θ ∈ (0, 1) one has to
require λmax(AF (t)QZ

t ) < 1
2(1−θ)

. From Prop. 3.4 it is known that QZ
t � QR

t from which

one can deduce λmax(AF (t)QZ
t ) ≤ λmax(AF (t)QR

t ) < 1
2(1−θ)

. Thus, it is enough to check
the condition for H = R.

Finally, The boundedness of Ck follows from integrating the r.h.s. of the ODE for Ck

which is bounded and the updates given in (52) which are also bounded.
Verification The key idea for the verification is that between the information dates the func-
tions Vk satisfy the same DPE as the value function V R of the R-investor given in (40).
This allows to rely on the verification results for H = R and to iterate them backward in
time. Starting point is a control problem on [tn−1, T ] with the modified initial time t = tn−1

instead of t = 0 and initial value m0 = MZ
tn−1

and q0 = QZ
ttn−1

. This is a control problem for

the R-investor on [tn−1, T ] for which Vn(t,m) and �Z (t,m) for all (t,m) are verfied to be
the value function and the optimal decision rule, respectively. Here, Vn satisfies the terminal
condition V (T ,m) = 1, as for H = R.

Next, we consider the control problem on [tn−2, tn−1] with initial time t = tn−2. At
the terminal time tn−1 the terminal condition is obtained from the dynamic programming
principle (38) leading to the expression for Vn−1(tn−1,m) given in (48). Again we can apply
the verification results for H = R on this time interval. Note, that these results also work
for nonzero terminal conditions. They only require the boundedness of the solutions of the
ODEs for Ak, Bk,Ck which already checked above. Continuing this iteration completes the
verification.
Monetary value of information For the initial investments x R/Z

0 and x Z/F
0 introduced in

Sect. 2.6 and needed to evaluate the efficiency of the Z -investor and the monetary value of
expert opinions one can derive the following expressions.

Lemma 6.5 (Kondakji (2019), Lemma 6.3.1) For the initial capital x Z/F
0 and the efficiency

εZ defined in (10) and (11), respectively, it holds

x Z/F
0 = x Z0 exp{−
Z

X (0)} and εZ = exp{−
Z
X (0)}.

For the initial capital x R/Z
0 defined in (12) and the monetary value of expert opinions PZ

Exp
it holds

PZ
Exp = x R0 − x R/Z

0 with x R/Z
0 = exp{−
Z

X (0) + 
R
X (0)},

where 
Z
X (0) and 
R

X (0) are given in (47) where for H = Z the settings QH = QZ , �
Z =

�R and K
Z
(t) = 0 apply.

7 Numerical results

In this section we illustrate the theoretical findings of the previous sections with results of
some numerical experiments.
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Table 1 Model parameters for the numerical experiments

Drift mean reversion level μ 0.05 Investment horizon T 1 year

Mean reversion speed κ 3 Power utility parameter θ −0.3

Volatility σμ 1 Volatility of stock σR 0.25

Mean of μ0 m0 μ = 0.05 Volatility of cont.-time experts σJ 0.2

Variance of μ0 q0
σ2
μ

2κ = 0.16 Variance of discr.-time experts � 0.4

Filter initial value MH
0 m0 m0 = 0 Number of expert opinions n 10

Initial value QH
0 q0 q0 = 0.16

7.1 Model parameters

Our experiments are based on a stock market model where the unobservable drift (μt )t∈[0,T ]
follows an Ornstein-Uhlenbeck process as given in (2) whereas the volatility is known and
constant. For simplicity, we assume that there is only one risky asset in the market, i.e. d = 1.

If not stated otherwise our numerical experiments are based on model parameters as given
in Table 1. The parameter of the utility function is chosen to be negative, θ = −0.3. This
corresponds to an investor which is more risk averse than a log-utility maximizing investor
trading theKelly portfolio. This is the relevant case formost investors. Note that for a negative
θ the optimization problem is always well-posed, see our paper (Gabih et al., 2022).

Themean and variance of the initial valueμ0 of the drift are the parameters of the stationary
distribution of the drift process which is known to be Gaussian with mean μ and variance
σ 2

μ/(2κ). Hence, the drift process μ is stationary on [0,∞) and for the chosen parameters
there is a 90% probability for values in the interval (−0.75, 0.85) centered at μ = 0.05,
and a probability around 2/3 for values in (0.35, 0.45). The filter processes MH and QH are
also initialized with the stationary mean and variance modeling partially informed investors
which only know the model parameters but have no additional prior knowledge about the
drift. The volatility σJ of the continuous-time expert opinions J is chosen as 0.2 and slightly
smaller than the volatility σR = 0.25 of the return process R. Hence the observations of J
are more informative than those of the returns R.

7.2 Filter

In this subsection we want to illustrate our theoretical findings on filtering based on different
information regimesby results on a simulation study. Figure1 shows in the toppanel simulated
paths of the two diffusion type observation processes which are the return process R and the
continuous-time expert opinion process J associated to the drift process μ. The drift process
which is not observable by the investors is plotted in the middle panel. The top panel also
presents for comparison the cumulated drift process representing the drift component in the
dynamics of both R and J , see (1) and (5). Expert’s views Zk which are noisy observations
of the drift process μ at the information dates and forming the additional information of
the Z -investor are shown as red crosses in the middle panel. From the observed quantities
the filter of the R-, J - and Z -investor are computed in terms of the pair (MH , QH ). For
H = R, Z , J the conditional expectations MH are plotted against time in the middle panel
while the conditional variances QH are shown in the bottom panel.
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Fig. 1 Observation and filter processes. Top: Diffusion-type observation processes R and J . Middle: Drift μ,
expert views Zk and conditional mean MH for H = R, Z , J . Bottom: Conditional variance QH

Recall that QR and QJ as well as QZ for any n ∈ N are deterministic. In the bottom panel
one sees that for any fixed t ∈ [0, T ], the value of QJ

t as well as the value of QZ
t is less or

equal than the value of QR
t . This shows that additional information by the expert opinions

improves the accuracy of the filter estimate. It confirms the underlying theoretical result on
the partial ordering of the conditional covariance matrices as stated in Proposition 3.4. The
updates in the filter of the Z -investor at the information dates of the expert’s views decrease
the conditional variance and lead to a jump of the conditional mean MZ . These are typically
jumps towards the hidden drift μ, of course this depends on the actual value of the expert’s
view. Note that the drift estimate MR of the R-investor is quite poor and mostly fluctuates
just around the mean-reversion level μ. However, the expert opinions visibly improve the
drift estimate.

For increasing t the conditional variances QR
t and QJ

t approach a finite value. An asso-
ciated convergence result for t → ∞ has been proven in Proposition 4.6 of Gabih et al.
(2014) for markets with d = 1 stock and generalized in Theorem 4.1 of Sass et al. (2017)
for markets with an arbitrary number of stocks. For the Z -investor we observe an almost
periodic behavior of the conditional variance (QZ

t )t≥0. The asymptotic behavior for t → ∞
and the derivation of upper and lower bounds have been studied in detail in Gabih et al.
(2014, Prop. 4.6) for d = 1 and in Sass et al. (2017, Sec. 4.2) for the general case. These
bounds are shown as dashed lines in the bottom panel.

Next we perform some experiments illustrating the theoretical results from Sect. 3.2 on
the asymptotic filter behavior for increasing number n of expert opinions.We distinguish two
cases. First, the expert’s variance� stays constant leading to convergence to full information,
i.e., mean square convergence of MZ ,n to μ and QZ ,n → 0 on (0, T ], see Theorem 3.9.
Second, that variance grows linearly with n leading to convergence of the filter processes of
the Z -invester to those of the J -investor, see Theorem 3.11. For that experiment the expert’s
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Fig. 2 Asymptotic behavior of the filter for n → ∞ Left: Constant expert’s variance � = 0.4, convergence
to full information Right: Linearly growing expert’s variance �(n) = n

T σ 2
J , diffusion approximation

views are generated as in (19), i.e., the Gaussian random variables εk in (4) are linked with
the Brownian motion W J from (5) driving the continuous-time expert opinion process J .

Figure 2 shows on the left side for the experiment with constant variance � the con-
ditional mean MZ ,n and the drift μ (top) and the conditional variance QZ ,n (bottom) for
n = 10, 400, 4000. It can be nicely seen that for increasing n the conditional variance tends
to zero while the conditional mean approaches the drift process for any t ∈ (0, T ]. In the limit
for n → ∞ the Z -investor has full information about the drift process. The panels on the
right side shows the results for the experiment with linearly growing variance for which we
consider the cases n = 5, 10, 100. It can be seen that the both filter processes MZ ,n and QZ ,n

approach the corresponding processes of the J -investor for any t ∈ [0, T ] in accordance with
Theorem 3.11. Contrary to the first experiment we observe that this convergence is much
faster.

Note that for the chosen parameters from Table 1 we have for n = 10 expert opinions
that � = �(n) = n

T σ 2
J = 0.4, i.e., the same expert’s variances for both experiments. This

yields for n = 10 identical conditional variances as it can be seen in the two bottom panels.
However, the paths of the conditional mean are different since the expert’s views Zk in the
experiment with linearly growing expert’s variance are linked to the Brownian motion W J ,
see (19), whereas in the left panels they are not.

7.3 Value function

In this subsectionwe present for the case of power utility solutions to the control problem (30).
In particular, we analyze the value functions V H (t,m) and the associated optimal decision
rules �H (t,m) for the different information regimes H . They are given in Theorems 4.4,
5.3 and 6.3 for H = F , R, J and Z , respectively. We recall relation (31) saying that the
solution of the original problem of maximizing expected power utility can be obtained from

V H by the relation VH
0 (x0) = xθ

0
θ
V H (0,m0). For H = F the relation also holds true if the

initial value m0 of the conditional mean is replaced by the initial value μ0 of the drift.
Figure 3 shows in the upper part the value functions V H (t,m) for H = R, Z , J , F plotted

against time t (left) for a fixed value for the drift estimatem = m∗ = 0.05 and plotted against
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Fig. 3 Value functions and optimal decision rules. Top: Value functions V H (t,m) for H = F, R, J , Z (n =
10) depending on t/m (left/right). Bottom: Optimal decision rule �H (t,m) depending on t/m (left/right)

m (right) for fixed time t = t∗ = 0.22. The lower panels show the corresponding decision
rules �H (t,m) for the partially informed investors.

For the value functions we can observe that they increase with time t and reach the
value 1 at terminal time T which follows from the definition of the performance criterion
in (29). The value function of the Z -investor exhibits jumps at the information dates. The
upper right panel illustrates that the value functions are exponentials of a quadratic function
of the drift estimatem. For almost all (t,m) the value function of the fully informed investor
V F (t,m) is smaller than those those of the partially observed investors. We recall relation
(31) saying that VH

0 (x0) = θ−1xθ
0V

H (0,m0) and that we work with a negative parameter of
the utility function (θ = −0.3). Hence, order relations for the maximized expected utilities
E

[Uθ (Xπ
T ) | FH

0

]
represented by VH

0 are reversed to relations for value functions V H . Fur-
ther, the value functions of the Z - and J -investor with access to additional information from
the expert opinions are smaller than the value function of R-investor observing returns only.
We note, that these relations do not hold in general, except for t = 0.

The lower plots show the optimal decision rules �H (t,m) which are given in (33), (45)
and (50). They are all of the form, see Remark 5.5 and (41),

�H (t,m) = �F (t,m) + 1

1 − θ
�−1

R QH
t

(
2 AH (t)m + BH (t)

)
with �F (m) = 1

1 − θ
�−1

R m.

Here, �F constitutes the myopic decision rule whereas the correction term �H − �F

describes the drift risk of the partially informed H -investor. All decision rules are linear in
the drift estimatem as it can be seen from the lower right panel. For drift estimatesm much
larger (smaller) than the mean reversion level of the drift μ the investors holds a long (short)
position in the stock which are smaller (in absolute terms) for the fully informed investor
than for partially informed ones. The figures further show that the drift risk decreases over
time (in absolute terms) and vanishes at terminal time T . For H = Z , J it is smaller than for
H = R indicating that more information about the hidden drift leads to decision rules closer
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to the myopic decision rule. This effect is also supported by the observation that the decision
rule of the Z -investor exhibits jumps at the information dates towards the myopic decision
rule. The arrival of an additional information improves the filter estimate of the hidden drift
and decreases the correction term.

We refer to Kondakji (2019, Sec. 8.3) for results for a positive parameter θ , i.e., a relative
risk aversion 1 − θ larger than for log-utility. Contrary to the present case with θ = −0.3
in which the control problem (30) is a minimization problem we face a maximization
problem for θ > 0. There are similar results but the monotonicity properties w.r.t. time t and
the ordering of the value function and optimal decision rules for the different information
regimes H are reversed.

7.4 High-frequency experts

In this subsectionwewant to study the asymptotic behavior of the value functions and optimal
decision rules of the Z -investor for growing number n of expert opinions. For the case of log-
utility it is known that the convergence results for the filters as given in Theorems 3.9 and 3.11
carry over directly to the convergence of value functions. The proof is straightforward and
relies on representations of the value function as in (21) in terms of an integral functional of
the (deterministic) conditional variance QZ .

However, in case of power utility that approach can no longer be adopted since the per-
formance criterion in (29) and consequently the value functions V H (t,m) are now given in
terms of expectations of the exponential of quite involved integral functionals of the filter

processes MH under the equivalent measure P
H
introduced in Sect. 4.2. Hence, the value

functions V H (t,m) depend on the complete filter distribution, not only on its second-order
moments. Further, for power utility the optimal strategies do not depend only on the current
drift estimate but contain correction terms depending on the distribution of future drift esti-
mates. A formal and rigorous proof of convergence of value functions is ongoing work and
deferred to a forthcoming publication. It is based on the Lp-convergence of conditional mean
processes for arbitrary p ≥ 2 as it can be deduced from Theorems 3.9 and 3.11.

Our numerical results presented below provide a strong support of the convergence of
value functions also for power utility. As in Sect. 3.2 we consider two different asymptotic
regimes which are obtained if the expert’s variance � is either fixed or grows linear in n. In
order to emphasize the dependence of the value function and optimal decision rule of the
Z -investor on n we use the notation V Z ,n and �Z ,n .

Figure 4 presents results of experiments for linearly growing variance �(n) = n
T σ 2

J for
which we have convergence of the filter processes MZ ,n, QZ ,n to the diffusion limit given
by filter processes of the J -investor observing a continuous-time expert opinion process. The
top panels show the value function V Z ,n(t,m) while the bottom panels present the optimal
decision rule �Z ,n(t,m) of the Z -investor observing n = 5, 10, 100 expert opinions. For
comparisonwe also show the results for the R- and J -investor. For increasing n both V Z ,n and
�Z ,n quickly approach the corresponding quantities of the J -investor. This shows that for the
chosen parameters quite accurate diffusion approximations of solutions to the control problem
for the Z -investor are available already for moderate numbers n of expert opinions. Since
the latter require less computational effort this is very helpful for deriving approximations
not only for the value functions but also for related quantities such as efficiencies and prices
of expert opinions introduced in Sect. 2.6 and considered in the next subsection.

Figure 5 shows results of the experiment with fixed variance � = 0.4 for which we have
convergence to full information, i.e., mean-square convergence of MZ ,n to μ and QZ ,n → 0
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Fig. 4 Asymptotic behavior of value functions and optimal decisions rules for growing n and �(n) = n
T σ 2

J .

Top: Value functions V H (t,m) depending on t/m (left/right) for H = R, J , Z Bottom: Optimal decision
rules �H (t,m) for H = F, R, J , Z depending on t/m (left/right)

Fig. 5 Asymptotic behavior of value functions and optimal decision rules for growing n and � = 0.4 (fixed).

Top: Value function V
F
(t,m, QZ ,4000

t ) and V H (t,m) depending on t/m (left/right) for H = R, Z . Bottom:
Optimal decision rules �H (t,m) for H = F, R, Z depending on t/m (left/rights)
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on (0, T ]. As in Fig. 4 we plot V Z ,n and �Z ,n against time t and drift estimate m, but

now for n = 10, 400, 4000. We expect that |V Z ,n(t,m) − V
F
(t,m, QZ ,n

t )| converges to
zero where V

F
is the conditional expectation of the value function V F (t, μt ) of the fully

informed investor given F Z ,n
t . That function is introduced in (36) and Lemma 4.5 provides a

closed-form expression. The upper panels show for comparison V
F
(t,m, QZ ,4000

t ) and also
the value function of the R-investor while the bottom panels also show the decision rules of
the R- and F-investor. The latter is independent of time t and defines the myopic decision
rule. We observe that for increasing n the value function and the optimal decision rule of the

Z -investor approach V
F
and the myopic decision rule, respectively. However, compared to

the case of linearly growing expert’s variance (see Fig. 4) the convergence is much slower.
This was already observed in Sect. 7.2 for the convergence of filter processes.

We note again that for the chosen parameters we have for n = 10 expert opinions that
� = �(n) = n

T σ 2
J = 0.4. This yields that for n = 10 the value function and decision rule

for the experiment with linear growing expert’s variance �(n) coincide with those for the
experiment with constant variance �.

7.5 Monetary value of information

We conclude this section with some results of experiments illustrating the concepts of effi-
ciency and price of expert opinions introduced in Sect. 2.6 for the description of the monetary
value of information.
Efficency

Recall that we followed an utility indifference approach and considered the initial capital
xH/F
0 which the fully informed F–investor needs to obtain the same maximized expected

utility at time T as the partially informed H -investor who started at time 0 with wealth xH0 >

0. That wealth is given in Eq. (10) as the solution of the equation VH
0 (xH0 ) = E

[VF
0

(
xH/F
0

) |
FH
0

]
for H = R, Z , J . The difference xH0 − xH/F

0 > 0 describes the loss of information
for the partially informed H -investor relative to the F-investor measured in monetary units.
The ratio εH = xH/F

0 /xH0 ∈ (0, 1] introduced in (11) is a measure for the efficiency of the
H -investor. We refer to Lemma 5.8 and 6.5 where we give explicit expressions for the above
quantities for H = R, J and H = Z , respectively.

In Fig. 6 we compare the efficiencies of the Z -investor for increasing n and parameter
of the utility function θ = ±0.3. In the left panel the expert’s variance is kept constant and
equal to � = 0.4. Then, the Z -investor asymptotically for n → ∞ has full information about
the hidden drift. The figure shows that the Z -investor’s efficiency increases with n starting
with the efficiency of the R-investor (blue) and approaching 1 which is the efficiency of the
fully informed investor (green). Note that the investment horizon is T = 1 year such that
arrival of the expert opinions once per year, month, week, day, hour or minute corresponds to
n = 1, 12, 52, 365, 8.760 or 525.600, respectively. Comparing the efficiencies for different
parameters θ it can be seen that an investor with the positive parameter θ = 0.3, i.e., less risk
averse than the log-utility investor (θ = 0), achieves smaller efficiencies than an investor with
the negative parameter θ = −0.3. Note that the latter is more risk averse than the log-utility
investor. Additional experiments have shown that the efficiency increases with increasing
risk aversion 1 − θ .

In the right panel in Fig. 6 we show results of experiments in which the expert’s variance�

grows linearly with n. In that setting we expect convergence to the diffusion limit represented
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by the J -investor. Here, the Z -investor’s efficiency again increases with n starting with the
efficiency of the R-investor (blue) but now approaches the efficiency ε J of the J -investor
(light blue) which is less than 1. As already observed for the value functions in Sect. 7.4
that convergence is much faster than the convergence to full information for fixed �. The
diffusion limit ε J provides quite accurate approximations for εZ ,n already for n ≈ 50, i.e.,
weekly expert’s views.
Price of the experts

In Sect. 2.6 we also used the utility indifference approach to derive a measure for the
monetary value of the additional information delivered by the experts. The idea was to
equate the maximum expected utilities of an R-investor who only observes returns of the
H -investor for H = Z , J . The latter combines return observations with information from
the experts. Given the R-investor is equipped with initial capital x R0 > 0 one computes the

initial capital x R/H
0 ≤ x R0 for the H -investor which leads to the same maximum expected

utility, we refer to Eq. (12). Then the R-investor could put aside from its initial capital x R0
the amount PH

Exp := x R0 − x R/H
0 ≥ 0 to buy the information from the expert. The remaining

capital x R/H
0 is invested in an H -optimal portfolio and providing the same expected utility

of terminal wealth as the R-optimal portfolio starting with initial capital x R0 . We refer to
Lemma 5.8 and 6.5 where we give explicit expressions for PH

Exp for H = J and H = Z ,
respectively.

Figure 7 shows the above decomposition of the initial capital of the R-investor for x R0 = 1.

In the left panel we fix the expert’s variance � = 0.4 and plot PZ ,n
Exp against n. As expected

Fig. 6 Efficiency of the Z -investor for increasing n and power utility function with θ = ±0.3: Left: Expert’s
variance � = 0.4 fixed; Right: Expert’s variance �(n) = n

T σ 2
J linearly growing

Fig. 7 Price of the experts for power utility with θ = −0.3: Left: Increasing number n of expert opinions
and expert’s variance � = 0.4 fixed; Right: Increasing expert’s variance � and n = 10 fixed
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that price increases with the number of expert opinions but for n → ∞, i.e., in the full
information limit, the price reaches a saturation level which is given by x R0 − x R/F

0 = 1−εR .
The right panel shows results for fixed n = 10 but growing variance �. Then the expert’s

views provide less and less information about the hidden drift leading to a decreasing price
PZ
Exp approaching zero for � → ∞, i.e., for fully non-informative expert’s views. On the

other hand, in the limiting case for � → 0 at each of the n = 10 information dates the Z -
investor has full information about the drift process. Note that full information is not available
for all t ∈ (0, T ] but only at finitely many information dates and thus PZ

Exp is for � → 0

moving towards but not reaching the full information limit 1 − εR .
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